WorldWideScience

Sample records for electric transmission towers

  1. A modular restoration tower for electric power line transmission

    Energy Technology Data Exchange (ETDEWEB)

    Nicolazzi, L.C.; Pereira, J.C.; Leonel, C.E.L.; Rocha, G.B.; Bianchezzi, V.; Mendes, F. [Universidade Federal Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], Emails: lauro@grante.ufsc.br, jcarlos@grante.ufsc.br; Luz, R.L. [ELETROSUL Centrais Eletricas S.A., Florianopolis, SC (Brazil)], Email: rluz@eletrosul.gov.br

    2009-07-01

    The main target of this R and D project is to develop an restoration tower for electric energy lines transmission. Whereas these towers should present the main features like transport facility, easiest assembling associated with a low cost of manufacture, it was applied the single-column tower concepts supported by stays, modularized, framed and articulated at the base. The concepts used for this development was a design methodology. From the different definition situations of load, numerical models have been developed focusing the design to the best of structural element arrangements of its modules. Then, tests were performed in laboratory to determine the module structural performance for different work load situations. These tests served to identify inconsistencies in the numerical models and proposed adjustments in its design to improve its performance on the strength and stability. (author)

  2. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    International Nuclear Information System (INIS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-01-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  3. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  4. Transmission Tower Environment Monitoring Using UAV

    International Nuclear Information System (INIS)

    Redzuwan, Redia Mohd; Din, Norashidah Md; Baharuddin, Mohd Zafri; Mustafa, Intan Shafinaz; Omar, Rohayu Che'

    2013-01-01

    Power utility engineers used to conduct ground survey to collect topographic data. Therefore, they can get detailed and accurate information, but these techniques take a lot of labors and expenses, and spending times for the surveying. An attractive solution to the ground survey is using images taken using Unmanned Aerial Vehicle (UAV). Images captured from UAV can be collected quickly and efficiently over the same area covered in the land survey, in a fraction of the time. The purpose of this research is to mosaic the large numbers of spectral images together into a region wide panoramic image which allows experts to analyze the data for transmission tower monitoring purposes.

  5. STUDY ON PERFORMANCE OF 21M 132kV TRANSMISSION TOWER WITH MEDIUM WIND INTENSITY

    OpenAIRE

    V. LAKSHMI; A. RAJAGOPALA RAO

    2012-01-01

    Electric Power is today playing an increasingly important role in the life of the community. In the electric power system the production and transmission of power are two predominant factors. For the purpose of transmission of electricity towers are the main medium with some wires at required distances and altitudes. The remotehydroelectric power plants have given rise to the need for extra high voltage. Prior to 1950, 150 kV electric transmission lines were considered and still higher voltag...

  6. Study on Tower Models for EHV Transmission Line

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available Lightning outage accident is one of the main factors that threat seriously the safe and reliable operation of power system. So it is very important to establish reasonable transmission tower model and evaluate the impulse response characteristic of lightning wave traveling on the transmission tower properly for determining reliable lightning protection performance. With the help of Electromagnetic Transient Program (EMTP, six 500kV tower models are built. Aiming at one line to one transformer operating mode of 500kV substation, the intruding wave overvoltage under different tower models is calculated. The effect of tower model on intruding overvoltage has been studied. The results show that different tower models can result in great differences to the calculation results. Hence, reasonable selection of the tower model in the calculation of back- strike intruding wave is very important.

  7. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  8. Wildlife and electric power transmission

    Science.gov (United States)

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  9. Sensor Placement For Structural Monitoring of Transmission Line Towers

    Directory of Open Access Journals (Sweden)

    Benny eRaphael

    2015-11-01

    Full Text Available Transmission line towers are usually analyzed using linear elastic idealized truss models. Due to the assumptions used in the analysis, there are discrepancies between the actual results obtained from full scale prototype testing and the analytical results. Therefore, design engineers are interested in assessing the actual stress levels in transmission line towers. Since it is costly to place sensors on every member of a tower structure, the best locations for sensors need to be carefully selected. This study evaluates a methodology for sensor placement in transmission line towers. The objective is to find optimal locations for sensors such that the real behavior of the structure can be explained from measurements. The methodology is based on the concepts of entropy and model falsification. Sensor locations are selected based on maximum entropy such that there is maximum separation between model instances that represent different possible combinations of parameter values which have uncertainties. The performance of the proposed algorithm is compared to that of an intuitive method in which sensor locations are selected where the forces are maximum. A typical 220 kV transmission tower is taken as case study in this paper. It is shown that the intuitive method results in much higher number of non-separable models compared to the optimal sensor placement algorithm. Thus the intuitive method results in poor identification of the system.

  10. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  11. Electric transmission technology

    International Nuclear Information System (INIS)

    Shah, K.R.

    1990-01-01

    Electric transmission technology has matured and can transmit bulk power more reliably and economically than the technology 10 years ago.In 1882, Marcel Depres transmitted 15 kW electric power at 2 kV, using a constant direct current; present transmission voltages have risen to ± 600 kV direct current (DC) and 765 kV alternating current (AC), and it is now possible to transmit bulk electric power at voltages as high as ± 1000 kV DC and 1500 kV AC. Affordable computer systems are now available to optimize transmission reliably. New materials have reduced the bulk of insulation for lines and equipment. New conducting materials and configurations have reduced losses in transmission. Advances in line structures and conductor motion, understanding of flashover characteristics of insulators and air-gaps and electrical performance of lines have resulted in more compact urban transmission lines. (author). 15 refs., 7 tabs., 11 figs

  12. Transmission tower classification based on landslide risk map generated by Geographical Information System (GIS) at Cameron Highlands

    International Nuclear Information System (INIS)

    Hazwani N K; Rohayu C O; Fathoni U; Baharuddin, Inz

    2013-01-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  13. Transmission tower classification based on landslide risk Map generated by Geographical Information System (GIS) at Cameron Highlands

    International Nuclear Information System (INIS)

    Hazwani N K; Rohayu C O; Fathoni U; Baharuddin, I N Z; Azwin Z A

    2013-01-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  14. Operational electricity transmission rates

    International Nuclear Information System (INIS)

    Roggen, M.

