WorldWideScience

Sample records for electrical breakdown characteristics

  1. Influence of magnetic field on the electrical breakdown characteristics in cylindrical diode

    International Nuclear Information System (INIS)

    Li Shouzhe; Uhm, Han S.

    2004-01-01

    The influence of magnetic field on the electrical breakdown properties is investigated by applying a magnetic field along the longitudinal direction in a cylindrical diode for two electrical polarities. Breakdown characteristics in a crossed magnetic field are analyzed with the equivalentreduced-electric-field concept and Townsend criterion. The discharge experiment at reduced pressure is carried out in the moderate magnetic field. Experimental investigation is concentrated on the magnetic dependent behavior of the electrical breakdown in the lower pressure side of Paschen's minimum. It is found that the electrical breakdown characteristics with respect to the magnetic field depend on electrical polarity of the cylindrical diode, which is interpreted by taking the gyromotion of the individual electrons in the diode into accounts under the moderate magnetic field in the lower pressure side of Paschen's minimum

  2. Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

    International Nuclear Information System (INIS)

    Kang, Jong O; Lee, On You; Mo, Young Kyu; Kim, Jun Il; Bang, Seung Min; Lee, Hong Seok; Kang, Hyoung Ku; Lee, Jae Hun; Jang, Cheol Yeong

    2015-01-01

    The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers

  3. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  4. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...

  5. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....

  6. Electrical breakdown of water in microgaps

    International Nuclear Information System (INIS)

    Schoenbach, Karl; Kolb, Juergen; Xiao Shu; Katsuki, Sunao; Minamitani, Yasushi; Joshi, Ravindra

    2008-01-01

    Experimental and modeling studies on electrical breakdown in water in submillimeter gaps between pin and plane electrodes have been performed. Prebreakdown, breakdown and recovery of the water gaps were studied experimentally by using optical and electrical diagnostics with a temporal resolution on the order of one nanosecond. By using Mach-Zehnder interferometry, the electric field distribution in the prebreakdown phase was determined by means of the Kerr effect. Electric fields values in excess of the computed electric fields, which reach >4 MV cm -1 for applied electrical pulses of 20 ns duration, were recorded at the tip of the pin electrode, an effect which can be explained by a reduced permittivity of water at high electric fields. Breakdown of the gaps, streamer-to-arc transition, was recorded by means of high-speed electrical diagnostics, and through high-speed photography. It was shown, through simulations, that breakdown is initiated by field emission at the interface of preexisting microbubbles. Impact ionization within the micro-bubble's gas then contributes to plasma development. Experiments using pulse-probe methods and Schlieren diagnostics allowed us to follow the development of the disturbance caused by the breakdown over a time of more than milliseconds and to determine the recovery time of a water switch. In order to trigger water switches a trigger electrode with a triple point has been utilized. The results of this research have found application in the construction of compact pulse power generators for bioelectric applications.

  7. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are used to evaluate the elastomers...... elastomer electrically. In order to tailor the elastomers, more knowledge is needed but these copolymers pave the first path towards a better understanding of the complex connection between electrical and thermal stability. Minor changes in the polymer backbone structure result in changes in electrical...

  8. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    . In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field....... We performed numerical analysis with a quasi-steady state approximation to predict thermal runaway of dielectric elastomer films. We also studied experimentally the effect of temperature on dielectric properties of different PDMS dielectric elastomers. Different films with different percentages...

  9. Electrical breakdown in thin oxides during bias-temperature ramps

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Riewe, Leonard Charles; Winokur, Peter S.; Sexton, Frederick W.

    2000-01-01

    Electrical breakdown in thin oxides is assessed by a new bias-temperature ramp technique. No significant effect of radiation exposure on breakdown is observed for high quality thermal and nitrided oxides, up to 20 Mrad(SiO 2 )

  10. Development of Electrical Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2006-01-01

    Full Text Available Power transformers are key equipment for transfer and distribution of the electric power. Considering the significance of the power transformers in the electric system, their price and possible damages occurred by accidents, it is necessary to pay attention to their higher prevention. To prevent failure states of transformers, we perform different types ofmeasurements. They shall illustrate a momentary state of the measured equipment and if necessary to draw attention in advance to changes of parameters, which have specific relationship to no-failure operation of the equipment. The conditions under which breakdown of composite liquid/ solid insulation can occur, e.g. in transformer, play an important role in designing such insulation. The liquid, mainly mineral oil, generally constitutes the weakest part of insulation and a great amount of work has been devoted to the study of streamers, which appear in the gaseous phase, and most often are triggering the failure of insulation.

  11. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  12. Electrical breakdown of carbon nanotube devices and the predictability of breakdown position

    Directory of Open Access Journals (Sweden)

    Gopal Krishna Goswami

    2012-06-01

    Full Text Available We have investigated electrical transport properties of long (>10 μm multiwalled carbon nanotubes (NTs by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by current annealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs.

  13. Quantitative Outgassing studies in DC Electrical breakdown

    CERN Document Server

    Levinsen, Yngve Inntjore; Calatroni, Sergio; Taborelli, Mauro; Wünsch, Walter

    2010-01-01

    Breakdown in the accelerating structures sets an important limit to the performance of the CLIC linear collider. Vacuum degradation and subsequent beam instability are possible outcomes of a breakdown if too much gas is released from the cavity surface. Quantitative data of gas released by breakdowns are provided for copper (milled Cu-OFE, as-received and heat-treated), and molybdenum. These data are produced in a DC spark system based on a capacitance charged at fixed energy, and will serve as a reference for the vacuum design of the CLIC accelerating structures.

  14. An Introduction to Electrical Breakdown in Dielectrics

    Science.gov (United States)

    1985-04-01

    Examples include the insulation in parallel plate transmission lines, the dielectrics in high voltage capacitors, and transformer bushings . This can...of the electrodes has a significant effect on the breakdown voltage. Some equip- ment, such as vacuum switchgear , would be rated below the lowest

  15. Breakdown in ZnO Varistors by High Power Electrical Pulses; TOPICAL

    International Nuclear Information System (INIS)

    PIKE, GORDON E.

    2001-01-01

    This report documents an investigation of irreversible electrical breakdown in ZnO varistors due to short pulses of high electric field and current density. For those varistors that suffer breakdown, there is a monotonic, pulse-by-pulse degradation in the switching electric field. The electrical and structural characteristics of varistors during and after breakdown are described qualitatively and quantitatively. Once breakdown is nucleated, the degradation typically follows a well-defined relationship between the number of post-initiation pulses and the degraded switching voltage. In some cases the degraded varistor has a remnant 20(micro)m diameter hollow track showing strong evidence of once-molten ZnO. A model is developed for both electrical and thermal effects during high energy pulsing. The breakdown is assumed to start at one electrode and advance towards the other electrode as a thin filament of conductive material that grows incrementally with each successive pulse. The model is partially validated by experiments in which the varistor rod is cut at several different lengths from the electrode. Invariably one section of the cut varistor has a switching field that is not degraded while the other section(s) are heavily degraded. Based on the experiments and models of behavior during breakdown, some speculations about the nature of the nucleating mechanism are offered in the last section

  16. Runaway breakdown and electrical discharges in thunderstorms

    Science.gov (United States)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  17. Study on the lightning impulse breakdown characteristics of gaseous insulation media for the design of a high voltage superconducting apparatus

    Science.gov (United States)

    Kang, H.; Na, J. B.; Ahn, M. C.; Bae, D. K.; Kim, Y. H.; Ko, T. K.

    2010-11-01

    In general, the current leads of high voltage superconducting apparatuses cooled by liquid nitrogen are exposed to gaseous insulation media. Therefore, the investigation on the electrical breakdown characteristics of gaseous insulation media should be performed to develop electrically reliable high voltage superconducting power apparatuses. In this study, the lightning impulse breakdown tests on gaseous insulation media are conducted by using sphere-to-plane electrode systems made of stainless steel. Also, the lightning impulse breakdown voltage tests on gaseous insulation media according to various pressures are performed. The experimental results show that the electrical breakdown characteristics under lightning impulse voltage are affected by the gap length between electrode systems, the size of electrodes, and the field utilization factors. From these results, the electrical insulation design criteria to estimate the electrical breakdown voltage are established. The results are expected to be applicable to the design of current leads for high voltage superconducting apparatuses.

  18. Dramatically enhanced electrical breakdown strength in cellulose nanopaper

    Directory of Open Access Journals (Sweden)

    Jianwen Huang

    2016-09-01

    Full Text Available Electrical breakdown behaviors of nanopaper prepared from nanofibrillated cellulose (NFC were investigated. Compared to conventional insulating paper made from micro softwood fibers, nanopaper has a dramatically enhanced breakdown strength. Breakdown field of nanopaper is 67.7 kV/mm, whereas that of conventional paper is only 20 kV/mm. Air voids in the surface of conventional paper are observed by scanning electron microscope (SEM. Further analyses using mercury intrusion show that pore diameter of conventional paper is around 1.7 μm, while that of nanopaper is below 3 nm. Specific pore size of nanopaper is determined to be approximately 2.8 nm by the gas adsorption technique. In addition, theoretical breakdown strengths of nanopaper and conventional paper are also calculated to evaluate the effect of pore size. It turns out that theoretical values agree well with experimental data, indicating that the improved strength in nanopaper is mainly attributed to the decreased pore size. Due to its outstanding breakdown strength, this study indicates the suitability of nanopaper for electrical insulation in ultra-high voltage convert transformers and other electrical devices.

  19. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. M. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  20. Ion manipulation device with electrical breakdown protection

    Science.gov (United States)

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-02

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. The surfaces are housed in a chamber, and at least one electrically insulative shield is coupled to an inner surface of the chamber for increasing a mean-free-path between two adjacent electrodes in the chamber.

  1. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-01-01

    Highlights: • Emission of electric spark dissociation of CH 3 I is similar to its fs LIBS. • We use fs laser induced breakdown as a simulation for electric spark dissociation. • The I 2 molecule formation is directly observed in the time-resolved LIBS. • Bimolecular collision of I ∗ and CH 3 I is responsible for the formation of I 2 . - Abstract: The electric discharge spark dissociation of gas CH 3 I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I + , CH 3 , CH 2 , CH, H, and I 2 are identified as the dissociation products. The emission band of 505 nm I 2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I 2 ∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I 2 ∗ molecule results from the bimolecular collision of the highly excited iodine atom I ∗ ( 4 P) and CH 3 I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH 3 I

  2. Field emission driven direct current argon discharges and electrical breakdown mechanism across micron scale gaps

    Science.gov (United States)

    Matejčik, Štefan; Radjenović, Branislav; Klas, Matej; Radmilović-Radjenović, Marija

    2015-11-01

    In this paper results of the experimental and theoretical studies of the field emission driven direct current argon microdischarges for the gaps between 1 μm and 100 μm are presented and discussed. The breakdown voltage curves and Volt-Ampere characteristics proved to be a fertile basis providing better understanding of the breakdown phenomena in microgaps. Based on the measured breakdown voltage curves, the effective yields have been estimated confirming that the secondary electron emission due to high electric field generated in microgaps depends primarily on the electric field leading directly to the violation of the Paschen's law. Experimental data are supported by the theoretical predictions that suggest departure from the scaling law and a flattening of the Paschen curves at higher pressures confirming that Townsend phenomenology breaks down when field emission becomes the key mechanism leading to the breakdown. Field emission of electrons from the cathode, the space charge effects in the breakdown and distinction between the Fowler-Nordheim field emission and the space charge limited current density are also analyzed. Images and Volt-Ampere characteristics recorded at the electrode gap size of 20 μm indicate the existence of a discharge region similar to arc at the pressure of around 200 Torr has been observed. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  3. Characteristics and Breakdown Behaviors of Polysilicon Resistors for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Tang

    2015-01-01

    Full Text Available With the rapid development of the power integrated circuit technology, polysilicon resistors have been widely used not only in traditional CMOS circuits, but also in the high voltage applications. However, there have been few detailed reports about the polysilicon resistors’ characteristics, like voltage and temperature coefficients and breakdown behaviors which are critical parameters of high voltage applications. In this study, we experimentally find that the resistance of the polysilicon resistor with a relatively low doping concentration shows negative voltage and temperature coefficients, while that of the polysilicon resistor with a high doping concentration has positive voltage and temperature coefficients. Moreover, from the experimental results of breakdown voltages of the polysilicon resistors, it could be deduced that the breakdown of polysilicon resistors is thermally rather than electrically induced. We also proposed to add an N-type well underneath the oxide to increase the breakdown voltage in the vertical direction when the substrate is P-type doped.

  4. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2015-01-01

    In practice, the electrical breakdown strength of dielectric electroactive polymers (DEAPs)determines the upper limit for transduction. During DEAP actuation, the thickness of the elastomer decreases, and thus the electrical field increases and the breakdown process is determined by a coupled...... electro-mechanical failure mechanism. A thorough understanding of the mechanisms behind the electro-mechanical breakdown process is required for developing reliable transducers. In this study, two experimental configurations were used to determine the stretch dependence of the electrical breakdown...

  5. Impulse breakdown of small air gap in electric field Part II: Statistical ...

    African Journals Online (AJOL)

    The patterns of shot distribution and maximum coverage at impulse breakdown voltage for positive point electr-odes (needle and cone electrodes) in small air gaps in non-uniform electric fields were investigated. During the breakdown test, a sheet of paper was placed on the plate electrode (-ve), and each breakdown shot ...

  6. Breakdown characteristics of AlGaN/GaN Schottky barrier diodes fabricated on a silicon substrate

    International Nuclear Information System (INIS)

    Jiang Chao; Lu Hai; Chen Dun-Jun; Ren Fang-Fang; Zhang Rong; Zheng You-Dou

    2014-01-01

    In this work, the breakdown characteristics of AlGaN/GaN planar Schottky barrier diodes (SBDs) fabricated on the silicon substrate are investigated. The breakdown voltage (BV) of the SBDs first increases as a function of the anode-to-cathode distance and then tends to saturate at larger inter-electrode spacing. The saturation behavior of the BV is likely caused by the vertical breakdown through the intrinsic GaN buffer layer on silicon, which is supported by the post-breakdown primary leakage path analysis with the emission microscopy. Surface passivation and field plate termination are found effective to suppress the leakage current and enhance the BV of the SBDs. A high BV of 601 V is obtained with a low on-resistance of 3.15 mΩ·cm 2 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.

    Science.gov (United States)

    Jung, Minkyung; Song, Woon; Sung Lee, Joon; Kim, Nam; Kim, Jinhee; Park, Jeunghee; Lee, Hyoyoung; Hirakawa, Kazuhiko

    2008-12-10

    We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450 K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.

  8. Substrate-bias effect on the breakdown characteristic in a new silicon high-voltage device structure

    International Nuclear Information System (INIS)

    Li Qi; Wang Weidong; Zhao Qiuming; Wei Xueming

    2012-01-01

    A novel silicon double-RESURF LDMOS structure with an improved breakdown characteristic by substrate bias technology (SB) is reported. The P-type epitaxial layer is embedded between an N-type drift region and an N-type substrate to block the conduction path in the off-state and change the distributions of the bulk electric field. The substrate bias strengthens the charge share effect of the drift region near the source, and the vertical electric field peak under the drain is decreased, which is especially helpful in improving the vertical breakdown voltage in a lateral power device with a thin drift region. The numerical results by MEDICI indicate that the breakdown voltage of the proposed device is increased by 97% compared with a conventional LDMOS, while maintaining a lowon-resistance. (semiconductor devices)

  9. Characteristics of Structural Breakdown in Plastic Concrete and ...

    African Journals Online (AJOL)

    The structural breakdown of plastic concrete when sheared in. a Couette-type rheometer is discussed with particular emphasis on the significant features of the resultant thixotropic break-down curve. A typical trace has four such significant features which characterise the mix. The significance of these features are analysed ...

  10. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    that affect the breakdown strength of the pre-stretched DEs was developed. Breakdown strength was determined for samples with and without volume conservation and was found to depend strongly on the strain and the thickness of the samples. In order for DEs to be fully implementable in commercial products...... fillers (e.g. oils). Interestingly, the results also showed that soft fillers significantly influence the long-term electromechanical reliability of PDMS elastomers. However, despite the pre-stretched PDMS elastomers filled with hard and soft filler experience difficulties to maintain their long...

  11. An investigation into the cumulative breakdown process of polymethylmethacrylate in quasi-uniform electric field under nanosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang; Cang Su, Jian; Bo Zhang, Xi; Feng Pan, Ya; Min Wang, Li; Peng Fang, Jin; Sun, Xu; Lui, Rui [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, P.O. Box 69 Branch 13, Xi' an 710024 (China)

    2013-08-15

    A group of complete images on the discharge channel developed in PMMA in quasi-uniform electric field under nanosecond pulses are observed with an on-line transmission microscope. The characteristics of the cumulative breakdown process are also generalized, which include initiating from the vicinity of the cathode, developing to the anode with a branch-like shape, and taking on a wormhole appearance when final breakdown occurs. The concluded characteristics are explained by referring to the conceptions of “low density domain” and “free radical” and considering the initial discharge channel as a virtual needle. The characteristics are helpful for designers to enhance the lifetime of insulators employed on a nanosecond time scale.

  12. Theoretical investigation of the breakdown electric field of SiC polymorphs

    Science.gov (United States)

    Yamaguchi, Kikou; Kobayashi, Daisuke; Yamamoto, Tomoyuki; Hirose, Kazuyuki

    2018-03-01

    The breakdown electric field of several SiC polymorphs has been investigated theoretically using a concept of "recovery rate," which is obtained by first principles calculations. A good relationship between the experimental breakdown electric fields and the calculated recovery rate of 4H-, 6H-, and 3C-SiC was obtained. In order to examine the stability of SiC polymorphs, the total electronic energies of various types of SiC crystal structures were calculated. Here, two candidates of polymorphs-GeS-type- and 2H-SiC-with energies comparable to those of experimentally well-established structures, have been obtained. The breakdown electric fields of these two polymorphs were estimated using a relationship obtained from the results of 4H-, 6H-, and 3C-SiC. This indicates that one of these polymorphs, GeS-type-SiC, has higher breakdown electric field than any other SiC polymorphs. In addition to the investigation with the recovery rate, relationship between experimental breakdown electric field and calculated band gap with recently developed accurate electron-correlation potential has been also discussed.

  13. Electrical Breakdown of Hydrogen and Helium on Subnanosecond Time Scales

    National Research Council Canada - National Science Library

    Gahl, J

    2000-01-01

    .... Therefore, electrical field emission plays a very important role in these discharges. This report also includes a theoretical determination of the effective electric field for an arbitrary electromagnetic pulse...

  14. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  15. Experimental Study on Breakdown Characteristics of Transformer Oil Influenced by Bubbles

    Directory of Open Access Journals (Sweden)

    Chunxu Qin

    2018-03-01

    Full Text Available Bubbles will reduce the electric strength of transformer oil, and even result in the breakdown of the insulation. This paper has studied the breakdown voltages of transformer oil and oil-impregnated pressboard under alternating current (AC and direct current (DC voltages. In this paper, three types of electrodes were applied: cylinder-plan electrodes, sphere-plan electrodes, and cone-plan electrodes, and the breakdown voltages were measured in both no bubbles and bubbles. The sphere-sphere electrodes were used to study the breakdown voltage of the oil-impregnated pressboard. The results showed that under the influence of bubble, the breakdown voltage of the cylinder-plan electrode dropped the most, and the breakdown voltage of the cone-plan electrode dropped the least. The bubbles motion was the key factor of the breakdown. The discharge types of the oil-impregnated pressboard were different with bubbles, and under DC, the main discharge type was flashover along the oil-impregnated pressboard, while under AC, the main discharge type was breakdown through the oil-impregnated pressboard.

  16. Numerical modeling for investigating the optical breakdown threshold of laser-induced air plasmas at different laser characteristics

    Science.gov (United States)

    Hamam, Kholoud A.; Gaabour, Laila H.; Gamal, Yosr E. E. D.

    2017-07-01

    In this work, we report a numerical investigation of two sets of experimental measurements that were previously carried out to study the breakdown threshold dependence on laser characteristics (wavelength, pulse width, and spot size) in the breakdown of laboratory air at different pressures. The study aimed to inspect the significance of the physical mechanisms in air breakdown as related to the applied experimental conditions. In doing so, we adopted a simple theoretical formulation relying on the numerical solution of a rate equation that describes the growth of electron density due to the joined effect of multi-photon and avalanche ionization processes given in our earlier work [Gaabour et al., J. Mod. Phys. 3, 1683-1691 (2012)]. Here, the rate equation is adapted to include the effect of electron loss due to attachment processes. This equation is then solved numerically using the Runge-Kutta fourth order technique. The influence of electron gain and loss processes on the breakdown threshold is studied by calculating the breakdown threshold intensity and RMS electric field for atmospheric air using different laser parameters (wavelength, pulse widths, and focal length lenses), in correspondence to the experimental conditions given by Tambay and Thareja [J. Appl. Phys. 70(5), 2890 (1991)]. To validate the model, a comparison is made between those calculated thresholds and the experimentally measured ones. Moreover, the effective contribution of each of the considered physical processes to the breakdown phenomenon is examined by studying the effect of laser wavelength and spot diameter on the threshold intensities, as well as on the temporal variation of the electron density. The correlation between the threshold intensity and gas pressure is tested in relation to the measurements of Tambay et al. [Pramana-J. Phys. 37(2), 163 (1991)]. Calculations are also carried out to depict the impact of pulse width on the threshold intensity.

  17. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  18. Restoration of an electrical breakdown Terahertz emitter by 2 MeV He+ ion implantation

    International Nuclear Information System (INIS)

    Yang kang; Ma Mingwang; Chen Xiliang; Zhu Zhiyong

    2009-01-01

    The irradiation of solids by energetic particles may cause extensive displacement cascades and point defects (vacancies and interstitials), and can be widely used for material modification. In order to repair an electrical breakdown photoconductive antenna (PCA), we irradiated the (100)-oriented, low-temperature (LT) grown GaAs substrate with 10 16 /cm 2 of 2 MeV helium ions. After being implanted, electric resistance of the PCA has increased from 800 Ω to 60 ΜΩ. The irradiated PCA exhibits improvements in the output power in comparison with the electrical breakdown PCA and its signal intensity has increased from 2 nA to 8 nA. Accordingly, its output power has become more than one order of magnitude higher than that before irradiation. The frequency range of PCA has obviously improvement. (authors)

  19. Electrical breakdown mechanism of cryogenic liquid coolants in the presence of thermal bubbles. Goku teion reibai ekitai no netsu kiho hakai kiko

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M.; Suehiro, J.; Nakamura, I.; Saita, K. (Kyushu Univ., Fukuoka (Japan))

    1991-04-20

    Investigation was made on a breakdown mechanism of a coolant under the simulated condition of a superconducting magnet coil at quenching. The breakdown mechanism was classified in the following 3 points. (1) For an abrupt pulse voltage with micro-second of rising length, the thermal bubbles do not deform, but a series complex insulating system of the gas phase and the liquid phase in the bubble is caused. (2) In the case of a slow rising electric field having a milli-second order rising length, breakdown is caused accompanying the deformation of floating bubbles in the liquid. (3) In the case of slow rising electric field having at least several tens milli-second rising length, bubbles grow from a hot spot and the breakdown is caused in the gas phase after the gap is suspended. The breakdown voltage at this time is near to the DC breakdown voltage of the saturated gas. The characteristics is directly connected to the deformation of heat bubbles when the voltage raising rate is changed in wide range. 19 refs., 11 figs.

  20. Optically reversible electrical soft-breakdown in wide-bandgap oxides—A factorial study

    Science.gov (United States)

    Zhou, Y.; Ang, D. S.; Kalaga, P. S.

    2018-04-01

    In an earlier work, we found that an electrical soft-breakdown region in wide-bandgap oxides, such as hafnium dioxide, silicon dioxide, etc., could be reversed when illuminated by white light. The effect is evidenced by a decrease in the breakdown leakage current, termed as a negative photoconductivity response. This finding raises the prospect for optical sensing applications based on these traditionally non-photo-responsive but ubiquitous oxide materials. In this study, we examine the statistical distribution for the rate of breakdown reversal as well as the influence of factors such as wavelength, light intensity, oxide stoichiometry (or oxygen content) and temperature on the reversal rate. The rate of breakdown reversal is shown to be best described by the lognormal distribution. Light in the range of ˜400-700 nm is found to have relatively little influence on the reversal rate. On the other hand, light intensity, oxygen content and temperature, each of them has a clear impact; a stronger light intensity, an oxide that is richer in oxygen content and a reduced temperature all speed up the reversal process substantially. These experimental results are consistent with the proposed phenomenological redox model involving photo-assisted recombination of the surrounding oxygen interstitials with vacancy defects in the breakdown path.

  1. High Current Density Electrical Breakdown of TiS

    NARCIS (Netherlands)

    Molina-Mendoza, Aday J.; Island, J.O.; Paz, Wendel S.; Clamagirand, Jose Manuel; Ares, Josè Ramon; Flores, Eduardo; Leardini, Fabrice; Sánchez, Carlos; Agraït, Nicolás; Rubio-Bollinger, Gabino; van der Zant, H.S.J.; Ferrer, Isabel J.; Palacios, JJ; Castellanos-Gomez, Andres

    2017-01-01

    The high field transport characteristics of nanostructured transistors based on layered materials are not only important from a device physics perspective but also for possible applications in next generation electronics. With the growing promise of layered materials as replacements to

  2. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  3. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  4. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  5. Strongly Dipolar Polythiourea and Polyurea Dielectrics with High Electrical Breakdown, Low Loss, and High Electrical Energy Density

    Science.gov (United States)

    Wu, Shan; Burlingame, Quinn; Cheng, Zhao-Xi; Lin, Minren; Zhang, Q. M.

    2014-12-01

    Dielectric materials with high electric energy density and low loss are of great importance for applications in modern electronics and electrical systems. Strongly dipolar materials have the potential to reach relatively higher dielectric constants than the widely used non-polar or weakly dipolar polymers, as well as a much lower loss than that of nonlinear high K polymer dielectrics or polymer-ceramic composites. To realize the high energy density while maintaining the low dielectric loss, aromatic polythioureas and polyureas with high dipole moments, high dipole densities, tunable molecular structures and dielectric properties were investigated. High energy density (>24 J/cm3), high breakdown strength (>800 MV/m), and high charge-discharge efficiency (>90%) can be achieved in the new polymers. The molecular structure and film surface morphology were also studied; it is of great importance to optimize the fabrication process to make high-quality thin films.

  6. New distributions of the statistical time delay of electrical breakdown in nitrogen

    International Nuclear Information System (INIS)

    Markovic, V Lj; Gocic, S R; Stamenkovic, S N

    2006-01-01

    Two new distributions of the statistical time delay of electrical breakdown in nitrogen are reported in this paper. The Gaussian and Gauss-exponential distributions of statistical time delay have been obtained on the basis of thousands of time delay measurements on a gas tube with a plane-parallel electrode system. Distributions of the statistical time delay are theoretically founded on binomial distribution for the occurrence of initiating electrons and described by using simple analytical and numerical models. The shapes of distributions depend on the electron yields in the interelectrode space originating from residual states. It is shown that a distribution of the statistical time delay changes from exponential and Gauss-exponential to Gaussian distribution due to the influence of residual ionization

  7. Electric field-induced breakdown of the Mott insulating state in V2O3 nanostructures

    Science.gov (United States)

    Brockman, Justin; Gao, Li; Aetukuri, Nagaphani; Hughes, Brian; Rettner, Charles; Samant, Mahesh; Roche, Kevin; Parkin, Stuart

    2011-03-01

    The origin of the electric field-induced breakdown of the Mott insulating state in vanadium sesquioxide (V2O3) nanostructures is of considerable interest. We have prepared high quality, epitaxial films of V2O3 on (0001)-oriented sapphire substrates by oxygen plasma-assisted thermal evaporation. Lateral, two-terminal nanostructures were patterned by electron beam lithography. The nanostructures displayed strong metal-to-insulator transitions upon cooling to below ~ 150 K. Modest voltages applied across the devices drive the films into a conducting state. We discuss the role of temperature, applied voltage, device size, and potential Joule heating effects on the switching process, as well as implications for the underlying mechanism involved.

  8. Scanning nuclear electric resonance microscopy using quantum-Hall-effect breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K., E-mail: hashi@m.tohoku.ac.jp; Tomimatsu, T.; Shirai, S.; Taninaka, S.; Nagase, K.; Sato, K.; Hirayama, Y. [Graduate School of Sciences, Tohoku University, Sendai 980-8578 (Japan)

    2016-07-15

    We present a scanning nuclear-spin resonance (NSR) method that incorporates resistive detection with electric-field induced NSR locally excited by a scanning metallic probe. In the quantum-Hall effect breakdown regime, NSR intensity mapping at both the fundamental NSR frequency f{sub 75As} and twice the frequency 2f{sub 75As} demonstrates the capability to probe the distribution of nuclear polarization, particularly in a semiconductor quantum well. We find that f{sub 75As} NSR excitation drives not only local NSR but also spatially overlapped nonlocal NSR, which suppresses the maximum intensity of local NSR, while the 2f{sub 75As} NSR yields purely local excitation conferring a larger intensity.

  9. The validity of the general similarity law for electrical breakdown of gases

    International Nuclear Information System (INIS)

    Osmokrovic, Predrag; Zivic, Tamara; Loncar, Boris; Vasic, Aleksandra

    2006-01-01

    This paper investigates the validity of the similarity law in cases of dc and pulse breakdown of gases. Geometrically similar systems insulated with SF 6 gas were used during experiments. It is shown that the similarity law is valid for dc breakdown voltage if the electron mean free path is included in geometrical parameters of the system, but not for pulse breakdown voltages. The explanation for this is the mechanism of the pulse discharge. The similarity law was expanded to take into account mechanisms of pulse breakdown initiation. Thus, the general similarity law is obtained, the validity of which in case of a pulse breakdown is established experimentally

  10. Multi-pulse scheme for laser-guided electrical breakdown of air

    Science.gov (United States)

    Polynkin, Pavel

    2017-10-01

    Channeling an extended electrical breakdown of air by a laser beam is a long-standing challenge in applied laser science. Virtually all previously reported experiments on discharge channeling by femtosecond laser beams relied on the application of a single laser pulse and have been conducted with discharge gaps of less than one meter, in which case the direct ohmic heating of the laser-generated plasma by the applied DC electric field is the dominant channeling mechanism. We report a laboratory-scale demonstration of a channeling approach that makes use of concatenated plasma filaments produced by a sequence of multiple ultrashort laser pulses. Direct ohmic heating of the guiding channel is eliminated through the introduction of large temporal delays between the individual laser pulses in the pulse sequence. We propose an extension of this scheme to channeling kilometer-scale discharges, including natural lightning. Our proposed approach alleviates the fundamental range limitations inherent to the single-pulse schemes reported previously. It can channel discharges propagating in either direction and along curved paths.

  11. Impact of the layout on the electrical characteristics of double-sided silicon 3D sensors fabricated at FBK

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento, TN (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Mattedi, F.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento, TN (Italy)

    2013-01-21

    We report on experimental results and TCAD simulations addressing the impact of layout on the electrical characteristics of double-sided 3D diodes fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. Simulations are found to accurately reproduce the device characteristics, thus explaining the basic mechanisms governing the breakdown behavior and capacitance of different devices and providing useful hints for layout optimization.

  12. Impact of the layout on the electrical characteristics of double-sided silicon 3D sensors fabricated at FBK

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Mattedi, F.; Vianello, E.; Zorzi, N.

    2013-01-01

    We report on experimental results and TCAD simulations addressing the impact of layout on the electrical characteristics of double-sided 3D diodes fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. Simulations are found to accurately reproduce the device characteristics, thus explaining the basic mechanisms governing the breakdown behavior and capacitance of different devices and providing useful hints for layout optimization.

  13. Impulse breakdown of small air gap in electric field Part I: Influence ...

    African Journals Online (AJOL)

    The influence of barrier position on breakdown voltage in air dielectric has been investigated. Needle and Cone positive point electrodes were used and the effects of electrode curvature on barrier position for maximum breakdown voltage were compared, with air gap for the point to plane electrode fixed at 10 cm for all the ...

  14. Electricity Breakdown Management for Sarawak Energy: Use of Condition-Based Equipment for Detection of Defective Insulator

    Science.gov (United States)

    Tan, J. K.; Abas, N.

    2017-07-01

    Managing electricity breakdown is vital since an outage causes economic losses for customers and the utility companies. However, electricity breakdown is unavoidable due to some internal or external factors beyond our control. Electricity breakdown on overhead lines tend occur more frequently because it is prone to external disturbances such as animal, overgrown vegetation and defective pole top accessories. In Sarawak Energy Berhad (SEB), majority of the network are composed of overhead lines and hence, is more prone to failure. Conventional method of equipment inspection and fault finding are not effective to quickly identify the root cause of failure. SEB has engaged the use of corona discharge camera as condition-based monitoring equipment to carry out condition based inspection on the line in order to diagnose the condition of the lines prior to failure. Experimental testing has been carried out to determine the correlation between the corona discharge count and the level of defect on line insulator. The result shall be tabulated and will be used as reference for future scanning and diagnostic on any defect on the lines.

  15. Improvement of breakdown characteristics of an AlGaN/GaN HEMT with a U-type gate foot for millimeter-wave power application

    Science.gov (United States)

    Kong, Xin; Wei, Ke; Liu, Guo-Guo; Liu, Xin-Yu

    2012-12-01

    In this study, the physics-based device simulation tool Silvaco ATLAS is used to characterize the electrical properties of an AlGaN/GaN high electron mobility transistor (HEMT) with a U-type gate foot. The U-gate AlGaN/GaN HEMT mainly features a gradually changed sidewall angle, which effectively mitigates the electric field in the channel, thus obtaining enhanced off-state breakdown characteristics. At the same time, only a small additional gate capacitance and decreased gate resistance ensure excellent RF characteristics for the U-gate device. U-gate AlGaN/GaN HEMTs are feasible through adjusting the etching conditions of an inductively coupled plasma system, without introducing any extra process steps. The simulation results are confirmed by experimental measurements. These features indicate that U-gate AlGaN/GaN HEMTs might be promising candidates for use in millimeter-wave power applications.

  16. SPECTRAL DEPENDENT ELECTRICAL CHARACTERISTICS OF ...

    African Journals Online (AJOL)

    ABSTRACT: The illuminated current-voltage characteristics of thin film a-Si:H. p-i-n solar cells were measured for the visible and near infrared spectral regions. The fill factor, the conversion efficiency, the open circuit Voltage and the short circuit current were compared to the parameters of crystalline silicon pit-junction.

  17. Experimental research of electrical breakdown for water dielectric coaxial capacitor with microsecond charging

    International Nuclear Information System (INIS)

    Liu Jinliang; Li Jijian; Chen Dongqun; Zhang Jiande; Li Yongzhong; Feng Jiahuai; Xu Liurong

    2003-01-01

    The experimental apparatus of coaxial water capacitor was set up in microsecond charging condition. Some experiments were done in this device, the voltage of breakdown of coaxial capacitor is measured with positive and negative pulse voltage to charge. Comparing the experimental results with the calculating results, the error of the negative breakdown-voltage is larger and the error of positive breakdown-voltage is less than about 20%. Furthermore, when the resistivity of the water drop to 5 MΩ·cm from 13 MΩ·cm, the breakdown-voltage of the coaxial water capacitor did not change approximately. The results of experiment are analyzed and are important in design of water dielectric Blumlein pulse forming line with microsecond charging

  18. Electricity use characteristics of purpose-built office buildings in subtropical climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Ricky Y.C.; Tsang, C.L.; Li, Danny H.W.

    2004-01-01

    The electricity use characteristics of 20 air conditioned office buildings in the public sector in subtropical Hong Kong were investigated. Monthly electricity consumption data were gathered and analysed. The annual electricity use per unit gross floor area ranged from 163 to 389 kW h/m 2 , with a mean of 270 kW h/m 2 . Detailed energy audits and site surveys were conducted to obtain a breakdown of the energy use. The percentage consumption for the four major electricity end users, namely heating, ventilation and air conditioning, lighting, electrical equipment and lifts and escalators were 47.5%, 27.4%, 21.8% and 3.3%, respectively. Regression techniques were used to correlate the monthly electricity use with the design and climatic variables. This paper presents the work and discusses the energy use implications

  19. Ionization processes in a transient hollow cathode discharge before electric breakdown: statistical distribution

    International Nuclear Information System (INIS)

    Zambra, M.; Favre, M.; Moreno, J.; Wyndham, E.; Chuaqui, H.; Choi, P.

    1998-01-01

    The charge formation processes in a hollow cathode region (HCR) of transient hollow cathode discharge have been studied at the final phase. The statistical distribution that describe different processes of ionization have been represented by Gaussian distributions. Nevertheless, was observed a better representation of these distributions when the pressure is near a minimum value, just before breakdown

  20. On the electrical breakdown of gaseous dielectrics-an engineering approach

    DEFF Research Database (Denmark)

    Pedersen, Aage

    1989-01-01

    the streamer criterion leads to applicable criteria for the onset of breakdown in air as well as in strongly electronegative gases. In this approach, a knowledge of the relevant ionization coefficients is not required, because these are replaced by parameters obtained from uniform-field Paschen curve data...

  1. On the electrical breakdown of gaseous dielectrics-an engineering approach

    DEFF Research Database (Denmark)

    Pedersen, Aage

    1989-01-01

    from breakdown voltage measurements in a uniform field, i.e. from Paschen curve data. No specific data are required for the ionizing coefficients of the gas. The advantage, from an engineering point of view, is that it is much easier to perform reliable Paschen curve measurements than it is to measure...

  2. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...

  3. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  4. Formation of Ohmic contact to semipolar (11-22) p-GaN by electrical breakdown method

    Science.gov (United States)

    Jeong, Seonghoon; Lee, Sung-Nam; Kim, Hyunsoo

    2018-01-01

    The electrical breakdown (EBD) method was used to obtain Ohmic contact to semipolar (11-20) p-GaN surfaces using the Ti/SiO2/ p-GaN structure. The EBD method by which the electrical stress voltage was increased up to 70 V with a compliance current of 30 mA resulted in an Ohmic contact with a specific contact resistance of 3.1×10-3 Ωcm2. The transmission electron microscope (TEM) analysis revealed that the oxygen was slightly out-diffused from SiO2 layer toward Ti surface and the oxidation occurred at the Ti surface, while the GaN remained unchanged.

  5. A new SOI high-voltage device with a step-thickness drift region and its analytical model for the electric field and breakdown voltage

    International Nuclear Information System (INIS)

    Luo Xiaorong; Zhang Wei; Zhang Bo; Li Zhaoji; Yang Shouguo; Zhan Zhan; Fu Daping

    2008-01-01

    A new SOI high-voltage device with a step-thickness drift region (ST SOI) and its analytical model for the two-dimension electric field distribution and the breakdown voltage are proposed. The electric field in the drift region is modulated and that of the buried layer is enhanced by the variable thickness SOI layer, thereby resulting in the enhancement of the breakdown voltage. Based on the Poisson equation, the expression for the two-dimension electric field distribution is presented taking the modulation effect into account, from which the RESURF (REduced SURface Field) condition and the approximate but explicit expression for the maximal breakdown voltage are derived. The analytical model can explain the effects of the device parameters, such as the step height and the step length of the SOI layer, the doping concentration and the buried oxide thickness, on the electric field distribution and the breakdown voltage. The validity of this model is demonstrated by a comparison with numerical simulations. Improvement on both the breakdown voltage and the on-resistance (R on ) for the ST SOI is obtained due to the variable thickness SOI layer

  6. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1" è" r" e Avenue, Val d’Or, Québec J9P 1Y3 (Canada); Habib, M.A. [Computer Sciences and Engineering Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Abdul-Hafidh, E.H. [High Energy Physics Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Rosei, F. [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2015-02-15

    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 10{sup 5} and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics.

  7. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  8. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  9. Experimental Investigation of the Relationship between Breakdown Strength and Tracking Characteristics of Composites

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Holbøll, Joachim; Henriksen, Mogens

    2005-01-01

    The following paper shows possible correlations between results obtained by tracking tests and breakdown field strengths for non coated Glass Fibre Reinforced Polymers (GFRP) with either a polyester or an epoxy based resin. 15 specimens have been tested according to IEC Publication 60587 [4...

  10. Current conduction mechanism and electrical break-down in InN grown on GaN

    Science.gov (United States)

    Kuzmik, J.; Fleury, C.; Adikimenakis, A.; Gregušová, D.; Ťapajna, M.; Dobročka, E.; Haščík, Š.; Kučera, M.; Kúdela, R.; Androulidaki, M.; Pogany, D.; Georgakilas, A.

    2017-06-01

    Current conduction mechanism, including electron mobility, electron drift velocity (vd) and electrical break-down have been investigated in a 0.5 μm-thick (0001) InN layer grown by molecular-beam epitaxy on a GaN/sapphire template. Electron mobility (μ) of 1040 cm2/Vs and a free electron concentration (n) of 2.1 × 1018 cm-3 were measured at room temperature with only a limited change down to 20 K, suggesting scattering on dislocations and ionized impurities. Photoluminescence spectra and high-resolution X-ray diffraction correlated with the Hall experiment showing an emission peak at 0.69 eV, a full-width half-maximum of 30 meV, and a dislocation density Ndis ˜ 5.6 × 1010 cm-2. Current-voltage (I-V) characterization was done in a pulsed (10 ns-width) mode on InN resistors prepared by plasma processing and Ohmic contacts evaporation. Resistors with a different channel length ranging from 4 to 15.8 μm obeyed the Ohm law up to an electric field intensity Eknee ˜ 22 kV/cm, when vd ≥ 2.5 × 105 m/s. For higher E, I-V curves were nonlinear and evolved with time. Light emission with a photon energy > 0.7 eV has been observed already at modest Erad of ˜ 8.3 kV/cm and consequently, a trap-assisted interband tunneling was suggested to play a role. At Eknee ˜ 22 kV/cm, we assumed electron emission from traps, with a positive feed-back for the current enhancement. Catastrophic break-down appeared at E ˜ 25 kV/cm. Reduction of Ndis was suggested to fully exploit InN unique prospects for future high-frequency devices.

  11. Improvement of breakdown characteristics of an AlGaN/GaN HEMT with a U-type gate foot for millimeter-wave power application

    International Nuclear Information System (INIS)

    Kong Xin; Wei Ke; Liu Guo-Guo; Liu Xin-Yu

    2012-01-01

    In this study, the physics-based device simulation tool Silvaco ATLAS is used to characterize the electrical properties of an AlGaN/GaN high electron mobility transistor (HEMT) with a U-type gate foot. The U-gate AlGaN/GaN HEMT mainly features a gradually changed sidewall angle, which effectively mitigates the electric field in the channel, thus obtaining enhanced off-state breakdown characteristics. At the same time, only a small additional gate capacitance and decreased gate resistance ensure excellent RF characteristics for the U-gate device. U-gate AlGaN/GaN HEMTs are feasible through adjusting the etching conditions of an inductively coupled plasma system, without introducing any extra process steps. The simulation results are confirmed by experimental measurements. These features indicate that U-gate AlGaN/GaN HEMTs might be promising candidates for use in millimeter-wave power applications. (interdisciplinary physics and related areas of science and technology)

  12. Tin Whisker Electrical Short Circuit Characteristics Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Bayliss, Jon A.; Ludwib, Lawrence L.; Zapata, Maria C.

    2007-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB).

  13. Mechanism of electrical breakdown of gases for pressures from 10-9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm

    International Nuclear Information System (INIS)

    Osmokrovic, P; Vujisic, M; Stankovic, K; Vasic, A; Loncar, B

    2007-01-01

    This paper discusses the mechanisms of gas breakdown at low values of pressure and inter-electrode gap, i.e. in the vicinity of the Paschen minimum. In this area of pressure and inter-electrode gap values, breakdown occurs either through gas or vacuum mechanisms, and also the so called anomalous Paschen effect appears. Electrical breakdown of electropositive, electronegative and noble gases has been investigated theoretically, experimentally and numerically. Based on the results obtained, regions in which particular breakdown mechanisms appear have been demarcated. Special attention has been devoted to the anomalous Paschen effect as well as to the avalanche vacuum breakdown mechanism

  14. Impact of a drain field plate on the breakdown characteristics of AlInN/GaN MOSHEMT

    Science.gov (United States)

    Jena, Kanjalochan; Swain, Raghunandan; Lenka, T. R.

    2015-11-01

    In this paper, a novel AlInN/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT) employing the drain field plate technique is proposed and the effect of a drain field plate on the breakdown voltage (BV) is investigated. A reduction of the peak electric field is required to achieve AlInN/GaN MOSHEMTs with a high BV. The proposed AlInN/GaN MOSHEMT with both gate and drain field plates simultaneously reduces the electric field concentration at the gate and the drain edge by decreasing the potential gradient along the channel for the 2 dimensional electron gas (2DEG). The reduction in the peak electric field at the drain edge of the proposed device leads to a 57% increase in BV compared with the BV for an AlInN/GaN MOSHEMT with a gate field plate only. A significantly higher BV can be achieved by optimizing the gate-to-drain distance (L gd ), the length of the drain field plate (L dfp ) and the thickness of the SiN passivation layer thickness (T SiN ). A detailed breakdown analysis of the device was carried out using Silvaco Technology Computer Aided Design (TCAD). The detailed numerical simulations were done by using the non-local energy balance (EB) transport model, which was calibrated with the previously published experimental results. The results showed a great potential for applications of the drain-field-plated AlInN/GaN MOSHEMT to deliver high currents and high powers in microwave technologies.

  15. On the electric breakdown field of the mesosphere and the influence of electron detachment

    DEFF Research Database (Denmark)

    Neubert, Torsten; Chanrion, Olivier Arnaud

    2013-01-01

    that the threshold field decreases with time and can reach values well below the conventional threshold field. The concept of a fixed threshold field therefore itself breaks down. We find that the growth rate decreases with decreasing electric field and that long exposure time of electric fields therefore is needed......It has been suggested recently that electron associative detachment from negative atomic oxygen ions provides an additional source of free electrons in electric discharges of the mesosphere, the sprites, and gigantic jets. Here we study attachment under some simplifying assumptions and show...... for electron avalanches to grow. Detachment is likely to affect the conductivity of streamer filaments and other long-lasting space charge structures like gigantic jets or the ionization state of the mesosphere when illuminated by thunderstorm fields. Detachment by itself does not directly affect small...

  16. Simulation of pre-breakdown phase of electrical discharge in reinforced concrete

    Science.gov (United States)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2017-05-01

    The application of an electrical discharge technology for destructive recycling of the reinforced concrete is considered. Its main advantages, in comparison with the mechanical methods, are that the electrical discharge channel acting as a rock-breaking tool has an unlimited service life, and a lifetime of the electrode systems is much higher. The physical and mathematical model of the discharge development is described. The simulation results have shown that the discharge channel propagation velocity and the trajectory depend on the reinforcement locality and the voltage amplitude. The voltage affects the average speed of the discharge structure development which can reach the value of up to υ=5·103 m/s. It is also shown that the reinforcing elements located between the electrodes attract the growing discharge structure. The lower the distance between the vertical axis of the high voltage electrode and the metal reinforcement position, the more probability of the discharge channel orientation towards this element.

  17. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  18. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    Science.gov (United States)

    Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong

    2014-09-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.

  19. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    International Nuclear Information System (INIS)

    Li Manping; Wu Kai; Ding Man; Liu Xin; Cheng Yonghong; Yang Zhanping

    2014-01-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed. (plasma technology)

  20. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  1. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    International Nuclear Information System (INIS)

    Mao Wei; Fan Ju-Sheng; Du Ming; Zhang Jin-Feng; Zheng Xue-Feng; Wang Chong; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2016-01-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. (paper)

  2. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    Science.gov (United States)

    Mao, Wei; Fan, Ju-Sheng; Du, Ming; Zhang, Jin-Feng; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2016-12-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).

  3. Chlorophyll breakdown in higher plants.

    OpenAIRE

    Hörtensteiner Stefan; Kräutler Bernhard

    2011-01-01

    Chlorophyll breakdown is an important catabolic process of leaf senescence and fruit ripening. Structure elucidation of colorless linear tetrapyrroles as (final) breakdown products of chlorophyll was crucial for the recent delineation of a chlorophyll breakdown pathway which is highly conserved in land plants. Pheophorbide a oxygenase is the key enzyme responsible for opening of the chlorin macrocycle of pheophorbide a characteristic to all further breakdown products. Degradation of chlorophy...

  4. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Electric fields of a laser plasma formed by optical breakdown of air near various targets

    Science.gov (United States)

    Kabashin, A. V.; Nikitin, P. I.; Marine, W.; Sentis, M. L.

    1998-01-01

    An experimental investigation was made of the spatiotemporal structure of the electric fields of a plasma formed as a result of optical breakdown of air near the target surface by radiations of various wavelengths (0.193, 0.53, 1.06, and 10.6 μm), pulse durations (microsecond, nanosecond, and subnanosecond), and intensities (108 — 1013 W cm-2). A study was made of the influence of the target and of nearby objects, and of their materials (conductor, dielectric) on the distribution of the electric fields of the laser plasma, and also on the probe diagnostic system.

  6. Mensuration of magnetic and electric characteristics

    International Nuclear Information System (INIS)

    Owen M, Eduardo; Sarria Navarro, Erika; Fula, Marco Antonio

    2000-01-01

    The paper presents the design of a virtual instrument (VI) that allows the quick and precise measure of the magnetic behavior (of the materials), under the magnetization cycle. Additionally, the (VI) will be in capacity of measuring the electric impedance of an element or electric circuit. The virtual instrument was elaborated in the tool of virtual instrumentation Lab View 4.0 of National Instruments

  7. Gallium Nitride Electrical Characteristics Extraction and Uniformity Sorting

    Directory of Open Access Journals (Sweden)

    Shyr-Long Jeng

    2015-01-01

    Full Text Available This study examined the output electrical characteristics—current-voltage (I-V output, threshold voltage, and parasitic capacitance—of novel gallium nitride (GaN power transistors. Experimental measurements revealed that both enhanced- and depletion-mode GaN field-effect transistors (FETs containing different components of identical specifications yielded varied turn-off impedance; hence, the FET quality was inconsistent. Establishing standardized electrical measurements can provide necessary information for designers, and measuring transistor electrical characteristics establishes its equivalent-circuit model for circuit simulations. Moreover, high power output requires multiple parallel power transistors, and sorting the difference between similar electrical characteristics is critical in a power system. An isolated gate driver detection method is proposed for sorting the uniformity from the option of the turn-off characteristic. In addition, an equivalent-circuit model for GaN FETs is established on the basis of the measured electrical characteristics and verified experimentally.

  8. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of an electric traction motor and serves as the basis for design. The most common variants of constructive implementation of a traction electric drive are analyzed, and a scheme is chosen for further design. Lagrange’s equation for electric mechanical system with one degree of freedom is written in generalized coordinates. In order to determine the generalized forces, elementary operation of all moments influencing on a moving car has been calculated. The resulting equation of motion of the electric vehicle corresponding to the design scheme, as well as the expressions for calculation of characteristic points of static mechanical characteristics of traction motor (i.e. the maximum and minimum time, minimum power are obtained. In order to determine the nominal values of the angular velocity and the power of electric traction motor, a method based on ensuring the movement of the vehicle in the standard cycle has been developed. The method makes it possible to calculate characteristic points of the mechanical characteristic with the lowest possible power rating. The algorithm for calculation of mechanical characteristics of the motor is presented. The method was applied to calculate static mechanical characteristic of an electric traction motor for a small urban electric truck.

  9. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    In this study, a symmetric radio frequency (RF) (13.56 MHz) electrode discharge system of simple geometry has been designed and made. The electrical properties of capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms using different reactor designs. Calculations ...

  10. Simulations of the breakdown characteristics of n-on-p backside-illumination Silicon Photomultipliers by TCAD

    Science.gov (United States)

    He, Ran; Yan, Guangqing; Liu, Jian; Cheng, Wenxuan; Liu, Rongdan; Liang, Kun; Yang, Ru; Han, Dejun

    2018-03-01

    This paper investigates, using Synopsys Sentaurus TCAD simulation, the dependence of the breakdown voltage of n-on-p backside-illumination Silicon Photomultipliers (BSI-SiPM) on the implantation dose, the implantation energy and the screening SiO2 thickness for implantation in p-enrichment region. The simulation results indicate that the breakdown voltage decreases linearly with the implantation dose and a high implantation energy can minimize the impact of the screening SiO2 thickness on the breakdown voltage. Additionally, some key process parameters implemented in coming fabrication have been obtained.

  11. [ANSYS simulation of subcutaneous pustule electrical characteristics].

    Science.gov (United States)

    Liu, Baohua; Wang, Xuan; Zhu, Honglian; Wang, Guoyong

    2011-12-01

    With the growing number of clinical surgery, post-operative surgical wound infection has become a very difficult clinical problem. In the treatments of it, non-invasive test of wound infection and healing status has a significance in clinical medicine practice. In this paper, beginning with the electrical properties of skin tissue structure and on the basis of the electromagnetism and the human anatomy, using the finite element analysis software, we applied safe voltage on the 3D skin model, performed the subcutaneous pustule simulation study and gained the relational curve between depth and radius of the pustule model. The simulation results suggested that the method we put forward could be feasible, and it could provide basis for non-invasive detection of wound healing and wound infection status.

  12. A comparison of the 60Co gamma radiation hardness, breakdown characteristics and the effect of SiNx capping on InAlN and AlGaN HEMTs for space applications

    International Nuclear Information System (INIS)

    Smith, M D; Parbrook, P J; O’Mahony, D; Vitobello, F; Muschitiello, M; Costantino, A; Barnes, A R

    2016-01-01

    Electrical performance and stability of InAlN and AlGaN high electron mobility transistors (HEMTs) subjected 9.1 mrad of 60 Co gamma radiation and off-state voltage step-stressing until breakdown are reported. Comparison with commercially available production-level AlGaN HEMT devices, which showed negligible drift in DC performance throughout all experiments, suggests degradation mechanisms must be managed and suppressed through development of advanced epitaxial and surface passivation techniques in order to fully exploit the robustness of the III-nitride material system. Of the research level devices without dielectric layer surface capping, InAlN HEMTs exhibited the greater stability compared with AlGaN under off-state bias stressing and gamma irradiation in terms of their DC characteristics, although AlGaN HEMTs had significantly higher breakdown voltages. The effect of plasma-enhanced chemical vapour deposition SiN x surface capping is explored, highlighting the sensitivity of InAlN HEMT performance to surface passivation techniques. InAlN–SiN x HEMTs suffered more from trap related degradation than AlGaN–SiN x devices in terms of radiation hardness and step-stress characteristics, attributed to an increased capturing of carriers in traps at the InAlN/SiN x interface. (paper)

  13. Investigation of the electrical characteristics of electrically conducting yarns and fabrics

    Science.gov (United States)

    Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.

    2017-11-01

    Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.

  14. Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field

    Science.gov (United States)

    Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.

    2017-11-01

    The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.

  15. Impact Analysis of Electrical Current Characteristics in Relay Function for Electrical and Electronic Protection

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawadi Hasim

    2013-01-01

    This paper is to study effect of electrical current on relay reaction, which has coil and switch inside the relay. An analysis on the electrical current will be conducted to determine current limitation for relay activation purpose. The result of analysis showing that current characteristic of relay and applied load will present their affect to the relay function performance. Finding from this result will bring the idea to develop a suitable design circuit for electrical and electronic protection. (author)

  16. BIOIMPEDANCE MODELS AT THE NONLINEAR VOLT-AMPERЕ CHARACTERISTIC AND REVERSIBLE BREAKDOWN OF THE DIELECTRIC COMPONENT OF THE BIOMATERIAL

    Directory of Open Access Journals (Sweden)

    S. A. Filist

    2014-01-01

    Full Text Available Research objective: improvement of screening systems of diagnostics of socially significant diseases by modeling of volt-ampere characteristics of bioactive points (BAP and classification of received models by means of computer technologies.Research problems:– development of structurally functional model of electric conductivity of a biomaterial in abnormal zones (in the field of acupuncture points;– development of a method of formation of space of the informative signs intended for qualifiers of a functional condition of a biomaterial.Material and methods. For the solution of objectives methods of the theory of linear electric chains, methods of mathematical modeling were used. When modeling conductivity of a biomaterial as tools Matlab 8.0 was used.For modeling of the volt-ampere characteristic of BAP it is offered to use structural-functional models with diode-resistive cells of symmetric structure. The method of formation of space of the informative signs intended for qualifiers of a functional condition of a biomaterial, the volt-ampere of characteristics of a biomaterial consisting in registration in each bioactive point by impact on them by the constant tension stabilized on level in the range from –15 V to +15 V, changed with a step in 1 V is developed. By comparison of characteristic points of the volt-ampere characteristic and parameters of structural-functional model the vector of informative signs intended for the neuronetwork qualifier is formed.Results. The structural-functional model of conductivity of a biomaterial on the basis of diode-resistive cells is constructed. The factorial analysis of volt-ampere characteristics of biomaterials on the basis of which it is shown is carried out that for creation of structural-functional model of conductivity of a biomaterial there are enough seven diode-resistive cells.Conclusions. The received results allow to construct classifying modules for preclinical diagnostics of

  17. A model of preliminary breakdown pulse peak currents and their relation to the observed electric-field pulses

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Petr; Santolík, Ondřej; Kolmašová, Ivana; Farges, T.

    2017-01-01

    Roč. 44, č. 1 (2017), s. 596-603 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA14-31899S Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : lightning initiation * electromagnetic radiation * preliminary breakdown pulses Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL071483/pdf

  18. Affect of the electrical characteristics depending on the hole and ...

    Indian Academy of Sciences (India)

    Affect of the electrical characteristics depending on the hole and electron injection materials of red organic light-emitting diodes. JONG-YEOL SHIN1, HYUN-MIN CHOI2, HYEON-SEOK HAN2 and. JIN-WOONG HONG2,∗. 1Department of Car Mechatronics, Sahmyook University, Nowon-Gu, Seoul, Korea (139-742).

  19. Basic Studies on Chaotic Characteristics of Electric Power Market Price

    Science.gov (United States)

    Takeuchi, Yuya; Miyauchi, Hajime; Kita, Toshihiro

    Recently, deregulation and reform of electric power utilities have been progressing in many parts of the world. In Japan, partial deregulation has been started from generation sector since 1995 and partial deregulation of retail sector is executed through twice law revisions. Through the deregulation, because electric power is traded in the market and its price is always fluctuated, it is important for the electric power business to analyze and predict the price. Although the price data of the electric power market is time series data, it is not always proper to analyze by the linear model such as ARMA because the price sometimes changes suddenly. Therefore, in this paper, we apply the methods of chaotic time series analysis, one of non-linear analysis methods, and investigate the chaotic characteristics of the system price of JEPX.

  20. NUMERICAL SIMULATION OF ELECTRIC CHARACTERISTICS OF DEEP SUBMICRON SILICON-ON-INSULATOR MOS TRANSISTOR

    Directory of Open Access Journals (Sweden)

    A. V. Borzdov

    2016-01-01

    Full Text Available Today submicron silicon-on-insulator (SOI MOSFET structures are widely used in different electronic components and also can be used as sensing elements in some applications. The development of devices based on the structures with specified characteristics is impossible without computer simulation of their electric properties. The latter is not a trivial task since many complicated physical processes and effects must be taken into account. In current study ensemble Monte Carlo simulation of electron and hole transport in deep submicron n-channel SOI MOSFET with 100 nm channel length is performed. The aim of the study is investigation of the influence of interband impact ionization process on the device characteristics and determination of the transistor operation modes when impact ionization process starts to make an appreciable influence on the device functioning. Determination of the modes is very important for adequate and accurate modeling of different devices on the basis of SOI MOSFET structures. Main focus thereby is maid on the comparison of the use of two models of impact ionization process treatment with respect to their influence on the transistor current-voltage characteristics. The first model is based on the frequently used Keldysh approach and the other one utilizes the results obtained via numerical calculations of silicon band structure. It is shown that the use of Keldysh impact ionization model leads to much faster growth of the drain current and provides earlier avalanche breakdown for the SOI MOSFET. It is concluded that the choice between the two considered impact ionization models may be critical for simulation of the device electric characteristics

  1. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  2. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  3. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350/sup 0/C (68 to 660/sup 0/F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air.

  4. Effects of Silver Microparticles and Nanoparticles on Thermal and Electrical Characteristics of Electrically Conductive Adhesives

    Science.gov (United States)

    Zulkarnain, M.; Fadzil, M. A.; Mariatti, M.; Azid, I. A.

    2017-11-01

    The effects of different volume fractions of silver (Ag) particles of different size (microsize, 2 μm to 3.5 μm diameter; nanosize, 80 nm diameter) on the thermal and electrical characteristics of epoxy-Ag electrically conductive adhesive (ECA) have been evaluated, as well as hybrid ECAs with both particle sizes at different ratios. Improved thermal and electrical conductivity resulted from the interaction between the particles, as evaluated by analysis of sample morphology. The interaction was altered to improve the conductivity. For both particle sizes, the electrical resistivity showed a transition from insulation to conduction at 6 vol.% Ag. In the hybrid system, the thermal conductivity decreased with increasing microparticle filler ratio. The electrical conductivity of the hybrid composite increased at 50:50 weight ratio.

  5. Electrical characteristics of mixed Zr-Si oxide thin films prepared by ion beam induced chemical vapor deposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J., E-mail: fjferrer@us.e [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes s/n, E-41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Jimenez, C. [Laboratoire de Materiaux et de Genie Physique, BP 257 - INPGrenoble Minatec - 3 parvis Louis Neel - 38016 Grenoble (France); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC - U. Sevilla), c/ Americo Vespucio 49, E-41092 Sevilla (Spain)

    2009-07-31

    Mixed Zr-Si oxide thin films have been prepared at room temperature by ion beam decomposition of organometallic volatile precursors. The films were flat and amorphous. They did not present phase segregation of the pure single oxides. A significant amount of impurities (-C-, -CH{sub x}, -OH, and other radicals coming from partially decomposed precursors) remained incorporated in the films after the deposition process. This effect is minimized if the Ar content in the O{sub 2}/Ar bombarding gas is maximized. Static permittivity and breakdown electrical field of the films were determined by capacitance-voltage and current-voltage electrical measurements. It is found that the static permittivity increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Most of the dielectric failures in the films were due to extrinsic breakdown failures. The maximum breakdown electrical field decreases from {approx} 10.5 MV/cm for pure SiO{sub 2} to {approx} 45 MV/cm for pure ZrO{sub 2}. These characteristics are justified by high impurity content of the thin films. In addition, the analysis of the conduction mechanisms in the formed dielectrics is consistent to Schottky and Poole-Frenkel emission for low and high electric fields applied, respectively.

  6. Simulation of electrical characteristics of GaN vertical Schottky diodes

    Science.gov (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Jakubowski, Andrzej

    2016-12-01

    Reverse current of GaN vertical Schottky diodes is simulated using Silvaco ATLAS to optimize the geometry for the best performance. Several physical quantities and phenomena, such as carrier mobility and tunneling mechanism are studied to select the most realistic models. Breakdown voltage is qualitatively estimated based on the maximum electric field in the structure.

  7. Breakdown and field emission conditioning of Cu, Mo and W

    CERN Document Server

    Taborelli, M; Calatroni, S

    2004-01-01

    The ultra-high-vacuum electrical breakdown characteristics of copper, molybdenum and tungsten have been explored in a setup based on a capacitor discharge. Upon repeated sparking, tungsten and molybdenum showed improvement of the maximum applicable field before breakdown (conditioning) in contrast to copper, which experienced alternate improvement and degrading. After conditioning, tungsten withstood the highest applied field followed by molybdenum and copper. This behaviour was correlated with that of the field enhancement factor  extracted from measurements of the field emission current. These results are compared with the tests performed on 30 GHz test accelerating structures for the future Compact Linear Collider.

  8. The nature of dielectric breakdown

    Science.gov (United States)

    Li, X.; Tung, C. H.; Pey, K. L.

    2008-08-01

    Dielectric breakdown is the process of local materials transiting from insulating to conductive when the dielectric is submerged in a high external electric field environment. We show that the atomistic changes of the chemical bonding in a nanoscale breakdown path are extensive and irreversible. Oxygen atoms in dielectric SiO2 are washed out with substoichiometric silicon oxide (SiOx with x <2) formation, and local energy gap lowering with intermediate bonding state of silicon atoms (Si1+, Si2+, and Si3+) in the percolation leakage path. Oxygen deficiency within the breakdown path is estimated to be as high as 50%-60%.

  9. Dispersion of breakdown voltage of liquid helium

    International Nuclear Information System (INIS)

    Ishii, Itaru; Noguchi, Takuya

    1978-01-01

    As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)

  10. Characteristics of the Sliding Electric Contact of Pantograph/Contact Wire Systems in Electric Railways

    Directory of Open Access Journals (Sweden)

    Guangning Wu

    2017-12-01

    Full Text Available The sliding electric contact of pantograph/contact wire systems plays a significant part in the current collection stability and operation life of pantograph/contact wire systems. This paper addresses the evolutionary process of sliding electric contact of pantograph/contact wire systems by analyzing three key characteristics including contact resistance, temperature distribution and microstructure. The influence of electric current on contact resistance was interpreted. Furthermore, the evolution of the spatial temperature distribution of the carbon strip was obtained in the zigzag movement, while the dominant role of electric effect in temperature rise was demonstrated. In the end, the wear morphology differences under pure friction and current-carrying conditions were analyzed. The formation of radial cracks was illustrated and its influenced on the wear process was discussed.

  11. A possible new mechanism involved in non-uniform field breakdown in gaseous dielectrics

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Christophorou, L.G.

    1994-01-01

    The electrical breakdown of gases under uniform field conditions is fairly well understood in terms of the Townsend's breakdown theory. In most cases involving uniform fields, the breakdown voltage can be estimated via this theory using basic electron impact parameters for molecules in their ground electronic states. In contrast, a consistent model of gaseous breakdown under nonuniform fields is not available at present although substantial progress has been made recently. We point out the possibility that electron impact processes involving high-lying electronically-excited states may play a significant role under non-uniform field conditions. Thus, such processes may need to be included in order to obtain a better understanding of non-uniform field breakdown phenomena. The general, breakdown characteristics of highly non-uniform field gaps can be illustrated by that for a point-plane geometry. It has been found that the breakdown voltage for such a gap can be calculated by a simple streamer criterion if the pressure P, is above a critical value, P c ; for P c , the estimated breakdown voltage is found to coincide with the corona inception voltage, with the actual breakdown occurring at a higher voltage, corona discharges occur only for P c . In other words, the presence of corona in the pressure region below P c seems to prevent the breakdown from occurring at the predicted value. This has led to the term ''corona stabilization'' to describe the enhancement in the breakdown voltage for pressures below P c . Non-uniform field breakdown measurements in gases will be discussed. We will discuss the possibility that the ''corona stabilization'' is due to the prevention of avalanche progression by attachment of free electrons to molecules in their high-lying electronically-excited states. Information on electron attachment to electronically-excited states of molecules was not available up until the late 1980's

  12. Streamer discharge inception in a sub-breakdown electric field from a dielectric body with a frequency dependent dielectric permittivity

    NARCIS (Netherlands)

    A. A. Dubinova (Anna); C. Rutjes (Casper); U. M. Ebert (Ute)

    2015-01-01

    htmlabstractWe study positive streamer inception from the tip of an elongated ice particle. The dielectric permittivity of ice drops from 93 to 3 for electric fields changing on the millisecond timescale [1]. We demonstrate that this effect can be important on the nanosecond time scale of

  13. Electrical characteristics of rocks in fractured and caved reservoirs

    Science.gov (United States)

    Tang, Tianzhi; Lu, Tao; Zhang, Haining; Jiang, Liming; Liu, Tangyan; Meng, He; Wang, Feifei

    2017-12-01

    The conductive paths formed by fractures and cave in complex reservoirs differ from those formed by pores and throats in clastic rocks. In this paper, a new formation model based on fractured and caved reservoirs is established, and the electrical characteristics of rocks are analyzed with different pore structures using resistance law to understand their effects on rock resistivity. The ratio of fracture width to cave radius (C e value) and fracture dip are employed to depict pore structure in this model. Our research shows that the electrical characteristics of rocks in fractured and caved reservoirs are strongly affected by pore structure and porous fluid distribution. Although the rock electrical properties associated with simple pore structure agree well with Archie formulae, the relationships between F and φ or between I and S w , in more complicated pore structures, are nonlinear in double logarithmic coordinates. The parameters in Archie formulae are not constant and they depend on porosity and fluid saturation. Our calculations suggest that the inclined fracture may lead to resistivity anisotropy in the formation. The bigger dip the inclining fracture has, the more anisotropy the formation resistivity has. All of these studies own practical sense for the evaluation of oil saturation using resistivity logging data.

  14. Gas breakdown in tokamaks

    International Nuclear Information System (INIS)

    Abramov, V.A.; Pogutse, O.P.; Yurchenko, Eh.I.

    1975-01-01

    The initial stage of the charge development in a tokomak is considered theoretically. It is supposed that all electrons produced in neutral gas ionisation process are in the regime of an almost continuous acceleration. The production time of a given electron density is calculated as a function of the neutral gas density and of parameters of the vortex electric field. The mechanism of plasma escape on walls is considered. It is shown that the escaping time is defined by a specific inertial flow of plasma and depends on whether chamber walls are metal or dielectric. The criterion of the gas breakdown in a toroidal system is formulated. The developed theory is shown to explain a strong dependence of the breakdown on the gas initial density [ru

  15. DC breakdown experiments with cobalt electrodes

    CERN Document Server

    Descoeudres, Antoine; Nordlund, Kai

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. The conditioning speed, breakdown field and field enhancement factor of cobalt have been measured. The average breakdown field after conditioning reaches 615 MV/m, which places cobalt amongst the best materials tested so far. By comparison with results and properties of other metals, the high breakdown field of Co could be due to its high work function and maybe also to its hexagonal crystal structure. Geneva, Switzerland (June 2009) CLIC – Note – 875

  16. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  17. Electrical characteristics of funnel-shaped silicon nanowire solar cells

    Science.gov (United States)

    Abdel-Latif, Ghada Yassin; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Razzak, Maher Abdel; Obayya, Salah S. A.

    2017-10-01

    The electrical characteristics of funnel-shaped silicon nanowire (SiNW) solar cells are introduced and numerically analyzed. The funnel-shaped NW consists of a cylinder over a conical unit. Its aim is to maximize the optical absorption over a large wavelength range and hence the electrical efficiency by increasing the number of resonance wavelengths or by enlarging the resonance wavelength range. The conical part has different radii in the axial direction, which increases the number of resonance wavelengths. Further, the coupling between the supported modes by the upper cylinder and the lower tapered cone offers multiple optical resonances required for broadband absorption. The optical characteristics and generation rates through the studied design are obtained using 3-D finite difference time domain. However, the electrical properties are calculated using finite element via the Lumerical device software package. In this regard, radial and axial junctions are examined for the suggested design and compared with the conventional cylindrical SiNW counterpart. In this investigation, short circuit current density, open circuit voltage, fill factor, and power conversion efficiency (PCE) are simulated to quantify the optoelectronic performance of the reported design. Furthermore, the effects of the doping concentration and carrier lifetime on the performance of the funnel-shaped design are reported. The proposed SiNWs offer PCE and short circuit density of 12.7% and 27.6 mA/cm2, respectively, for the axial junction. However, the funnel design with core-shell junction shows an efficiency and short-circuit current (Jsc) of 14.13% and 31.94 mA/cm2, respectively. Therefore, the suggested design has higher efficiency than 6.4% and 9.6% of the conventional cylindrical SiNWs according to the axial and core shell junctions, respectively.

  18. SEMICONDUCTOR DEVICES: Structural and electrical characteristics of lanthanum oxide gate dielectric film on GaAs pHEMT technology

    Science.gov (United States)

    Chia-Song, Wu; Hsing-Chung, Liu

    2009-11-01

    This paper investigates the feasibility of using a lanthanum oxide thin film (La2O3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La2O3 thickness. The thin La2O3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. La2O3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600 °C because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La2O3 thin film was thermally stable. The DC and RF characteristics of Pt/La2O3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined. The measurements indicated that the transistor with the Pt/La2O3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La2O3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.

  19. Breakdown characteristics of electro-negative gases under needle-plane gap. Hari-hiraita gap ni okeru denkiteki fusei gas no zetsuen hakai tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H.; Onoda, M.; Amakawa, K. (Himeji Institute of Technology, Hyogo (Japan)); Kuroda, S. (Nitto Denko Corp., Tokyo (Japan))

    1990-07-20

    The voltage-time (V-t) characteristics of corona onset and breakdown were examined in electro-negative gases as SF {sub 6} and CCl {sub 2} F {sub 2}, using a needle-plane electrode with small gap and {mu} s square pulse voltage with various wave fronts. The V-t characteristics in electro-neutral gas as N {sub 2} ordinarily descended rightwards, but those in SF {sub 6} descended rightwards only in smaller gaps and lower gas pressures. In the pulse voltage with shorter wave fronts, those in SF {sub 6} also offered a particular shape descending leftwards. The particular shape was dependent on the steepness of the pulse wave front, being strongly affected by shorter wave fronts, and also strongly related to the onset and development length of corona. The particular phenomenon of V-t characteristics was observed more obviously at a positive needle than negative one without any extremely long corona lengths at negative one, indicating a polarity effect. The phenomenon was also observed in CCl {sub 2} F {sub 2} as particular one in electro-negative gases. 21 refs., 12 figs.