    1997-01-01

    In a liberalized electricity market both the consumers and the producers of electricity must pay for the use of the power transmission network. Thus, the net manager has unlimited options to realize efficiency improvements. A neutral and transparent management of the power grid is necessary to avoid disturbance of the market. KEMA Consulting translated abstract ideas and strategic advices to operational concepts in its report 'A framework for the determination of tariffs of the transport in the Dutch electricity sector'

  15. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    Science.gov (United States)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  16. Experimental evaluation of the wind effects on an operating power transmission tower

    Directory of Open Access Journals (Sweden)

    Hermes Carvalho

    Full Text Available Abstract Static and dynamic effects on power transmission towers can be evaluated by methodologies available in codes, which suggest the use of linear static analysis. By using numerical simulations, it is possible to observe the strong influence of the geometric nonlinear behavior of transmission cables. Dynamic effects also strongly influence this behavior, with the possibility of resonance between the cables and the structure, but up to the moment, the existent analysis procedures have not been completely validated on an experimental basis. In order to validate a complete analysis methodology, experimental procedures are proposed for a suspension tower of a 138kV transmission line in use. A tridimensional anemometer was installed on this structure in order to measure the values and directions of wind speeds. Simultaneous strain values were collected on the main elements of the tower through optical extensometers. Optical sensor technology with Fiber Bragg Gratings was used, due to the characteristic of immunity to the electromagnetic field occasioned by high electric currents. The string swing angle was evaluated through a high-resolution camera and a tridimensional accelerometer. With this instrumentation, it is possible to create a complete database that correlates wind speeds with the responses of the structural set. At the moment, 5 months of data have been collected and the instrumentation is in the final testing phase and synchronized. After this step, real-time measurements will be performed.

  17. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    International Nuclear Information System (INIS)

    Omar, R C; Ismail, A; Khalid, N H N; Din, N M; Hussain, H; Jamaludin, M Z; Abdullah, F; Arazad, A Z; Yusop, H

    2013-01-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300–500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  18. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  19. Performance Evaluation on Transmission Tower-Line System with Passive Friction Dampers Subjected to Wind Excitations

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-01-01

    Full Text Available The vibration control and performance evaluation on a transmission-tower line system by using friction dampers subjected to wind excitations are carried out in this study. The three-dimensional finite element (FE model of a transmission tower is firstly constructed. A two-dimensional lumped mass model of a transmission tower is developed for dynamic analysis. The analytical model of transmission tower-line system is proposed by taking the dynamic interaction between the tower and the transmission lines into consideration. The mechanical model of passive friction damper is presented by involving the effects of damper axial stiffness. The equation of motion of the transmission tower-line system incorporated with the friction dampers disturbed by wind excitations is established. A real transmission tower-line system is taken as an example to examine the feasibility and reliability of the proposed control approach. An extensive parameter study is carried out to find the optimal parameters of friction damper and to assess the effects of slipping force axial stiffness and hysteresis loop on control performance. The work on an example structure indicates that the application of friction dampers with optimal parameters could significantly reduce wind-induced responses of the transmission tower-line system.

  20. Optimization of Structural Design for Sustainable Construction of Transmission Tower Based on Topographical Algorithm

    International Nuclear Information System (INIS)

    Muda, Zakaria Che; Thiruchelvam, Sivadass; Mustapha, Kamal Nasharuddin; Omar, Rohayu Che; Usman, Fathoni; Alam, Md Ashrafu

    2013-01-01

    Optimization of transmission tower structures is traditionally based on either optimization of members sizes with fixed topographical shape or based on structural analysis modelling strategies without taking cognizance of fabrication and constructability issue facing the contractors . This paper look into an integrated optimum design approach strategies whereby size, shape and topology are combined together with the fabrication issues in the construction of the transmission tower. The topographical algorithm is based on changing the inclination degree of the legs of the tower at first with optimum individual members sizing and later rationalized member sizes are performed through member groupings for the ease fabrication and construction of the transmission tower. The optimum weight using topographical algorithm obtained for the transmission tower is 10,924 kg for singular members and 18,430 kg for element grouping at 10° inclination angle.

  1. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  2. The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar

    Science.gov (United States)

    Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.

    2018-04-01

    The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.

  3. AN APPLICATION FOR ELECTRICAL PRODUCTION WITH SOLAR TOWER SYSTEM

    Directory of Open Access Journals (Sweden)

    Reşat SELBAŞ

    2003-02-01

    Full Text Available The requirement of electric energy rises with increasing of the population and faster improvement demands. Energy necessity generally is provided by using fossil based fuel sources. In order to supply energy requirements, today, using alternative sources became necessary because of the problems such as decreasing of available fossil fuel sources and environment pollution from this fuel. The solar energy which has a wide range of application potential is the most hopeful and unlimited energy source without environment pollution in electric energy production. In this paper, the electric production methods from solar energy are studied and the most suitable method for solar energy plant is tried to find out. The selected method, known as Solar Tower in literature is an electric production method. In this study, technical and cost analysis of an application using this method are carried out.

  4. Kansas Electric Transmission Lines

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital representation of the EletcircTransmission lines for the State of Kansas as maintained by the Kansas Corporation Commission. Data is...

  5. Prices on electricity and transmission of electricity

    International Nuclear Information System (INIS)

    2003-01-01

    This publication contains data on prices of electric energy and transmission of electricity valid from 1 January 2003. The purpose is to illustrate the price changes on the electricity market in terms of prices for different customer categories. All companies holding network concessions for areas and all companies trading in electricity are included in this report, which is produced on an annual basis.The prices for transmission services 1 January 2003 were on the whole unchanged compared to the preceding year. For households the mean annual cost was SEK 882 for flats, SEK 4 335 for one- or two-family houses with electric heating and SEK 1 925 for those without electric heating. Electricity prices rose considerably on 1 January 2003 compared to the year before. The mean price per kWh for households with standard agreements was SEK 0.519 for deliveries to flats, SEK 0.447 for one- or two-family houses with electric heating and SEK 0.471 without electric heating. As a result, the mean annual cost increased by SEK 326 for flats, SEK 3 012 for one- or two-family houses with electric heating, and by SEK 774 for those houses without electric heating. The high costs of electricity may be explained in part by the development on the Nordic Power Exchange (Nord Pool), where the spot price increased by about 290 per cent during 2002 (1 USD is about 8 SEK)