  20. Analytical modeling of electrical characteristics of coaxial nanowire FETs

    Science.gov (United States)

    Kargar, Alireza; Ghayour, Rahim

    2011-03-01

    In this paper, an analytical approach based on ballistic current transport is presented to investigate the electrical characteristics of the coaxial nanowire field effect transistor (CNWFET). The potential distribution along the nanowire is derived analytically by applying Laplace equation. In addition to application of WKB approximation and ballistic transport, tunneling process and quantum state of energy are implemented to determine the amount of electron transport along the nanowire from the source to the drain terminals. To consider the tunneling phenomena, WKB approximation is used and the transmission coefficients on both sides of the channel are obtained separately. In ballistic regime, an expression for channel current in terms of the bias voltages and Schottky barrier height (SBH) is derived. The results confirm a close correlation between the current equation of this work and the results presented via other approaches.

  1. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  2. Self heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics

    Science.gov (United States)

    Gonschorek, M.; Carlin, J.-F.; Feltin, E.; Py, M. A.; Grandjean, N.

    2011-03-01

    It is observed experimentally that high electron mobility transistor devices with short channel length processed from nitride AlInN/AlN/GaN heterostructures containing 2D electron gases (2DEGs) with densities beyond 2 × 1013 cm-2 exhibit temperatures up to 1000 K if they are driven at high drain-source voltages. Corresponding current-voltage (IV) characteristics show a peaklike behavior with a maximum saturation current (IDS,max) up to 2 A/mm. The goal of this article is to describe device heating in the framework of LO phonon statistics and its dependence on channel length, carrier density, and applied voltage. The strong channel heating, on the other hand, affects the transport mobility and must be taken into account to correctly interpret IV characteristics and resolve the discrepancy with metal oxide semiconductor field effect transistor models. Furthermore, the breakdown of ohmic contacts can directly be related to the channel temperature, i.e., the channel reaches the melting point of the contact metallization. In addition, the model correctly predicts the behavior of IV curves versus 2DEG density and transistor initial ambient temperature. For 2DEGs confined in triangular potential wells formed at the heterointerface, a maximum IDS is found for 2DEG densities between 2 × 1013 and 3 × 1013 cm-2.

  3. Neutron effects on the electrical and switching characteristics of NPN bipolar power transistors

    Science.gov (United States)

    Frasca, Albert J.; Schwarze, Gene E.

    1988-01-01

    The use of nuclear reactors to generate electrical power for future space missions will require the electrical components used in the power conditioning, control, and transmission subsystem to operate in the associated radiation environments. An initial assessment of neutron irradiation on the electrical and switching characteristics of commercial high power NPN bipolar transistors was investigated. The results clearly show the detrimental effects caused by neutron irradiation on the electrical and switching characteristics of the NPN bipolar power transistor.

  4. The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices

    International Nuclear Information System (INIS)

    Yacoub, H; Fahle, D; Finken, M; Hahn, H; Kalisch, H; Heuken, M; Vescan, A; Blumberg, C; Prost, W

    2014-01-01

    GaN-on-Si transistors attract increasing interest for power applications. However, the breakdown behavior of such devices remains below theoretical expectations, for which the Si substrate is typically made responsible. In this work, the effect of the thickness of an aluminum nitride buffer layer on the vertical breakdown voltage, measured relative to a grounded silicon substrate, has been investigated. A voltage-polarity-dependent breakdown mechanism has been observed. It has been found that the breakdown in the positive bias voltage regime is initiated by carrier injection, for which the carriers originate from an inversion channel formed between the epitaxial layers and the p-silicon substrate. TCAD simulations have confirmed the proposed explanations, and suggest that appropriate modification of the electronic structure at the AlN/silicon interface could significantly improve the vertical breakdown voltage. (paper)

  5. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    them, to determine the cause of the poor yields. As a student of electrical engineering with some material science background, my role in this research is to develop techniques for analyzing the electrical characteristics of the CuInS2 cells. My first task was to design a shadow mask to be used to place molybdenum contacts under a layer of CuInS;! in order to analyze the contact resistance between the materials. In addition, I have also analyzed evaporated aluminum top contacts and have tested various methods of increasing their thicknesses in order to decrease series resistance. More recently I have worked with other members of the research group in reviving a vertical cold-wall reactor for experimentation with CuInS2 quantum dots. As part of that project, I have improved the design for a variable frequency and pulse width square wave generator to be used in driving the precursor injection process. My task throughout the remainder of my tenure is to continue to analyze and develop tools for the analysis of electrical properties of the CuInS2 cells with the ultimate goal of discovering ways to improve the efficiency of our photovoltaic cells. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While The research group lead by Dr. Hepp has spent several years researching copper indium

  6. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. M., E-mail: ito@lanl.gov; Ramsey, J. C.; Clayton, S. M.; Currie, S. A.; Griffith, W. C.; Makela, M.; Tang, Z.; Wei, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Yao, W.; Cianciolo, V. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Beck, D. H.; Williamson, S. E. [Loomis Laboratory of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Crawford, C.; Wagner, D. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States); Filippone, B. W.; Schmid, R. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Seidel, G. M. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-04-15

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρ{sub V} > 5 × 10{sup 18} Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  7. ANALYSIS OF THE OPERATIONAL CHARACTERISTICS OF DIESEL-ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2014-12-01

    Full Text Available Purpose. To compare the operational characteristics of freight diesel-electric locomotives ER20CF and 2М62м, which are operated with Lithuanian Railways. Important problems on traction calculations are considered in this article. In this article the critical tasks of traction calculations are solved. It is the main computational tool in the rational functioning, planning and development of railways: determination of the estimated weight of the rolling stock, the diagrams construction of specific resultant forces of a train, the permitted speed definition of the train on the slopes, curves of train traffic construction on the section. Methodology. Using the rules and methods of traction calculations the analysis of the basic operational characteristics of the modernized freight diesel-electric locomotive 2М62m and freight passenger dual locomotive 2ER20CF was held. The maximum weight of the train set, the track structure on a high-speed ascent through the use of kinetic energy (with traction and without traction, technical speed, acceleration force and the value of the smallest radius curve are selected as controlled parameters. During the calculations it was considered that the trains were formed of a fully loaded four-axle gondola cars, model 112-119 (feature-606 with axle load of 23.5 t; the motion was carried out on the continuous welded rail track; the front of the train set is a dual locomotive 2ER20CF or two locomotive 2М62м. Longitudinal profile of the road on the route Vilnus–KlF was analyzed for the choice of theoretical rise. Inspection concerning the possibility of overcoming the high-speed rise was performed with an analytical method, based on the use of the kinetic energy accumulated by the overcoming of «light» elements of the profile. Findings. In the calculations, the maximum weight of the train set taking into account theoretical rise was analyzed. The inspection of the theoretical weight of the train set on a reliable

  8. Breakdown study of dc silicon micro-discharge devices

    International Nuclear Information System (INIS)

    Schwaederlé, L; Kulsreshath, M K; Lefaucheux, P; Tillocher, T; Dussart, R; Overzet, L J

    2012-01-01

    The influence of geometrical and operating parameters on the electrical characteristics of dc microcavity discharges provides insight into their controlling physics. We present here results of such a study on silicon-based microcavity discharge devices carried out in helium at pressure ranging from 100 to 1000 Torr. Different micro-reactor configurations were measured. The differences include isolated single cavities versus arrays of closely spaced cavities, various cavity geometries (un-etched as well as isotropically and anisotropically etched), various dimensions (100 or 150 µm cavity diameter and 0-150 µm depth). The electrode gap was kept constant in all cases at approximately 6 µm. The applied electric field reaches 5 × 10 7 V m -1 which results in current and power densities up to 2 A cm -2 and 200 kW cm -3 , respectively. The number of microcavities and the microcavity depth are shown to be the most important geometrical parameters for predicting breakdown and operation of microcavity devices. The probability of initiatory electron generation which is volume dependent and the electric field strength which is depth dependent are, respectively, considered to be responsible. The cavity shape (isotropic/anisotropic) and diameter had no significant influence. The number of micro-discharges that could be ignited depends on the rate of voltage rise and pressure. Larger numbers ignite at lower frequency and pressure. In addition, the voltage polarity has the largest influence on the electrical characteristics of the micro-discharge of all parameters, which is due to both the asymmetric role of electrodes as electron emitter and the non-uniformity of the electric field resulting in different ionization efficiencies. The qualitative shape of all breakdown voltage versus pressure curves can be explained in terms of the distance over which the discharge breakdown effectively occurs as long as one understand that this distance can depend on pressure. (paper)

  9. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    Science.gov (United States)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  10. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  11. Corrosion Effects on the IV Characteristics of Electrically Conducting ...

    African Journals Online (AJOL)

    MICHAEL

    the electrical properties of un-protected high tension cables, using copper and Aluminum wires of various diameters ... Electrical cables of known diameter and resistivity will be immersed into the medium for a couple of weeks and thereafter a current – voltage measurement will ... of oxygen, carbon-dioxide and other trace of.

  12. Electrical characteristics of metal–insulator–semiconductor and ...

    Indian Academy of Sciences (India)

    Therefore, to attain a large current drive in a MOS, a large interfacial layer capacitance is required. Thus, tunnel current can flow between gate and ... device in large transverse electric fields at the interface. When the transverse electric fields become large enough to cause the formation of a 2-D electron (or hole) gas, the. 67 ...

  13. Graphite/SiC junctions and their electrical characteristics

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2017-01-01

    Roč. 214, č. 9 (2017), č. článku 1700143. ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA17-00546S Institutional support: RVO:67985882 Keywords : Silicon carbide * Barrier homogeneities * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.775, year: 2016

  14. Nonlinear electrical properties and aging characteristics of (NiO ...

    Indian Academy of Sciences (India)

    Administrator

    )-doped Zn–Pr–Co–R (R = Y, Er) oxide-based varistors. CHOON-W NAHM. Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University, Busan 614-714,. Republic of Korea. MS received 19 April 2008; revised 12 August 2008. Abstract. The electrical properties and stability of the varistors, ...

  15. Dielectric breakdown of fast switching LCD shutters

    Science.gov (United States)

    Mozolevskis, Gatis; Sekacis, Ilmars; Nitiss, Edgars; Medvids, Arturs; Rutkis, Martins

    2017-02-01

    Fast liquid crystal optical shutters due to fast switching, vibrationless control and optical properties have found various applications: substitutes for mechanical shutters, 3D active shutter glasses, 3D volumetric displays and more. Switching speed depends not only on properties of liquid crystal, but also on applied electric field intensity. Applied field in the shutters can exceed >10 V/micron which may lead to dielectric breakdown. Therefore, a dielectric thin film is needed between transparent conductive electrodes in order to reduce breakdown probability. In this work we have compared electrical and optical properties of liquid crystal displays with dielectric thin films with thicknesses up to few hundred nanometers coated by flexo printing method and magnetron sputtering. Dielectric breakdown values show flexographic thin films to have higher resistance to dielectric breakdown, although sputtered coatings have better optical properties, such as higher transmission and no coloration.

  16. Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions

    Science.gov (United States)

    Petersen, D.; Beasley, W. H.

    2014-12-01

    Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.

  17. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  18. Electrical characteristics of the hydroxyapatite for biomedical applications

    International Nuclear Information System (INIS)

    Lopez Buisan N, M.G.; Mendez G, M.M.

    2006-01-01

    The electric characteristics of hydroxyapatite films were studied (HAP) deposited on metallic substrates oxidized naturally. The substrates was made of steel 316L and of titanium. These materials are used in reconstructive surgery for prosthesis and osseous implants. The studies were carried out with the techniques of potentiostatic polarization and faraday impedance. The potentiostatic polarization reveals that the very well-known piezoelectricity of the HAp subsists after the coating processes (it captures thermal and spray-pyrolysis). Its also revealed a semiconductor behavior of the HAp that until now had not been reported. This characteristic is important, by its relationship with the stability of the HAp coating in front of corrosion processes in the alive tissues. The results of the impedance tests were mathematically analyzed starting from the Nyquist diagrams, of Bode and of power. The physical interpretation is presented under the form of equivalent circuits (CE). In the case of the HAp on a steel 316L substrate, the CE is a Rancles-Voigt module that corresponds to the behavior of a dielectric with flights. In the case of the titanium substrate an element of constant phase appears to high frequencies (CPE), in series with the Rancles-Voigt module. The CPE reveals the presence of a rectifier of the metal/SC-n type that only it could be located in the interface among the titanium and its natural oxide (TiO 2 ). The absence of the CPE in the case of the steel 316L substrate indicates that the natural oxide (Cr 2 O 3 ) it doesn't form with the steel a Schottky diode, possibly because the chromite is as a SC-n degenerate. On the interface Ti/TiO 2 exists results qualitatively identical by other researchers that have worked with the same impedance technique, but applied by humid via (EIS). The CE that have proposed are based on the anodic processes of accretion/dissolution of the film at low pH. This proposal is questioned by our results, obtained under non

  19. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    Science.gov (United States)

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  20. Electrical characteristics research of 25% ethanol/deionized water mixture

    International Nuclear Information System (INIS)

    Xu Jian; Yang Hanwu; Zhang Zicheng; Tian Xiwen; Zuo Yangbo

    2014-01-01

    In this paper, the application of the mixture as an energy storage medium in the pulsed modulator is explored. Resistivity and freezing point of 25% ethanol/deionized water mixture are measured after deionization and removal impurity by using liquid cleaning equipment. And the pulsed insulating properties and engineering applications of ethanol/deionized water mixture in the microsecond regime are both investigated by using compact capacitive-energy-storage pulsed modulator. Conclusions are shown as follows. (l) The resistivity of ethanol/deionized water mixture can be raised to 230.5 MΩ·cm from 7.3 MΩ·cm after cleaning treatment, and it drops to 27.6 MΩ· cm after 30 days which is still higher than deionized water after cleaning treatment. (2) The freezing point of 25% ethanol/deionized water mixture is experimentally measured to be approximately-10.2 centigrade, which is in agreement with the Lan's Handbook of Chemistry. (3) The breakdown strength of 25% ethanol/deionized water mixture can achieve approximately 160 kV/cm under the microsecond charging time, which is more than that of 25% ethylene glycol/deionized water mixture. (authors)

  1. Enhanced interfacial and electrical characteristics of 4H-SiC MOS capacitor with lanthanum silicate passivation interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-15

    Highlights: • The 4H-SiC MOS capacitor with an untra-thin LaSiO{sub x} passivation layer and Al{sub 2}O{sub 3} gate dielectric was fabricated. • The detrimental SiO{sub x} interfacial layer could be effectively restrained by the LaSiO{sub x} passivation layer. • The passivation mechanism of LaSiO{sub x} was analyzed by HRTEM, XPS and electrical measurements. • The 4H-SiC MOS capacitor with a LaSiO{sub x} passivation layer shows excellent device characteristics. • This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications. - Abstract: The detrimental sub-oxide (SiO{sub x}) interfacial layer formed during the 4H-SiC metal-oxide-semiconductor (MOS) capacitor fabrication will drastically damage its device performance. In this work, an ultrathin lanthanum silicate (LaSiO{sub x}) passivation layer was introduced to enhance the interfacial and electrical characteristics of 4H-SiC MOS capacitor with Al{sub 2}O{sub 3} gate dielectric. The interfacial LaSiO{sub x} formation was investigated by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The 4H-SiC MOS capacitor with ultrathin LaSiO{sub x} passivation interlayer shows excellent interfacial and electrical characteristics, including lower leakage current density, higher dielectric breakdown electric field, smaller C–V hysteresis, and lower interface states density and border traps density. The involved mechanism implies that the LaSiO{sub x} passivation interlayer can effectively restrain SiO{sub x} formation and improve the Al{sub 2}O{sub 3}/4H-SiC interface quality. This technique provides an efficient path to improve dielectrics/4H-SiC interfaces for future high-power device applications.

  2. EMC characteristics of composite structure - Electric/electromagnetic shielding attenuation

    Science.gov (United States)

    Wegertseder, P.; Breitsameter, R.

    1989-09-01

    The paper reports electric/electromagnetic shielding-attenuation experiments performed on different test boxes built with the same materials and processes as those to be used for the construction of a helicopter. The measurements are performed in the frequency range of 14 to 18 GHz, and the effects of different composite materials, jointing and bonding of structure parts of the boxes, application and bonding of the mesh, the construction of access panels, and conductive seals on these panels are assessed. It is demonstrated that moderate electric/electromagnetic shielding-attenuation values can be achieved by composite structures made from carbon, and materials and procedures required for high shielding attenuation are discussed.

  3. Electrical Characteristics of Simulated Tornadoes and Dust Devils

    Science.gov (United States)

    Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.

    2012-01-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.

  4. Corrosion Effects on the I-V Characteristics of Electrically ...

    African Journals Online (AJOL)

    Experimental analysis on the effects of atmospheric Pollution and environmental degradation on the electrical properties of un-protected high tension cables, using copper and Aluminum wires of various diameters as case study, has been advanced. The analysis of the various data obtained in the course of the experiment, ...

  5. SELECTION OF METHOD FOR REGULATION OF TRACTOR PROPULSION ASYNCHRONOUS ELECTRIC MOTOR AND CONSTRUCTION OF MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich

    2015-01-01

    Full Text Available Nowadays the work is in progress to develop wheeled and caterpillar tractors with electromechanical transmission. Range of changes in transmission gear ratio while using propulsion electric motor depends on mechanical characteristics of a tractor propulsion electric motor which is equipped with electromechanical transmission. In case when the range is rather high then it is possible to minimize number of gearings in the tractor gearing box or exclude its usage at all. Type of the applied propulsion electric motor and regulation method specify type of mechanical characteristics (characteristics family of the propulsion electric motor.The paper considers a propulsion asynchronous electric motor with frequency control. While using frequency control it is possible to regulate electric motor revolutions by mutual changes in voltage and voltage frequency. There are various laws of mutual changes in voltage and frequency (regulation laws. Selection of a regulation law influences on type of mechanical characteristics of a propulsion electric motor. Application of any law can be admissible only for some specific range of voltage frequency otherwise it is possible to exceed some parameters (for example, admissible voltage in the winding of electric motor stator. It is necessary to ensure the required moment within wide range for a tractor propulsion electric motor. In this case losses in the electric motor must be minimal. Losses in the rotor of the propulsion asynchronous electric motor are directly proportional to its sliding and its best propulsion and mechanical properties of a mobile machine will be ensured in the case when sliding is preserved at a constant value. According to these reasons selection of regulation laws has been carried out for operation of the propulsion asynchronous electric motor with nominal sliding and mechanical characteristics at nominal sliding is conventionally called a nominal characteristics.The paper analyzes the possible

  6. Effect of microwave annealing on electrical characteristics of TiN/Al/TiN/HfO2/Si MOS capacitors

    Science.gov (United States)

    Shih, Tzu-Lang; Su, Yin-Hsien; Kuo, Tai-Chen; Lee, Wen-Hsi; Current, Michael Ira

    2017-07-01

    In this letter, microwave annealing over a wide range of power (300-2700 W) in nitrogen ambient was performed on TiN/Al/TiN/HfO2/Si metal-oxide-semiconductor capacitors. Capacitors with rapid thermal annealing at 500 °C were also fabricated for comparison at the same wafer temperature measured during microwave annealing at 2700 W. For microwave annealed capacitors, key parameters such as equivalent oxide thickness, interface state density, oxide trapped charge, leakage current density, and breakdown voltage were all improved with increasing microwave annealing power. For the capacitor with rapid thermal annealing at 500 °C, diffusion of Al into TiN and growth of the interfacial oxide layer are detected, leading to the shift in flat-band voltage and increase in equivalent oxide thickness, respectively. The results further indicate that it is more effective to remove the charged traps by microwave annealing than by rapid thermal annealing, and the reduction in leakage current density after microwave annealing corresponds to the reduction in charge traps based on a trap-assisted tunneling model. With no trade-off relationship between the electrical characteristics and no undesired effect such as diffusion of species, microwave annealing demonstrates great potential for the post-metallization annealing process for the high-k/metal gate structure.

  7. Comparative Studies of High-Gradient Rf and Dc Breakdowns

    CERN Document Server

    Kovermann, Jan Wilhelm; Wuensch, Walter

    2010-01-01

    The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...

  8. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  9. Calculation and research of electrical characteristics of induction crucible furnaces with unmagnetized conductive crucible

    Science.gov (United States)

    Fedin, M. A.; Kuvaldin, A. B.; Kuleshov, A. O.; Zhmurko, I. Y.; Akhmetyanov, S. V.

    2018-01-01

    Calculation methods for induction crucible furnaces with a conductive crucible have been reviewed and compared. The calculation method of electrical and energy characteristics of furnaces with a conductive crucible has been developed and the example of the calculation is shown below. The calculation results are compared with experimental data. Dependences of electrical and power characteristics of the furnace on frequency, inductor current, geometric dimensions and temperature have been obtained.

  10. A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper

    Directory of Open Access Journals (Sweden)

    Meng Huang

    2017-12-01

    Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.

  11. SIMULATION OF PULSED BREAKDOWN IN HELIUM BY ADAPTIVE METHODS

    Directory of Open Access Journals (Sweden)

    S. I. Eliseev

    2014-09-01

    Full Text Available The paper deals with the processes occurring during electrical breakdown in gases as well as numerical simulation of these processes using adaptive mesh refinement methods. Discharge between needle electrodes in helium at atmospheric pressure is selected for the test simulation. Physical model of the accompanying breakdown processes is based on self- consistent system of continuity equations for streams of charged particles (electrons and positive ions and Poisson equation for electric potential. Sharp plasma heterogeneity in the area of streamers requires the usage of adaptive algorithms for constructing of computational grids for modeling. The method for grid adaptive construction together with justification of its effectiveness for significantly unsteady gas breakdown simulation at atmospheric pressure is described. Upgraded version of Gerris package is used for numerical simulation of electrical gas breakdown. Software package, originally focused on solution of nonlinear problems in fluid dynamics, appears to be suitable for processes modeling in non-stationary plasma described by continuity equations. The usage of adaptive grids makes it possible to get an adequate numerical model for the breakdown development in the system of needle electrodes. Breakdown dynamics is illustrated by contour plots of electron densities and electric field intensity obtained in the course of solving. Breakdown mechanism of positive and negative (orientated to anode streamers formation is demonstrated and analyzed. Correspondence between adaptive building of computational grid and generated plasma gradients is shown. Obtained results can be used as a basis for full-scale numerical experiments on electric breakdown in gases.

  12. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    Directory of Open Access Journals (Sweden)

    Yu Tan

    2014-04-01

    Full Text Available The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW in the metal–semiconductor–metal (M–S–M nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  13. Optical and electrical characteristics of ZnO/Si heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N., E-mail: zelalem.urgessa@nmmu.ac.za; Dobson, S.R.; Talla, K.; Murape, D.M.; Venter, A.; Botha, J.R.

    2014-04-15

    Self-assembled ZnO nanorods have been synthesized on a seeded Si substrate by a simple chemical bath deposition method at a temperature of 80 °C. Room-temperature photoluminescence analysis revealed material of high optical quality with a low density of defects that can be reduced by post growth annealing. Current–voltage measurements on these devices showed excellent rectification. Junction characteristics were also studied using capacitance–voltage measurements and showed that the junction characteristics are mainly determined by the properties of the p-Si substrate. Based on the energy band diagram and possible interface states at the junction, it was suggested that the current transport in the device is predominantly determined by hopping of charge carriers between localized states through a multi-step tunneling process.

  14. Optical and electrical characteristics of ZnO/Si heterojunction

    Science.gov (United States)

    Urgessa, Z. N.; Dobson, S. R.; Talla, K.; Murape, D. M.; Venter, A.; Botha, J. R.

    2014-04-01

    Self-assembled ZnO nanorods have been synthesized on a seeded Si substrate by a simple chemical bath deposition method at a temperature of 80 °C. Room-temperature photoluminescence analysis revealed material of high optical quality with a low density of defects that can be reduced by post growth annealing. Current-voltage measurements on these devices showed excellent rectification. Junction characteristics were also studied using capacitance-voltage measurements and showed that the junction characteristics are mainly determined by the properties of the p-Si substrate. Based on the energy band diagram and possible interface states at the junction, it was suggested that the current transport in the device is predominantly determined by hopping of charge carriers between localized states through a multi-step tunneling process.

  15. Breakdown of coupling dielectrics for Si microstrip detectors

    International Nuclear Information System (INIS)

    Candelori, A.; Paccagnella, A.; Padova Univ.; Saglimbeni, G.

    1999-01-01

    Double-layer coupling dielectrics for AC-coupled Si microstrip detectors have been electrically characterized in order to determine their performance in a radiation-harsh environment, with a focus on the dielectric breakdown. Two different dielectric technologies have been investigated: SiO 2 /TEOS and SiO 2 /Si 3 N 4 . Dielectrics have been tested by using a negative gate voltage ramp of 0.2 MV/(cm·s). The metal/insulator/Si I-V characteristics show different behaviours depending on the technology. The extrapolated values of the breakdown field for unirradiated devices are significantly higher for SiO 2 /Si 3 N 4 dielectrics, but the data dispersion is lower for SiO 2 /TEOS devices. No significant variation of the breakdown field has been measured after a 10 Mrad (Si) γ irradiation for SiO 2 /Si 3 N 4 dielectrics. Finally, the SiO 2 /Si 3 N 4 DC conduction is enhanced if a positive gate voltage ramp is applied with respect to the negative one, due to the asymmetric conduction of the double-layer dielectric

  16. Effect of the Mesh Transparency on the Electrical Characteristics of DC Pseudo Discharge

    International Nuclear Information System (INIS)

    Al-Halim, M. A. Abd; Abu-Hashem, A.; Moubarak, D. I.

    2015-01-01

    A DC pseudo discharge for air has been studied. Air pressure is used in the range between 0.7 Torr and 12 Torr. The breakdown occurs between a plane cathode and a mesh anode at transparencies of 19%, 46%, and 65%. The current-voltage characteristic curves of the discharge, which are measured at different pressures, distances, and mesh transparences, take effect in the region of abnormal glow. The discharge voltage decreases as the air pressure increases, while more voltage is needed to maintain the discharge when either the mesh transparency or the inter-electrode distance is increased. An increment of mesh transparency causes high negative potential behind the mesh due to the high concentration of electrons, which accumulate and collide with neutral atoms. Paschen curves deviate from the expected regular one. The left side of Paschen curves appears at inter-electrode distance of 1 mm, whereas the right side appears at inter-electrode distance of 5 mm. The intermediate region is observed only at 3 mm distance between the two electrodes. For the transparency range used in this work, it is found that the decrement of the breakdown voltage, on the right side, depends on the mesh transparency. For different electrode separations, the measured Paschen curves are coincident and deviate from the standard ones of Paschen's law. (paper)

  17. Stability of Electrical Characteristics of MOS Structures Based on Gallium Oxide

    Science.gov (United States)

    Kalygina, V. M.; Petrova, Yu. S.; Prudaev, I. A.; Tolbanov, O. P.

    2016-10-01

    We present the results of studying the capacitance-voltage and conductance-voltage characteristics of the GaxOy/ GaAs-based metal - oxide - semiconductor structures obtained by thermal evaporation. Influence of the annealing temperature on the characteristics of the structures is established. It is found that at long-term storage in the room atmosphere, the structures do not change their properties, which is manifested in the stability of electrical characteristics.

  18. A novel high breakdown voltage lateral bipolar transistor on SOI with multizone doping and multistep oxide

    International Nuclear Information System (INIS)

    Loan, Sajad A; Qureshi, S; Kumar Iyer, S S

    2009-01-01

    A novel high breakdown voltage lateral bipolar junction transistor (LBJT) on silicon-on- insulator (SOI) is proposed. The novelty of the device is the use of the combination of multistep-doped drift region and multistep buried oxide. The steps in doping and in oxide thickness have been used as a replacement for much complex linearly varying drift doping and linearly varying oxide thickness. The LBJT structure incorporating the combination of multistep doping and multistep oxide is analyzed for electrical characteristics using a two-dimensional numerical simulator MEDICI. Numerical simulation has demonstrated that the breakdown voltage of the proposed device with a two-zone step doped (TZSD) drift region is >150% higher than the conventional device. It has been observed that increasing the number of doping zones to 3 from 2 results in a >40% rise in breakdown voltage. The proposed device gives high breakdown voltage even at high doping concentration in the collector drift region. This reduces the on-resistance of the device and thus improves its speed. The dependence of breakdown voltage on various device parameters has been extensively studied to achieve optimum device performance. A process flow for the device fabrication is also being proposed

  19. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  20. The electric power market in Spain characteristics, evolution and results from January 1998 to February 2009

    International Nuclear Information System (INIS)

    Gonzalez Fernandez-Castaneda, J. J.

    2009-01-01

    The article presents the organized spanish Electricity production market. The main characteristics of the Day-ahead and Intra day spo to markets, and the evolution and results achieved along the more than 11 years of operations are presented. The relations between the Spanish market and the rest of the European electricity markets, with especial emphasis on those markets interconnected with the Spanish system, are also described. (Author)

  1. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  2. Effect of the Curved Fin Top Edge on the Electrical Characteristics of FinFETs.

    Science.gov (United States)

    Ahn, Joonsung; Kim, Tae Whan

    2018-03-01

    The effect of the curved fin top edge on the electrical characteristics of FinFETs was investigated. The curvature radius of the fin top edge for the FinFETs was changed from 0 to 5 nm in order to determine the optimum condition of the electrical characteristics for the devices. The on-current level of the FinFETs with a curvature radius of 5 nm of fin top edge was 24.45% larger than that of the FinFETs with a cuboid fin. The electron current density and the electron mobility of the fin top edge for the FinFETs were larger than those for the FinFETs with a cuboid fin. The electrical characteristics of the FinFETs with a curvature radius of 5 nm for the fin top edge showed the best performance due to the largest expansion of the effective channel region.

  3. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  4. Product Work Breakdown Structure

    National Research Council Canada - National Science Library

    Okayama, Y; Chirillo, L. D

    1980-01-01

    .... Any such subdivision scheme is a work breakdown structure. Traditional shipbuilders employ work subdivisions by ships functional systems which are natural and appropriate for estimating and for early design stages...

  5. The Resistance of Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2008-01-01

    Full Text Available The conditions under which breakdown of composite liquid - solid insulation can be occurred, e.g., in transformer,play an important role in designing of such insulation. The initial state of breakdown development is explained on the basisof bubble theory and formation of a plasma channel between the electrodes. The electrical resistance of plasma channel iscalculated using several theories and its changes from a few ohms to a few hundred milliohms due to Joule heating caused byhigh arc current which flows through the plasma. The dynamics of the arc current depends on the parameters of outer circuitand is represented by RLC circuit.

  6. Physical characteristics of GE [General Electric] BWR [boiling-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs

  7. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  8. Plasma Conductivity and Ionization Growth in Flame Breakdown

    Science.gov (United States)

    Robledo-Martinez, Arturo; Hernandez, J. Luis

    2000-10-01

    An investigation into the properties of flame breakdown is reported. A series of DC discharge tests were performed in a set of parallel plane electrodes bridged by flames from a bunsen burner. The experimental setup aims to reproduce the conditions found in waste-disposal reactors where the combined effect of fire and an electrical arc degrade noxious substances. The current was simultaneously monitored in different points of the discharge zone. As the applied voltage is increased, it is found that initially the ionization from the flame controls discharge growth but that in later stages avalanche growth takes over. The slope of the I-V characteristics was used for estimating the Townsend ionization coefficients. The overall plasma conductivity was estimated from both the external circuit measurements and the plasma parameters. The results obtained are compared with previous investigations in which mean discharge resistivity is a relevant parameter, employed for designing applications. The effect of gap separation and height over the burner top were also analyzed. This way it was observed that the temperature profile of the flame dictates the spatial distribution of electrical conductivity and thus of breakdown.

  9. Temperature Effect on Electrical Treeing and Partial Discharge Characteristics of Silicone Rubber-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Ahmad

    2015-01-01

    Full Text Available This study investigated electrical treeing and its associated phase-resolved partial discharge (PD activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt, 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.

  10. Using the Arduino with MakerPlot Software for the Display of Electrical Device Characteristics

    Science.gov (United States)

    Atkin, Keith

    2017-01-01

    This paper shows how very simple circuitry attached to an Arduino microcontroller with MakerPlot software can be used for the display of electrical characteristic curves of three commonly available devices: an ohmic resistor, an LED, and a tungsten-filament bulb.

  11. Using the Arduino with MakerPlot software for the display of electrical device characteristics

    Science.gov (United States)

    Atkin, Keith

    2017-11-01

    This paper shows how very simple circuitry attached to an Arduino microcontroller with MakerPlot software can be used for the display of electrical characteristic curves of three commonly available devices: an ohmic resistor, an LED, and a tungsten-filament bulb.

  12. Opto-electrical characteristics and tunability of mid-infrared quantum ...

    African Journals Online (AJOL)

    Quantum Cascade Lasers (QCLs) represent advanced technology for Mid-Infra Red (MIR) and Far-Infra Red (FIR) laser sources. Experiments were conducted to investigate the optical and electrical characteristics of Alp-es SB 1487 QCLs. The laser source achieved pulsed power density on a target cavity with tunability ...

  13. Noise and Electrical Characteristics below 10 K of small CHFET Circuits and Discrete Devices

    Science.gov (United States)

    Cunningham, Thomas J.; Gee, Russell; Fossum, Eric R.; Baier, Steven M.

    1993-01-01

    This paper discusses the lates results of a continuing study of the properties of the complementary heterojunction field-effect transistor (CHFET) at 4K. The electrical characteristics, including the gate leakage current and the subthreshold transconductance, and the input-referred noise voltage for a new lot of discrete CHFETs is presented and discussed.

  14. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    International Nuclear Information System (INIS)

    Li Qi; Wang Wei-Dong; Liu Yun; Wei Xue-Ming

    2012-01-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    International Nuclear Information System (INIS)

    Stauss, Sven; Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-01-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors

  16. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  17. Variation of Modal Characteristics of Electrical Cabinet According to the Excitation Level in Impact Hammer Test

    International Nuclear Information System (INIS)

    Cho, Sung Gook; So, Gi Hwan; Kim, Doo Kie

    2010-01-01

    There are many electrical cabinets in nuclear power plants. Safety-related equipment is typically seismic qualified before installation. Seismic qualification of equipment is possible when identifying the accurate dynamic characteristics of the equipment. According to the nature of the cabinet, the dynamic characteristics of the electrical cabinet vary nonlinearly with excitation level. This study analyzed the nonlinear variation of the dynamic properties of an actual cabinet. For the purpose of this study, a seismic monitoring system cabinet was selected as a specimen. The impact hammer tests were conducted to identify a variation of the dynamic characteristics of the specimen by increasing the impulse level. Modal identification technique was used to extract the modal properties of the cabinet from the measurements

  18. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Science.gov (United States)

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn 2+ , Cd 2+ , and Pb 2+ ) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  19. Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres.

    Science.gov (United States)

    Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2013-01-01

    For the rapid and precise sorting of steel scrap with relatively high contents of copper, laser-induced breakdown spectroscopy (LIBS) is a promising method. It has several advantages such that it can work under ambient air atmospheres, and specimens can be tested without any pretreatment, such as acid digestion, polishing of the surface of the specimens, etc. For the application of LIBS for actual steel scrap, we obtained emission spectra by an LIBS system, which was mainly comprised of an Nd:YAG laser, an Echelle-type spectrometer, and an ICCD detector. The standard reference materials (SRMs) of JISF FXS 350-352, which are Fe-Cu binary alloy and have certified concentrations of copper, were employed for making calibration lines. Considering spectral interferences from the emission lines of the iron matrix in the alloys, Cu I lines having wavelengths of 324.754 and 327.396 nm could be chosen. In five replicate measurements of each SRM, shorter delay times after laser irradiation and longer gate widths for detecting the transient emission signal are suggested to be the optimal experiment parameters. In the determination process, utilizing the calibration line from Cu I 327.396 nm was better because of less spectral interference. By using 200 pulsed laser shots for the measurement sequence, a limit of detection of 0.004 Cu at% could be obtained.

  20. Mechanical and electrical contact resistance characteristics of a cellular assembly of carbon nanotubes

    International Nuclear Information System (INIS)

    Kiran, M S R N; Ramamurty, U; Misra, Abha

    2013-01-01

    We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region. (paper)

  1. High voltage electric field effects on structure and biological characteristics of barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, J. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Agrotechnology, Univ. College of Abouraihan; Aliabadi, E. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Crop Production Horticulture, Univ. College of Aburaihan; Shayegani, A.A. [Tehran Univ., Tehran (Iran, Islamic Republic of). Univ. College of Engineering

    2010-07-01

    Electric biostimulation of seeds is a pre-sowing treatment in which an electric field is applied to seeds to increase germination of non standard seeds. This paper reported on a study that examined the effects of AC electric field and exposure time on the structure and biological characteristics of barley seeds. The objective was to determine the potential to accelerate seed germination, plant growth and root development by the electric field strength and exposure time. Makooei cultivar barley seeds were used in this study. The effect of electric field strength (at 2, 4, 9, and 14 kV/m) and exposure time (at 15, 45, 80, and 150 min) on seed germination was studied along with height of seedling, length or root, height of stem, length of leaves, earliness, dry weight and wet weight of seedling. The treated seeds were stored for a month in a refrigerator at 5 degrees C prior to the germination experiments. The initial germination percent of the seed was 81 per cent. The treatment of barley seeds in an AC electric field had a positive effect on all investigated parameters. The germination percent of the treated seed increased to 94.5 per cent . The seeds exposed for long periods of time (45 to 150 min) showed better germination than the seeds exposed to lower exposure times. Dry and wet weights of seedling increased 143.4 per cent and 45.7 per cent, respectively.

  2. Modelling of time delay of electrical breakdown for nitrogen-filled tubes at pressures of 6.6 and 13.3 mbar in the increase region of the memory curve

    International Nuclear Information System (INIS)

    Nesic, N T; Ristic, G S; Pejovic, M M; Karamarkovic, J P

    2008-01-01

    Experimentally measured electrical breakdown time delay data versus the afterglow period (representing 'memory curves') for nitrogen-filled tubes at pressures of 6.6 and 13.3 mbar have been shown. The influence of N( 4 S) nitrogen atoms on secondary electron emission from the cathode (the SEE process) in late afterglow has been discussed. N( 4 S) atom concentration decay over relaxation time τ, N( 4 S)(τ), has been analysed by a numerical model and two analytical models. N( 4 S) decay analytical models are combined with different yield models that describe the SEE process by N( 4 S) and these combinations are employed to fit the experimental data. It has been shown that in late afterglow solving of very simple analytical equations instead of numerical solving of partial differential equations for N( 4 S)(τ) fitting can be used and that the combination of the first and the second order of the SEE process by N( 4 S) in yield modelling should be used in the case of 13.3 mbar pressure.

  3. Electrical characteristics of an electronic control device under a physiologic load: a brief report.

    Science.gov (United States)

    Dawes, Donald M; Ho, Jeffrey D; Kroll, Mark W; Miner, James R

    2010-03-01

    Law enforcement officers use electronic control devices (ECDs), such as the TASER X26 (TASER International, Inc., Scottsdale, AZ, USA), to control resisting subjects. Some of the debate on the safety of the devices has centered on the electrical characteristics of the devices. The electrical characteristics published by TASER International have historically based on discharges into a 400 Omega resistor. There are no studies that the authors are aware of that report the electrical characteristics under a physiologic load. In this study, we make an initial attempt to determine the electrical characteristics of the TASER X26 during a 5-second exposure in human volunteers. Subjects received an exposure to the dry, bare chest (top probe), and abdomen (bottom probe) with a standard TASER X26 in the probe deployment mode for 5 seconds. There were 10-11 pulse captures during the 5 seconds. Resistance was calculated using the sum of the absolute values of the instantaneous voltage measurements divided by the sum of the absolute values of the instantaneous current measurements (Ohm's Law). For the eight subjects, the mean spread between top and bottom probes was 12.1 inches (30.7 cm). The mean resistance was 602.3 Omega, with a range of 470.5-691.4 Omega. The resistance decreased slightly over the 5-second discharge with a mean decrease of 8.0%. The mean rectified charge per pulse was 123.0 microC. The mean main phase charge per pulse was 110.5 microC. The mean pulse width was 126.9 micros. The mean voltage per pulse was 580.1 V. The mean current per pulse was 0.97 A. The average peak main phase voltage was 1899.2 V and the average peak main phase current was 3.10 A. The mean tissue resistance was 602.3 Omega in this study. There was a decrease in resistance of 8% over the 5-second exposure. This physiologic load is different than the 400 Omega laboratory load used historically by the manufacturer. We recommend future characterization of these devices use a physiologic load

  4. Experimental research for vacuum gap breakdown in high voltage multi-pulse

    International Nuclear Information System (INIS)

    Huang Ziping; He Jialong; Chen Sifu; Deng Jianjun; Wang Liping

    2008-01-01

    Base on the breakdown theory of vacuum gaps, experiments have been done to find out the breakdown electric field intensities in high voltage single-and triple-pulse for 26 vacuum gaps with different shapes. The experimental results match up to the theory and confirm the effect of the pulse-number increase on the breakdown electric field intensity. The key point to decide the macroscopical breakdown electric field intensity of a vacuum gap has been pointed out with some advises about the design of a multi-pulse linear inductive accelerator's accelerate gap. (authors)

  5. Beauty in the Breakdown

    Science.gov (United States)

    Brisco, Nicole

    2008-01-01

    Most human beings look at erosion as the destruction of a surface, but artists can see that erosion often creates indefinable beauty. Where do you see beauty in the breakdown? In this article, the author presents an innovative lesson that would allow students to observe both human and physical nature. In this activity students will create a work…

  6. Determination of the electrical characteristics of protective coatings and deposits on metals in media with low electrical conductivity

    International Nuclear Information System (INIS)

    Ovcharenko, V.I.; Koroleva, E.V.; Fedorova, A.N.; Sereda, G.A.

    1987-01-01

    This paper presents the results of a theoretical analysis and experimental determination of the electrical and associated protective characteristics of poorly conducting layers on metals, modeling both oxide and hydroxide deposits on the inner surfaces of the equipment as well as films of protective coatings. The analysis is performed using the linear low-frequency ac current (10 -3 -10 -6 Hz) method, which is based on the determination of the impedance Z, the admittance Y = 1/Z, the complex capacitance C = Y/j omega, where omega is the circular frequency of the alternating current, the complex dielectric constant epsilon, the tangent of the dielectric-loss angle tan δ and other quantities associated with them

  7. Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

    Directory of Open Access Journals (Sweden)

    Jarzebowicz Leszek

    2017-12-01

    Full Text Available In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.

  8. Fundamental characteristics on electric system of solar electric vehicle; Solar car no denki keito ni kansuru kiso tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, S.; Sasaki, M.; Kaga, T.; Koyama, N. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    The electric system of a solar vehicle was removed and the fundamental characteristics examined in order to carry out a basic experiment on the electric system. Using a basic circuit with panels, batteries and loads connected, the voltage and current were measured in the presence/absence of the trackers, batteries, etc., and then, their effects were examined. Simultaneously, the quantity of solar radiation was also measured. The lowering of the output voltage was somewhat relaxed with the use of the trackers. Further, with the trackers used, the output voltage of the panel was small in spite of a large quantity of solar radiation compared to the case without the trackers, which was due to the restriction of the output voltage by the trackers. When measured without batteries, the output voltage of the panel was such that the load current was also influenced by the variation of insolation, so that, with a large decrease in insolation, the load current was decreased with the supply of current suspended from the panel. 7 figs., 1 tab.

  9. Research on electric and thermal characteristics of plasma torch based on similarity theory

    International Nuclear Information System (INIS)

    Cheng Changming; Tang Deli; Lan Wei

    2007-01-01

    Configuration and working principle of a DC non-transferred plasma torch have been introduced. Based on similarity theory, connections between the electric-thermal characteristics and operational parameter such as flowing gas rate and arc power have been investigated. Calculation and experiment are compared. The results indicate that the calculation results are in agreement with experimental ones. The formulas can be used for plasma torch improvement and optimization. (authors)

  10. Research into action of surface soil moistening, drying or freezing on electrical characteristics of grounding device

    Directory of Open Access Journals (Sweden)

    I.V. Nizhevskiy

    2014-03-01

    Full Text Available The analysis made has shown expediency of modernization rather than reconstruction of earth electrodes, after inspection of long operating substations grounding grids, via building a two-level structure. It will result in both technical and economic effects. The novelty of the results consists in studying, by means of a mathematical model, electrical characteristics of a two-level earth electrode versus the depth of surface soil drying or freezing.

  11. Comparative Study of White Layer Characteristics for Static and Rotating Workpiece during Electric Discharge Machining

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-10-01

    Full Text Available EDMed (Electric Discharge Machined surfaces are unique in their appearance and metallurgical characteristics, which depend on different parameter such as electric parameters, flushing method, and dielectric type. Conventionally, in static workpiece method the EDM (Electric Discharge Machining is performed by submerging both of the tool and workpiece in dielectric liquid and side flushing is provided by impinging pressurized dielectric liquid into the gap. Another flushing method has been investigated in this study, in which, instead of side flushing the rotation motion is provided to the workpiece. Surface characteristics for both flushing methods are determined and compared in this study. The investigated surface characteristics are: surface roughness, crater size, surface morphology, white layer thickness and composition. These investigations are performed using optical and SEM (Scanning Electron Microscope. Statistical confidence limits are determined for scattered data of surface roughness. It is found that the white layer thickness and surface roughness are directly proportional to discharge current for both flushing methods. The comparison has shown that the side flushing of statics workpiece gives thicker white layer and lower surface finish as compared to the flushing caused by the rotation of workpiece

  12. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  13. Characteristics of AC capillary discharge produced in electrically conductive water solution

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Schmidt, Jiří; Leys, C.

    2007-01-01

    Roč. 16, č. 2 (2007), s. 341-354 ISSN 0963-0252 R&D Projects: GA AV ČR IAA1043102 Institutional research plan: CEZ:AV0Z20430508 Keywords : water breakdown * capillary * AC discharge * conductive liquid * optical emission * decay time * vapour bubble * breakdown mechanism Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.120, year: 2007

  14. Characteristics of the prices of operating reserves and regulation services in competitive electricity markets

    International Nuclear Information System (INIS)

    Wang Peng; Zareipour, Hamidreza; Rosehart, William D.

    2011-01-01

    In this paper, characteristics of the prices of reserves and regulation services in the Ontario, New York and ERCOT electricity markets are studied. More specifically, price variability, price jumps, long-range correlation, and non-linearity of the prices are analyzed using the available measures in the literature. For the Ontario electricity market, the prices of 10-min spinning, 10-min non-spinning, and 30-min operating reserves for the period May 1, 2002 to December 31, 2007 are analyzed. For the New York market, prices of the same reserves plus regulation service are studied for the period February 5, 2005 to December 31, 2008. For the ERCOT market, we analyze the prices of responsive reserve, regulation up and regulation down services, for the period January 1, 2005 to December 31, 2009. The studied characteristics of operating reserve and regulation prices are also compared with those of energy prices. The findings of this paper show that the studied reserve and regulation prices feature extreme volatility, more frequent jumps and spikes, different peak price occurrence time, and lower predictability, compared to the energy prices. - Research highlights: → We examine various statistical characteristics of reserve and regulation prices. → We compare characteristics of reserve and regulation and energy prices. → Reserve and regulation prices feature different patterns from energy prices. → Reserve and regulation prices are more dispersive and volatile than energy price.

  15. Modeling and Optimization of Electric Loading of Using Equipment with Piece-Wise – Continuous Expenditure Characteristics at Various Electric Energy Tariffs

    Directory of Open Access Journals (Sweden)

    Y. N. Коlesnik

    2008-01-01

    Full Text Available The paper considers a problem pertaining to control of electric load at enterprises with piece-wise-continuous expenditure characteristics at various electric energy tariffs. Open Joint-Stock Company «Моzyrsol» has been taken an example for optimization of the enterprise operational regimes according to a criterion of minimum expenses for electric energy purchase, a criterion of minimum electric energy expenditure and complex optimization by two criteria simultaneously with two-rate and two-rate-differential tariffs for electric energy. Results of the optimization con-tribute to saving not only electric energy but money resources only due to re-distribution of volume of manufactured products.

  16. Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems

    Science.gov (United States)

    Nissar, Umair; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, S. H.; Jamil, M. T.; Khan, J. Alam; Shakeel, R.; Nadeem, M. Y.

    2018-02-01

    Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2-(25- x) Bi2O3-75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole-Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.

  17. Determination of electrical characteristics of body tissues for computational dosimetry studies

    International Nuclear Information System (INIS)

    Silva, Rafael Monteiro da Cruz; Domingues, Luis Adriano M.C.; Neto, Athanasio Mpalantinos; Barbosa, Carlos Ruy Nunez

    2008-01-01

    Increasing public concern about human exposure to electromagnetic fields led to the development of International Exposure Standards, which reflect the actual scientific knowledge on this subject. Existing exposure limits (reference levels), are based on maximum admissible fields or induced currents densities inside human bodies, called basic restrictions. Since those physical quantities can not be readily measured, they must be estimated using techniques of computational dosimetry. These techniques rely on accurate computational modelling of human bodies to establish the relation of external field (electric / magnetic) to induced current (internal field). Nowadays the models available for human body simulation (FEM, FDM,...) are quite accurate, specially when using geometric discretization obtained from medical imaging techniques, however the determination of tissues characteristics (permittivity and conductivity) is still an issue to be dealt with. In current studies the electrical characteristics (permittivity and conductivity) of body tissues are based on values which were obtained from measurements done on tissue simples obtained from dead bodies. However those values may not represent adequately the behaviour of living tissues. In this paper a research designed to characterize the permittivity of human body tissues is presented, consisting of measurements and simulations designed to determine, using indirect methods, the electrical behaviour of living tissues. A study of exposure assessment on a real high voltage transmission line in Brazil, using measured permittivity values combined with a finite element model of the human body is presented in the panel. (author)

  18. Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses

    Directory of Open Access Journals (Sweden)

    Vanita Thakur

    2015-08-01

    Full Text Available The glass samples with composition (70B2O3-29Li2O-1Dy2O3-xBT; x = 0, 10 and 20 weight percent, have been prepared by conventional melt quench technique. The dielectric measurements as a function of temperature have been carried out on these samples in the frequency range 1 Hz-10 MHz. The dielectric relaxation characteristics of these samples have been studied by analyzing dielectric spectroscopy, dielectric loss, electric modulus formulation and electrical conductivity spectroscopy. It is found that the dielectric permittivity of the samples increases with an increase in the temperature and BT content. The frequency dependent ac conductivity has been analyzed using Jonscher’s universal power law whereas non exponential KWW function has been invoked to fit the experimental data of the imaginary part of the electric modulus. The values of the activation energy determined from the electric modulus and that from dc conductivity have been found to be quite close to each other suggesting that the same type of charge barriers are involved in the relaxation and the conduction mechanisms. The stretched exponent (β and the power exponent (n have been found to be temperature and composition dependent. The decrease in n with an increase in temperature further suggested that the ac conduction mechanism of the studied samples follows the correlated barrier hopping (CBH model.

  19. Characteristics of wastes from electric and electronic equipment in Greece: results of a field survey.

    Science.gov (United States)

    Karagiannidis, Avraam; Perkoulidis, George; Papadopoulos, Agis; Moussiopoulos, Nicolas; Tsatsarelis, Thomas

    2005-08-01

    The lifespan of electric and electronic equipment is becoming shorter and the amount of related waste is increasing. This study aimed to contribute to the knowledge about qualitative and quantitative characteristics of such wastes in Greece. Specifically, results are presented from a field survey, which took place in the city of Thessaloniki, Greece, during the year 2002. The survey was conducted with suitable questionnaires in department stores and in households of various municipalities. Household appliances were grouped as follows: (A) large (refrigerator, freezer, washing machine, clothes dryer, electric cooker, microwave oven, electric heater), (B) small (vacuum cleaner, electric iron, hair dryer), (C) information technology and telecommunication equipment (PC, laptop, printer, phone) and (D) consumer equipment (radio, TV, video, DVD, console). The analysis indicated that the lifespan of all new goods is gradually reducing (apart from refrigerators, for which the lifespan was surprisingly found to be increasing) and provided linearized functions for predicting the lifespan, according to the year of manufacture, for certain large appliances.

  20. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    Science.gov (United States)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  1. Electrical characteristics of conductive yarns and textile electrodes for medical applications.

    Science.gov (United States)

    Rattfält, Linda; Lindén, Maria; Hult, Peter; Berglin, Lena; Ask, Per

    2007-12-01

    Clothing with conductive textiles for health care applications has in the last decade been of an upcoming research interest. An advantage with the technique is its suitability in distributed and home health care. The present study investigates the electrical properties of conductive yarns and textile electrodes in contact with human skin, thus representing a real ECG-registration situation. The yarn measurements showed a pure resistive characteristic proportional to the length. The electrodes made of pure stainless steel (electrode A) and 20% stainless steel/80% polyester (electrode B) showed acceptable stability of electrode potentials, the stability of A was better than that of B. The electrode made of silver plated copper (electrode C) was less stable. The electrode impedance was lower for electrodes A and B than that for electrode C. From an electrical properties point of view we recommend to use electrodes of type A to be used in intelligent textile medical applications.

  2. Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yoon Hyuk Shin

    2015-12-01

    Full Text Available A modularized positive temperature coefficient heating system has controller-integrated heater modules. Such a heating system that uses a high-voltage power of 330 V was developed in the present study for use in electric vehicles. Four heater modules and one controller with an input power of 5.6 kW were integrated in the modularized system, which was designed for improved heating power density and light weight compared to the conventional heating system, in which the controller is separated. We experimentally investigated the performance characteristics, namely, the heating capacity, energy efficiency, and pressure drop, of a prototype of the developed heating system and found it to have satisfactory performance. The findings of this study will contribute to the development of heating systems for electric vehicles.

  3. Effect of Dopant Properties on the Microstructures and Electrical Characteristics of Poly(3-Hexylthiophene) Thin Films

    International Nuclear Information System (INIS)

    Ma Liang

    2010-01-01

    Effects of dopant properties on microstructures and the electrical characteristics of poly (3-hexylthiophene) (P3HT) films are studied by doping 0.1 wt% 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 -TCNQ), 6,6-phenyl-C 61 butyric acid methyl ester (PCBM) and N,N'-Diphenyl-N,N'-(m-tolyl)-benzidine (TPD) into P3HT, respectively. The introductions of various dopants in small quantities increase the field-effect mobility and the I on /I off ratio of P3HT thin-film transistors. However, each of dopants shows various effects on the crystalline order and the molecular orientation of P3HT films and the performance of P3HT thin-film transistors. These can be attributed to the various size, shape and energy-level properties of the dopants. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I.G. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)], E-mail: i_trindade@msn.com; Leitao, D. [IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Pogorelev, Y.; Sousa, J.B. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2009-08-15

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co{sub 85}Fe{sub 15} and Ni{sub 81}Fe{sub 19} thin layers grown on identical underlayers of Ta70 A/Ru13 A. The largest difference was observed in Ni{sub 81}Fe{sub 19} films grown on underlayers of amorphous Ta70 A. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  5. Electrical and electrochemical performance characteristics of large capacity lithium-ion cells

    Science.gov (United States)

    Nagasubramanian, G.; Ingersoll, D.; Doughty, D.; Radzykewycz, D.; Hill, C.; Marsh, C.

    We are currently evaluating large capacity (20-40 Ah) Bluestar (cylindrical) and Yardney (prismatic) lithium-ion cells for their electrical and electrochemical performance characteristics at different temperatures. The cell resistances were nearly constant from room temperature down to -20°C, but increased by over 10 times at -40°C. The specific energies and powers, as well as the energy densities and power densities are high and did not reach a plateau even at the highest discharge rates tested. For example, the prismatic lithium-ion cells gave close to 280 Wh dm -3 from a 4 A discharge and 249 Wh dm -3 at 20 A, both at room temperature. For the same current range the specific energy values were 102 Wh kg -1 and 91 Wh kg -1. Cycle life and other electrical and electrochemical properties of the cells will be presented.

  6. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  8. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  9. Noninvasive electrical conductivity measurement by MRI. A test of its validity and the electrical conductivity characteristics of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Tha, Khin Khin; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Katscher, Ulrich; Stehning, Christian [Philips Research Laboratories, Hamburg (Germany); Yamaguchi, Shigeru; Terasaka, Shunsuke; Kazumata, Ken [Faculty of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Fujima, Noriyuki [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Yamamoto, Toru [Hokkaido University, Faculty of Health Sciences, Sapporo (Japan); Van Cauteren, Marc [Clinical Science Philips Healthtech Asia Pacific, Tokyo (Japan); Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Faculty of Medicine, Hokkaido University, Department of Radiation Medicine, Sapporo (Japan)

    2018-01-15

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤.045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r =.571, Bonferroni-corrected p =.018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r =.518, p =.040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. (orig.)

  10. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  11. PHENIX Work Breakdown Structure

    International Nuclear Information System (INIS)

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M ampersand S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M ampersand S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry

  12. Work breakdown structure guide

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  13. Breakdowns in collaborative information seeking

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    Collaborative information seeking is integral to many professional activities. In hospital work, the medication process encompasses continual seeking for information and collaborative grounding of information. This study investigates breakdowns in collaborative information seeking through analyses...... introduced risks of new kinds of breakdown in collaborative information seeking. In working to prevent and recover from breakdowns in the seeking and sharing of information a focus on collaborative information seeking will point toward collaborative, organizational, and systemic reasons for breakdown...... of the use of the electronic medication record adopted in a Danish healthcare region and of the reports of five years of medication incidents at Danish hospitals. The results show that breakdowns in collaborative information seeking is a major source of medication incidents, that most of these breakdowns...

  14. Stability of electric characteristics of solar cells for continuous power supply

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša M.

    2015-01-01

    Full Text Available This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required. [Projekat Ministarstva nauke Republike Srbije, br. III 171007

  15. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  16. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.

    Science.gov (United States)

    Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae

    2010-07-01

    An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    Science.gov (United States)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  18. Breakdown studies of helium and nitrogen in partial vacuum subject to non-uniform, unipolar fields in the 20--220 kHz range

    Science.gov (United States)

    Koppisetty, Kalyan

    2008-04-01

    Partial discharges and corona are considered as unwanted processes in electrical power systems since they are constant source of power loss and electrical noise (EMI). These effects can further develop into a major problem at the component level, causing solid insulation deterioration and component failure leading to possible bulk electrical breakdown. The problems are well documented for traditional ground-based (i.e. utility) electrical power systems, and there exists a considerable knowledge base on the subject. However, this knowledge base does not readily extend to on-board electrical power systems in aerospace vehicles because such systems are required to operate at very low atmospheric pressure (i.e. in partial vacuum) and frequencies in the tens of kHz range. Also, much of what is known for aerospace systems is limited to standard 28 V dc systems, whereas the next generation of aerospace systems is expected to operate at higher voltages. Thus, there is an incentive to conduct basic research into corona, partial discharge and gaseous breakdown in gases at partial vacuum conditions, voltages, and frequencies, and for geometries corresponding to the environment encountered in current and future aerospace power systems. This work presents studies on the breakdown characteristics of helium, nitrogen and zero air under unipolar sinusoidal and pulsed voltages at frequencies varying from 20 kHz to 220 kHz in partial vacuum, for a point-to-point and point-to-plane electrode configurations. These voltages are compared to the dc data obtained under similar conditions. Also, breakdown voltage versus pressure curves similar to Pashcen plots are presented. Breakdown voltages of these gases as a function of signal frequency are also presented.

  19. Design and construction of an instrument for measuring thermistor electrical characteristic

    International Nuclear Information System (INIS)

    Budiono; Yudi Herdiana

    2007-01-01

    In this work an instrument for measuring the electrical characteristic of thermistor has been designed and constructed. The instrument was constructed from main components i.e. a micro controller AT89C51, 3 ADC-0804, a LM35 temperature sensor and IC MAX 232. The IC MAX 232 component is used to connect the micro controller to the personal computer serially by using RS-232 standard. While ADC-0804 was used to convert the analog data (DC voltage) to the digital one so that the data was readable by the micro controller. Digital data from 3 ADC-0804 circuit which have been read by the micro controller was sent directly to the personal computer. The data from the measurement which have been stored in the personal computer was then processed to know the value of temperature and measured thermistor resistance. The processed data could be either stored in a data base or displayed in a monitor or printed in the form of table data and in the form a graph of thermistor resistance as the function of temperature. The result of measurement from measuring instrument of the characteristic of thermistor electric's had been made, being compared by measuring calibrated instrument, the deviation is about 0.33 %. (author)

  20. Test of the performance and characteristics of a prototype inductive power coupling for electric highway systems

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J.G.; Ng, L.S.; Green, M.I.; Wallace, R.I.

    1978-07-01

    Development of an inductively coupled power system for highway applications was begun in 1976. The power system was designed to provide energy to vehicles that also carry a supply of stored energy, thus providing a large measure of operational flexibility to the vehicles and reducing the necessary inventory of powered roadways. The highway power system can support the high-speed, long-range portions of driving cycles, while the stored energy can meet the requirements of driving on non-powered streets. The system thus has been referred to as a ''dual-mode'' system because of the use of the two sources of energy. The results of testing a prototype coupling are presented. No physical contact between the vehicle and the power source is required, i.e., the coupling magnetically links the power system of the vehicle to a power source in the roadway (inductive coupling). Tests were performed to determine the magnetic force and flux distribution, electrical characteristics, thermal efforts and acoustic noise. The test equipment and methods are discussed. The tests confirmed the technical feasibility of this type of non-contacting electrical power coupling, and demonstrated that its components are suited to ordinary materials and manufacturing processes. The test results were found to be consistent with expected characteristics in all important respects.

  1. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  2. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    International Nuclear Information System (INIS)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan; Lo, Yun-Shan; Wu, Tai-Bor

    2009-01-01

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  3. Evaluation of Electrical Characteristics of Protective Equipment - a Prerequisite for Ensuring Safety and Health of Workers at Work

    Science.gov (United States)

    Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.

    2017-06-01

    The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.

  4. Surface of Alumina Films after Prolonged Breakdowns in Galvanostatic Anodization

    Directory of Open Access Journals (Sweden)

    Christian Girginov

    2011-01-01

    Full Text Available Breakdown phenomena are investigated at continuous isothermal (20∘C and galvanostatic (0.2–5 mA cm−2 anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF electrolyte. From the kinetic (-curves, the breakdown voltage ( values are estimated, as well as the frequency and amplitude of oscillations of formation voltage ( at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM. Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2, was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.

  5. Recovery of Alumina Nanocapacitors after High Voltage Breakdown.

    Science.gov (United States)

    Belkin, A; Bezryadin, A; Hendren, L; Hubler, A

    2017-04-20

    Breakdown of a dielectric material at high electric fields significantly limits the applicability of metal-dielectric-metal capacitors for energy storage applications. Here we demonstrate that the insulating properties of atomic-layer-deposited Al 2 O 3 thin films in Al/Al 2 O 3 /Al trilayers can recover after the breakdown. The recovery has been observed in samples with the dielectric thickness spanning from 4 to 9 nm. This phenomenon holds promise for a new generation of capacitors capable of restoring their properties after the dielectric breakdown. Also, if employed in capacitor banks, the recovery process will ensure that the bank remains operational even if a breakdown occurs.

  6. Breakdown studies for neutral injectors

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Bussac, J.P.

    1981-01-01

    Reliable operation of high energy neutral injectors is challenged by the voltage hold-off capability of the extraction systems. The high voltage behavior of a gap depends not only on a large number of macroscopic parameters, e.g. the electrodes material, geometry, separation, and residual gas pressure, but also upon dimly defined and badly controlled microscopic electric properties such as electrodes surface conditions, which are in turn affected by the conditioning procedures and by the operational history of the gap. In fact, it is merely due to the microscopic surface conditions of electrodes, especially cathodes, that for most favorable regimes, macroscopic breakdown fields are two orders of magnitude lower than what can be expected from the field emission theory (E greater than or equal to 3 10 9 V/m). At FAR, experimental data on the voltage hold-off problems are obtained in a large injector (Megawatt Beam Line - MWBL) and in L.E.O., a smaller but more flexible facility where single beam studies will be made, up to 160 keV. Some results are described

  7. Intracellular protein breakdown. 8

    International Nuclear Information System (INIS)

    Bohley, P.; Kirschke, H.; Langner, J.; Wiederanders, B.; Ansorge, S.

    1976-01-01

    Double-labelled proteins from rat liver cytosol ( 14 C in long-lived, 3 H in short-lived proteins after in-vivo-labelling) are used as substrates for unlabelled proteinases in vitro. Differences in the degradation rates of short-lived and long-lived proteins in vitro by different proteinases and after addition of different effectors allow conclusions concerning their importance for the in-vivo-turnover of substrate proteins. The main activity (>90%) of soluble lysosomal proteinases at pH 6.1 and pH 6.9 is caused by thiolproteinases, which degrade preferentially short-lived cytosol proteins. These proteinases are inhibited by leupeptin. Autolysis of double-labelled cell fractions shows a remarkably faster breakdown of short-lived substrate proteins only in the soluble part of lysosomes. Microsomal fractions degrade in vitro preferentially long-lived substrate proteins. (author)

  8. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    Science.gov (United States)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  9. A breakdown enhanced AlGaN/GaN MISFET with source-connected P-buried layer

    Science.gov (United States)

    Luo, Xin; Wang, Ying; Cao, Fei; Yu, Cheng-Hao; Fei, Xin-Xing

    2017-12-01

    This paper presents a breakdown-enhanced AlGaN/GaN MISFET with a source-connected P-buried layer combined with field plates (SC-PBL FPs MISFET). A TCAD tool was used to analyze the breakdown characteristics of the proposed structure, and results show that in comparison to the conventional gate field plate MISFET (GFP-C MISFET), the proposed structure provides a significant increase of breakdown voltage (VBK) due to redistribution of electric field in the gate-drain region induced by the SC-PBL and the FPs. The optimized SC-PBL FPs MISFET with a gate-drain spacing of 6 μm achieved a high Baliga's figure of merit of 2.6 GW cm-2 with a corresponding breakdown voltage (VBK) of 1311.62 V and specific on resistance (RON,sp) of 0.66 mΩ cm2, which demonstrates a good trade-off between RON,sp and VBK compared to the GFP-C MISFET with VBK of 524.27 V and RON,sp of 0.61 mΩ cm2.

  10. The Influence of Turbulence on Characteristics of a Hybrid-Stabilized Argon-Water Electric Arc

    Czech Academy of Sciences Publication Activity Database

    Jeništa, Jiří; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, Petr

    2013-01-01

    Roč. 8, č. 2 (2013), s. 435-447 ISSN 1880-5566. [Ninth International Conference on Flow Dynamics (ICFD2012). Sendai, 19.09.2012-21.09.2012] R&D Projects: GA ČR GAP205/11/2070 Grant - others:Program of the Institute of Fluid Science, Tohoku University, Sendai, Japan (JP) J13032; GA MŠk(CZ) LM2010005 Institutional support: RVO:61389021 Keywords : hybrid-stabilized electric arc * partial characteristics * mass flow rate * Large-eddy simulation * the Smagorinsky sub-grid scale model Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.495, year: 2013 http://www.ifs.tohoku.ac.jp/gcoe/ICFD/ICFD2012/index.html

  11. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2017-01-01

    concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water......The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm...... was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone...

  12. Some characteristics of polymers in composite materials and as electrical conductors

    Science.gov (United States)

    Hansen, C. F.

    1982-01-01

    The characteristics of carbon fibers (CF) made from polyacrylonitrile (PAN) materials are discussed, together with research on conducting polymers. CF materials have better mechanical properties, chemical inertness, and higher stiffness than metallic materials but are subject to environmental instability, flammability, and delamination fatigue. Polymerization procedures for the monopolymer PAN are described, noting the use of SEM and X-ray diffraction techniques for studying the fiber structure. High modulus and strength of CF are caused by covalent sp(2) bonds in hexagonal carbon rings, which are stronger than the same links in diamonds. Details of the molecular chain structures and macroformations, stress-strain as a function of temperature, and thermosetting and glass transition temperatures of polymers are provided. Computational quantum chemistry techniques are being applied to studying electrical conductance in polymers, mainly to discover ways to stabilize the materials. Doped CH(x) has exhibited photovoltaic properties and other polymers have become superconductors at cryogenic temperatures.

  13. GeTe sequences in superlattice phase change memories and their electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ohyanagi, T., E-mail: ohyanagi@leap.or.jp; Kitamura, M.; Takaura, N. [Low-Power Electronics Association and Projects (LEAP), Onogawa 16-1, Tsukuba, Ibaraki 305-8569 (Japan); Araidai, M. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kato, S. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Shiraishi, K. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2014-06-23

    We studied GeTe structures in superlattice phase change memories (superlattice PCMs) with a [GeTe/Sb{sub 2}Te{sub 3}] stacked structure by X-ray diffraction (XRD) analysis. We examined the electrical characteristics of superlattice PCMs with films deposited at different temperatures. It was found that XRD spectra differed between the films deposited at 200 °C and 240 °C; the differences corresponded to the differences in the GeTe sequences in the films. We applied first-principles calculations to calculate the total energy of three different GeTe sequences. The results showed the Ge-Te-Ge-Te sequence had the lowest total energy of the three and it was found that with this sequence the superlattice PCMs did not run.

  14. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2011-01-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO 2 ) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO 2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO 2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  15. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  16. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    Science.gov (United States)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-08-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength ( E/ N), electron density ne, and secondary-electron emission ( γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  17. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  18. Self-assembly and electrical characteristics of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles on SiO2/n-Si

    Science.gov (United States)

    Baharuddin, Aainaa Aqilah; Ang, Bee Chin; Wong, Yew Hoong

    2017-11-01

    A novel investigation on a relationship between temperature-influential self-assembly (70-300 °C) of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles (NPs) on SiO2/n-Si with electrical properties was reported with the interests for metal-oxide-semiconductor applications. X-ray diffractometer (XRD) analysis conveyed that 8 ± 1 nm of the NPs were assembled. Increasing heating temperature induced growth of native oxide (SiO2). Raman analysis confirmed the coexistence of Fe3O4-γ-Fe2O3. Attenuated Total Reflectance Infrared (ATR-IR) spectra showed that self-assembly occurred via Sisbnd Osbnd C linkages. While Sisbnd Osbnd C linkages were broken down at elevated temperatures, formations of Si-OH defects were amplified; a consequence of physisorbed surfactants disintegration. Atomic force microscopy (AFM) showed that sample with more physisorbed surfactants exhibited the highest root-mean-square (RMS) roughness (18.12 ± 7.13 nm) whereas sample with lesser physisorbed surfactants displayed otherwise (12.99 ± 4.39 nm RMS roughness). Field Emission Scanning Electron Microscope (FE-SEM) analysis showed non-uniform aggregation of the NPs, deposited as film (12.6 μm thickness). The increased saturation magnetization (71.527 A m2/kg) and coercivity (929.942 A/m) acquired by vibrating sample magnetometer (VSM) of the sample heated at 300 °C verified the surfactants' disintegration. Leakage current density-electric field (J-E) characteristics showed that sample heated at 150 °C with the most aggregated NPs as well as the most developed Sisbnd Osbnd C linkages demonstrated the highest breakdown field and barrier height at 2.58 × 10-3 MV/cm and 0.38 eV respectively. Whereas sample heated at 300 °C with the least Sisbnd Osbnd C linkages as well as lesser aggregated NPs showed the lowest breakdown field and barrier height at 1.08 × 10-3 MV/cm and 0.19 eV respectively. This study opens up better understandings on how formation and breaking down of covalent

  19. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  20. Electricity

    Indian Academy of Sciences (India)

    AC power generation, its transmission and distribution. The well known observations made by Oersted that an electric current produces a magnetic field led a number of researchers to investigate whether the converse was true i.e. whether electric current can be produced from a magnetic field. Michael Faraday of England ...

  1. Effect of Transportation and Low Voltage Electrical Stimulation on Meat Quality Characteristics of Omani Sheep

    Directory of Open Access Journals (Sweden)

    Isam T. Kadim

    2010-01-01

    Full Text Available The aim of this study was to determine the effects of road transportation during the hot season (36 oC and low voltage electrical stimulation on meat quality characteristics of Omani sheep. Twenty intact male sheep (1-year old were divided into two equal groups: 3 hrs transported or non-transported. The transported group was transferred to the slaughterhouse the day of slaughter in an open truck covering a distance of approximately 300 km. The non-transported group was kept in a lairage of a commercial slaughterhouse with ad libitum feed and water for 3 days prior to slaughter. Blood samples were collected from the animals before loading and prior to slaughter in order to assess their physiological response to stress in terms of hormonal levels. Fifty percent of the carcasses from each group were randomly assigned to low voltage (90 V at 20 min postmortem. Muscle ultimate pH, expressed juice, cooking loss percentage, WB-shear force value, sarcomere length, myofibrillar fragmentation index and colour L*, a*, b* were measured on samples from Longissimus dorsi muscles collected 24 hrs postmortem at 2-4 oC. The transported sheep had significantly (P<0.05 higher cortisol adrenaline, nor-adrenaline, and dopamine levels than the non-transported group. Muscles from electrically-stimulated carcasses had significantly (P<0.05 lower pH values, longer sarcomere length, lower shear force value, higher expressed juice, myofibrillar fragmentation index and L* values than those from non-stimulated ones. Transportation significantly influenced meat quality characteristics of the Longissimus dorsi muscle. Muscle ultimate pH and shear force values were significantly higher, while CIE L*, a*, b*, expressed juice and cooking loss were lower in transported than non-transported sheep. This study indicated that pre-slaughter transportation at high ambient temperatures can cause noticeable changes in muscle physiology in sheep. Nevertheless, meat quality of transported

  2. CANCER-PAthological breakdown of coherent energy states

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan; Kobilková, J.; Jandová, Anna; Vrba, J.; Vrba, J. jr.