  6. Prices on electricity and transmission of electricity

    International Nuclear Information System (INIS)

    2002-01-01

    This publication contains data on prices of electric energy and transmission of electricity valid on 1 January 2002. The purpose is to illustrate the price changes on the electricity market in terms of prices for different customer categories. All companies holding network concessions for areas and all companies trading in electricity are included in this report, which is produced on an annual basis. The prices for transmission services 1 January 2002 were on the whole unchanged compared to the preceding year. For households the mean annual cost was SEK 856 for flats, SEK 4,194 one- or two-family houses with electric heating and SEK 1,881 without electric heating. (1 SEK ∼ 0.1 USD). Electricity prices rose considerably on 1 January 2002 compared to the year before. The mean price per kWh for households according to standard agreement was SEK 0.356 for deliveries to flats, SEK 0.296 for apartments in one- or two-family houses with electric heating and SEK 0.316 without electric heating. That means that the mean annual cost increased by SEK 171 for flats. For one- or two-family houses with electric heating, costs increased by SEK 1,424, and by SEK 379 for those houses without electric heating. The high costs of electricity may be explained in part by the development on the Nordic Power Exchange (Nord Pool), where the spot price increased by 75 per cent during 2001. The price development for household customers during 1996-2002 is shown in a diagram

  7. Wind-induced transmission tower foundation loads. A field study-design code comparison

    Energy Technology Data Exchange (ETDEWEB)

    Savory, E. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ont. (Canada); Parke, G.A.R.; Disney, P.; Toy, N. [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-06-15

    This paper presents a comparison between the wind-induced foundation loads measured on a type L6 transmission line tower during a field study in the UK and those computed using the UK Code of Practice for lattice tower and transmission line design (BS8100). In this work, the Code provisions have been generalised to give the wind-induced strain in each of the tower legs immediately above the foundation as a function of wind direction and wind speed at the top of the tower. The complete data set from the field monitoring has been decomposed to provide a similar formulation for comparison purposes. The analysis shows excellent agreement between the Code calculations and the measured results, within the overall accuracy of the field data. This indicates that, at least for the tower type examined here, the existing design Code provides a reliable transformation of the local wind speed at the top of the tower into tension and compression loads on the foundations. (author)

  8. Modified corrosion protection coatings for Concrete tower of Transmission line

    Science.gov (United States)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  9. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    Science.gov (United States)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-02-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  10. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    Science.gov (United States)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-06-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  11. Transmission and distribution electrical engineering

    CERN Document Server

    Bayliss, Colin

    2003-01-01

    This comprehensive treatment of the theory and practice encountered in the installation and design of transmission and distribution systems for electrical power has been updated and revised to provide the project engineer with all the latest, relevant information to design and specify the correct system for a particular application.Thoroughly updated and revised to include latest developmentsLearn from and Author with extensive experience in managing international projectsFind out the reasoning and implicatons behind the different specifications and methods

  12. Topics on Electricity Transmission Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndal, Mette

    2000-02-01

    Within the last decade we have experienced deregulation of several industries, such as airlines, telecommunications and the electric utility industry, the last-mentioned being the focus of this work. Both the telecommunications and the electricity sector depend on network facilities, some of which are still considered as natural monopolies. In these industries, open network access is regarded as crucial in order to achieve the gains from increased competition, and transmission tariffs are important in implementing this. Based on the Energy Act that was introduced in 1991, Norway was among the first countries to restructure its electricity sector. On the supply side there are a large number of competing firms, almost exclusively hydro plants, with a combined capacity of about 23000 MW, producing 105-125 TWh per year, depending on the availability of water. Hydro plants are characterized by low variable costs of operation, however since water may be stored in dams, water has an opportunity cost, generally known as the water value, which is the shadow price of water when solving the generator's inter temporal profit maximization problem. Water values are the main factor of the producers' short run marginal cost. Total consumption amounts to 112-117 TWh a year, and consumers, even households, may choose their electricity supplier independent of the local distributor to which the customer is connected. In fact, approximately 10% of the households have actually changed supplier. The web-site www.konkurransetilsynet.no indicates available contracts, and www.dinside.no provides an ''energy-calculator'' where one can check whether it is profitable to switch supplier. If a customer buys energy from a remote supplier, the local distributor only provides transportation facilities for the energy and is compensated accordingly. Transmission and distribution have remained monopolized and regulated by the Norwegian Water Resources and Energy

  13. Topics in Electricity Transmission Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndal, Mette

    2000-02-01

    Within the last decade we have experienced deregulation of several industries, such as airlines, telecommunications and the electric utility industry, the last-mentioned being the focus of this work. Both the telecommunications and the electricity sector depend on network facilities, some of which are still considered as natural monopolies. In these industries, open network access is regarded as crucial in order to achieve the gains from increased competition, and transmission tariffs are important in implementing this. Based on the Energy Act that was introduced in 1991, Norway was among the first countries to restructure its electricity sector. On the supply side there are a large number of competing firms, almost exclusively hydro plants, with a combined capacity of about 23000 MW, producing 105-125 TWh per year, depending on the availability of water. Hydro plants are characterized by low variable costs of operation, however since water may be stored in dams, water has an opportunity cost, generally known as the water value, which is the shadow price of water when solving the generator's inter temporal profit maximization problem. Water values are the main factor of the producers' short run marginal cost. Total consumption amounts to 112-117 TWh a year, and consumers, even households, may choose their electricity supplier independent of the local distributor to which the customer is connected. In fact, approximately 10% of the households have actually changed supplier. The web-site www.konkurransetilsynet.no indicates available contracts, and www.dinside.no provides an ''energy-calculator'' where one can check whether it is profitable to switch supplier. If a customer buys energy from a remote supplier, the local distributor only provides transportation facilities for the energy and is compensated accordingly. Transmission and distribution have remained monopolized and regulated by the Norwegian Water Resources and Energy

  14. Topics on Electricity Transmission Pricing

    International Nuclear Information System (INIS)