    2014-01-01

    Roč. 9, č. 1 (2014), s. 115-133 ISSN 1793-0480 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : breakdown of coherent states * Cancer electrodynamics * Warburg effect Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BO - Biophysics (FZU-D)

  3. COMPARISON OF CRYO TREATMENT EFFECT ON MACHINING CHARACTERISTICS OF TITANIUM IN ELECTRIC DISCHARGE MACHINING

    Directory of Open Access Journals (Sweden)

    Bhupinder Singh

    2011-06-01

    Full Text Available Earlier studies on cryogenic treatment highlighted that certain metals, after being cryogenically treated, show a significant increase in tool life when used in manufacturing, cutting and shaping processes. The present work deals with experimental investigation of the role of cryogenic treatment on the machining characteristics of titanium in electric discharge machining (EDM. EDM is a potential process to commercially machine tough materials like titanium alloys, due to the properties of non-mechanical contact between the tool and workpiece and the capability to machine intricate shapes. In this research work an effort has been made to compare the machining characteristics of titanium with EDM, before and after cryogenic treatment of the tool and workpiece using a Taguchi design approach. The output parameters for study are material removal rate (MRR, tool wear rate (TWR, surface roughness (SR and dimensional accuracy (Δd. The results of the study suggest that with cryogenic treatment MRR, TWR, SR and Δd show an improvement of 60.39%, 58.77%, 7.99% and 80.00% respectively.

  4. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yum, J.H., E-mail: redeyes78@mail.utexas.edu [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741 (United States); Akyol, T. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); Lei, M. [Department of Physics, UT Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Ferrer, D.A. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States); Downer, M. [Department of Physics, UT Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Bielawski, C.W. [Department of Chemistry, UT Austin, 1 University Station, A5300, Austin, Texas 78712 (United States); Bersuker, G. [SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741 (United States); Lee, J.C.; Banerjee, S.K. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States)

    2012-01-31

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al{sub 2}O{sub 3}. Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III-V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: Black-Right-Pointing-Pointer BeO is an excellent electrical insulator, but good thermal conductor. Black-Right-Pointing-Pointer Highly crystalline film of BeO has been grown using atomic layer deposition. Black-Right-Pointing-Pointer An ALD BeO precursor, which is not commercially available, has been synthesized. Black-Right-Pointing-Pointer Physical and electrical characteristics have been investigated.

  5. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    International Nuclear Information System (INIS)

    Yum, J.H.; Akyol, T.; Lei, M.; Ferrer, D.A.; Hudnall, Todd W.; Downer, M.; Bielawski, C.W.; Bersuker, G.; Lee, J.C.; Banerjee, S.K.

    2012-01-01

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al 2 O 3 . Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III–V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: ► BeO is an excellent electrical insulator, but good thermal conductor. ► Highly crystalline film of BeO has been grown using atomic layer deposition. ► An ALD BeO precursor, which is not commercially available, has been synthesized. ► Physical and electrical characteristics have been investigated.

  6. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I. G.; Sousa, J. B. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal); Department of Physics, FCUP, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Leitao, D. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal)

    2009-07-15

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  7. Influence of the thickness of a crystal on the electrical characteristics of Cd(Zn)Te detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sklyarchuk, V. [Chernivtsi National Univ. (Ukraine); Fochuk, p. [Chernivtsi National Univ. (Ukraine); Rarenko, I. [Chernivtsi National Univ. (Ukraine); Zakharuk, Z. [Chernivtsi National Univ. (Ukraine); Sklyarchuk, O. F. [Chernivtsi National Univ. (Ukraine); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-01

    We studied the electrical characteristics of Cd(Zn)Te detectors with rectifying contacts and varying thicknesses, and established that their geometrical dimensions affect the measured electrical properties. We found that the maximum value of the operating-bias voltage and the electric field in the detector for acceptable values of the dark current can be achieved when the crystal has an optimum thickness. This finding is due to the combined effect of generation-recombination in the space-charge region and space-charge limited currents (SCLC).

  8. Fabrication of a vertical channel field effect transistor and a study of its electrical performances

    International Nuclear Information System (INIS)

    Bhuiyan, A.S.

    1983-01-01

    A vertical channel field effect transistor on silicon was fabricated by diffusion technique and its electrical characteristics were studied as a function of voltage and temperature. It was found that this transistor has relatively high breakdown voltage of 65 volts for drain source and of 7.5 volts for gate source terminals. (author)

  9. Breakdown resistance of refractory metals compared to copper

    CERN Document Server

    Taborelli, M; Kildemo, M

    2004-01-01

    The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field without breakdown and the field enhancement factor, beta have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are compared with RF breakdown experiments [1] performed on prototype 30 GHz...

  10. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  11. Measurements of Breakdown Field and Forward Current Stability in 3C-SiC P-N Junction Diodes Grown on Step-Free 4H-SiC

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.

    2005-01-01

    This paper reports on initial fabrication and electrical characterization of 3C-SiC p-n junction diodes grown on step-free 4H-SiC mesas. Diodes with n-blocking-layer doping ranging from approx. 2 x 10(exp 16)/cu cm to approx.. 5 x 10(exp 17)/cu cm were fabricated and tested. No optimization of junction edge termination or ohmic contacts was employed. Room temperature reverse characteristics of the best devices show excellent low-leakage behavior, below previous 3C-SiC devices produced by other growth techniques, until the onset of a sharp breakdown knee. The resulting estimated breakdown field of 3C-SiC is at least twice the breakdown field of silicon, but is only around half the breakdown field of 4H-SiC for the doping range studied. Initial high current stressing of 3C diodes at 100 A/sq cm for more than 20 hours resulted in less than 50 mV change in approx. 3 V forward voltage. 3C-SiC, pn junction, p+n diode, rectifier, reverse breakdown, breakdown field,heteroepitaxy, epitaxial growth, electroluminescence, mesa, bipolar diode

  12. Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Zhang Ya-Man; Chen Wei-Wei; Wang Xin-Hua; Yuan Ting-Ting; Pang Lei; Liu Xin-Yu

    2015-01-01

    In this paper, the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors (HEMTs), featuring a 50-nm and a 150-nm GaN thick channel layer, respectively, are compared. The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage (BV off ). Device simulation indicates that thickening the channel increases the drain-induced barrier lowering (DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate. The increase of BV off in the thick channel device is due to the reduction of the electric field. These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BV off in AlGaN/GaN HEMTs. (paper)

  13. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [FDK Corp., Shizuoka (Japan). Research and Development Div.; Nakanishi, Masanori [FDK Corp., Shizuoka (Japan). Research and Development Div.; Yamamoto, Kohei [FDK Corp., Shizuoka (Japan). Research and Development Div.

    1996-06-01

    Electrochemical characterization has been carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors in an aqueous electrolytic solution. The rest potential of the activated carbon was proportional to the logarithm of the oxygen content or to the concentration of the acidic surface functional groups of the activated carbon. The result of triangular voltage-sweep cyclic voltammetry was the same as that of the residual current measurement. The oxygen content and concentration of the acidic surface groups of activated carbon influenced the electrochemical characteristics of the activated carbon. Under anodic polarization, gas evolution was observed at the electrode surface of activated carbon with high oxygen content at 0.8 V versus saturated calomel electrode (SCE). Gas evolution was not observed at the electrode surface of activated carbon with low oxygen content even to 1.0 V versus SCE. Under cathodic polarization of activated carbon with high oxygen content, the peak was observed at approximately -0.2 V versus SCE, but there was no gas evolution at the electrode surface of the activated carbon. Bubbles were not observed at the electrode surface of activated carbon with low oxygen content at -0.5 V versus SCE. Electric double-layer capacitors were made from activated carbons used for electrochemical measurements; load-life tests have been carried out. Thickness and internal resistance of the capacitor composed of activated carbon with high oxygen content increased. The changes in thickness and internal resistance of the capacitor composed of activated carbon with low oxygen content were small. (orig.)

  14. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  15. Analyzing randomly occurring voltage breakdowns

    International Nuclear Information System (INIS)

    Wiltshire, C.W.

    1977-01-01

    During acceptance testing of high-vacuum neutron tubes, 40% of the tubes failed after experiencing high-voltage breakdowns during the aging process. Use of a digitizer in place of an oscilloscope revealed two types of breakdowns, only one of which affected acceptance testing. This information allowed redesign of the aging sequence to prevent tube damage and improve yield and quality of the final product

  16. Nanosecond air breakdown parameters for electron and microwave beam propagation

    International Nuclear Information System (INIS)

    Ali, A.W.

    1988-01-01

    Air breakdown by avalanche ionization plays an important role in the electron beam and microwave propagations. For high electric fields and short pulse applications one needs avalanche ionization parameters for modeling and scaling of experimental devices. However, the breakdown parameters, i.e., the ionization frequency vs E/p (volt. cm -1 . Torr -1 ) in air is uncertain for very high values of E/P. A review is given of the experimental data for the electron drift velocity, the Townsend ionization coefficient in N 2 and O 2 and the ionization frequency and the collision frequency for momentum transfer in air are developed. (author)

  17. High breakdown-strength composites from liquid silicone rubbers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Yu, Liyun

    2014-01-01

    available fillers (an anatase TiO2, a core–shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young’s modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase Ti......O2 nanoparticles, where the highest relative dielectric permittivity of 5.6 is obtained, and with STX801, a core–shell morphology TiO2-SiO2 filler from Evonik, where the highest breakdown strength of 173 V μm−1 is obtained....

  18. Dielectric breakdown in AlO{sub x} tunnelling barriers

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D M; Carara, M; Schelp, L F; Dorneles, L S [Universidade Federal de Santa Maria, Departamento de Fisica, Av. Roraima, 1000, Santa Maria 97105-900, RS (Brazil); Fichtner, P F P, E-mail: lsdorneles@gmail.com [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Av. Bento Goncalves, 9500, Caixa Postal 15051, Porto Alegre 91501-970, RS (Brazil)

    2011-04-06

    We studied the dielectric breakdown in tunnelling barriers produced by plasma-assisted oxidation of an aluminium surface. The barrier mean height, thickness and the effective tunnelling area were extracted from current versus voltage curves measured at room temperature. The effective tunnelling area ranged from 10{sup -10} to 10{sup -5} cm{sup 2}, corresponding to less than 1% of the geometrical surface of the samples. The estimated electrical field to breakdown agreed with predictions from thermochemical models, and decreased exponentially with the effective tunnelling area.

  19. Recovery of Alumina Nanocapacitors after High Voltage Breakdown

    OpenAIRE

    Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A.

    2017-01-01

    Breakdown of a dielectric material at high electric fields significantly limits the applicability of metal-dielectric-metal capacitors for energy storage applications. Here we demonstrate that the insulating properties of atomic-layer-deposited Al2O3 thin films in Al/Al2O3/Al trilayers can recover after the breakdown. The recovery has been observed in samples with the dielectric thickness spanning from 4 to 9?nm. This phenomenon holds promise for a new generation of capacitors capable of rest...

  20. A numerical study on the flow and performance characteristics of a piezoelectric micropump with electromagnetic resistance for electrically conducting fluids

    International Nuclear Information System (INIS)

    An, Yong Jun; Choi, Chung Ryul; Kim, Chang Nyung

    2008-01-01

    A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD (MagnetoHydroDynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS (Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studied by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study

  1. The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT

    Science.gov (United States)

    Kim, Miryeon; Sun, Wookyung; Kang, Jongseuk; Shin, Hyungsoon

    2017-08-01

    The electrical characteristics of a low-temperature polycrystalline silicon thin-film transistor (TFT) with a source-contacted light shield (SCLS) are observed and analyzed. Compared with that of a conventional TFT without a light shield (LS), the on-current of the TFT with an SCLS is lower because the SCLS blocks the fringing electric field from the drain to the active layer. Furthermore, the gate-to-source capacitance (C gs) of the TFT with an SCLS in the off and saturation regions is higher than that of a conventional TFT, which is due to the gate-to-LS capacitance (C g-LS). The electrical characteristics of the TFT with an SCLS are thoroughly investigated by two-dimensional device simulations, and a semi-empirical C g-LS model for SPICE simulation is proposed and verified.

  2. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  3. Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation

    Science.gov (United States)

    Kaya, Senol; Yilmaz, Ercan

    2018-03-01

    This paper reports the influences of gamma radiation on the structural, electrical, and chemical characteristics of erbium oxide (Er2O3) thin films and the possible mechanisms underlying these irradiation-induced effects. The crystallographic and morphological modifications under gamma irradiation were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively, while radiation influences on electrochemical characteristics were analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore, changes in electrical characteristics were analyzed on the basis of capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements. The XRD results demonstrated that small atomic displacement was observed and that the grain size of the nanostructure slightly increased. Improvements in surface roughness were observed in AFM measurements. The observed variations in the XRD and AFM measurements can be attributed to the radiation-induced local heating and microscopic atomic mobility. In addition, the XPS analysis obviously demonstrated that the oxygen vacancies increased with irradiation dose because of the breaking of Er2O3 and ErxOy bonds. Significant influences of the generated oxygen vacancies on the electrical measurements were observed, and the radiation-induced hole traps, which caused large flat band shifts, can be attributed to the generated oxygen vacancies. The results show that radiation does not degrade the physical characteristics significantly, but the generation of oxygen vacancies considerably increases the electrical sensitivity of the Er2O3 dielectric.

  4. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  5. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  6. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  7. Characteristics of the electrical explosion of fine metallic wires in vacuum

    Science.gov (United States)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang

    2017-09-01

    The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  8. Characteristics of the electrical explosion of fine metallic wires in vacuum

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2017-09-01

    Full Text Available The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  9. The Effect of Electrical Impedance Matching on the Electromechanical Characteristics of Sandwiched Piezoelectric Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-12-01

    Full Text Available For achieving the power maximum transmission, the electrical impedance matching (EIM for piezoelectric ultrasonic transducers is highly required. In this paper, the effect of EIM networks on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers is investigated in time and frequency domains, based on the PSpice model of single sandwiched piezoelectric ultrasonic transducer. The above-mentioned EIM networks include, series capacitance and parallel inductance (I type and series inductance and parallel capacitance (II type. It is shown that when I and II type EIM networks are used, the resonance and anti-resonance frequencies and the received signal tailing are decreased; II type makes the electro-acoustic power ratio and the signal tailing smaller whereas it makes the electro-acoustic gain ratio larger at resonance frequency. In addition, I type makes the effective electromechanical coupling coefficient increase and II type makes it decrease; II type make the power spectral density at resonance frequency more dramatically increased. Specially, the electro-acoustic power ratio has maximum value near anti-resonance frequency, while the electro-acoustic gain ratio has maximum value near resonance frequency. It can be found that the theoretically analyzed results have good consistency with the measured ones.

  10. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    Science.gov (United States)

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil

    International Nuclear Information System (INIS)

    Park, Heecheol; Kim, A-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun

    2014-01-01

    Highlights: • A single pancake no-insulation coil was fabricated with a brass lamination conductor. • Charging/discharging test was performed using liquid nitrogen and conduction-cooling. • Consistent contact resistance was verified after epoxy impregnation. • Equivalent circuit was used to estimate the heat generation during charging operation. • The HTS coil did not showed delamination problem for the conduction cooling. - Abstract: For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K

  12. On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided Laser-Induced Breakdown Spectroscopy coupled with a Scanning Mobility Particle Sizer

    Science.gov (United States)

    Amodeo, Tanguy; Dutouquet, Christophe; Le Bihan, Olivier; Attoui, Michel; Frejafon, Emeric

    2009-10-01

    Laser-Induced Breakdown Spectroscopy has been employed to detect sodium chloride and metallic particles with sizes ranging from 40 nm up to 1 µm produced by two different particle generators. The Laser-Induced Breakdown Spectroscopy technique combined with a Scanning Mobility Particle Sizer was evaluated as a potential candidate for workplace surveillance in industries producing nanoparticle-based materials. Though research is still currently under way to secure nanoparticle production processes, the risk of accidental release is not to be neglected. Consequently, there is an urgent need for the manufacturers to have at their command a tool enabling leak detection in-situ and in real time so as to protect workers from potential exposure. In this context, experiments dedicated to laser-induced plasma particle interaction were performed. To begin with, spectral images of the laser-induced plasma vaporizing particles were recorded to visualize the spatio-temporal evolution of the atomized matter and to infer the best recording parameters for Laser-Induced Breakdown Spectroscopy analytical purposes, taking into account our experimental set-up specificity. Then, on this basis, time-resolved spectroscopic measurements were performed to make a first assumption of the Laser-Induced Breakdown Spectroscopy potentialities. Particle size dependency on the LIBS signal was examined. Repeatability and limits of detection were assessed and discussed. All the experiments carried out with low particle concentrations point out the high time delays corresponding to the Laser-Induced Breakdown Spectroscopy signal emergence. Plasma temperature temporal evolution was found to be a key parameter to explain this peculiarity inherent to laser/plasma/particle interaction.

  13. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  14. Influence of bow-tie trees on the residual AC breakdown voltage of dry-cured XLPE power cables under immersed accelerated aging test. Shinsui kadenka ni okeru kanshiki kakyo polyethylene cable no zanson hakai den'atsu tokusei ni oyobosu bow tie jo mizu tree no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Shinoda, C.; Nakamura, K.; Hotta, M.; Tani, T. (Yazaki Electric Wire Co. Ltd., Tokyo (Japan))

    1994-03-20

    A 6-kV class polyethylene cable manufactured by using a dry-cured three-layer extrusion system has been subjected to accelerated deterioration under immersed condition (at a voltage of 6.9V and a frequency of 1 kHz for an application period as long as 18 months as maximum). The cable had then been given a breakdown test by means of an application method based on the electric power standard to derive the residual breakdown voltage characteristics. Causes of the breakdown have been discussed by using a pre-interruption method. This paper reports the result of the discussion. The following findings have been obtained: the residual breakdown voltage values vary largely on the whole, but no trend has been observed that the voltage decreases as the application period for accelerated deterioration becomes longer; generation of bow-tie trees (with a length of about 600 [mu]m or longer) in contact with internal or external semiconduction layer largely reduces the breakdown voltage values, and presence of bow-tie trees has increased the variation in the breakdown values; and the breakdown voltage values vary largely due to moisture in the bow-tie trees contacting the semiconduction layer. 12 refs., 13 figs., 3 tabs.

  15. Electricity

    Indian Academy of Sciences (India)

    which removes the heat produced In the core and the colis. I represents an Isolator which is a kind of. 'switch' used to isolate the station from the grid. Note the huge Insulators (marked I) that are used. The steel structures marked S support the conductors through insulators (courtesy: Kirloskar Electric Company, Bangalore).

  16. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  17. Suppression of Voltage Breakdown in High-Gradient RF Structures

    Science.gov (United States)

    Peter, W.; Garate, E.; Shiloh, J.; Mako, F.; Silberglitt, R.

    1996-11-01

    Experimental results of a promising concept for raising the breakdown limit in accelerating structures by the use of semiconducting or insulating cavity coatings are presented. Extensive experimental measurements of various coatings on OFHC Cu electrodes in the dc regime show that electrical breakdown can be increased from a value of 40 MV/m for bare Copper to 115 MV/m for a specially-coated Copper electrode. TiN-coated electrodes at use in the Stanford Linear Accelerator Center (SLAC) were measured to undergo breakdown at 50 MV/m. Dark current levels from our special coatings are over six orders of magnitude less than TiN-coated Copper even after arcing. These coatings can decrease the secondary emission levels, are mechanically stable, are not sensitive to radiation, do not affect the cavity Q, and will not poison the cathode. Hot-tests of coated X-band cavities will be performed in collaboration with SLAC.

  18. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  19. Avoiding breakdown and near-breakdown in Lanczos type algorithms

    Science.gov (United States)

    Brezinski, C.; Zaglia, M.; Sadok, H.

    1991-06-01

    Lanczos type algorithms form a wide and interesting class of iterative methods for solving systems of linear equations. One of their main interest is that they provide the exact answer in at mostn steps wheren is the dimension of the system. However a breakdown can occur in these algorithms due to a division by a zero scalar product. After recalling the so-called method of recursive zoom (MRZ) which allows to jump over such breakdown we propose two new variants. Then the method and its variants are extended to treat the case of a near-breakdown due to a division by a scalar product whose absolute value is small which is the reason for an important propagation of rounding errors in the method. Programming the various algorithms is then analyzed and explained. Numerical results illustrating the processes are discussed. The subroutines corresponding to the algorithms described can be obtained vianetlib.

  20. Effects of nuclear radiation on a high-reliability silicon power diode. 4: Analysis of reverse bias characteristics

    Science.gov (United States)

    Been, J. F.

    1973-01-01

    The effects of nuclear radiation on the reverse bias electrical characteristics of one hundred silicon power diodes were investigated. On a percentage basis, the changes in reverse currents were large but, due to very low initial values, this electrical characteristic was not the limiting factor in use of these diodes. These changes were interpreted in terms of decreasing minority carrier lifetimes as related to generation-recombination currents. The magnitudes of reverse voltage breakdown were unaffected by irradiation.

  1. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  2. Influence of pulsed electric field on defectoscopic characteristics of electro- x-ray radiography

    International Nuclear Information System (INIS)

    Gusev, E.A.; Lomonosov, V.V.; Sosnin, F.R.

    1988-01-01

    A new method to increase electric resistance of semiconductor plates in the process of electro-X-ray radiography, which is based on influence of a pulsed electric field on the plate semiconductor layer is suggested. The effect of a pulsed field with the intensity E=10 6 V/cm, frequency of 50 Hz and front length of 1 ns has increased electric resistance of the semiconductor layer and improved flaw detection in the process of electroradiography

  3. INVESTIGATION OF POTENTIALITIES TO SET AUTOMATICALLY AMPLITUDE VALUES OF MAGNETIC INDUCTION WHILE MEASURING MAGNETIC CHARACTERISTICS OF ELECTRICAL-SHEET STEEL

    Directory of Open Access Journals (Sweden)

    I. I. Branovitsky

    2005-01-01

    Full Text Available The problems relating to an automation of measurement of magnetic characteristics of electrical-sheet steel have been considered in the paper. The paper investigates efficiency of an application of some well-known iterative methods for setting the required amplitude value of a magnetic induction of the material to be tested. It is shown that the most efficient method providing a fast and stable convergence of an iterative process while testing either textured or isotropic electrical-sheet steel is a parabola method.

  4. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    Science.gov (United States)

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (pmuscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  5. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  6. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-11-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.

  7. Annealing temperature effect on electrical characteristics of Co/p-type Si Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gueler, G. [Department of Physics, Faculty of Education, Adiyaman University, Adiyaman (Turkey); Karatas, S., E-mail: skaratas@ksu.edu.t [Department of Physics, Faculty of Sciences and Arts, University of Kahramanmaras Suetcue Imam, 46100 Kahramanmaras (Turkey); Bakkaloglu, O.F. [Department of Engineering Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep (Turkey)

    2009-05-01

    The electrical characteristics of Co/p-type Si Schottky barrier diodes (SBDs), which were formed at various annealing temperatures from 200 to 600 deg. C, were investigated using current-voltage (I-V) techniques. The Schottky barrier height at 200 deg. C annealing temperature was found to be 0.708 eV (I-V). However, the Schottky barrier height of the Co/p-type Si diode slightly decreases to 0.696 eV (I-V) when the diode was annealed at 300 deg. C for 5 min in N{sub 2} atmosphere. It is noted that the Schottky barrier height increased to 0.765 eV at 400 deg. C, 0.830 eV at 500 deg. C and 0.836 eV at 600 deg. C for 5 min in N{sub 2} atmosphere. This increase was attributed to that the annealing removes the passivation effect of the native oxide layer and reactivates the surface defects which are responsible for the Fermi level pinning. Norde method was also used to extract the barrier height of Co/p-type Si Schottky barrier diodes and the values are 0.704 eV for the 200 deg. C, 0.714 eV at 300 deg. C, 0.80447 eV at 400 deg. C, 0.874 eV at 500 deg. C and 0.874 eV at 600 deg. C which are in good agreement with those obtained by the I-V method.

  8. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19 locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.

  9. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    International Nuclear Information System (INIS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-01-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N 2 gas, while the production of oxygen radicals was determined by ozone production in pure O 2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness. (paper)

  10. Electrical performance characteristics of high power converters for space power applications

    Science.gov (United States)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  11. Similar simulation study on the characteristics of the electric potential response to coal mining

    Science.gov (United States)

    Niu, Yue; Li, Zhonghui; Kong, Biao; Wang, Enyuan; Lou, Quan; Qiu, Liming; Kong, Xiangguo; Wang, Jiali; Dong, Mingfu; Li, Baolin

    2018-02-01

    An electric potential (EP) can be generated during the failure process of coal and rock. In this article, a similar physical model of coal rock was built and the characteristics of the EP responding to the process of coal mining were studied. The results showed that, at the early mining stage, the structure of coal rock strata were stable in the simulation model, the support stress of overlying coal rock strata was low and the maximum subsidence was little, while the EP change was less. With the advancement of the working face, the support stress of the overlying coal rock strata in the mined-out area changed dramatically, the maximum subsidence increased constantly, the deformation and destruction were aggravated, and cracks expanded continuously. Meanwhile, the EP response was significant with fluctuation. When significant macro damage appeared in coal rock strata, the EP signal fluctuation was violent. The overlying coal rock strata were influenced by gravity and mining activity. During the mining process, the crack growth and the friction, together with slip between coal and rock particles, resulted in the response of EP. The change in EP was closely related to the damage state and stress distribution of the coal rock strata. EP monitoring has the advantages of accurate reflection and strong anti-interference in the field. Therefore, with further study, an EP monitoring method could be applied for monitoring and early warning of coal and rock dynamic disaster, and risk evaluation in the future. The strength of the EP and its fluctuation degree could serve as the key discrimination indexes.

  12. Uncertainty assessment of breakdown threshold values test of semiconductor components for electromagnetic pulse

    International Nuclear Information System (INIS)

    Mao Congguang; Sun Beiyun; Nie Xin; Chen Xiangyue; Zhou Hui

    2009-01-01

    According to the national military standard GJB538-88, the pulse current injection (PCI) test are conducted to measure the breakdown threshold values of solid-state relays for electromagnetic pulse. The method and procedure of measurement uncertainty assessment are provided. And the specific characteristics in the assessment of the breakdown test are discussed in details. (authors)

  13. Effects of pulsed electrical field processing on microbial survival, quality change and nutritional characteristics of blueberries

    Science.gov (United States)

    Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...

  14. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    Science.gov (United States)

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  15. Analysis hysteresis clutch technical characteristics of the shut-off valves electrical drive system

    Directory of Open Access Journals (Sweden)

    Saveleva Maria V.

    2017-01-01

    Full Text Available The results of calculations of the hysteresis clutches of various designs for use in electric shut-off valves of the pipeline. The possibility of using the clutch with an axial air gap for a wide range of electric power.

  16. Characteristics of electrically injured skin from human hand tissue samples using Fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Li, Shi-Ying; Zou, Dong-Hua; Luo, Yi-Wen; Sun, Qi-Ran; Deng, Kai-Fei; Chen, Yi-Jiu; Huang, Ping

    2014-01-01

    This technical note describes a method for distinguishing normal skin tissue samples from those electrically injured by Fourier transform infrared microspectroscopy (FTIR MSP). Furthermore, the infrared spectral features of electrically injured cells and tissues were evaluated to identify molecular changes in epidermal cells. In the present study, 20 human hand tissue samples were evaluated macroscopically and histopathologically. The electrically injured skin samples were subdivided into 2 regions [normal cell regions (NCRs) and polarized cell regions (PCRs)] and 14 major spectral absorption bands were selected. The spectral results showed that the band absorbance at 1080, 1126, 1172, 1242, 1307, 1403, 1456, 1541, 2852, 2925, 2957, 3075, and 3300cm(-1) increased significantly both in the stratum and non-stratum corneum of the PCRs in electrically injured skin tissues samples. No significant difference was found between normal skin and the NCR of the electrically injured skin samples. The band absorbance ratios of A1172/A1126, A1456/A1403, and A2925/A2957 were significantly increased, whereas the A1652/A1541 ratio was decreased in the PCR of the stratum corneum and non-stratum corneum. Baseline changes from 4000 to near 1737cm(-1) were observed in the spectra of the electrically injured skin samples, which were interpreted in terms of the pathological process involved in electrical injury. FTIR-MSP presents a useful method to provide objective spectral markers for the assisted diagnosis of electrical marks. © 2013.

  17. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    Science.gov (United States)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  18. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  19. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  20. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Abstract. Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohy- drodynamic (EMHD) frequency ...

  1. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to ...

  2. Discussion of 'Breakdown and Groups'

    NARCIS (Netherlands)

    Genton, M.; Lucas, A.

    2005-01-01

    The concept of breakdown point was introduced by Hampel [Ph.D. dissertation (1968), Univ. California, Berkeley; Ann. Math. Statist. 42 (1971) 1887-1896] and developed further by, among others, Huber [Robust Statistics (1981). Wiley, New York] and Donoho and Huber [In A Festschrift for Erich L.

  3. Control devices for electrically powered wheelchairs: prevalence, defining characteristics and user perspectives.

    Science.gov (United States)

    Dolan, Michael John; Henderson, Graham Iain

    2017-08-01

    To determine the prevalence of control devices for electrically powered wheelchairs (EPWs), related characteristic features and users' views on their utility. Postal survey of users of a regional NHS wheelchair service using a purpose-designed questionnaire (n = 262, ≥18 years old). Mean age 54.4 years, female 56.8%, mean duration EPW use 10.1 years, mean usage 6.7 days per week and 9.2 h per day. Largest diagnostic groups: Multiple Sclerosis 28.3%, Cerebral Palsy 13.8% and Spinal Cord Injury 11.7%. Control device types 94.6% hand joystick, 2.3% chin joystick, 2.7% switches and 0.4% foot control. 42.4% reported fatigue or tiredness and 38.8% pain or discomfort limited EPW use. 28.0% reported an accident or mishap. This is the first study of control devices on a large, general population of EPW users. The majority have control devices that meet their needs, with high levels of user satisfaction, though some might benefit from adjustments or modifications to their current provision and others might benefit by changing to a different type of control device. High proportions reported fatigue or tiredness and pain or discomfort limit their EPW use. The study provides indicators for prescribers and manufacturers of control devices for EPWs. Implications for Rehabilitation Most users have control devices that meet their needs, with high levels of satisfaction, but some would benefit from adjustments or modifications or a change of type. A high proportion reported fatigue or tiredness and pain or discomfort limit their use of their EPW and prescribers need to be mindful of these issues when determining the most suitable type of control device and where it should be positioned. The vast majority of users have a hand joystick as a control device with alternative control devices (such as chin joysticks and switches) being far less prevalent. Adverse incidents may arise due to difficulty with manoeuvring or accidental activation of the hand joystick that can lead to

  4. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    Data.gov (United States)

    National Aeronautics and Space Administration — This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic...

  5. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  6. Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristics of EV users in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nansai, Keisuke [National Inst. for Environmental Studies, Endocrine Disruptors and Dioxin Research Project, Tsukuba, Ibaraki (Japan); Tohno, Susumu; Kasahara, Mikio [Kyoto Univ., Graduate School of Energy Science, Kyoto (Japan); Kono, Motoki [Toshiba International Fuel Cells Corp., Kawasaki, Kanagawa (Japan)

    2002-02-01

    In order to evaluate the reduction effect of electric vehicles (EVs) on various atmospheric environmental loads, we have performed a life-cycle inventory analysis (LCI), including the installation of charging stations and regional, seasonal and temporal difference of the energy mix of electricity generation. For an EV converted from a small gasoline vehicle, a regional LCI analysis was carried out in the following steps: (1) location of the charging stations, (2) modeling of charging characteristics of station users, (3) calculation of temporal life-cycle emission intensities of CO{sub 2}, NO{sub x} and SO{sub x} by region, season and day. Assuming that total traveling distance is 100,000 km, the electricity consumption rate is 0.119 kWh/km and the charging/discharging efficiency is 70%, the average life-cycle emission of CO{sub 2} for that EV was 3.6 t-C throughout Japan. However, if we took regional difference into account, the emission ranged over 70-160% of the average amount. It was revealed that the regional difference of the primary energy mix significantly affected the emissions of EVs during the operation phase. (Author)

  7. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2015-01-01

    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  8. Effect of anode material on the breakdown in low-pressure helium gas

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.

    2017-10-01

    The electric breakdown of gases is one of the fundamental phenomena of gas discharge physics. It has been studied for a long time but still attracts incessant interest of researchers. Besides the interesting physics, breakdown is important for many applications including development of reliable electric insulation in electric grids and the study of different aspects of gas discharge physics. In this work an experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and gold-plated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.

  9. Electrical characteristics of the hydroxyapatite for biomedical applications; Caracteristicas electricas de la hidroxiapatita para aplicaciones biomedicas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Buisan N, M.G.; Mendez G, M.M. [Laboratorio de Corrosion, ESFM-IPN, 07738 Mexico D.F. (Mexico)

    2006-07-01

    The electric characteristics of hydroxyapatite films were studied (HAP) deposited on metallic substrates oxidized naturally. The substrates was made of steel 316L and of titanium. These materials are used in reconstructive surgery for prosthesis and osseous implants. The studies were carried out with the techniques of potentiostatic polarization and faraday impedance. The potentiostatic polarization reveals that the very well-known piezoelectricity of the HAp subsists after the coating processes (it captures thermal and spray-pyrolysis). Its also revealed a semiconductor behavior of the HAp that until now had not been reported. This characteristic is important, by its relationship with the stability of the HAp coating in front of corrosion processes in the alive tissues. The results of the impedance tests were mathematically analyzed starting from the Nyquist diagrams, of Bode and of power. The physical interpretation is presented under the form of equivalent circuits (CE). In the case of the HAp on a steel 316L substrate, the CE is a Rancles-Voigt module that corresponds to the behavior of a dielectric with flights. In the case of the titanium substrate an element of constant phase appears to high frequencies (CPE), in series with the Rancles-Voigt module. The CPE reveals the presence of a rectifier of the metal/SC-n type that only it could be located in the interface among the titanium and its natural oxide (TiO{sub 2}). The absence of the CPE in the case of the steel 316L substrate indicates that the natural oxide (Cr{sub 2}O{sub 3}) it doesn't form with the steel a Schottky diode, possibly because the chromite is as a SC-n degenerate. On the interface Ti/TiO{sub 2} exists results qualitatively identical by other researchers that have worked with the same impedance technique, but applied by humid via (EIS). The CE that have proposed are based on the anodic processes of accretion/dissolution of the film at low pH. This proposal is questioned by our results

  10. Breakdown of transistors in Marx bank circuit

    Science.gov (United States)

    Chatterjee, Amitabh

    2000-09-01

    We reconsider the mode of operation of a Marx bank circuit and analyze the secondary breakdown of transistors with shorted emitter-base. The mechanism of breakdown of the transistor when a fast rising voltage pulse is applied across is investigated. The device exhibits chaotic behavior at the breakdown point where it can go into two possible modes of breakdown. A new explanation for the working of the circuit consistent with the experimental observations is proposed.

  11. First principle DFT study of electric field effects on the characteristics of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2017-04-01

    First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G and PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing n{sub C}=8-32 carbon atoms. Results show that application of electric fields of 4-24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.

  12. Pressure and gap length dependence of gap breakdown voltage and discharge current of discharge-pumped KrF excimer laser. Hoden reiki KrF laser no zetsuen hakai den prime atsu to reiki denryu no atsuryoku, gap cho izon sei

    Energy Technology Data Exchange (ETDEWEB)

    Yukimura, K.; Kawakami, H. (Doshisha Univ., Tokyo (Japan)); Hitomi, K. (Kyoto Polytechnic College, Kyoto (Japan))

    1991-04-20

    On the gap destruction characteristics of UV-preionized discharge-pumped KrF excimer laser (charge transfer type) and the electric characteristics of the excited discharge, studies were made by changing the pressure (1.5-3 atm) and the discharge gap length (14-21 mm) of the discharge medium. (1) Gap breakdown voltage and the maximum current of the excited discharge give a similarity by a product of pressure and the gap length at the charge volatge. (2) Insulation breakdown of the gap occurs at the wave front of the applied voltage and the breakdown time gets delayed by the decreasing voltage applied. By setting the ionization index at constant value 20, the gap breakdown voltage is estimated at the error within 10%. (3) The relation between the maximum current, pressure and the gap length product changes the characteristics by the charge voltage of the primary condenser. With the result combined with the standardization of voltage/current of the excited discharge, the electric characteristics at the specific pressure and gap length can be readily known. 10 refs., 10 figs.

  13. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    Science.gov (United States)

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  14. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Science.gov (United States)

    Shi, Lin Xing; Wang, Zi Shuai; Huang, Zengguang; Sha, Wei E. I.; Wang, Haoran; Zhou, Zhen

    2018-02-01

    Charge carrier recombination in the perovskite solar cells (PSCs) has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V) curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  15. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  16. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)

    2004-07-21

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.

  17. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    International Nuclear Information System (INIS)

    Adamyan, V M; Djuric, Z; Mihajlov, A A; Sakan, N M; Tkachenko, I M

    2004-01-01

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N e , and temperature, T, varied within the following limits: 10 19 ≤ N e ≤ 10 21 cm -3 and 2 x 10 4 ≤ T ≤ 10 6 K, respectively. The external electric field frequency, f, varied in the range 3 GHz≤ f ≤ 0.05ο p , where ο p is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications

  18. Measurements of electron avalanche formation time in W-band microwave air breakdown

    Science.gov (United States)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  19. Measurements of electron avalanche formation time in W-band microwave air breakdown

    International Nuclear Information System (INIS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-01-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ∼0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  20. A three-dimensional breakdown model of SOI lateral power transistors with a circular layout

    International Nuclear Information System (INIS)

    Guo Yufeng; Wang Zhigong; Sheu Gene

    2009-01-01

    This paper presents an analytical three-dimensional breakdown model of SOI lateral power devices with a circular layout. The Poisson equation is solved in cylindrical coordinates to obtain the radial surface potential and electric field distributions for both fully- and partially-depleted drift regions. The breakdown voltages for N + N and P + N junctions are derived and employed to investigate the impact of cathode region curvature. A modified RESURF criterion is proposed to provide a design guideline for optimizing the breakdown voltage and doping concentration in the drift region in three dimensional space. The analytical results agree well with MEDICI simulation results and experimental data from earlier publications. (semiconductor devices)

  1. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    Science.gov (United States)

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding.

  2. Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Malekie, Shahryar; Ziaie, Farhood; Ataee Naeini, Mehran [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School

    2016-12-15

    In this research work, the electrical behavior of polycarbonate-carbon nanotube composite, over the radiation absorbed dose under a fixed DC voltage was investigated via finite element method. The predicted electrical percolation threshold value in the composite was validated by experimental results published by other scientists. The absorbed dose value was considered as multiplying of heat capacity and temperature rise of the composite, regarding the calorimetric approach. Results show that this kind of composite can be applied for monitoring and radiation protection utilizations.

  3. Electric double layer effect on observable characteristics of the tunnel current through a bridged electrochemical contact

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Medvedev, I.G.; Ulstrup, Jens

    2007-01-01

    Scanning tunneling microscopy and electrical conductivity of redox molecules in conducting media (aqueous or other media) acquire increasing importance both as novel single-molecule science and with a view on molecular scale functional elements. Such configurations require full and independent...... electrodes. Simple approximate expressions better suited for experimental data analysis are also derived. Particular attention is given to the effects of the Debye screening of the electric potential in the narrow tunneling gap based on the limit of the linearized Poisson-Boltzmann equation. The current...

  4. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    Science.gov (United States)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  5. Physical and electrical characteristics of metal/Dy{sub 2}O{sub 3}/p-GaAs structure

    Energy Technology Data Exchange (ETDEWEB)

    Saghrouni, H., E-mail: hayet_sagrouni@yahoo.fr [Université de Sousse, Laboratoire Energie-Matériaux, Ecole Supérieure des Sciences et de la Technologie, Rue Lamine Abessi, 4011 Hammam Sousse (Tunisia); Université de Sousse, Laboratoire Energie-Matériaux, Groupe de Recherche Nano-Matériaux pour les Télécommunications, Institut Supérieur d’informatique et des Techniques de Communications, Gp1 4011 Hammam Sousse (Tunisia); Jomni, S.; Belgacem, W. [Laboratoire de matériaux, organisation et proprieties, Faculté des Sciences de Tunis, Université de Tunis El Manar (Tunisia); Hamdaoui, N. [Université de Sousse, Laboratoire Energie-Matériaux, Ecole Supérieure des Sciences et de la Technologie, Rue Lamine Abessi, 4011 Hammam Sousse (Tunisia); Beji, L. [Université de Sousse, Laboratoire Energie-Matériaux, Ecole Supérieure des Sciences et de la Technologie, Rue Lamine Abessi, 4011 Hammam Sousse (Tunisia); Université de Sousse, Laboratoire Energie-Matériaux, Groupe de Recherche Nano-Matériaux pour les Télécommunications, Institut Supérieur d’informatique et des Techniques de Communications, Gp1 4011 Hammam Sousse (Tunisia)

    2014-07-01

    This paper describes the effect of post-deposition annealing on the physical and electrical characteristics of high-k Dy{sub 2}O{sub 3} dielectric films deposited at 250 °C on p-GaAs substrate by electron beam deposition under ultra vacuum. The morphological and structural features of Dy{sub 2}O{sub 3} layer before and after postdeposition annealing were studied by atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface topography analysis reveals that the Dy{sub 2}O{sub 3} film is granular, and contains numerous contacts between columnar grains. While investigating the electrical properties Dy{sub 2}O{sub 3} oxide, the current–voltage characteristics I(V) suggest a Poole–Frenkel (PF) type mechanism of carrier transport for as-deposited and annealed layers. A deviation from the PF leakage current course was found and attributed to the current carrier trapping. The ac impedance properties of the structures have been studied in a wide frequency range at different bias voltage. The Dy{sub 2}O{sub 3} annealed exhibited excellent electrical properties such as small density of interface state and low leakage current. This phenomenon is attributed to a rather crystallized Dy{sub 2}O{sub 3} structure and the reduction of the defects at the oxide/GaAs interface.

  6. HF and VHF Spectra of Fast Breakdown Processes

    Science.gov (United States)

    Liu, N.; Tilles, J.; Krehbiel, P. R.; Stanley, M. A.; Rison, W.; Dwyer, J. R.; Brown, R. G.; Wilson, J. G.

    2017-12-01

    The recent discovery of fast positive breakdown (FPB) as the underlying process of narrow bipolar events (NBEs) or compact intracloud discharges [Rison et al., Nat. Commun., 7, 10721, 2016] is an important step towards understanding why NBEs radiate strongly in high frequency (HF, 3-30 MHz) and very high frequency (VHF, 30-300 MHz) bands. Rison et al. [2016] has further hypothesized that fast positive breakdown is a system of volumetrically distributed streamers. The current theory of radio emissions from streamers is based on the concept of accelerating and expanding streamers. An expanding streamer carries an exponentially increasing current, and its resulting electromagnetic radiation extends to HF and VHF bands, when the external electric field supporting its propagation varies from 0.5Ek to 1.5Ek at 9 km altitude, where Ek is the conventional breakdown threshold field [Shi et al., J. Geophys. Res. Atmos., 121, 7284, 2016]. It should be noted that the spectrum of NBEs below 50 MHz is available in the literature [Willett et al., J. Geophys. Res., 94, 16255, 1989], but the spectrum beyond 50 MHz is not well known currently. The broadband, high-speed radio interferometer (INTF) used by Rison et al. [2016] was deployed at Kennedy Space Center, Florida to collect data from July to October in 2016. Many NBEs were recorded. The majority of the NBEs are caused by FPB, similar to those reported by Rison et al. [2016], but there exist a few cases, where the breakdown process propagates in the opposite direction expected of fast positive breakdown and is termed fast negative breakdown [Tilles et al., AE12A-03, AGU Fall Meeting, 2016]. In this talk, we will analyze the spectra of fast breakdown of both polarities in the frequency band of the INTF, 20-80 MHz, and compare the results with published NBE spectra. We will also apply the technique developed by Dwyer and Cummer [J. Geophys. Res., 118, 3769, 2013] to synthesize the radio pulse and spectrum of a system of streamers

  7. Individual breakdown of pension rights

    CERN Multimedia

    2016-01-01

    You should have recently received, via email, your “Individual breakdown of pension rights”.   Please note that: the calculation was based on data as at 1st July 2016, as at 1st September 2016, CERN will introduce a new career structure; the salary position will now be expressed as a percentage of a midpoint of a grade.   We would like to draw your attention to the fact that your pension rights will remain unchanged. Benefits Service CERN Pension Fund

  8. Temperature effects on the electrical characteristics of Al/PTh−SiO2 ...

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... cal and electrical merits, the conducting polymers, such ... −3 carrier concentration was used. A wet chemical process was carried out to remove undesirable con- taminations from Si surface. For this purpose, the wafer was cleaned with ..... 63 2223. [15] Jeon I Y and Baek J B 2010 Materials (Basel) 3 3654.

  9. Graphite/CdMnTe Schottky diodes and their electrical characteristics

    Czech Academy of Sciences Publication Activity Database

    Kosyachenko, L.A.; Yatskiv, Roman; Yurtsenyuk, N.S.; Maslyanchuk, O.L.; Grym, Jan

    2014-01-01

    Roč. 29, č. 1 (2014), 015006 ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : gamma-rey detectors * growth * recombination Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.190, year: 2014

  10. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs : Relation to neuronal status

    NARCIS (Netherlands)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B.; Klis, Sjaak F L; Grolman, Wilko

    2015-01-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to

  11. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Sáha, P.

    2011-01-01

    Roč. 46, č. 9 (2011), s. 3186-3190 ISSN 0022-2461 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics Impact factor: 2.015, year: 2011

  12. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    Science.gov (United States)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  13. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  14. From organized high throughput data to phenomenological theory: The example of dielectric breakdown

    Science.gov (United States)

    Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Rampi

    Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulators--the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.

  15. A setup for measuring characteristics of microwave electric vacuum devices with open resonance structures

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Ruban, A. I.; Vorob’ev, G. S.

    2015-01-01

    -tuning range, an additional periodic metal–dielectric structure is introduced into the open resonator. The experimental results of investigations of the energy, volt–ampere, and frequency characteristics of the modified diffraction-radiation generator prototype are compared to the characteristics...... of the generator without a metal–dielectric structure....

  16. Diode-like electrical characteristics of SiGe wrinkled heterostructure operating under both forward and reverse bias

    Science.gov (United States)

    Li, H.; Chen, T. P.; Chang, C.; Cheng, H. H.; Chang, Guo-En; Hung, K. M.

    2016-02-01

    We report the electrical behaviour of heterostructure channels with spatially deformed wrinkle patterns at the edge. Instead of the linear current-voltage relationship, a diode-like current-voltage trace is observed under both forward and reverse bias. Analysing the position-dependent strain and energy levels of the wrinkled heterostructure shows that the energy minimum transforms from a two-dimensional plane at the heterointerface to a one-dimensional trajectory at the wrinkled edge characterized by a potential. When a voltage is applied, the carriers at the left and right electrodes travel through a one-dimensional potential, analogously to how carriers move across a potential in the p-n junction, resulting in diode-like electrical characteristics. This work represents a step forward in developing the wrinkled structure for electronic devices.

  17. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  18. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Václav, E-mail: prochazkav@fzu.cz [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Cifra, Michal [Institute of Photonics and Electronics, The Czech Academy of Sciences, Chaberská 57, 182 51 Prague (Czech Republic); Kulha, Pavel [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Ižák, Tibor [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Rezek, Bohuslav [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Kromka, Alexander [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Prague (Czech Republic)

    2017-02-15

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  19. Effect of Temperature and Electric Field on the Damping and Stiffness Characteristics of ER Fluid Short Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    H. P. Jagadish

    2013-01-01

    Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.

  20. New phenomenology of gas breakdown in DC and RF fields

    Science.gov (United States)

    Petrović, Zoran Lj; Sivoš, Jelena; Savić, Marija; Škoro, Nikola; Radmilović Radenović, Marija; Malović, Gordana; Gocić, Saša; Marić, Dragana

    2014-05-01

    This paper follows a review lecture on the new developments in the field of gas breakdown and low current discharges, usually covered by a form of Townsend's theory and phenomenology. It gives an overview of a new approach to identifying which feedback agents provide breakdown, how to model gas discharge conditions and reconcile the results with binary experiments and how to employ that knowledge in modelling gas discharges. The next step is an illustration on how to record volt-ampere characteristics and use them on one hand to obtain the breakdown voltage and, on the other, to identify the regime of operation and model the secondary electron yields. The second aspect of this section concerns understanding the different regimes, their anatomy, how those are generated and how free running oscillations occur. While temporal development is the most useful and interesting part of the new developments, the difficulty of presenting the data in a written form precludes an easy publication and discussion. Thus, we shall only mention some of the results that stem from these measurements. Most micro discharges operate in DC albeit with complex geometries. Thus, parallel plate micro discharge measurements were needed to establish that Townsend's theory, with all its recent extensions, is still valid until some very small gaps. We have shown, for example, how a long-path breakdown puts in jeopardy many experimental observations and why a flat left-hand side of the Paschen curve often does not represent good physics. We will also summarize a kinetic representation of the RF breakdown revealing a somewhat more complex picture than the standard model. Finally, we will address briefly the breakdown in radially inhomogeneous conditions and how that affects the measured properties of the discharge. This review has the goal of summarizing (rather than developing details of) the current status of the low-current DC discharges formation and operation as a discipline which, in spite of

  1. Investigation of structural properties, electrical and dielectrical characteristics of Al/Dy2O3/porous Si heterostructure

    Science.gov (United States)

    Cherif, A.; Jomni, S.; Belgacem, W.; Hannachi, R.; Mliki, N.; Beji, L.

    2014-04-01

    This paper describes the structural properties, electrical and dielectric characteristics for the first time of the high-k Dy2O3 oxide film deposited on the porous Si substrate by electron beam deposition under ultra vacuum. Structural and morphological characterizations are investigated by a scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction measurements (XRD). The electrical and dielectric characteristics of the Al/Dy2O3/porous Si heterostructure are studied through current- voltage I (V), capacitance-voltage C (V), conductance- and capacitance-frequency dependencies (G (f) and C (f)). Therefore, the dominant conduction mechanisms for the Al/Dy2O3/porous Si heterostructure are extracted from the determining of Schottky coefficient (βSC) and Poole-Frenkel coefficient (βPF). The experimental values of βSC and βPF coefficients are calculated from I (V) characteristics and compared with theoretical values, thus, the appropriate model has been proposed. The C (V) characteristics at different frequencies revealed a large frequency-dispersion, indicative of a significant density of interface states. Furthermore, the G (f) characteristics were well fitted by the modified law GAC(f)=A1f+A2f and the results showed frequency dependent and evidence of two different behaviors in ac conductance i.e. the low-frequency conductivity is due to long-range ordering (frequency-independent) and high frequency conduction due to the localized orientation hopping mechanism. The Nyquist diagrams are used to identify the equivalent circuit, so, the Al/Dy2O3/porous Si heterostructure is accurately modeled at frequency ranges from 10 Hz to 1000 kHz, as a two parallel elements (RC) network placed in series.

  2. Dynamic of microwave breakdown in the localized places of transmitting line driving by Cherenkov-type oscillator

    Science.gov (United States)

    Xie, Jialing; Chen, Changhua; Chang, Chao; Wu, Cheng; Shi, Yanchao; Cao, Yibing; Song, Zhimin; Zhang, Yuchuan

    2018-02-01

    A breakdown cavity is designed to study the breakdown phenomena of high-power microwaves in transmission waveguides. The maximum electric field within the cavity varies in amplitude from 400 kV/cm to 1.8 MV/cm and may surpass breakdown thresholds. The breakdown cavities were studied in particle-in-cell simulations and experiments, the results of which yielded waveforms that were consistent. The experimental results indicate that the microwave pulse does not shorten, and the amplitude of the electric field does not fall below 800 kV/cm. Moreover, large numbers of electrons are not emitted in microwaves below 670 kV/cm at 9.75 GHz frequency and 25-ns pulse width transmitted in stainless steel waveguides. The radiation waveforms of breakdown cavity with different materials are compared in experiments, with titanium material performing better.

  3. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er2O3 as a gate dielectric

    International Nuclear Information System (INIS)

    Lin, Ray-Ming; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-01-01

    In this study, the rare earth erbium oxide (Er 2 O 3 ) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N t ) of the MOS–HEMT were 125 mV/decade and 4.3 × 10 12 cm −2 , respectively. The dielectric constant of the Er 2 O 3 layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er 2 O 3 MOS–HEMT. - Highlights: ► GaN/AlGaN/Er 2 O 3 metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er 2 O 3 with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I ON /I OFF ratio

  4. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  5. Electrical characteristics and hot carrier effects in quantum well solar cells

    Science.gov (United States)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, Francois; Paire, Myriam; Boyer-Richard, Soline; Durand, Olivier; Guillemoles, Jean-François

    2017-02-01

    We report on the opto-electrical characterization of quantum-well solar cells designed for generation of hot carriers. Short-circuit current is proportional to laser power in the entire range. Population density, temperature and quasi-Fermi level splitting of photo-generated confined carriers are investigated by fitting the full luminescence spectra using generalized Planck's law. The energy-dependent absorptivity is identified to obtain good fit accuracy and takes into account the absorption of excitons and free carriers in the quantum well. Furthermore, electrical injection and extraction across the barriers modify the temperature of the quantum well carrier population linearly, hinting at the role of barriers as semi-selective high-energy contact.

  6. Enhanced optical, electrical, and mechanical characteristics of ZnO/Ag grids/ZnO flexible transparent electrodes

    Science.gov (United States)

    Wang, Chen-Tao; Ting, Chu-Chi; Kao, Po-Ching; Li, Shan-Rong; Chu, Sheng-Yuan

    2017-08-01

    This study demonstrates well-designed tri-layer flexible transparent conducting electrodes (TCEs), whose structure is ZnO (20 nm)/Ag grids (4, 6, 8, 10 nm)/ZnO (20 nm) (ZAZ), fabricated via thermal deposition. The optical, electrical, and mechanical characteristics of the proposed structure are improved compared to those of MoO3/Ag grids/MoO3 (MAM) electrodes. The transmittance at 550 nm, sheet resistance, and figure of merit of the proposed ZAZ electrodes with 6-nm silver grids are 78.58%, 9.3 Ω/square, and 9.6 × 10-3, respectively, which are better than those of MAM electrodes (66.25%, 9.7 Ω/square, and 1.6 × 10-3, respectively). It is found that the enhancement of the electrical characteristics of ZAZ can be ascribed to the improved crystallization of ZnO films. ZnO films with improved crystallization and a larger grain size can inhibit carriers from scattering at inter-grain boundaries. Based on a bending test, the strains of ZAZ electrodes under tension and compression were 0.616%, 0.633%, and those of MAM electrodes were 0.62% and 0.65%, respectively. The sheet resistance of the ZAZ structure increases significantly after 800 bending cycles, while that of the MAM structure increases significantly after only 200 bending cycles. These data indicate that ZAZ electrodes have significantly improved mechanical properties and durability compared to those of MAM electrodes in the bending test under both tensile and compressive stress. The proposed TCEs show good optical, electrical, and mechanical characteristics and have potential for application in optoelectronics.

  7. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jing [ORNL; Mahmassani, Hani S. [Northwestern University, Evanston

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  8. High-frequency electric field and radiation characteristics of cellular microtubule network

    Czech Academy of Sciences Publication Activity Database

    Havelka, D.; Cifra, Michal; Kučera, Ondřej; Pokorný, Jiří; Vrba, J.

    2011-01-01

    Roč. 286, 7/10/2011 (2011), 31-40 ISSN 0022-5193 R&D Projects: GA ČR(CZ) GAP102/11/0649; GA ČR GPP102/10/P454 Institutional research plan: CEZ:AV0Z20670512 Keywords : cell ular power * bioelectrodynamics * microtubulenetwork Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.208, year: 2011

  9. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  10. Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  11. Impacts of Various Characteristics of Electricity and Heat Demand on the Optimal Configuration of a Microgrid

    Science.gov (United States)

    Bando, Shigeru; Watanabe, Hiroki; Asano, Hiroshi; Tsujita, Shinsuke

    A methodology was developed to design the number and capacity for each piece of equipment (e.g. gas engines, batteries, thermal storage tanks) in microgrids with combined heat and power systems. We analyzed three types of microgrids; the first one consists of an office building and an apartment, the second one consists of a hospital and an apartment, the third one consists of a hotel, office and retails. In the methodology, annual cost is minimized by considering the partial load efficiency of a gas engine and its scale economy, and the optimal number and capacity of each piece of equipment and the annual operational schedule are determined by using the optimal planning method. Based on calculations using this design methodology, it is found that the optimal number of gas engines is determined by the ratio of bottom to peak of the electricity demand and the ratio of heat to electricity demand. The optimal capacity of a battery required to supply electricity for a limited time during a peak demand period is auxiliary. The thermal storage tank for space cooling and space heating is selected to minimize the use of auxiliary equipment such as a gas absorption chiller.

  12. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  13. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  14. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics.

    Science.gov (United States)

    Gizzie, Nina; Mayne, Richard; Patton, David; Kendrick, Paul; Adamatzky, Andrew

    2016-09-01

    Lettuce seedlings are attracting interest in the computing world due to their capacity to become hybrid circuit components, more specifically, in the creation of living 'wires'. Previous studies have shown that seedlings can be hybridised with gold nanoparticles and withstand mild electrical currents. In this study, lettuce seedlings were hybridised with a variety of metallic and non-metallic nanomaterials: carbon nanotubes, graphene oxide, aluminium oxide and calcium phosphate. Toxic effects and the following electrical properties were monitored: mean potential, resistance and capacitance. Macroscopic observations revealed only slight deleterious health effects after administration with one variety of particle, aluminium oxide. Mean potential in calcium phosphate-hybridised seedlings showed a considerable increase when compared with the control, whereas those administered with graphene oxide showed a small decrease; there were no notable variations across the remaining treatments. Electrical resistance decreased substantially in graphene oxide-treated seedlings whereas slight increases were shown following calcium phosphate and carbon nanotubes applications. Capacitance showed no considerable variation across treated seedlings. These results demonstrate that use of some nanomaterials, specifically graphene oxide and calcium phosphate, may be towards biohybridisation purposes including the generation of living 'wires'. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells.

    Science.gov (United States)

    Touch, Narong; Hibino, Tadashi; Nagatsu, Yoshiyuki; Tachiuchi, Kouhei

    2014-04-01

    The electricity generation behavior of microbial fuel cell (MFC) using the sludge collected from the riverbank of a tidal river, and the biodegradation of the sludge by the electricity generation are evaluated. Although the maximum current density (150-300 mA/m(2)) was higher than that of MFC using freshwater sediment (30 mA/m(2)), the output current was greatly restricted by the mass transfer limitation. However, our results also indicate that placing the anode in different locations in the sludge could reduce the mass transfer limitation. After approximately 3 months, the removal efficiency of organic carbon was approximately 10%, demonstrated that MFC could also enhance the biodegradation of the sludge by nearly 10-fold comparing with the natural biodegradation. We also found that the biodegradation could be identified by the behavior of oxygen consumption of the sludge. Importantly, the oxygen consumption of the sludge became higher along with the electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke

    NARCIS (Netherlands)

    de Kroon, J.R.; IJzerman, M.J.; Chae, J.; Lankhorst, G.J.; Zilvold, G.

    2005-01-01

    Objective: Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. The aim of this review is to explore the relationship between characteristics of stimulation and the effect of electrical stimulation on the recovery of upper limb motor control

  17. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke

    NARCIS (Netherlands)

    de Kroon, Joke R.; IJzerman, Maarten Joost; Chae, John; Lankhorst, Gustaaf J.; Zilvold, G.; Zilvold, Gerrit

    Objective: Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. The aim of this review is to explore the relationship between characteristics of stimulation and the effect of electrical stimulation on the recovery of upper limb motor control

  18. Effects of fast breeders' characteristics on consumptions and expenditures related to electric power generation. An assessment for the European Community

    International Nuclear Information System (INIS)

    Graziani, G.; Zanantoni, C.

    1976-12-01

    The effects of the physical characteristics of the FBR (breeding ratio, inventory) and of the associated fuel cycle (out-of-pile time) on the results of strategy calculations performed for an electric power system are discussed. Attention is focused on the penetration of FBR, on the demand of uranium and separative work and on the economical performance of the breeders. It is pointed out that uncertainties about the out-of-pile time are as important as those concerning FBR breeding ratio and inventory

  19. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  20. STUDY OF ELECTRICAL CHARACTERISTIC OF NEW P-TYPE TRENCHED UMOSFET

    OpenAIRE

    Akansha Ephraim*, Neelesh Agrawal, Anil Kumar, A.K. Jaiswal

    2017-01-01

    In this paper p-type trenched UMOSFET was designed without super junction and constructed like any other conventional MOSFET. Characteristic curve was studied between drain current verses drain voltage and drain current verses gate voltage. The trench was designed under TCAD simulation tool Silvaco software using etching process. The specific channel length of the p-type UMOSFET has been concentrated as 0.9 microns. The device structures are designed using Silvaco Athena and characteristics w...

  1. I-V characteristic and mechanism of carbon black filled epoxy resin matrix composites

    Science.gov (United States)

    Ji, Xiaoyong; Li, Hui; Ou, Jinping

    2007-07-01

    The I-V characteristic of the epoxy resin matrix composites containing conductive carbon black (CB) and sprayed CB is experimentally studied. The test results indicate that the I-V characteristic of the CB filled epoxy resin matrix composites is affected by the CB diameter. The composites containing sprayed CB with the diameter of 123nm have a linear relation between current and voltage and no variation in resistance post-exposed to an electric field. However, the composites containing conductive CB with the diameter of 33nm have a nonlinear I-V characteristic and the resistance of the composites post-exposed to an electric field decreases dramatically. A DC circuit model based on the experimental research is proposed. The occurrence of the electrical breakdown induces the nonlinear I-V characteristic and the dramatic decrease of the electrical resistance of the composites post-exposed to an electric field.

  2. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Y.S., E-mail: yusufselim@gmail.co [Department of Science, Faculty of Education, University of Dicle, Diyarbakir (Turkey); Ebeoglu, M.A. [Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Dumlupinar, Kutahya (Turkey); Topal, G. [Department of Chemistry, Faculty of Education, University of Dicle, Diyarbakir (Turkey); Kilicoglu, T., E-mail: tahsin@dicle.edu.t [Department of Physics, Faculty of Art and Science, University of Dicle, Diyarbakir (Turkey); Department of Physics, Faculty of Art and Science, University of Batman, Batman (Turkey)

    2010-05-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C{sub 27}H{sub 21}N{sub 9}O{sub 6}MnCl{sub 2}).(1/2H{sub 2}O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  3. The influence of electrode configuration on light emission profiles and electrical characteristics of an atmospheric-pressure plasma jet

    Science.gov (United States)

    Maletić, Dejan; Puač, Nevena; Malović, Gordana; Đorđević, Antonije; Petrović, Zoran Lj

    2017-04-01

    In this paper we focus on the influence of the type of electrodes, their dimensions and inter-electrode gap on the formation of a helium plasma jet. Plasma emission profiles are recorded by an ICCD camera simultaneously with volt-ampere characteristics for three different copper electrode configurations. The delivered power was up to 6.5 W, but it may be set and controlled to 0.1 W. This study shows how the electrode configuration shapes and controls temporal and spatial plasma development as well as electrical characteristics of an atmospheric pressure plasma jet. It is shown that, in our system, the width of the grounded electrode has no significant influence on the formation and properties of pulsed atmospheric-pressure streamers (PAPS) outside the tube, while the width of the powered electrode is crucial in their formation.

  4. Characteristics of the electrical response of YBCO films with different morphologies to optical irradiation

    International Nuclear Information System (INIS)

    Frack, E.K.; Madhavrao, L.; Patl, R.; Drake, R.E.; Radparvar, M.

    1991-01-01

    The authors have fabricated YBCO films of varying thicknesses (300 Angstrom - 3000 Angstrom) and morphologies, and measured their electrical response to optical radiation. This paper reports on these measurements, emphasizing the dependence on temperature, light chopping frequency, and cryogenic environment. The temperature dependence of the film resistance is determined in part by the film morphology. This morphology may be represented by a simple model consisting of a two-dimensional array of coupled grains. The magnitude of the bolometric response correlates as expected with the sharpness of the superconducting transition. The increased response observed at lower temperatures (non-equilibrium) correlates with the temperature dependence of the resistance above the transition

  5. Effect of a pulsed power supply on the spectral and electrical characteristics of HID lamps

    International Nuclear Information System (INIS)

    Chammam, Abdeljelil; Elloumi, Hatem; Mrabet, Brahim; Charrada, Kamel; Stambouli, Mongi; Damelincourt, Jean Jacques

    2005-01-01

    Results of spectral and photometric measurements are presented for pulsed power operated high intensity discharges (HIDs). This investigation is related to the application of a pulsed power supply for pile driving of HID lamps. Specifically, we are interested in controlling the spectral response radiation of visible and ultraviolet (UV) lines for tertiary treatment of water using UV radiation. Simulations based on a physical model of the lamps were conducted. These results relate to the radial temperature, line intensity and electrical properties (voltage, power and conductivity). Good agreement has been found between the results of the simulations and the experimental findings

  6. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  7. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Jiang, F.; Lei, Y.; Yu, J.

    2013-01-01

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  8. Dielectric breakdown in liquid helium

    International Nuclear Information System (INIS)

    Miller, F.L. Jr.

    1975-01-01

    The experimental apparatus consists of a 130 kV dc 80 kV ac intermediate voltage unit and a 600 kV dc 700 kV high voltage unit under construction. The experimental devices consist of an insulated container, or dewar, in which two electrodes are placed, one above the other. A voltage is built up in one electrode until an arc occurs to the other electrode. A typical set of breakdown data is shown. A mathematical analysis is briefly described. (MOW)

  9. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  10. Studies of helium breakdown at low temperatures

    International Nuclear Information System (INIS)

    May, D.

    1981-04-01

    For designing cryogenic installations the breakdown strength of helium at temperatures near absolute zero has to be known. Various breakdown strengths are reported in literature concerning liquid helium. It is the objective of these studies to find an explanation for the different breakdown strengths by suitable variation of parameters. Various electrode materials commonly used in low temperature techniques with different sample preparation are used to measure breakdown strength of liquid helium in the gap range from 0.5 mm to 3 mm. A substantial influence of roughness, oxide layer and microcracks on strength is revealed. These terms are summarized and defined as 'condition of the electrode surface'. Taking this into account the various breakdown strengths can be qualitatively explained. Based on these results breakdown strength in supercritical high density helium is examined. A Paschen-curve can be given for this thermodynamical region. (orig./WL) [de

  11. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    Science.gov (United States)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  12. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    International Nuclear Information System (INIS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    2008-01-01

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner

  13. Electrical characteristics of the SSC Low-Energy Booster Magnetic system

    International Nuclear Information System (INIS)

    Young, A.; Shafer, B.E.

    1993-01-01

    The purpose of this paper is to review the electrical design of the magnet system for the Superconducting Super Collider (SSC) Low-Energy Booster (LEB). The primary operating mode of the LEB is as a 10-Hz rapid-cycling proton synchrotron. In this mode, capacitor banks are used to make the entire magnet circuit resonant at 10 Hz. This resonant system thus eliminates the requirement of having to provide (and recover) a large amount of reactive power. The primary focus of this paper is to analyze the electrical properties of the magnet system. In addition to the 10-Hz mode, the magnet system is capable of operating as a 1-Hz ramped proton synchrotron, with flat open-quotes front porchesclose quotes and open-quotes flattopsclose quotes for injection and extraction. This mode is initiated through bypassing the choke-capacitor system and exciting the magnet system with a SCR power supply using predetermined waveforms. Both these operating modes (10 Hz and 1 Hz) are analyzed using SPICE (Version 3E)

  14. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  15. Influence of Au diffusion on structural, electrical and optical characteristics of CdTe thin films

    International Nuclear Information System (INIS)

    Dzhafarov, T D; Caliskan, M

    2007-01-01

    Diffusion of Au and its effects on structural, electrical and optical properties of CdTe films fabricated by the close-spaced sublimation technique have been investigated. Diffusion of Au was studied in the range 400-550 deg. C using energy dispersive x-ray fluorescence analysis. Au-doped and un-doped CdTe films were characterized by x-ray diffraction (XRD), electrical and optical absorption measurements. The temperature dependence of the diffusion coefficient of Au in CdTe films is described as D = 4.4 x 10 -7 exp(-0.54 eV/kT). The mechanism of Au diffusion in polycrystalline CdTe films is attributed to the fast migration of Au along grain boundaries with simultaneous penetration into grains and settling on Cd-vacancies. It is supposed that the weak influence of Au diffusion on XRD patterns of CdTe films can be explained by dispersal of Au atoms preferentially on Cd-vacancies owing to proximity of the covalent radius of Au and Cd. Au atoms, placed on Cd-vacancies (Au Cd ) during fast cooling from diffusion temperature to room temperature, show an acceptor behaviour with an energy level about of E v + 0.2 eV. The nature of this level is discussed

  16. Electrical Characteristics of WSi2 Nanocrystal Capacitors with Barrier-Engineered High-k Tunnel Layers

    Science.gov (United States)

    Lee, Hyo Jun; Lee, Dong Uk; Kim, Eun Kyu; You, Hee-Wook; Cho, Won-Ju

    2011-06-01

    Nanocrystal-floating gate capacitors with WSi2 nanocrystals and high-k tunnel layers were fabricated to improve the electrical properties such as retention, programming/erasing speed, and endurance. The WSi2 nanocrystals were distributed uniformly between the tunnel and control gate oxide layers. The electrical performance of the tunnel barrier with the SiO2/HfO2/Al2O3 (2/1/3 nm) (OHA) tunnel layer appeared to be better than that with the Al2O3/HfO2/Al2O3 (2/1/3 nm) (AHA) tunnel layer. When ΔVFB is about 1 V after applying voltage at ±8 V, the programming/erasing speeds of AHA and OHA tunnel layers are 300 ms and 500 µs, respectively. In particular, the device with WSi2 nanocrystals and the OHA tunnel barrier showed a large memory window of about 7.76 V when the voltage swept from 10 to -10 V, and it was maintained at about 2.77 V after 104 cycles.

  17. Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Bin Du

    2015-01-01

    Full Text Available Insulating oil modified by nanoparticles (often called nanofluids has recently drawn considerable attention, especially concerning the improvement of electrical breakdown and thermal conductivity of the nanofluids. In this paper, three sized monodisperse Fe3O4 nanoparticles were prepared and subsequently dispersed into insulating vegetable oil to achieve nanofluids. The dispersion stability of nanoparticles in nanofluids was examined by natural sedimentation and zeta potential measurement. The electrical breakdown strength, space charge distribution, and several dielectric characteristics, for example, permittivity, dielectric loss, and volume resistivity of these nanofluids, were comparatively investigated. Experimental results show that the monodisperse Fe3O4 nanoparticles not only enhance the dielectric strength but also uniform the electric field of the nanofluids. The depth of electrical potential well of insulating vegetable oils and nanofluids were analyzed to clarify the influence of nanoparticles on electron trapping and on insulation improvement of the vegetable oil.

  18. Effects of rapid thermal annealing on structural, chemical, and electrical characteristics of atomic-layer deposited lanthanum doped zirconium dioxide thin film on 4H-SiC substrate

    International Nuclear Information System (INIS)

    Lim, Way Foong; Quah, Hock Jin; Lu, Qifeng; Mu, Yifei; Ismail, Wan Azli Wan; Rahim, Bazura Abdul; Esa, Siti Rahmah; Kee, Yeh Yee; Zhao, Ce Zhou

    2016-01-01

    Graphical abstract: - Highlights: • Studies of RTA temperatures on La doped ZrO2 atomic layer deposited on 4HSiC. • Oxygen vacancies improved insulating and catalytic properties of La doped ZrO2. • 700 °C annealed sample showed the highest EB, k value, and sensitivity on O2. • La doped ZrO2 was proposed as a potential metal reactive oxide on 4H-SiC. - Abstract: Effects of rapid thermal annealing at different temperatures (700–900 °C) on structural, chemical, and electrical characteristics of lanthanum (La) doped zirconium oxide (ZrO 2 ) atomic layer deposited on 4H-SiC substrates have been investigated. Chemical composition depth profiling analysis using X-ray photoelectron spectroscopy (XPS) and cross-sectional studies using high resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy line scan analysis were insufficient to justify the presence of La in the investigated samples. The minute amount of La present in the bulk oxide was confirmed by chemical depth profiles of time-of-flight secondary ion mass spectrometry. The presence of La in the ZrO 2 lattice led to the formation of oxygen vacancies, which was revealed through binding energy shift for XPS O 1s core level spectra of Zr−O. The highest amount of oxygen vacancies in the sample annealed at 700 °C has yielded the acquisition of the highest electric breakdown field (∼ 6.3 MV/cm) and dielectric constant value (k = 23) as well as the highest current–time (I–t) sensor response towards oxygen gas. The attainment of both the insulating and catalytic properties in the La doped ZrO 2 signified the potential of the doped ZrO 2 as a metal reactive oxide on 4H-SiC substrate.

  19. Analysis of effects of interface-state charges on the electrical characteristics in GaAs/GaN heterojunctions

    Science.gov (United States)

    Yamajo, Shoji; Liang, Jianbo; Shigekawa, Naoteru

    2018-02-01

    Electrical properties of p+-GaAs/n-GaN and n+-GaAs/n-GaN junctions fabricated by surface-activated bonding are investigated by measuring their capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The difference between their flat-band voltages (0.17 eV), which are extracted from C-V measurements, disagrees with the ideal value (1.52 V), suggesting that the Fermi level should be pinned at the bonding interface. The C-V characteristics of the two junctions are calculated by assuming that the Fermi level is pinned at the interface. The measured C-V characteristics quantitatively agree with modeled ones obtained by assuming that the interface state density and conduction band discontinuity are 1.5 × 1014 cm-2 eV-1 and 0.63 eV, respectively. The effective heights of barriers at interfaces, which we estimate by analyzing dependences of I-V characteristics on the ambient temperature, are ˜10-20 meV for the two junctions at room temperature. This suggests that the transport of carriers is dominated by tunneling through interface states.