    Bjoerndal, Mette

    2000-02-01

    Within the last decade we have experienced deregulation of several industries, such as airlines, telecommunications and the electric utility industry, the last-mentioned being the focus of this work. Both the telecommunications and the electricity sector depend on network facilities, some of which are still considered as natural monopolies. In these industries, open network access is regarded as crucial in order to achieve the gains from increased competition, and transmission tariffs are important in implementing this. Based on the Energy Act that was introduced in 1991, Norway was among the first countries to restructure its electricity sector. On the supply side there are a large number of competing firms, almost exclusively hydro plants, with a combined capacity of about 23000 MW, producing 105-125 TWh per year, depending on the availability of water. Hydro plants are characterized by low variable costs of operation, however since water may be stored in dams, water has an opportunity cost, generally known as the water value, which is the shadow price of water when solving the generator's inter temporal profit maximization problem. Water values are the main factor of the producers' short run marginal cost. Total consumption amounts to 112-117 TWh a year, and consumers, even households, may choose their electricity supplier independent of the local distributor to which the customer is connected. In fact, approximately 10% of the households have actually changed supplier. The web-site www.konkurransetilsynet.no indicates available contracts, and www.dinside.no provides an ''energy-calculator'' where one can check whether it is profitable to switch supplier. If a customer buys energy from a remote supplier, the local distributor only provides transportation facilities for the energy and is compensated accordingly. Transmission and distribution have remained monopolized and regulated by the Norwegian Water Resources and Energy Directorate (NVE). To prevent cross

  15. Analysis of a back flashover across insulator strings on a 115 kV transmission line tower by PSCAD

    Directory of Open Access Journals (Sweden)

    Worakit Anekthanasuwan

    2015-09-01

    Full Text Available Lightning striking on a transmission tower induces high ground potential rise and high voltage at tower arms in which potential is normally at ground level, and subsequently causes overvoltage across an insulator string. If this overvoltage is higher than the withstanding voltage of the insulator string according to the v-t (voltage-time curve, back flashover phenomena will occur and this event may cause outage. The main objective of this paper is to study the factors influencing the back flashover phenomena. The computer program PSCAD/EMTDC (Power System Computer Aided Design/Electromagnetic Transients including DC is used to simulate lightning striking on a transmission tower 115kV. Lightning current, transmission towers, ground resistance, insulator strings and back flashover phenomena are modeled. Main simulations are lightning striking on different towers, different soil resistivity, different lightning current magnitudes and wave shapes, different locations, and different phase angles of source voltage. Simulation results show that the higher tower encounters higher induced voltage. A back flashover occurs at the top tower arm easier than at the middle and lower arms. The higher soil resistivity induces higher voltage. The larger lightning current magnitude impacts on higher induced voltage. The longer rise time of lightning current generates lower induced voltage. Lightning strikes directly on tower generate higher voltage than that of striking on overhead ground wires.

  16. Electricity transmission pricing and technology

    International Nuclear Information System (INIS)

    Einhorn, M.; Siddiqi, R.

    1996-01-01

    The electric utility industry and its stake holders in the United States appear to be at a critical juncture in time. Powerful forces of global proportions are propelling the industry instinctively and in a secular fashion towards restructuring. That the industry will change is a fait accomplii. The nature and timing of the change is still a matter of intense debate, however. Because of the evolution of the industry into its present-day form, i.e. regulated local monopolies in their designated franchise service territories, the relative roles and expectations of various institutions would have to change to conform to the new state in the future. In either encouraging, or allowing this change to happen, society is essentially saying that future societal welfare would be better served by the changed structure contemplated. What that assumption translates into in more direct terms is that creation of future wealth would be better accomplished through redistribution of wealth today. Thoughtful individuals recognize the enormous responsibility placed upon the various entities empowered with jurisdiction over the timing and nature of the structural change. They are trying hard to bring analytical rigor to bear on the debate. One very critical element of this debate on restructuring is the issue of the treatment of transmission. The issue has been variously labeled transmission access, or pricing. Volumes have been written and spoken on this topic. We felt that there was a pressing need to assemble a volume which would serve as a one-stop source for varied viewpoints and comprehensive coverage of the subject, both technical and economic. 58 figs., 23 tabs., 103 refs

  17. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This study presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...

  18. Economy of electric power transmission

    International Nuclear Information System (INIS)

    Manzoni, G.; Delfanti, M.

    2008-01-01

    An analysis is presented of the impact of H V and Ehv transmission costs on the final value of the kWh supplied, with reference both to transmission systems of the European type and to long distance point-to-point transmission links. The analysis is extended to A C transmission by underground cables and to Hvdc submarine and aerial links. In the European power system, the impact of transmission costs results to be usually modest, but it may become important in the case of network congestions [it

  19. Legionella longbeachae detected in an industrial cooling tower linked to a legionellosis outbreak, New Zealand, 2015; possible waterborne transmission?

    Science.gov (United States)

    Thornley, C N; Harte, D J; Weir, R P; Allen, L J; Knightbridge, K J; Wood, P R T

    2017-08-01

    A legionellosis outbreak at an industrial site was investigated to identify and control the source. Cases were identified from disease notifications, workplace illness records, and from clinicians. Cases were interviewed for symptoms and risk factors and tested for legionellosis. Implicated environmental sources were sampled and tested for legionella. We identified six cases with Legionnaires' disease and seven with Pontiac fever; all had been exposed to aerosols from the cooling towers on the site. Nine cases had evidence of infection with either Legionella pneumophila serogroup (sg) 1 or Legionella longbeachae sg1; these organisms were also isolated from the cooling towers. There was 100% DNA sequence homology between cooling tower and clinical isolates of L. pneumophila sg1 using sequence-based typing analysis; no clinical L. longbeachae isolates were available to compare with environmental isolates. Routine monitoring of the towers prior to the outbreak failed to detect any legionella. Data from this outbreak indicate that L. pneumophila sg1 transmission occurred from the cooling towers; in addition, L. longbeachae transmission was suggested but remains unproven. L. longbeachae detection in cooling towers has not been previously reported in association with legionellosis outbreaks. Waterborne transmission should not be discounted in investigations for the source of L. longbeachae infection.

  20. VT Electric Transmission Line Corridors - corridor lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The ELTRN layer depicts electric transmission line corridors in Vermont. Various methods have been used to digitize features. The data layer...

  1. VT Electric Transmission Line Corridors - substation points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The ELTRN layer depicts electric transmission line corridors in Vermont. Various methods have been used to digitize features. The data layer...

  2. Transmission : roadway to a competitive electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Thon, S. [AltaLink L.P., AB (Canada)

    2002-07-01

    Having a variety of suppliers, marketers and retailers is the key to developing a successful electricity market which is more competitive on pricing, with less price volatility, more innovative customer products and higher levels of customer services. Some areas of Alberta are developing their own power markets with limited capacity to interact. These include Pincher Creek, Empress, Calgary, Edmonton, and Fort McMurray. It was noted that increasing transmission capacity is the key to ensuring a bigger and more competitive electricity market. Transmission constraints only encourage a small number of suppliers to control the market. The current cost of transmission capacity accounts for less than 5 per cent of an average residential customer's bill, but it plays a major role in providing more choice to competitive electricity suppliers. Developing more transmission capacity will create an even more competitive market that benefits both consumers and suppliers. Prices in Alberta have been very volatile in the past couple of years because of supply and demand issues, and there is a need to increase market liquidity. Alberta's Transmission Administrator is looking to expand the transmission network to alleviate constraints and to lower the cost of power generation, regardless of location. These expansions are not expected to affect customers' bills by more than 2 to 3 per cent. Such transmission concerns are being felt all over North America. The Federal Energy Regulatory Commission (FERC) in the United States also recognizes the link between transmission and creating a competitive electricity market.

  3. Biocide usage in cooling towers in the electric power and petroleum refining industries

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  4. Distance protection of multiple-circuit shared tower transmission lines with different voltages

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    combined faults, being advised to increase the resistive limit of the protection zone, if the network has lower short-circuit power. It is recommended to assure that the fault can only happen for cases where the faulted phase from the higher voltage level leads the faulted phase from the lower voltage......Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. In this study, the fault loop impedance of combined faults is compared with the fault loop impedance......-phase-to-ground faults. It is also demonstrated that the fault loop impedance of combined faults is more resistive, when compared with equivalent single-phase-to-ground faults. It is concluded that the settings used to protect a line against single-phase-to-ground faults are capable of protecting the line against...

  5. Integral system for computer aided design of power line transmission towers; Sistema integral para el diseno asistido por computadora de torres de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Nagore, Gabriel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The profitable use of the advantages offered by the computer aided design, through the integral system for the structural design of power transmission towers (SIDETT) will contribute to facilitate and improve the design of the structures that link the electric power generation centers with the consumers. [Espanol] El aprovechamiento de las ventajas que ofrece el diseno asistido por computadora, a traves del sistema integral para el diseno estructural de torres de transmision (SIDETT), contribuira a agilizar y mejorar el diseno de las estructuras que enlazan los centros de generacion de energia electrica con los consumidores.

  6. Integral system for computer aided design of power line transmission towers; Sistema integral para el diseno asistido por computadora de torres de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Nagore, Gabriel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The profitable use of the advantages offered by the computer aided design, through the integral system for the structural design of power transmission towers (SIDETT) will contribute to facilitate and improve the design of the structures that link the electric power generation centers with the consumers. [Espanol] El aprovechamiento de las ventajas que ofrece el diseno asistido por computadora, a traves del sistema integral para el diseno estructural de torres de transmision (SIDETT), contribuira a agilizar y mejorar el diseno de las estructuras que enlazan los centros de generacion de energia electrica con los consumidores.

  7. A theoretical model of rain–wind–induced in-plane galloping on overhead transmission tower-lines system

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2015-09-01

    Full Text Available Rain–wind–induced galloping phenomenon often occurs on overhead transmission tower-lines system, just as icing galloping and vortex-excited vibration; this kind of instability oscillation can cause power-line breakage or tower failure. However, the existing theoretical models of rain–wind–induced galloping are mainly based on the hypothesis of the overhead power-lines with fixed ends, which is inconsistent with the actual operation situation. Therefore, this article thus presents a preliminary theoretical study and proposes a new theoretical model taking into account the effect of tower excitations on the in-plane galloping of the overhead power-line and on the motion of the upper rain-line. The theoretical model is solved by Galerkin method and verified by the comparison with the test data obtained in the available literature involved with the overhead power-lines with fixed towers or moving towers. It turns out that the tower excitations may intensify the in-plane galloping amplitude of the overhead power-line within a certain range of frequency ratio and enable better comprehension of rain–wind–induced galloping mechanism.

  8. Resolution 261/12. It determine the zone that will be affected by the servitudes provided for literals b) and c) in the Art. 1 of Decree Law 10.383, about the lines of electric power that it will be built to provision of public electric power transmission

    International Nuclear Information System (INIS)

    2012-01-01

    This resolution determine that The National Administration of Electricity and Transmission Plants (UTE), it will establish the necessary limitations and prohibitions that affect safety in general, wires, towers and public service elements of electricity.

  9. Electric power transmission pricing regulations and efficiency

    International Nuclear Information System (INIS)

    Goldoni, G.

    1999-01-01

    An efficient-price mechanism for electricity transmission is very hard to find, essentially because of the natural monopoly condition of the grid and its peculiar interactions with generation. The use of Optimal Power Flow Models is difficult to implement and could be easily distorted by strategical behaviour of generators. These models, however, could became a valuable efficiency-test for actual transmission charges and codes [it

  10. Electrical supply and controls for induced-draft cooling towers at Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Mock, C.H.; Boehms, J.H.

    1975-01-01

    Design considerations are given for selection of electrical features as required for addition of mechanical-draft-type cooling towers at an existing multiunit nuclear generating station. Environmental and nuclear safety problems were solved economically by use of enclosed 161-kV power connections, oil-filled transformers, supervisory-type control, and unique schemes for redundancy to minimize need for Class 1E construction

  11. Essays on electricity transmission investment and financial transmission rights

    Science.gov (United States)

    Shang, Wenzhuo

    The U.S. electric power industry has been going through fundamental restructuring and realignment since the 1990's. Many issues and problems have emerged during the transition, and both economists and engineers have been looking for the solutions fervently. In this dissertation, which consists primarily of three essays, we apply economics theory and techniques to the power industry and address two related issues, transmission investment and financial transmission rights (FTRs). The first essay takes the decentralized perspective and investigates the efficiency attribute of market-based transmission investment under perfect competition. We clarify, for the first time, the nature of the externality created by loop flows that causes transmission investment to be inefficient. Our findings have important implications for better understanding of transmission market design and creating incentives for efficient transmission investment. In the second essay, we define several rules for allocating transmission investment cost within the framework of cooperative game theory. These rules provide fair, stable or efficient cost allocations in theory and are good benchmarks against which the allocation mechanism in practice can be compared and improved upon. In the last essay, we make exploratory efforts in analyzing and assessing empirically the performance of the Midwest independent system operator (MISO) FTR auction market. We reveal some stylized facts about this young market and find that it is not efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in previous related work and suggest about more complete empirical work in future. In all, this dissertation makes both theoretic and empirical analysis of the two hot issues related to the power industry and comes up with findings that have important implications for the development of this industry.

  12. Electric Dipole Theory of Chemical Synaptic Transmission

    Science.gov (United States)

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  13. New South Wales' new electricity transmission authority

    International Nuclear Information System (INIS)

    Fahey, J.

    1995-01-01

    The latest milestone in electricity reform in NSW was the formation of a new statutory authority, the Electricity Transmission Authority (ETA), to take over and operate the transmission assets of Pacific Power, formerly the New South Wales Electricity Commission. The ETA will be operational from 1 February 1995, in time for the proposed commencement of a national electricity market on 1 July 1995. The forces of competition are being used to improve the efficiency of the industry, to empower consumers with greater choice and to open up new opportunities for private-sector participation in the industry. Potentially commercial activities such as coal mines have been separated from the operational arm of Pacific Power so that they have to compete with the private sector in supplying power stations. Significant reductions have been made in the price of electricity to reduce existing cross-subsidizations so that commercial and industrial customers gain the biggest benefits. The new ETA will pay dividends to the NSW government, as private companies pay dividends to their shareholders, and it will be subject to the federal tax-equivalent regime. 2 photos

  14. Effect of heliostat size on the levelized cost of electricity for power towers

    Science.gov (United States)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  15. Study of electric and magnetic fields on transmission lines using a computer simulation program

    International Nuclear Information System (INIS)

    Robelo Mojica, Nelson

    2011-01-01

    A study was conducted to determine and reduce levels of electric and magnetic fields with different configurations used by the Instituto Costarricense de Electricidad in power transmission lines in Costa Rica. The computer simulation program PLS-CADD with EPRI algorithm has been used to obtain field values close to those actual to lines easements that have worked to date. Different configurations have been compared on equal terms and the lowest levels of electric and magnetic fields are determined. The most appropriate configuration of the tower has been obtained and therefore has decreased exposure to electromagnetic fields people, without affecting the energy demand of the population. (author) [es

  16. Development of small-size transmission tower erection method; Kogata tetto kumitate koho no kaihatsu kenkyu (gaibushiki crane ni yoru kogata tetto kumitate koho no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuishi, S.; Asano, J.; Koji, Y. [Kansai Electric Power Co. Inc., Osaka (Japan); Tsujimura, I.; Teramoto, A. [The Kanden Kogyo Incorporated, Osaka (Japan); Sasaki, T.; Mito, K. [AG Ajikawa Corp., Osaka (Japan); Tsuji, M.; Fukumoto, T.; Yamaguchi, N.

    1997-09-30

    To reduce the construction period and cost and to enhance the safety during 77 kV-class transmission tower election, a new method of small steel transmission tower erection using an external type crane has been developed. For the selection of cranes, a commercially available self-climbing crane was employed which has an operating radius of 11 m, a lifting load capacity of 1.5 t, and a lift of up to 60 m. For the space analysis using a model tower, various supporting methods with horizontal supporting members, stress analysis for each tower stub, and apparatuses were examined. For the demonstration tests of election using the model tower, strain gages were attached at each point of steel tower, crane and horizontal supporting members, to measure the stress of members at each stage of the election. It was confirmed that there were no problems. For the election of actual steel tower, the practicality of this method was compared with that of conventional methods. The construction period was reduced in 20%, and the cost was reduced in 4%. The safety of this method was drastically enhanced due to the lack of moving on the tower and less manual operation. 9 figs., 1 tab.

  17. International Benchmarking of Electricity Transmission System Operators

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2014-01-01

    Electricity transmission system operators (TSO) in Europe are increasing subject to high-powered performance-based regulation, such as revenue-cap regimes. The determination of the parameters in such regimes is challenging for national regulatory authorities (NRA), since there is normally a single...... TSO operating in each jurisdiction. The solution for European regulators has been found in international regulatory benchmarking, organized in collaboration with the Council of European Energy Regulators (CEER) in 2008 and 2012 for 22 and 23 TSOs, respectively. The frontier study provides static cost...... weight restrictions and a correction method for opening balances....

  18. Investment in Electricity Transmission and Ancillary Environmental Benefits

    OpenAIRE

    Burtraw, Dallas; Bharvirkar, Ranjit; Bloyd, Cary

    2002-01-01

    Planning of the electricity transmission system generally focuses on the pros and cons of providing generation close to the source of the power demand versus remote generation linked via the transmission system. Recent electricity supply problems in the western United States have renewed interest in the role of transmission in assuring the reliability of electricity supply. Recently, the Western Governors’ Association led the development of a planning exercise that examined the tradeoffs over...

  19. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    Science.gov (United States)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  20. Electricity transmission pricing. How contracts must reflect costs

    International Nuclear Information System (INIS)

    Shuttleworth, G.

    1996-01-01

    Two basic structures of transmission systems are distinguished: transmission channels offered through an integrated electric utility and open access offered over an independent network. The first structure allows the application of 'top-down pricing', where transmission prices are derived from customer tariffs less avoidable generation costs. Transmission prices in the second structure must be derived from a 'bottom-up' analysis of transmission costs, including building capacity, marginal losses, and congestion. 5 refs

  1. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  2. Transmission investment in the Peruvian electricity market: Theory and applications

    International Nuclear Information System (INIS)

    Ruiz, Erix; Rosellón, Juan

    2012-01-01

    This research presents an application of the mechanism in (HRV) to promote electricity transmission network expansion in the Peruvian electricity transmission system known as SEIN (Sistema Eléctrico Interconectado Nacional). The HRV mechanism combines the merchant and regulatory approaches to promote investment into transmission grids. This mechanism gives incentives for efficient investment in expansion of the network by rebalancing over time the fixed and variable charges of a two-part tariff in the framework of a wholesale electricity market with locational pricing. The expansion of the network is carried out through the sale of Financial Transmission Rights (FTRs) for the congested lines. The mechanism is applied for 103 nodes of the SEIN using detailed characteristics of generators, nodes and transmission lines. Under Laspeyres weights and linear cost of expansion of transmission capacity, it is shown that prices converge to lower price levels as a result of increased transmission capacity.

  3. Improvements of an FDTD-based surge simulation code and its application to the lightning overvoltage calculation of a transmission tower

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taku; Tatematsu, Akiyoshi; Yokoyama, Shigeru [Electric Power Engineering Research Lab., CRIEPI (Central Research Institute of Electric Power Industry), 2-6-1 Nagasaka, Yokosuka-shi, Kanagawa-pref. 240-0196 (Japan)

    2007-09-15

    This paper presents new features recently added to a general-purpose surge simulation code based on the Finite Difference Time Domain (FDTD) method. The added features include various-shape conductor models, lumped-parameter circuit-element models, a lightning-channel model, and an integrated analysis environment (IAE). For precisely modelling the shapes of various conductors, the following conductor models have been added: inclined thin wire; disc; square plate; cylinder; cone; and quadrangular pyramid. The lumped-parameter circuit-element models allow the user to represent the lumped impedance of an apparatus placed inside the analysis space. The lightning-channel model realizes a return-stroke development at a speed slower than the light speed. The IAE includes a Graphical User Interface (GUI), which allows the user to enter geometrical data in a visual way. It also provides a waveform plotting program for viewing voltage, current, electric-field, and magnetic-field waveforms and a movie program for displaying the animation of a transient electric/magnetic field intensity distribution. For an illustrative example, the lightning overvoltage calculation of a transmission tower is presented. (author)

  4. Electricity transmission congestion costs: A review of recent reports

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-10-01

    Recently, independent system operators (ISOs) and others have published reports on the costs of transmission congestion. The magnitude of congestion costs cited in these reports has contributed to the national discussion on the current state of U.S. electricity transmission system and whether it provides an adequate platform for competition in wholesale electricity markets. This report reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, (1) facilitate more vibrant and fair competition in wholesale electricity markets, and (2) enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is essential to understand who pays, how much, and how do they benefit in evaluating options (both transmission and non-transmission alternatives) to address transmission congestion. To describe the differences among published estimates of congestion costs, we develop and motivate three ways by which transmission congestion costs are calculated in restructured markets. The assessment demonstrates that published transmission congestion costs are not directly comparable because they have been developed to serve different purposes. More importantly, critical information needed to make them more comparable, for example in order to evaluate the impacts of options to relieve congestion, is sometimes not available.

  5. Risk management in electricity markets emphasizing transmission congestion

    International Nuclear Information System (INIS)

    Kristiansen, Tarjei

    2004-01-01

    This thesis analyzes transmission pricing, transmission congestion risks and their associated hedging instruments as well as mechanisms for stimulating investments in transmission expansion. An example of risk management in the case of a hydropower producer is included. After liberalization and restructuring of electricity markets, risk management has become important. In particular the thesis analyzes risks due to transmission congestion both in the short- and long-term (investments) for market players such as generators, loads, traders, independent system operators and merchant investors. The work is focused on the northeastern United States electricity markets and the Nordic electricity markets. The first part of the thesis reviews the literature related to the eight research papers in the thesis. This describes the risks that are relevant for an electricity market player and how these can be managed. Next, the basic ingredients of a competitive electricity market are described including the design of the system operator. The transmission pricing method is decisive for hedging against transmission congestion risks and there is an overview of transmission pricing models considering their similarities and differences. Depending on the transmission pricing method used, locational or area (zonal) pricing, the electricity market players can use financial transmission rights or Contracts for Differences, respectively. In the long-term it is important to create mechanisms for investments in transmission expansion and the thesis describes one possible approach and its potential problems. The second part comprises eight research papers. It presents empirical analyses of existing markets for transmission congestion derivatives, theoretical analyses of transmission congestion derivatives, modeling of merchant long-term financial transmission rights, theoretical analysis of the risks of the independent system operator in providing financial transmission rights, an analysis

  6. Integrated powertrain control for hybrid electric vehicles with electric variable transmission

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bosch, van den P.P.J.

    2009-01-01

    The electric variable transmission (EVT) offers a powersplit for hybrid electric vehicles by integrating two motor/ generator sets into one electric machine. This double rotor concept implements a continuously variable transmission between the engine and the driveline, including the possibility for

  7. Efficiency and environmental factors in the US electricity transmission industry

    International Nuclear Information System (INIS)

    Llorca, Manuel; Orea, Luis; Pollitt, Michael G.

    2016-01-01

    The electricity industry in most developed countries has been restructured over recent decades with the aim of improving both service quality and firm performance. Regulated segments (e.g. transmission) still provide the infrastructure for the competitive segments and represent a significant share of the total price paid by final customers. However there is a lack of empirical studies that analyse firms' performance in the electricity transmission sector. In this paper an empirical analysis of US electricity transmission companies is conducted for the period 2001–2009. We use alternative stochastic frontier models that allow us to identify the determinants of firms' inefficiency. These models also permit us to control for weather conditions, potentially one of the most decisive uncontrollable factors in electricity transmission. Our results suggest that weather conditions clearly have an influence on transmission costs and that there is room for improvement in the management of US electricity transmission systems. Regulators should also be aware that more adverse conditions generate higher levels of inefficiency, and that achieving long-term efficiency improvements tends to worsen firms' short-term relative performance. - Highlights: • We analyse firms' performance in the US electricity transmission industry. • Alternative SFA models are estimated to identify determinants of firms' efficiency. • Our results indicate that firms' efficiency has declined and diverged over time. • We find that more adverse conditions generate higher levels of inefficiency.

  8. Transmission congestion management in the electricity market

    Science.gov (United States)

    Chen, Yue

    2018-04-01

    In this paper we mainly discuss how to optimize the arrangement to decrease the loss of each line when the power generation side of the system transmission congestion occurs in a safe and economical manner. We respectively set the adjust model if the transmission can be eliminated which can calculate the best scheme and safety margin model when transmission cannot be eliminated which is a multi-objective planning problem. We solve the two models on the condition of the load power demands are 982.4MW and 1052.8 MW by Lingo and get the optimal management scheme.

  9. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19 locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.

  10. Wireless (Power Transfer Transmission of Electrical Energy (Electricity Intended for Consumer Purposes up to 50 W

    Directory of Open Access Journals (Sweden)

    Marek Piri

    2016-01-01

    Full Text Available This project deals with Power Semiconductor Systems PSS for wireless transmission of electricity to the power of 50~W with regard to the distance and transmission efficiency. We decided to use electromagnetic resonance for electrical energy transmission. For experimental verification, we have wound two coils of identical dimensions. At a given power transmission solutions, we obtain the highest efficiency η = 70% at a distance of 5 cm, where the transmitted power was 48 W.

  11. Electrical and Biological Effects of Transmission Lines: A Review.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  12. Transmission investment and expansion planning in a restructured electricity market

    International Nuclear Information System (INIS)

    Wu, F.F; Wen, F.S.; Zheng, F.L.

    2006-01-01

    Transmission planning in a restructured electricity market becomes increasingly complicated. To bridge the gap between economic and engineering considerations, this survey paper suggests a framework to clarify the interactions among various economic and engineering issues by reviewing recent theoretical and practical progress in transmission investment and transmission planning methodology. Thus, the paper makes economic literature more accessible to the engineering community and engineering literature more accessible to the economic community interested in the subject. (author)

  13. Transmission and wind investment in a deregulated electricity industry

    DEFF Research Database (Denmark)

    Maurovich-Horvat, Lajos; Boomsma, Trine Krogh; Siddiqui, Afzal S.

    2015-01-01

    Adoption of dispersed renewable energy technologies requires transmission network expansion. Besides the transmission system operator (TSO), restructuring of electricity industries has introduced a merchant investor (MI), who earns congestion rents from constructing new lines. We compare these tw...... proportion of energy is produced by wind. In effect, withholding of generation capacity by producers prompts more transmission investment since the TSO aims to increase welfare by subsidizing wind and the MI creates more flow to maximize profit....

  14. Investment in electricity networks with transmission switching

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, A.B.

    2012-01-01

    allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm...

  15. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  16. Environmental concerns regarding electric power transmission in North America

    International Nuclear Information System (INIS)

    DeCicco, J.M.; Bernow, S.S.; Beyea, J.

    1992-01-01

    The electric utilities of North America have become ever more interconnected via transmission facilities, largely to insure reliability. Current policy discussions regarding transmission include calls for improved access, increased capacity, and deregulation to facilitate trade in electric power. From an environmental perspective, two issues have been notably absent in much of the debate: (1) a recognition of the full range of environmental impacts related to electricity transmission; and (2) the potential for end-use efficiency to address the reliability and economy requirements that motivate attention to transmission. This paper broaches these issues, starting with an elaboration of the environmental impacts, which range from global and regional effects to local concerns, including the potential health risks associated with electric and magnetic fields. We emphasize that transmission planning should occur as part of an integrated planning process, in which the environmental and social costs of various options are fully considered. We discuss the potential for end-use efficiency to lessen environmental impacts of both transmission and generation. We conclude that there is a need to ensure that environmental externalities and demand-side alternatives are adequately considered when transmission network expansions are proposed. (Author)

  17. Transmission-constrained oligopoly in the Japanese electricity market

    International Nuclear Information System (INIS)

    Tanaka, Makoto

    2009-01-01

    We simulate the Japanese wholesale electricity market as a transmission-constrained Cournot market using a linear complementarity approach. First, we investigate the effects of upgrading the bottleneck transmission line between the eastern and western regions, focusing on the mitigation of transmission congestion. Although increasing the bottleneck capacity would lead to welfare gains, they might not be substantial particularly when transmission capacity costs are taken into account. Second, we examine the effects of splitting the largest electric power company, which is located in the eastern region, focusing on the mitigation of market power. Splitting the largest company into two companies would lead to a 25% reduction in the eastern price, and a 50% reduction in deadweight loss. The divestiture of the largest company would have a significant effect of mitigating market power in the Japanese electricity market. (author)

  18. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  19. Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty

    DEFF Research Database (Denmark)

    Conejo, Antonio J.; Baringo, Luis; Kazempour, Jalal

    This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment...... undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here....

  20. Grounding modelling for transient overvoltage simulation in electric power transmission

    International Nuclear Information System (INIS)

    Moreno O, German; Valencia V, Jaime A; Villada, Fernando

    1992-01-01

    Grounding plays an important role in transmission line outages and consequently on electric energy transmission quality indexes. Fundamentals of an accurate modelling for transient behaviour analysis, particularly for the response of transmission lines to lightning, are presented. Also, a method to take into account the electromagnetic propagation guided by the grounding electrodes and finally to assess the grounding impedance in order to simulate the transmission line behaviour under lightning is presented. Analysis of impedance behaviour for diverse configurations and simulation results of over voltages on a real 220 kV line are presented to illustrate the capabilities of the method and of the computational program developed

  1. Transmission pricing and stranded costs in the electric power industry

    International Nuclear Information System (INIS)

    Baumol, W.J.; Sidak, J.G.

    1995-09-01

    Stranded costs are those costs that electric utilities are currently permitted to recover through their rates but whose recovery may be impeded or prevented by the advent of competition in the industry. Estimates of these costs run from the tens to the hundreds of billions of dollars. Should regulators permit utilities to recover stranded costs while they take steps to promote competition in the electric power industry. William Baumol and J. Gregory Sidak argue that answer to that question should be yes.The authors show that a transmission price, the price for sending electricity over the transmission grid, can be determined in a manner that is compatible with economic efficiency and clearly neutral in its effects upon all competitors in electricity generation. A correctly constructed regime of transmission pricing may in fact achieve the efficiency and equity goals that justify the recovery of stranded costs

  2. The year in review: Electric transmission

    International Nuclear Information System (INIS)

    Hebert, C. Jr.

    1999-01-01

    This writing and the comments contained herein support the conclusion that mandating a solution to transmission woes is not the proper choice. Even if it were the right choice, it would not be the way to go. FERC exists in a sophisticated energy world and must comprehend that without the