  20. Localization of rf breakdowns in a standing wave cavity

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2009-04-01

    Full Text Available At SLAC, a five-cell, normal-conducting, L-band (1.3 GHz, standing-wave (SW cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

  1. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  2. Discharge breakdown in the EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    The breakdown of a discharge in a linear EXTRAP configuration has been studied experimentally. In this configuration the breakdown occurs along the zero B-field line, which is the axis of the linear octupole magnetic field, between the anode and cathode which constitute the ends of the linear device. Breakdown could be described by a modified Townsend criterion which included additional electron losses due to the presence of the B-field transverse to the discharge. (author)

  3. Avoiding breakdown in the CGS algorithm

    Science.gov (United States)

    Brezinski, Claude; Sadok, Hassane

    1991-06-01

    The conjugate gradient squared algorithm can suffer of similar breakdowns as Lanczos type methods for the same reason that is the non-existence of some formal orthogonal polynomials. Thus curing such breakdowns is possible by jumping over these non-existing polynomials and using only those of them which exist. The technique used is similar to that employed for avoiding breakdowns in Lanczos type methods. The implementation of these new methods is discussed. Numerical examples are given.

  4. The Development of Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2007-01-01

    Full Text Available The conditions under which breakdown of composite liquid - solid insulation can be occurred, e.g. in transformer, play an important role in designing of such insulation. The initial state of breakdown development is explained based on development of streamers in cavitations. The whole breakdown development in transformer oil is represented by RLC circuit and it depends on the parameters of outer circuit.

  5. Breakdown Voltage Research of Penning Gas Mixture in Plasma Display Panel

    International Nuclear Information System (INIS)

    Guo Bingang; Liu Chunliang; Song Zhongxiao; Fan Yufeng; Xia Xing; Liu Liu; Fan Duowang

    2005-01-01

    Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas mixture in current researches of discharge characteristics of the plasma display panel (PDP). It is doubtful that whether their results match the facts. Based on the Townsend gas self-sustaining discharge condition and the chemical kinetics analysis of the Penning gas mixture discharging in PDP, the empirical equation to describe the breakdown of the Penning gas mixture is given. It is used to calculate the breakdown voltage curves of Ne-Xe/MgO and Ne-Ar/MgO in a testing macroscopic discharge cell of AC-PDP. The effective secondary electron emission coefficients (γ eff ) of the MgO protective layers are derived by comparing the breakdown voltage curves obtained from the empirical equation with the experimental data of breakdown voltages. In comparison with the results calculated by the Paschen law and the equation which ignore the influence of the Penning ionization on α, the results calculated by the empirical equation have better conformity with experimental data. The empirical equation characterizes the breakdown of the Penning gas mixture in PDP effectively, and gives a convenient way to study its breakdown characteristics and the secondary electron emission behaviors

  6. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    Science.gov (United States)

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  7. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...... technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct...... successful teaching. Thus, knowing how to cope with technological breakdowns is a pivotal part of being a technological literate....

  8. Investigation of the DC vacuum breakdown mechanism

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    Breakdowns occurring in rf accelerating structures will limit the ultimate performance of future linear colliders such as the Compact Linear Collider (CLIC). Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN to better understand the vacuum breakdown mechanism in a simple setup. Measurements of the field enhancement factor β show that the local breakdown field is constant and depends only on the electrode material. With copper electrodes, the local breakdown field is around 10:8 GV/m, independent of the gap distance. The β value characterizes the electrode surface state, and the next macroscopic breakdown field can be well predicted. In breakdown rate experiments, where a constant field is applied to the electrodes, clusters of consecutive breakdowns alternate with quiet periods. The occurrence and lengths of these clusters and quiet periods depend on the evolution of β. The application of a high field can even modify the electrode surface in the abse...

  9. Radiation effects on breakdown in silicon multiguarded diodes

    International Nuclear Information System (INIS)

    Bisello, D.; Da Rold, M.; Franzin, L.; Wheadon, R.

    1996-01-01

    The authors have investigated the current-voltage characteristics of silicon PIN diodes with a number of different multiguard structures. These structures were designed to increase the overall device breakdown voltage. The same measurements were carried out after gamma irradiation at different doses and neutron irradiation at fluences beyond type-inversion. This study is a first step towards defining guard structures optimized for operation in high-radiation environments such as those expected at the LHC

  10. Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    2010-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  11. Numerical investigations on electric field characteristics with respect to capacitive detection of free-flying droplets.

    Science.gov (United States)

    Ernst, Andreas; Mutschler, Klaus; Tanguy, Laurent; Paust, Nils; Zengerle, Roland; Koltay, Peter

    2012-01-01

    In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM), including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF) method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD) software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL capacitor geometry was evaluated to be S(i) = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement.

  12. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2012-03-01

    Full Text Available High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. However, a large number of scientific researches have been dedicated to investigation of impact of these methods on changes in constituents like milk fat, milk proteins and lactose as well as changes in mechanisms like renneting properties and coagulation of milk. The aim of this research was to give an overview of changes in milk constituents induced by high hydrostatic pressure, ultrasonification and pulsed electric field treatments as well as to suggest how these changes could improve conventional processes in the dairy industry.

  13. Optical and electrical characteristics of GaN vertical light emitting diode with current block layer

    International Nuclear Information System (INIS)

    Guo Enqing; Liu Zhiqiang; Wang Liancheng; Yi Xiaoyan; Wang Guohong

    2011-01-01

    A GaN vertical light emitting diode (LED) with a current block layer (CBL) was investigated. Vertical LEDs without a CBL, with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated. Optical and electrical tests were carried out. The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6% and 60.7% higher than that of vertical LEDs without a CBL at 350 mA, respectively. The efficiencies of vertical LEDs without a CBL, with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%, 78% and 85.5% of their maximum efficiency at 350 mA, respectively. Moreover, vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability. (semiconductor devices)

  14. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    International Nuclear Information System (INIS)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho

    2016-01-01

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  15. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  16. Related electrical, superconducting and structural characteristics of low temperature indium films

    International Nuclear Information System (INIS)

    Belevtsev, B.I.; Pilipenko, V.V.; Yatsuk, L.Ya.

    1981-01-01

    Reported are results of a complex study of electrical, superconducting and structural properties of indium films vacuum evaporated onto a liquid helium-cooled substrate. Structural electron diffraction investigations gave a better insight into the general features of the annealing during the warming-up of cold-deposited films. It is found that the annealing of indium films to about 80 to 100 K entails an irreversible growth of interplanar separations due to decreasing inhomogeneous microstresses. As the films are warmed from 100 to 300 K, the principal annealing processes are determined by crystallite growth and development of dominating orientation. The changes in the residual resistance and in Tsub(c) with warming the cold-deported films are explained on the base of structural data obtained. In particular, a direct relationship is revealed between the crystallite size and Tsub(c) [ru

  17. On the dynamics of a subnanosecond breakdown in nitrogen below atmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru, E-mail: beh@loi.hcei.tsc.ru [Laboratory of Theoretical Physics, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation); Baksht, E. Kh., E-mail: shklyaev@to.hcei.tsc.ru, E-mail: beh@loi.hcei.tsc.ru; Tarasenko, V. F. [Laboratory of Optical Radiations, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Belomyttsev, S. Ya.; Grishkov, A. A. [Laboratory of Theoretical Physics, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Burachenko, A. G. [Laboratory of Optical Radiations, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Laboratory of Low Temperature Plasma, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation)

    2015-12-07

    The dynamics of a breakdown in a gas-filled diode with a highly inhomogeneous electric field was studied in experiments at a time resolution of ∼100 ps and in numerical simulation by the 2D axisymmetric particle-in-cell (PIC) code XOOPIC. The diode was filled with nitrogen at pressures of up to 100 Torr. The dynamics of the electric field distribution in the diode during the breakdown was analyzed, and the factors that limit the pulse duration of the runaway electron beam current at different pressures were determined.

  18. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    Directory of Open Access Journals (Sweden)

    Takeshi Morimoto

    Full Text Available Transcorneal electrical stimulation (TES activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all. The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  19. Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasani, H. [Department of Physics, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Taghi Ahmadi, M., E-mail: ahmadi1351@gmail.com [Nano-Technology Research Center, Nano-Electronic Group, Physics Department, Urmia University, 57147 Urmia (Iran, Islamic Republic of); Department of Electronics and Computer Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Khoda-bakhsh, R., E-mail: r.khodabakhsh16@gmail.com [Department of Physics, Faculty of Sciences, Urmia University, Urmia (Iran, Islamic Republic of); RezaeiOchbelagh, D. [Departments of Nuclear Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ismail, Razali [Department of Electronics and Computer Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2016-03-28

    This work is concerned with the low cost fabrication of carbon nanoparticles (CNPs), and its application to beta ray detection. The structural and morphological properties of the CNPs were obtained by spectral and microscopy techniques. A system based on CNPs application in the metal-semiconductor-metal (MSM) junction platform, which acts as a beta-ray (β-ray) sensor, is fabricated. The prototype is characterised by modelling, Monte Carlo simulation, and electrical investigations. Changes to the electrical behaviour of the proposed MSM system due to β-ray irradiation are validated by experimental results in both Ohmic and non-Ohmic (Schottky) contacts. The simulation was performed using the MCNPX code, which showed that most of the β-ray energies are deposited into CNPs and electrodes. However, in the Ohmic contact, because the β-ray is induced, the current of CNPs is decreased. The reduction of the current might be due to the change of the carrier properties by increasing the scattering of electrons. The current-density equation for electrons was employed for understanding the effects of β-ray in Ohmic contact of CNPs. On the contrary, in the Schottky contact case, CNPs current was increased with constant voltage when biased by β-ray irradiation. In this paper, the electron–hole generation using β-rays is dominant when compared to other significant effects of radiation exposure on semiconducting CNP-based Schottky contact. Hence, the current increment of CNPs can be justified by electron–hole generation in the depletion region.

  20. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    Science.gov (United States)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  1. Dark and illuminated characteristics of photovoltaic solar modules. Part II: Influence of light electrical stress

    Science.gov (United States)

    Zaraket, Jean; Salame, Chafic; Aillerie, Michel

    2016-07-01

    The main idea is to study the effect of reverse stress current on solar cells under illuminated conditions. More specifically, the characteristics (I-V), and parameters were studiedin dark and illuminated conditions at room temperature for several common periods of time. For the numerical analysis of this work, a double exponential model is used. The changes in characteristics, which are caused from the effect of a reverse current introduced for different stress levels, simulated the effect of accumulated extreme reverse currents that can occur in the solar cells and modules as result of shading and other different reasons. The paper originally contributes to the research on the adverse effects of reverse currents on the normal functioning of cells and solar modules.

  2. Effect of anode material on the breakdown in low-pressure helium gas

    Science.gov (United States)

    Adams, S. F.; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.

    2017-11-01

    An experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and goldplated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.

  3. Efficient wireless power charging of electric vehicle by modifying the magnetic characteristics of the medium

    Science.gov (United States)

    Mahmud, Mohammad Hazzaz

    There is a developing enthusiasm for electric vehicle (EV) innovations as a result of their lessened fuel utilization and greenhouse emission especially through wireless power transfer (WPT) due to the convenience and continuous charging. Numerous research initiatives target on wireless power transfer (WPT) system in the attempt to improve the transportation for last few decades. But several problems like less efficiency, high frequency, long distance energy transfer etc. were always been occupied by the wireless power transfer system. Two ideas have been developed in this research to resolve the two main problems of WPT for electric vehicles which are low efficiency due to large distance between the two coils and slow charging time. As the first phase of study, a proper model, including the coils and cores were required. The selected model was a finite element (FE) modeling. Another part of this study was to create a modified cement that will act as a semi-conductive material for covering the transmitting antenna area. A high frequency wide band gap switch will be used for transferring high amount of power in a very short time. More over this research also proves that, if cores could be added with the transmitter coil and receiver coil then the output efficiency dramatically increased comparing with without core model of transmitter and receiver. The wireless charging is not restricted to parking lot, since it's planned to be embedded into parking space concrete or roadway concrete or asphalt. Therefore, it can also be installed at junctions (behind red lights), stop signs or any spot that the vehicle might stop for several moments. This technology will become more feasible, if the charging time decreases. Therefore, a new model of for wireless power transfer has been proposed in this study which has shown significant improvement. Another motive of this study was to improve the conductivity and permeability in such a way that the medium that is on the top of the

  4. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  5. Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics

    KAUST Repository

    Ko, Sangwon

    2015-02-24

    © 2015 American Chemical Society. We observed a thermotropic phase transition in poly[3,4-dihexyl thiophene-2,2′:5,6′-benzo[1,2-b:4,5-b′]dithiophene] (PDHBDT) thin films accompanied by a transition from a random orientation to an ordered lamellar phase via a nearly hexagonal lattice upon annealing. We demonstrate the effect of temperature-dependent molecular packing on charge carrier mobility (μ) in organic field-effect transistors (OFETs) and photovoltaic characteristics, such as exciton diffusion length (LD) and power conversion efficiency (PCE), in organic solar cells (OSCs) using PDHBDT. The μ was continuously improved with increasing annealing temperature and PDHBDT films annealed at 270 °C resulted in a maximum μ up to 0.46 cm2/(V s) (μavg = 0.22 cm2/(V s)), which is attributed to the well-ordered lamellar structure with a closer - stacking distance of 3.5 Å as shown by grazing incidence-angle X-ray diffraction (GIXD). On the other hand, PDHBDT films with a random molecular orientation are more effective in photovoltaic devices than films with an ordered hexagonal or lamellar phase based on current-voltage characteristics of PDHBDT/C60 bilayer solar cells. This observation corresponds to an enhanced dark current density (JD) and a decreased LD upon annealing. This study provides insight into the dependence of charge transport and photovoltaic characteristics on molecular packing in polymer semiconductors, which is crucial for the management of charge and energy transport in a range of organic optoelectronic devices.

  6. The electrical Discharge Characteristics of the 3.5 KJ Electrothermal Plasma Gun Experiment

    International Nuclear Information System (INIS)

    Diab, F.; El-Aragi, G.M.; El-Kashef, G.M.; Saudy, A.H.

    2013-01-01

    In order to better understand the operating characteristics of an electrothermal plasma gun and its design, a variety of operation characteristics including ( the length of the capillary, applied voltage, diameter of the capillary tube, circuit inductance) were investigated to determine performance effects and viability in a real system. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.3 μH) connected in parallel to a plasma source by means of one high power plane transmission line by mean of a switch triggered by negative pulse 360/385 V. For the present studies a simple RLC was chosen, which allowed the circuit parameters to be easily measure d. The electrothermal discharge characteristics of the plasma gun operated in open air, So that at atmospheric pressure the main parameters were measured. The gun voltage and discharge current are measured with voltage divider and Rogowiski coil respectively. From the results recorded we found that, the current lagged the voltage i-e the plasma source has an inductive reactivity. Moreover, the current value was changed by changing the circuit parameters, including the discharge voltage and circuit inductance, and the wire properties such as the length and diameter. The maximum gun current ranged between (5 - 50 KA) according to the charging voltage of capacitors between (1-7 KV), a typical discharge times are on the order r of 125 μS.

  7. Avalanche breakdown of the quantum hall effects

    CERN Document Server

    Komiyama, S

    1999-01-01

    Heat stability of two-dimensional electron gas (2DEG) systems in the integer quantum hall effect (IQHE) regime is discussed, and a heat instability is suggested to be the intrinsic mechanism behind the breakdown of the IQHE. Phenomenological argument is provided to suggest that the 2DEG system in the IQHE state becomes thermally unstable when the Hall electric field E sub y reaches a threshold value E sub b. Above E sub b , excited nonequilibrium electrons (holes), which are initially present in the conductor as the temperature fluctuation, are accelerated by E sub y and the 2DEG thereby undergoes a transition to a warm dissipative state. The critical field, E sub b , of this abrupt transition is theoretically estimated and shown to be in fare agreement with experimentally reported values. Consideration of the dynamics of electrons suggests that the transition is a process of avalanche electron-hole pair multiplication, in which a small number of non-equilibrium carriers, gains kinetic energy within a Landau ...

  8. Performance Characteristics of PTC Elements for an Electric Vehicle Heating System

    Directory of Open Access Journals (Sweden)

    Yoon Hyuk Shin

    2016-10-01

    Full Text Available A high-voltage positive temperature coefficient (PTC heater has a simple structure and a swift response. Therefore, for cabin heating in electric vehicles (EVs, such heaters are used either on their own or with a heat pump system. In this study, the sintering process in the manufacturing of PTC elements for an EV heating system was improved to enhance surface uniformity. The electrode production process entailing thin-film sputtering deposition was applied to ensure the high heating performance of PTC elements and reduce the electrode thickness. The allowable voltage and surface heat temperature of the high-voltage PTC elements with thin-film electrodes were 800 V and 172 °C, respectively. The electrode layer thickness was uniform at approximately 3.8 μm or less, approximately 69% less electrode materials were required compared to that before process improvement. Furthermore, a heater for the EV heating system was manufactured using the developed high-voltage PTC elements to verify performance and reliability.

  9. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2016-06-01

    Full Text Available Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP extracted by pulsed electric field (PEF in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.

  10. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  11. Electrical and optical characteristics of atmospheric pressure plasma needle jet driven by neon trasformer

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Mamat, Mohamad Hafiz; Rusop, Mohamad; Nayan, Nafarizal

    2017-09-01

    The atmospheric pressure plasma needle jet driven by double sinusoidal waveform of neon transformer is reported in this paper. The commercial neon transformer produces about 5 kV of peak sinusoidal voltages and 35 kHz of frequency. Argon gas has been used as discharge gas for this system since the discharge was easily developed rather than using helium gas. In addition, argon gas is three times cheaper than helium gas. The electrical property of the argon discharge has been analyzed in details by measuring its voltage, current and power during the discharge process. Interestingly, it has been found that the total power on the inner needle electrode was slightly lower than that of outer electrode. This may be due to the polarization charges that occurred at inner needle electrode. Then, further investigation to understand the discharge properties was carried out using optical emission spectroscopy (OES) analysis. During OES measurements, two positions of plasma discharge are measured by aligning the quartz optical lens and spectrometer fiber. The OH emission intensity was found higher than that of N2 at the plasma orifice. However, OH emission intensity was lower at 1.5 cm distance from orifice which may be due to penning ionization effect. These results and understanding are essential for surface modification and biomedical applications of atmospheric pressure plasma needle jet.

  12. Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ri-Guang Chi

    2018-03-01

    Full Text Available The heat generation of lithium ion batteries in electric vehicles (EVs leads to a degradation of energy capacity and lifetime. To solve this problem, a new cooling concept using an oscillating heat pipe (OHP is proposed. In the present study, an OHP has been adopted for Li-ion battery cooling. Due to the limited space in EVs, the cooling channel is installed on the bottom of the battery module. In the bottom cooling method with an OHP, generated heat can be dissipated easily and conveniently. However, most studies on heat pipes have used bottom heating and top or side cooling methods, so we investigate the various effects of parameters with a top heating/bottom cooling mode with the OHP, i.e., the inclination angle of the system, amount of working fluid charged, the heating amount, and the cold plate temperature with ethanol as a working fluid. The experimental results show that the thermal resistance (0.6 °C/W and uneven pulsating features influence the heat transfer performance. A heater used as a simulated battery was sustained under 60 °C under 10 W and 14 W heating conditions. This indicates that the proposed cooling system with the bottom cooling is feasible for use as an EV’s battery cooling system.

  13. Numerical Investigations on Electric Field Characteristics with Respect to Capacitive Detection of Free-Flying Droplets

    Directory of Open Access Journals (Sweden)

    Peter Koltay

    2012-08-01

    Full Text Available In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM, including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL < Vdrop < 100 nL lead to a linear change of the capacity up to ΔQ < 30 fC. The sensitivity of the focused capacitor geometry was evaluated to be Si = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement.

  14. Study of vortex breakdown of F-106B by Euler code

    Science.gov (United States)

    Pao, Jenn Louh

    1990-01-01

    The 'Three-dimensional Euler Aerodynamic Method' (TEAM) is presently applied to the F-106B at subsonic speed, in order to examine the relationship between off- and on-surface flow features at angles-of-attack sufficiently great for the occurrence of vortex breakdown. Although TEAM's flow separation is triggered by numerical dissipation, the general trend of vortex-breakdown effect on computed lift characteristics is similar to extant wind tunnel results.

  15. Gate metal dependent electrical characteristics of AlGaN/GaN HEMTs

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Sang-Mo, E-mail: smkoo@kw.ac.kr; Kang, Min-Seok, E-mail: hyde0220@gmail.com

    2014-10-15

    Highlights: • We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors. • We demonstrate the effect of the barrier height of Schottky gate metals. • The conduction mechanisms examine by comparing the experimental results with numerical simulations. • 2-DEG concentration depends on the barrier height of Schottky gate metals. - Abstract: We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) and the effect of the barrier height of Schottky gate metals. It is found that the threshold voltage of the HEMT structures with the Ni Schottky contact shows a positive shift compared to that of the Ti Schottky contacts (ΔV{sub th} = 2.9 V). The maximum saturation current of the HEMT structures with the Ti Schottky contact (∼1.4 × 10{sup 7} A/cm{sup 2}) is found to be ∼2.5 times higher than that of the Ni Schottky contact (2.9 × 10{sup 7} A/cm{sup 2}). The conduction mechanisms have been examined by comparing the experimental results with numerical simulations, which confirm that the increased barrier height is mainly attributed to the reduction of 2-DEG concentration.

  16. Parameters Identification and Sensitive Characteristics Analysis for Lithium-Ion Batteries of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2017-12-01

    Full Text Available This paper mainly investigates the sensitive characteristics of lithium-ion batteries so as to provide scientific basises for simplifying the design of the state estimator that adapt to various environments. Three lithium-ion batteries are chosen as the experimental samples. The samples were tested at various temperatures (−20 ∘ C, −10 ∘ C, 0 ∘ C , 10 ∘ C , 25 ∘ C and various current rates (0.5C, 1C, 1.5C using a battery test bench. A physical equivalent circuit model is developed to capture the dynamic characteristics of the batteries. The experimental results show that all battery parameters are time-varying and have different sensitivity to temperature, current rate and state of charge (SOC. The sensitivity of battery to temperature, current rate and SOC increases the difficulty in battery modeling because of the change of parameters. The further simulation experiments show that the model output has a higher sensitivity to the change of ohmic resistance than that of other parameters. Based on the experimental and simulation results obtained here, it is expected that the adaptive parameter state estimator design could be simplified in the near future.

  17. On exponential growth [of gas breakdown

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The agreement obtained between measured breakdown voltages and predicted breakdown values is frequently used as a means of assessing the validity of the theory/model in question. However, owing to the mathematical nature of exponential growth, it is easy to formulate a criterion that provides acc...

  18. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  19. ON THE QUESTION OF MASS-ENERGY CHARACTERISTICS OF VARIOUS AVIATION SOURCES OF ELECTRICITY

    Directory of Open Access Journals (Sweden)

    A. V. Kechin

    2017-01-01

    Full Text Available The article raises the issue of the synthesis of power supply systems for new generation aircraft, which is understood as: the power supply system (complex of the aircraft, which includes the power and information structures closely integrated. Using this method, the power generation, transformation and distribution functions are assigned to the power structure, and the information structure provides work algorithms. The problematic of the synthesis of the described systems is formed and its relevance is justified. The main work done abroad and on the territory of the Russian Federation aimed at solving this problem are analyzed. As a solution to the problem, it is proposed to use the actual, from the point of view of the authors, method – the structural-functional method. It is shown that the structural-functional method is applicable to solving complex engineering problems, as shown in the examples [16, 18]. The chosen method of solving this problem, like any other one, requires a sufficient number of bench-mark data. When applying the structural-functional method, which is data of the "constraint" type, i.e. GOST (All-Union State Standard and OST (All-Union Standard requirements, technical specifications, supplemented by data on possible elements of the synthesized scheme. This article is mainly devoted to the choice of parameters of possible elements of the synthesized circuit, namely primary electric power sources. The article defines a technique for converting discrete values of primary energy sources into functional dependencies, as well as restrictions imposed on their approximating functions. The example shows the obtaining of functional dependencies for mass-energy indicators of nickel-cadmium storage batteries produced by VARTA and SAFT. The analysis of the obtained results is shown, which showed their sufficient reliability and, as follows, their applicability in the development of aircraft power supply systems.

  20. Characteristics of powdered activated carbon treated with dielectric barrier discharge for electric double-layer capacitors

    International Nuclear Information System (INIS)

    Tashima, Daisuke; Yoshitama, Hiromu; Sakoda, Tatsuya; Okazaki, Akihito; Kawaji, Takayuki

    2012-01-01

    Highlights: ► The specific capacitance of the EDLCs could be improved by oxygen plasma treatment. ► 15 s treated EDLCs showed a 20% increase in capacitance relative to untreated EDLCs. ► The plasma treatment yields EDLCs that are suitable for high-energy applications. - Abstract: The electrochemical properties of electric double-layer capacitors (EDLCs) made with plasma-treated powdered activated carbon (treated using a dielectric barrier discharge) were examined using cyclic voltammetry (CV), Cole–Cole plots, and X-ray photoelectron spectroscopy (XPS). The dielectric barrier discharge method, which operates at atmospheric pressure, dramatically reduces the processing time and does not require vacuum equipment, making it a more practical alternative than low-pressure plasma treatment. The experimental data indicate that the specific capacitance of the EDLCs could be improved by oxygen plasma treatment. Capacitance of EDLCs made with activated carbon treated for 15 s showed 193.5 F/g that 20% increase in the specific capacitance relative to untreated EDLCs. This result indicates that the plasma treatment yields EDLCs that are suitable for high-energy applications. The enhancement of capacitance was mainly attributed to an increase in the BET surface area of the activated carbon and the creation of carboxyl groups on the surface of the carbon. The carboxyl groups induced oxidation–reduction reactions in the presence of O 2 which was included in the operation gas. In addition, the carboxyl groups improved the penetration of the electrolyte solution into the carbon electrodes.

  1. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  2. The influence of the conducting film on the characteristics of the lateral electric field excited piezoelectric resonator.

    Science.gov (United States)

    Zaitsev, B D; Teplykh, A A; Shikhabudinov, A M; Borodina, I A; Kisin, V V; Sinev, I V

    2018-03-01

    The effect of a thin layer with the finite surface conductivity located near the lateral electric field excited resonator on its characteristics is studied theoretically and experimentally. It has been shown that for the fixed distance between the free side of the resonator and conducting layer with increasing the surface conductivity of the layer the resonant frequency of the parallel resonance remains initially practically constant, then sharply decreases in a certain range and then insignificantly changes. For the fixed value of the layer conductivity the parallel resonant frequency increases at the increase in the gap between the resonator and layer and then achieves the saturation. The maximum change in the frequency of the parallel resonance corresponds to a zero gap when the layer conductivity varies over the wide range is equal to ∼1%. The frequency of the series resonance decreases only by ∼0.08% due to the change in the layer conductivity. The obtained results may be useful for the development of the gas sensors based on the lateral electric field excited piezoelectric resonator conjugated to the gas sensitive film, the conductivity of which changes in the presence of the given gas. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  4. Analysis of the thickness-dependent electrical characteristics in pentacene field-effect devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Shin, Hyunji; Choi, Jongsun [Hongik University, Seoul (Korea, Republic of); Zhang, Xue; Park, Jiho; Baang, Sungkeun; Park, Jaehoon [Hallym University, Chuncheon (Korea, Republic of)

    2014-07-15

    In this paper, we report on the important relationship among the capacitance-voltage (C - V) characteristics of metal-insulator-semiconductor (MIS) capacitors, the output currents of pentacene based organic field-effect transistors (OFETs), and the semiconductor layer's thickness. The effect of the semiconductor layer's thickness on the effective channel capacitance, when the MIS capacitors are fully accumulated with sufficient negative bias, was observed to be directly correlated with the magnitude of the saturated output current. The variation in accumulation capacitance of MIS capacitors due to changes in layer thickness is shown to indicate the existence of a channel capacitance. This determines the output currents in the saturation region. Furthermore, the accumulation capacitance appears to decrease notably when the thickness of the pentacene layer is reduced below 20 nm.

  5. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    Science.gov (United States)

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  6. The Synthesis of Electric Drives Characteristics of the UAV of “Convertiplane–Tricopter” Type

    Directory of Open Access Journals (Sweden)

    Emelyanova O.V.

    2017-01-01

    Full Text Available The paper is devoted to the review of controlled motion of the unmanned aerial vehicle (UAV with vertical takeoff and landing, the convertiplane type, with three tilt rotors. The UAV is equipped with a swept wing, the calculation of aerodynamic parameters of which has been carried out in the software program XFLR5, taking into consideration the weight and size requirements. There have been determined the lift and resistance coefficients of the UAV depending on the angle of attack on the basis of the vortex method. There has been done the analysis of the influence of wing profile on the calculated aerodynamic characteristics. There also has been realized the synthesis of the traction energy-efficient options of the drive propellers that reduce power consumption, increasing the accuracy of the automatic control system.

  7. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  8. Breakdown properties of irradiated MOS capacitors

    International Nuclear Information System (INIS)

    Paccagnella, A.; Candelori, A.; Pellizzer, F.; Fuochi, P.G.; Lavale, M.

    1996-01-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co 60 gamma and 10 14 neutrons/cm 2 only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested

  9. INCREASING THE BREAKDOWN VOLTAGE OF BJT'S AS SWITCHING DEVICES

    Directory of Open Access Journals (Sweden)

    Mustafa SÖNMEZ

    1997-03-01

    Full Text Available The electrical parameters of the transistor must be taken into account in the designing of electronic circuit. One parameter, VCBO, is one of the most important parameter for the designer. Using transistor which has the breakdown voltage of 50 V, it is not possible to obtain 80 V pulse output since the output voltage can not exceed the supply voltage. In this work, a new method is presented to obtain output voltage bigger than supply voltage by using more than one transistor.

  10. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  11. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  12. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Woo [Stainless Steel Research Group, Technical Research Laboratories, POSCO, Pohang 790-300 (Korea, Republic of); Ramesh Bapu, G.N.K. [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Kang Yong, E-mail: kyl2813@yonsei.ac.kr [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2009-02-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at {+-}25 {mu}m displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 {+-} 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  13. Temperature Dependence of Electrical Characteristics of Carbon Nanotube Field-Effect Transistors: A Quantum Simulation Study

    Directory of Open Access Journals (Sweden)

    Ali Naderi

    2012-01-01

    Full Text Available By developing a two-dimensional (2D full quantum simulation, the attributes of carbon nanotube field-effect transistors (CNTFETs in different temperatures have been comprehensively investigated. Simulations have been performed by employing the self-consistent solution of 2D Poisson-Schrödinger equations within the nonequilibrium Green's function (NEGF formalism. Principal characteristics of CNTFETs such as current capability, drain conductance, transconductance, and subthreshold swing (SS have been investigated. Simulation results present that as temperature raises from 250 to 500 K, the drain conductance and on-current of the CNTFET improved; meanwhile the on-/off-current ratio deteriorated due to faster growth in off-current. Also the effects of temperature on short channel effects (SCEs such as drain-induced barrier lowering (DIBL and threshold voltage roll-off have been studied. Results show that the subthreshold swing and DIBL parameters are almost linearly correlated, so the degradation of these parameters has the same origin and can be perfectly influenced by the temperature.

  14. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition.

    Science.gov (United States)

    Sul, Young-Taeg; Johansson, Carina B; Petronis, Sarunas; Krozer, Anatol; Jeong, Yongsoo; Wennerberg, Ann; Albrektsson, Tomas

    2002-01-01

    Titanium implants have been used widely and successfully for various types of bone-anchored reconstructions. It is believed that properties of oxide films covering titanium implant surfaces are of crucial importance for a successful osseointegration, in particular at compromized bone sites. The aim of the present study is to investigate the surface properties of anodic oxides formed on commercially pure (c.p.) titanium screw implants as well as to study 'native' oxides on turned c.p. titanium implants. Anodic oxides were prepared by galvanostatic mode in CH3COOH up to the high forming voltage of dielectric breakdown and spark formation. The oxide thicknesses, measured with Auger electron spectroscopy (AES), were in the range of about 200-1000 nm. Barrier and porous structures dominated the surface morphology of the anodic film. Quantitative morphometric analyses of the micropore structures were performed using an image analysis system on scanning electron microscopy (SEM) negatives. The pore sizes were < or = 8 microm in diameter and had 1.27-2.1 microm2 opening area. The porosity was in the range of 12.7-24.4%. The surface roughness was in the range of 0.96-1.03 microm (Sa), measured with TopScan 3D. The crystal structures of the titanium oxide were amorphous, anatase, and a mixtures of anatase and rutile type, as analyzed with thin-film X-ray diffractometry (TF-XRD) and Raman spectroscopy. The chemical compositions consisted mainly of TiO2, characterized with X-ray photoelectron spectroscopy (XPS). The native (thermal) oxide on turned implants was 17.4 nm (+/- 6.2) thick and amorphous. Its chemical composition was TiO2. The surface roughness had an average height deviation of 0.83 microm (Sa). The present results are needed to elucidate the influence of the oxide properties on the biological reaction. The results of animal studies using the presently characterized surface oxides on titanium implants will be published separately.

  15. Research progress on space charge characteristics in polymeric insulation

    Directory of Open Access Journals (Sweden)

    Yibo Zhang

    2016-03-01

    Full Text Available Due to their excellent electrical insulation properties and processability, polymer materials are used in many electrical products. It is widely believed that space charge plays an important role for the electric field distribution, conduction, ageing, and electric breakdown of polymeric insulation. This paper reviews measurements and characteristics of space charge behavior which mainly determined by the pulsed electro-acoustic (PEA measurement technique. Particular interests are the effects of the applied voltage, the electrodes, temperature, humidity, microstructure, additives, and filler materials on accumulation, distribution, transport, and the decay of space charge in polymeric materials. This review paper is to provide an overview on various space charge effects under different conditions, and also to summarize the information for polymeric materials with suppressed space charge and improved electrical behavior.

  16. Electrical characteristic of metal-oxide-semiconductor with NiSi2 nanocrystals embedded in oxide layer

    Science.gov (United States)

    Tsai, Jenn-Kai; Lo, Ikai; Gau, M. H.; Chen, Y. L.; Yeh, P. H.; Chang, T. C.

    2006-03-01

    The nano-structured electronic devices have received more attention recently. Metal-oxide-semiconductor structure with NiSi2 nanocrystals embedded in the oxide layer, HfO2/SiO2, has been fabricated. Comparing with conventional ones, it could be operated under lower voltage and faster program/erase speed and has better endurance and retention. We have measured the temperature-dependent tunneling V-I curve on these HfO2/SiO2 nano-structured devices for the temperature from 1.2K to 300K. The results show an abnormal electrical characteristic. The tunneling V-I characteristics appear a new threshold voltage in the low temperature region, from 30K to 100K, while applied a negative voltage. The abnormal threshold voltage disappears when the temperature higher than 150K or lower than 30K. We attribute the new threshold voltage to the discrete quantum states of NiSi2 nanocrystals in the oxide layer.

  17. The Work Breakdown Structure in an Acquisition Reform Environment

    National Research Council Canada - National Science Library

    Albert, Neil

    1997-01-01

    These viewgraphs discuss acquisition reform, costs, provide a definition for work breakdown structure, development process of work breakdown, an overview of contract business management, a GAO review...

  18. Irreversibility in room temperature current–voltage characteristics of NiFe{sub 2}O{sub 4} nanoparticles: A signature of electrical memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P., E-mail: pujaiitkgp2007@gmail.com [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Debnath, Rajesh; Singh, Swati; Mandal, S.K. [Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India); Roy, J.N. [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe{sub 2}O{sub 4} nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe{sub 2}O{sub 4} nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe{sub 2}O{sub 4} nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe{sub 2}O{sub 4} nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  19. Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges

    Science.gov (United States)

    Silva, Caitano L.; Pasko, Victor P.

    2015-05-01

    To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in lightning discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial development of lightning leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other lightning processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud lightning discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start lightning, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional lightning leader tree is developed, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional lightning leader (such as step length, for example) and amplitude of the thunderstorm electric field.

  20. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Electrical characteristics of a vertical light emitting diode with n-type contacts on a selectively wet-etching roughened surface

    International Nuclear Information System (INIS)

    Wang Liancheng; Guo Enqing; Liu Zhiqiang; Yi Xiaoyan; Wang Guohong

    2011-01-01

    Low resistance and thermally stable n-type contacts to N-polar GaN are essentially important for vertical light emitting diodes (VLEDs). The electrical characteristics of VLEDs with n-type contacts on a roughened and flat N-polar surface have been compared. VLEDs with contacts deposited on a roughened surface exhibit lower leakage currents yet a higher operating voltage. Based on this, a new scheme by depositing metallization contacts on a selectively wet-etching roughened surface has been developed. Excellent electrical and optical characteristics have been achieved with this method. An aging test further confirmed its stability. (semiconductor devices)

  2. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.500, year: 2016

  3. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  4. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 0.500, year: 2016

  5. Vortex Breakdown in a Closed Cylindrical Container with a Rotating or Stationary Conical Endwall

    Science.gov (United States)

    Fujimura, Kazuyuki; Koyama, Hide S.; Hwang, Kwon Sang; Hyun, Jae Min

    A visualization study is made of flow of a constant-density viscous fluid in a closed cylindrical container. Fluid motions are generated by the rotation of one of its endwalls. Vortex breakdown bubble(s) in the meridional plane are visualized by using a high-precision turntable rig. One endwall is a flat disk, and the other endwall is a cone. Cones of inclination angle α=0° (flat disk), 30°, 45°and 60° are employed in the experiment. The visualization photographs, produced by employing fluorescent dye technique, reveal the vortex breakdown characteristics. The breakdown regime diagrams in the aspect ratio-Reynolds number plots are constructed. The changes incurred in the locations and sizes of the breakdown bubble(s) are elaborated. Based on the visualized flow data, plausible physical interpretations are offered.

  6. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  7. Dependence of single-shot pulse durations on near-infrared filamentation-guided breakdown in air

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2017-03-01

    Full Text Available We present results of an experimental investigation of laser pulsewidth dependence of filamentation-guided high voltage breakdown in air. The experiments are conducted at laser peak power levels of 1 TW and pulse durations of 0.7 to 10 ps with a discharge gap separation of 10 cm. Synchronized electrical and optical diagnostic techniques were used to determine the pulsewidth dependence on the breakdown mechanism, threshold levels, time delays and associated jitter. The results indicate that longer pulses provide greater than 30% reduction in breakdown threshold voltage.

  8. SEMICONDUCTOR DEVICES: A three-dimensional breakdown model of SOI lateral power transistors with a circular layout

    Science.gov (United States)

    Yufeng, Guo; Zhigong, Wang; Gene, Sheu

    2009-11-01

    This paper presents an analytical three-dimensional breakdown model of SOI lateral power devices with a circular layout. The Poisson equation is solved in cylindrical coordinates to obtain the radial surface potential and electric field distributions for both fully- and partially-depleted drift regions. The breakdown voltages for N+N and P+N junctions are derived and employed to investigate the impact of cathode region curvature. A modified RESURF criterion is proposed to provide a design guideline for optimizing the breakdown voltage and doping concentration in the drift region in three dimensional space. The analytical results agree well with MEDICI simulation results and experimental data from earlier publications.

  9. On the breakdown modes and parameter space of Ohmic Tokamak startup

    Science.gov (United States)

    Peng, Yanli; Jiang, Wei; Zhang, Ya; Hu, Xiwei; Zhuang, Ge; Innocenti, Maria; Lapenta, Giovanni

    2017-10-01

    Tokamak plasma has to be hot. The process of turning the initial dilute neutral hydrogen gas at room temperature into fully ionized plasma is called tokamak startup. Even with over 40 years of research, the parameter ranges for the successful startup still aren't determined by numerical simulations but by trial and errors. However, in recent years it has drawn much attention due to one of the challenges faced by ITER: the maximum electric field for startup can't exceed 0.3 V/m, which makes the parameter range for successful startup narrower. Besides, this physical mechanism is far from being understood either theoretically or numerically. In this work, we have simulated the plasma breakdown phase driven by pure Ohmic heating using a particle-in-cell/Monte Carlo code, with the aim of giving a predictive parameter range for most tokamaks, even for ITER. We have found three situations during the discharge, as a function of the initial parameters: no breakdown, breakdown and runaway. Moreover, breakdown delay and volt-second consumption under different initial conditions are evaluated. In addition, we have simulated breakdown on ITER and confirmed that when the electric field is 0.3 V/m, the optimal pre-filling pressure is 0.001 Pa, which is in good agreement with ITER's design.

  10. Time-Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems

    Science.gov (United States)

    2017-09-30

    electromagnetic --plasma interactions and the resulting air breakdown, electromagnetic pulse tail erosion, plasma formation and shielding are simulated and...DEVICES AND SYSTEMS Su Yan and Jian-Ming Jin Center for Computational Electromagnetics Department of Electrical and Computer Engineering...Computational Electromagnetics Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801 9. SPONSORING / MONITORING

  11. Effect of the ionic strength of pulsed electric field treatment medium on the physicochemical and structural characteristics of lactoferrin.

    Science.gov (United States)

    Sui, Qian; Roginski, Hubert; Williams, Roderick P W; Wooster, Tim J; Versteeg, Cornelis; Wan, Jason

    2010-11-24

    Pulsed electric field (PEF) treatment (35 kV cm(-1) for 19.2 μs using bipolar 2 μs pulses) was conducted on bovine lactoferrin (LF; 0.4 mg mL(-1)) prepared in simulated milk ultrafiltrate (SMUF), at concentrations between 0.2× and 2× normal strength, with electrical conductivities ranging from 0.17 to 1.04 S m(-1). The physicochemical and structural characteristics (LF content by a spectrophotometric and an ELISA method, surface hydrophobicity, electrophoretic mobility, far-UV circular dichroism spectra, and tryptophan fluorescence) of LF dissolved in SMUF of all strengths tested were not changed after PEF treatment. The PEF treatment of LF in 0.2 strength SMUF did not cause the release of LF-bound ferric ion into the aqueous phase, with a concentration of LF-bound iron being the same as that of the untreated LF control (174 μg L(-1)). However, in treatment media with higher ionic strengths, ferric ion was released from the LF molecule into the aqueous phase. The concentration of LF-bound iron decreased from 174 μg L(-1) for the LF treated in 0.2 strength SMUF to 80 μg L(-1) for that treated in double-strength SMUF. The results suggest that the PEF-induced iron depletion of LF does not appear to cause an appreciable conformational change in LF molecules. PEF treatment could be developed as a novel physical way to produce iron-depleted LF, as an alternative to the existing chemical method.

  12. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er{sub 2}O{sub 3} as a gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-10-01

    In this study, the rare earth erbium oxide (Er{sub 2}O{sub 3}) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N{sub t}) of the MOS–HEMT were 125 mV/decade and 4.3 × 10{sup 12} cm{sup −2}, respectively. The dielectric constant of the Er{sub 2}O{sub 3} layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er{sub 2}O{sub 3} MOS–HEMT. - Highlights: ► GaN/AlGaN/Er{sub 2}O{sub 3} metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er{sub 2}O{sub 3} with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I{sub ON}/I{sub OFF} ratio.

  13. The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses

    International Nuclear Information System (INIS)

    Soylu, Seref

    2014-01-01

    Highlights: • Operating characteristics of conventional and hybrid electric buses were examined. • Recovery of braking energy offers an excellent opportunity to improve fuel economy. • Speed and altitude profiles of routes have dramatic impacts on the energy recovery. • Capacity of the auxiliary power source has a dramatic impact on the energy recovery. • Round-trip efficiency of the regenerative braking system was calculated to be 27%. - Abstract: The basic operating characteristics of a conventional bus (CB) and a hybrid electric bus (HEB) were examined under urban driving conditions. To perform this examination, real-time operating data from the buses were collected on the Campus-Return route of the Sakarya Municipality. The main characteristics examined were the traction, braking, engine, engine generator unit (EGU), motor/generator (M/G), and ultracapacitor (Ucap) energies and efficiencies of the buses. The route elevation profile and the frequency of stop-and-go operations of the buses were found to have dramatic impacts on the braking and traction energies of the buses. The declining profile of the Campus-Return route provided an excellent opportunity for energy recovery by the regenerative braking system of the HEB. However, owing to the limits on the capacities and efficiencies of the hybrid drive train components and the Ucap, the bus braking energies were not recovered completely. Braking energies as high as 2.2 kW h per micro-trip were observed, but less than 1 kW h of braking energy per micro-trip was converted to electricity by the M/G; the rest of the braking energy was wasted in frictional braking. The maximum energy recovered and stored in the Ucap per micro-trip was 0.5 kW h, but the amount of energy recovered and stored per micro-trip was typically less than 0.2 kW h for the entire route. The cumulative braking energy recovered and stored in the Ucap for the Campus-Return route was 52% of the available brake energy, which was 13.02 kW h

  14. Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment.

    Science.gov (United States)

    Moussa-Ayoub, Tamer E; Jaeger, Henry; Youssef, Khaled; Knorr, Dietrich; El-Samahy, Salah; Kroh, Lothar W; Rohn, Sascha

    2016-11-01

    Selected technological characteristics and bioactive compounds of juice pressed directly from the mash of whole Opuntia dillenii cactus fruits have been investigated. The impact of pulsed electric fields (PEF) for a non-thermal disintegration on the important juice characteristics has been evaluated in comparison to microwave heating and use of pectinases. Results showed that the cactus juice exhibited desirable technological characteristics. Besides, it also contained a high amount of phenolic compounds being the major contributors to the overall antioxidant activity of juice. HPLC-DAD/ESI-MS(n) measurements in the fruits' peel and pulp showed that isorhamnetin 3-O-rutinoside was determined as the single flavonol found only in the fruit's peel. Treating fruit mash with a moderate electric field strength increased juice yield and improved juice characteristics. Promisingly, the highest release of isorhamnetin 3-O-rutinoside from fruit's peel into juice was maximally achieved by PEF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Magnetoresistance and magnetic breakdown phenomenon in amorphous magnetic alloys

    International Nuclear Information System (INIS)

    Chen Hui-yu; Gong Xiao-yu

    1988-01-01

    Transverse magnetoresistance in amorphous magnetic alloys (Fe/sub 1-//sub x/CO/sub x/) 82 Cu/sub 0.4/Si/sub 4.4/B/sub 13.2/ were measured at room temperature and in the magnetic field range 0--15 kOe. For large magnetic field, three different functional dependences of magnetoresistance on magnetic field strength have been found as follows: (1) Δrho/rho approaches saturation. (2) Δrho/rho increases proportionally to H 2 . (3) For x = 0.15, a sharp Δrho/rho peak appears at a certain magnetic field strength in spatial angular orientation of both magnetic field and electric currents. Case (3) is a magnetic breakdown phenomenon. Magnetic breakdown occurs at the gap between the spin-up and spin-down sheets of the Fermi surface. This gap is the spin-orbit gap and its magnitude is a sensitive function of magnetization. Hence the magnitude and width of the magnetoresistance peak and the magnetic field strength at the peak point are functions of angular orientation of both magnetic field and electric current

  16. Regime Jumps in Electricity Prices

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald)

    2001-01-01

    textabstractElectricity prices are known to be very volatile and subject to frequent jumps due to system breakdown, demand shocks, and inelastic supply. As many international electricity markets are in some state of deregulation, more and more participants in these markets are exposed to these

  17. Optical breakdown of helium in Bessel laser radiation beams

    International Nuclear Information System (INIS)

    Andreev, N E; Pleshanov, I V; Margolin, L Ya; Pyatnitskii, Lev N

    1998-01-01

    Numerical simulation is used to investigate the dynamics of formation of a helium plasma in Bessel beams, shaped by an axicon and a phase converter from a laser radiation pulse with Gaussian temporal and radial intensity profiles. The beam intensities at the breakdown threshold are determined as a function of the pulse duration for various radial field distributions in a beam characterised by Bessel functions of order m (m = 0 - 5). It is shown that in the investigated range of parameters the threshold intensity is independent of m. The temporal and spatial evolution of the resultant plasma, and the dependence of the plasma characteristics on the pulse parameters are considered. Conditions are found for the formation of tubular plasma channels in beams of orders m≥1. The adopted model of the optical breakdown of helium is shown to be satisfactory because of a good agreement between the results of calculations of the moment of breakdown in a zeroth-order Bessel beam and experimental results. (interaction of laser radiation with matter. laser plasma)

  18. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  19. New mechanism of cluster-field evaporation in rf breakdown

    Directory of Open Access Journals (Sweden)

    Z. Insepov

    2004-12-01

    Full Text Available Using a simple field evaporation model and molecular dynamics simulations of nanoscale copper tip evolution in a high electric field gradient typical for linacs, we have studied a new mechanism for rf-field evaporation. The mechanism consists of simultaneous (collective field evaporation of a large group of tip atoms in high-gradient fields. Thus, evaporation of large clusters is energetically more favorable when compared with the conventional, “one-by-one” mechanism. The studied mechanism could also be considered a new mechanism for the triggering of rf-vacuum breakdown. This paper discusses the mechanism and the experimental data available for electric field evaporation of field-emission microscopy tips.

  20. X-band photonic band-gap accelerator structure breakdown experiment

    Directory of Open Access Journals (Sweden)

    Roark A. Marsh

    2011-02-01

    Full Text Available In order to understand the performance of photonic band-gap (PBG structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz. The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65  MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110  MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100  MV/m and a surface magnetic field of 890  kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14  MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  1. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  2. Modeling Covariance Breakdowns in Multivariate GARCH

    OpenAIRE

    Jin, Xin; Maheu, John M

    2014-01-01

    This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...

  3. Onset of breakdown and formation of cathode spots

    International Nuclear Information System (INIS)

    Schwirzke, F.; Hallal, M.P. Jr.; Maruyama, X.K.

    1992-01-01

    The initial phase of onset of electrical breakdown in a vacuum discharge is characterized by very rapid ionization of surface material which leads to a kind of ''explosive'' plasma formation on electrodes. As an increasing electric field is applied between the two electrodes of vacuum diode the ionization process is initiated by field emission of electrons from highly localized spots on the cathode surface. Despite the fundamental importance of cathode spots for the breakdown process, the structure of cathode spots and the fast ionization rates of surface layers were riot fully understood. Besides joule heating of the field emitting spot, the electrons also desorb contaminants and ionize some of the released neutrals. Ions produced a short distance (∼ 1μm) from the spot are accelerated back towards the cathode. This ion bombardment leads to surface heating of the spot. Calculations of the power deposition show that ion surface heating is initially orders of magnitude larger than joule heating. Ion bombardment is especially important at low initial current densities since it leads efficiently to further desorption arid sputtering of neutrals from the surface and hence increases the neutral density which in turn increases the ionization rate. As more ions are produced, a positive space charge layer forms which enhances the electric field and thus strongly enhances the field emitted electron current. Surface heating and the build-up of positive space charge rapidly lead to further enhanced field emission and finally thermionic electron emission. The localized build-up plasma above the electron emitting spot naturally leads to pressure and electric field distributions which ignite unipolar arcs. The large electron current of the unipolar arc and large ion sputtering rates cause the ''explosion'' of surface material into the dense plasma of a cathode spot

  4. Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1981-01-01

    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.

  5. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  6. Fundamental Characteristics of Laboratory Scale Model DC Microgrid to Exchange Electric Power from Distributed Generations installed in Residential Houses

    Science.gov (United States)

    Kakigano, Hiroaki; Hashimoto, Takuya; Matsumura, Yohei; Kurotani, Takashi; Iwamoto, Wataru; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality power. This dc system is suitable for dc output type distributed generations and energy storages. In this research, we assumed one type of the dc microgrids for residential houses (apartment house or housing complex). Each residence has a distributed generation such as gas engine or fuel cell. Those cogenerations are connected to the dc power line, and the electricity from the generations can be shared among the residences. The hot water from the cogeneration is used in each residence. We constructed an experimental system based on this concept in our laboratory. We have studied the fundamental characteristics and the quality of the supplied power to the loads against several fluctuations or faults. Experimental results demonstrated that the system could supply high quality power to the loads against a sudden load variation and a voltage sag of the utility grid. Afterwards, we moved the experimental system to an experimental apartment house (NEXT21). We studied the quality of the supplying power by using practical power line, and confirmed that the system was also able to supply a power to home appliances stably.

  7. Characteristics of electrically evoked auditory brainstem responses in patients with cochlear nerve canal stenosis receiving cochlear implants.

    Science.gov (United States)

    Wang, Zhenxiao; Liu, Yun; Wang, Line; Shen, Xixi; Han, Shuguang; Wang, Wei; Gao, Fenqi; Liang, Wenqi; Peng, Kevin A

    2018-01-01

    To explore the characteristics of the electrically evoked auditory brainstem responses (EABR) in children with cochlear nerve canal stenosis (CNCs) following cochlear implantation (CI), and the EABR thresholds in children with stenotic versus normal cochlear nerve canals. Sixteen children with profound sensorineural hearing loss were included in this study: 8 with CNCs (CNCs group) and 8 with normal cochlear nerve canals (control group). All children underwent cochlear implantation with full insertion of all electrodes. EABR was performed 6 months postoperatively in both groups. The EABR extraction rate was 100% in children with normal cochlear nerve canals and only 50% in children with CNCs. EABR thresholds were significantly higher in children with CNCs of electrodes No. 11and 22 than in children with normal cochlear nerve canals (P  0.05 for all comparisons); while in the control group, the EABR threshold at electrode No 22 was lower than those at both electrodes No. 11 and 1 (P cochlear nerve canals vary according to the different locations of electrodes in the cochlea; while in children with CNCs, there was no significant difference among different electrode locations. The EABR thresholds in CNCs children were higher than those of children with normal cochlear nerve canals at electrode 11 and 22. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

    KAUST Repository

    Wang, Hsin Ping

    2016-03-02

    The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (V). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (J) and V). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced V by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

  9. Dependence of Internal Crystal Structures of InAs Nanowires on Electrical Characteristics of Field Effect Transistors

    Science.gov (United States)

    Han, Sangmoon; Choi, Ilgyu; Lee, Kwanjae; Lee, Cheul-Ro; Lee, Seoung-Ki; Hwang, Jeongwoo; Chung, Dong Chul; Kim, Jin Soo

    2018-02-01

    We report on the dependence of internal crystal structures on the electrical properties of a catalyst-free and undoped InAs nanowire (NW) formed on a Si(111) substrate by metal-organic chemical vapor deposition. Cross-sectional transmission electron microscopy images, obtained from four different positions of a single InAs NW, indicated that the wurtzite (WZ) structure with stacking faults was observed mostly in the bottom region of the NW. Vertically along the InAs NW, the amount of stacking faults decreased and a zinc-blende (ZB) structure was observed. At the top of the NW, the ZB structure was prominently observed. The resistance and resistivity of the top region of the undoped InAs NW with the ZB structure were measured to be 121.5 kΩ and 0.19 Ω cm, respectively, which are smaller than those of the bottom region with the WZ structure, i.e., 251.8 kΩ and 0.39 Ω cm, respectively. The reduction in the resistance of the top region of the NW is attributed to the improvement in the crystal quality and the change in the ZB crystal structure. For a field effect transistor with an undoped InAs NW channel, the drain current versus drain-source voltage characteristic curves under various negative gate-source voltages were successfully observed at room temperature.

  10. Current characteristic signals of aqueous solution transferring through microfluidic channel under non-continuous DC electric field

    Directory of Open Access Journals (Sweden)

    HongWei Ma

    2014-10-01

    Full Text Available The surface effect is becoming apparently significant as the miniaturization of fluidic devices. In the micro/nanochannel fluidics, the electrode surface effects have the same important influence on the current signals as the channel surface effects. In this paper, when aqueous solution are driven with non-continuous DC electric field force, the characteristics of current signals of the fluid transferring through microfluidic channel are systematically studied. Six modes of current signal are summarized, and some new significant phenomena are found, e.g. there exists a critical voltage at which the steady current value equals to zero; the absolute value of the steady current decreases at first, however, it increases with the external voltage greater than the critical voltage as the electrode area ratio of cathode and anode is 10 and 20; the critical voltage increases with the enhancing of electrode area ratio of cathode and anode and solution pH, while it decreases with the raising of ion concentration. Finally, the microscopic mechanism of the electrode surface charge effects is discussed preliminarily. The rules will be helpful for detecting and manipulating single biomolecules in the micro/nanofluidic chips and biosensors.

  11. Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity

    Science.gov (United States)

    Skromme, B. J.; Luckowski, E.; Moore, K.; Bhatnagar, M.; Weitzel, C. E.; Gehoski, T.; Ganser, D.

    2000-03-01

    Electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, have been measured on a large number of Ti, Ni, and Pt-based Schottky barrier diodes on 4H-SiC epilayers. Various nonideal behaviors are frequently observed, including ideality factors greater than one, anomalously low I-V barrier heights, and excess leakage currents at low forward bias and in reverse bias. The nonidealities are highly nonuniform across individual wafers and from wafer to wafer. We find a pronounced linear correlation between I-V barrier height and ideality factor for each metal, while C-V barrier heights remain constant. Electron beam induced current (EBIC) imaging strongly suggests that the nonidealities result from localized low barrier height patches. These patches are related to discrete crystal defects, which become visible as recombination centers in the EBIC images. Alternative explanations involving generation-recombination current, uniform interfacial layers, and effects related to the periphery are ruled out.

  12. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  13. Analysis of Household Characteristics Affecting the Demand of PLN’s Electricity. An Observation on Small Households in City of Medan, Indonesia

    Directory of Open Access Journals (Sweden)

    Tongam Sihol Nababan

    2015-06-01

    Full Text Available This study aimed to: (1 analyze the characteristics of households affecting energy consumption of simple household electricity, (2 analyze the probability of each of the factors affecting the energy consumption of small household electricity. The study was conducted in city of Medan in the period of January 2014 to September 2014 with samples of 143 small households as the customers of PLN (State Electricity Company Medan, which use the low voltage of electricity named TR-1/450VA. Data were analyzed by using the logistic regression model. The estimation results indicated that: (1 the higher the willingness to pay (WTP of households, the higher the tendency to consume electrical energy >100 KWh per month by 4.694 times than of the households with willingness to pay 100 KWh per month by 2.288 times than of the households residence in the suburbs, (3 increasingly unfavourable response to electrical quality, the higher the chance to consume electrical energy > 100 KWh per month.

  14. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  15. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    Science.gov (United States)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  16. Dielectric breakdown of γ-ray irradiated epoxy resin with alumina

    International Nuclear Information System (INIS)

    Ruike, Mitsuo; Fujita, Shigetaka; Noto, Fumitoshi.

    1995-01-01

    In this paper, we report on dielectric breakdown characteristics of alumina-filled epoxy resin irradiated by γ-ray under a needle-plane electrode geometry. For that purpose, we studied relationship between breakdown voltage and filler parts, relationship between breakdown voltage and irradiation dose, and an influence of thickness of epoxy resin on breakdown voltage. In order to investigate these results, we made further experiments on Glass Transition Temperature change before and after γ-ray irradiation using a DSC method, and filler parts dependence of tan δ and ε. We also investigated surface oxidization of epoxy resin from a wave analysis of spectra measured using FT-IR difference spectrometer. We observed surfaces of epoxy resin before and after γ-ray irradiation using a Scanning Electron Microscope (SEM). The results are as follows: 1) In the case of 2 mm thick, dielectric breakdown voltage of epoxy resin increases suddenly from 5 parts to 40 parts, and decreases slowly from 40 parts to 300 parts, under both positive and negative impulse voltage. 2) Dielectric breakdown voltage of epoxy resin with 2 mm thick begins to decrease at 2 MGy under positive impulse voltage, but it begins to decrease at 5 MGy under negative impulse voltage. (author)

  17. Enhanced electrical characteristics of a-Si thin films by hydrogen passivation with Nd3+:YAG laser treatment in underwater for photovoltaic applications

    Science.gov (United States)

    Vidhya, Y. Esther Blesso; Vasa, Nilesh J.

    2017-08-01

    Post deposition underwater treatment with a nanosecond Nd3+:YAG laser is proposed and demonstrated for the passivation of electrical defects in 400-1000 nm-thick a-Si thin films needed for solar cells. The proposed pulsed laser beam-overlap technique also allows simultaneous annealing and texturing. Atomic hydrogen, oxygen, and hydroxyl radicals activated by the breakdown of water by laser heating passivate the dangling bonds in the crystal grains, improving the solar cell performance. The presence of hydrogen observed after water annealing using X-ray photo electron spectroscopy (XPS), Raman spectroscopy, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) shows that the passivation improvement is caused by diffusion of atomic hydrogen. After underwater annealing, relative improvement in the life time of minority carriers was measured to be approximately 13% and the efficiency of n-aSi/p-cSi solar cells is found to be increased ( 2 to 3%) when compared to that in air.

  18. The work breakdown structure in software project management

    Science.gov (United States)

    Tausworthe, R. C.

    1980-01-01

    A work breakdown structure (WBS) is defined as an enumeration of all work activities in hierarchic refinement of detail which organizes work to be done into short manageable tasks with quantifiable inputs, outputs, schedules, and assigned responsibilities. Some of the characteristics and benefits of the WBS are reviewed, and ways in which these can be developed and applied in software implementation projects are discussed. Although the material is oriented principally toward new-software production tasks, many of the concepts are applicable to continuing maintenance and operations tasks.

  19. Study of laser-induced breakdown spectroscopy of gases

    Science.gov (United States)

    Hanafi, M.; Omar, M. M.; Gamal, Y. E. E.-D.

    2000-01-01

    A study of the spectral emission in laser-induced breakdown spectroscopy of gases was performed. The measurements were carried out on helium, argon, nitrogen, and air irradiated with ruby laser radiation at a wavelength of 694.3 nm and a pulse width of 40 ns. The study aimed to evaluate the spectral emission characteristics of these gases as well as the parameters of their formed plasmas, namely: electron temperature and electron density. The temporal behaviour of the spectral emission was also analysed for the different observed emission mechanisms (continuum, atomic, and ionic). Moreover, the effect of gas pressure on the spectral emission intensity is reported in this work.

  20. Characteristics of a prototype matrix of Silicon PhotoMultipliers (SiPM)

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N; Barrillon, P; Bazin, C; Bondil-Blin, S; Chaumat, V; Taille, C De La; Puill, V; Vagnucci, J F [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N; Bisogni, M G; Guerra, A Del; Llosa, G; Marcatili, S [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Boscardin, M; Melchiorri, M; Piemonte, C; Tarolli, A; Zorzi, N [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Collazuol, G [Scuola Normale Superiore (SNS), 56127 Pisa (Italy)], E-mail: dinu@lal.in2p3.fr

    2009-03-15

    This work reports on the electrical (static and dynamic) as well as on the optical characteristics of a prototype matrix of Silicon Photomultipliers (SiPM). The prototype matrix consists of 4 x 4 SiPM's on the same substrat fabricated at FBK-irst (Trento, Italy). Each SiPM of the matrix has an area of 1 x 1mm{sup 2} and it is composed of 625 microcells connected in parallel. Each microcell of the SiPM is a GM-APD (n{sup +}/p junction on P+ substrate) with an area of 40 x 40 {mu}m{sup 2} connected in series with its integrated polysilicon quenching resistance. The static characteristics as breakdown voltage, quenching resistance, post-breakdown dark current as well as the dynamic characteristics as gain and dark count rate have been analysed. The photon detection efficiency as a function of wavelength and operation voltage has been also estimated.

  1. Improving breakdown voltage and self-heating effect for SiC LDMOS with double L-shaped buried oxide layers

    Science.gov (United States)

    Bao, Meng-tian; Wang, Ying

    2017-02-01

    In this paper, a SiC LDMOS with double L-shaped buried oxide layers (DL-SiC LDMOS) is investigated and simulated. The DL-SiC LDMOS consists of two L-shaped buried oxide layers and two SiC windows. Using 2-D numerical simulation software, Atlas, Silvaco TCAD, the breakdown voltage, and the self-heating effect are discussed. The double-L shaped buried oxide layers and SiC windows in the active area can introduce an additional electric field peak and make the electric field distribution more uniform in the drift region. In addition, the SiC windows, which connect the active area to the substrate, can facilitate heat dissipation and reduce the maximum lattice temperature of the device. Compared with the BODS structure, the DL-SiC LDMOS and BODS structures have the same device parameters, except of the buried oxide layers. The simulation results of DL-SiC LDMOS exhibits outstanding characteristics including an increase of the breakdown voltage by 32.6% to 1220 V, and a low maximum lattice temperature (535 K) at room temperature.

  2. On the interpretation of vortex breakdown

    Science.gov (United States)

    Keller, Jakob J.

    1995-07-01

    Studying the numerous papers that have appeared in the recent past that address ``vortex breakdown,'' it may be difficult for a reader to avoid getting rather confused. It appears that various authors or even schools have conflicting views on the correct interpretation of the physics of vortex breakdown. Following the investigation by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], in this paper, axisymmetric forms of vortex breakdown, as originally defined by Benjamin [J. Fluid Mech. 14, 593 (1962)] are addressed. It is argued that at least some of the previous investigations have been concerned with different aspects of the same phenomena and may, in fact, not disagree. One of the most fundamental questions in this context concerns the properties of the distributions of total head and circulation on the downstream side of vortex breakdown transitions. Some previous investigators have suggested that the downstream flow would exhibit properties that are similar to those of a wake. For this reason the phenomenon of vortex breakdown is investigated for a class of distributions of total head and circulation in the domain of flow reversal that is substantially more general than in previous investigations. Finally, a variety of problems are discussed that are crucial for a more complete theory of vortex breakdown, but have not yet been solved. It is shown that for the typically small flow speeds in a domain of flow reversal produced by a vortex breakdown wave, the departures of both vortex core size and swirl number, with respect to the case of uniform total pressure in the zone of flow reversal, as discussed by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], remain surprisingly small. As a consequence, the possible appearance of large departures from a Kirchhoff-type wake must be due to viscous diffusion at low and due to shear-layer instabilities at high Reynolds numbers.

  3. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    Science.gov (United States)

    1976-10-01

    monitor for this work was Mr. James. H. Gwaltney, NWEP0. .HI if! HUM o D •*• ’.’••’«« :y Km P\\ r D D C TWEEEE-TGIE "’ NOV 12 1976 rat - D...initiation. This conclusion is further strengthened by recent Russian work that reported experiments on pressed pellets of copper and thallium azide

  4. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    Science.gov (United States)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  5. Enhancement of laser-induced optical breakdown using metal/dendrimer nanocomposites

    International Nuclear Information System (INIS)

    Ye Jingyong; Balogh, Lajos; Norris, Theodore B.

    2002-01-01

    We demonstrate that dendrimer nanocomposites (DNC) can be used to remarkably change the laser-induced optical breakdown (LIOB) threshold of a material, owing to a large enhancement of the local electric field. We have implemented LIOB using femtosecond laser pulses in a gold/dendrimer hybrid nanocomposite as a model system. Third-harmonic generation measurements have been employed as a sensitive way for monitoring the LIOB in situ and in real time. The observed statistical behavior of the breakdown process is attributed to a laser-driven aggregation of individual DNC particles. The breakdown threshold value of the DNC has been found to be up to two orders of magnitude lower than that of pure dendrimers or normal tissues

  6. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  7. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  8. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    Science.gov (United States)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  9. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    Science.gov (United States)

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  10. A study on double hollow electrode discharge and the enhanced performance for electric discharge lamps

    International Nuclear Information System (INIS)

    Lee, Tae Il; Park, Ki Wan; Hwang, Hyeon Seok; Choi, Jai Hyuk; Baik, Hong Koo

    2006-01-01

    We invented a double hollow electrode lamp (DHEL), applied an electron oscillation effect and measured its I-V curve in dc driving to evaluate the electrical characteristics. The volume discharge of this lamp showed an abnormal glow characteristic. Based on these results, we made a 9-channel flat panel lamp and confirmed the possibility of a parallel operation. In order to evaluate the enhanced performance of the DHEL, we compared it with a single hollow triode lamp and a diode lamp (DL). We measured the breakdown voltage, tube current and IR intensity of these three types of lamps. The DHEL showed the lowest breakdown voltage among the three lamps and a higher tube current than that of the DL. The IR intensity of the DHEL was more efficient than that of the DL; the enhanced quantity of efficiency was 11.8% at 0.922 W

  11. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  12. Quantitative Determination of the Breakdown Field of Air from Van de Graaff Generator Discharge

    Science.gov (United States)

    Beach, John; Chartrand, Bridget; Gallagher, Hugh

    2016-03-01

    The Van de Graaff generator (VG) is ubiquitous in electrostatic demonstrations because of the large static charge and dramatic sparks produced. We have developed a novel technique for determining the breakdown field of air using the VG. When a spark occurs, the force of attraction between the VG and a discharge sphere suspended above it is measured by a Pasco force sensor. At this time the charge is not symmetric but pulled towards the near side of the spheres by mutual attraction. In order to interpret the measured force in terms of the breakdown field, an accurate model of the charge distribution is needed. Using the method of images for a spherical conductor in an iterative fashion we can provide this model. The electric field in the vicinity of the spheres is then calculated from the charge distribution and its maximum value is the breakdown field. In preliminary work, we determined the breakdown field to be 3.1x106 N/C at 24.9 C and 18% relative humidity. We will report our most recent determination of the breakdown field using this method and discuss the validity of the results in terms of accepted values, experimental limitations and sensitivity to the charge distribution model.

  13. Methods for the improvement of electrical insulation in vacuum in the presence of transverse magnetic field

    International Nuclear Information System (INIS)

    Hara, Masanori; Suehiro, Junya; Shigematsu, Hidetaka; Yano, Shinsuke

    1989-01-01

    At present in electrical energy field, aiming at the development and operation of new energy sources for the future, the research on nuclear fusion reactors, MHD electricity generation, and electromagnetic energy storage is in progress, and in ordeer to form strong magnetic fields over wide space, large superconducting magnets are expected to be employed. In these magnets, when exciting current changes, voltage is induced internally, therefore, the operation sequence is deeply related to coil insulation, in pulse operation, coil insulation is one of the important factors determining the rating, and the withstand voltage design against the abnormal voltage at the time of quenching is related to the protection of coils. Therefore, the electrical insulation design of large superconducting magnets is an important subject of study. Their electrical insulation system is the compound system of liquid helium, gaseous helium, vacuum and solid insulators. When a cross magnetic field is applied, insulation breakdown characteristics are aggravated. The mechanism of vacuum insulation breakdown and characteristics, the method of improving withstand voltage using spacers or the electrodes for controlling electric field and so on are reported. (K.I.)

  14. Impact of Machine Breakdowns on Productivity

    Directory of Open Access Journals (Sweden)

    Anwaruddin Tanwari

    2011-10-01

    Full Text Available This paper reports the machine breakdowns and their impact on the total productivity for the FMCGs (Fast Moving Consumer Goods industry because higher productivity rate is important factor on which the customer services largely depend in this competitive business world. This paper also suggests that the machine breakdowns and other related problems within the plant are due to improper care, keeping the plant operative for twenty four hours a day, seven days a week without any break and lack of management\\'s concentration towards these issues. These break-downs results in un-timely closure of the plant and very poor production performance is achieved in the plant that affects the service level at great level. Realising the importance of maintenance in improving productivity and service, an attempt has been made in this paper to study the scope of maintenance with the help of a case study.

  15. Breakdown and tracking properties of rubber materials for wind turbine blades

    DEFF Research Database (Denmark)

    Garolera, Anna Candela; Holboell, Joachim; Henriksen, Mogens

    2012-01-01

    The use of rubber materials in wind turbine blades, for example in controllable trailing edge flaps, requires research on their behavior under heavy exposure to electric fields and electrical discharges. Since the complex construction of blades usually involves several and often inhomogeneous...... materials, the testing methods selected should reflect the realistic conditions. In this paper the applicability of rubber materials to thunderstorm environments is studied by performing electric breakdown tests and tracking resistance tests on selected samples, and the findings are related to the possible...

  16. The electrical conductivity of the flame front, as a characteristic of the rate of heat release and composition of gas fuel in SI engines

    Science.gov (United States)

    Smolenskaya, N. M.

    2018-01-01

    The paper considers the possibility of using the electrical conductivity of the flame front as a characteristic of the rate of heat release and composition of gas fuel in a SI engines. Based on the analysis of the experimental data, the dependences of the parameters of the electrical conductivity of the flame front on the rate of heat release are obtained with the variation of the chemical activity of the gas fuel in a SI engines. The influence of the composition of the mixture and the effect of the amount of added hydrogen on the increase in the rate of heat release and, consequently, on the increase in the electrical conductivity of the flame. The obtained dependences will allow to increase the efficiency and reduce the toxicity of the SI engines operation during the regulation of the working process by ionization sensors.

  17. Karakteristik Preliminary Breakdown Petir Downward Leader Sebelum Sambaran Negatif Pertama

    Directory of Open Access Journals (Sweden)

    Zulka Hendri

    2014-03-01

    Full Text Available A hundred lightning flash was observed in Padang city, West Sumatera at January until Mei 2013. The lightning that use to analyze is proceeding with preliminary breakdown pulse (PBP train and followed by first negative return stroke (RS. Fast antenna capacitive was used to record electric field that produced of lightning flash. PBP-RS separation and pre-return stroke duration was used to analyze. Arithmetic and geometric mean of PPB-RS separation is 50,62ms and 31,73ms respectively. Arithmetic and geometric mean of pre-return stroke duration is 54,44ms and 33,92ms respectively. We have find two type of preliminary breakdown pulse train are; (1 the pulse train that dominant positive pulse at first half cycle (2 the pulse train that dominant negative pulse at first half cycle. The first type of pulse train have the PPB-RS separation and pre-return stroke duration that longer than the second type. The place that near with equator have PPB-RS separation and pre-return stroke duration that longer than the place far from equator (this conclusion we get from compare the result of our research with the result that produce from the other previous researchers.

  18. Time domain simulations of preliminary breakdown pulses in natural lightning.

    Science.gov (United States)

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  19. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  20. NASA Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    Terrell, Stefanie M.

    2018-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements.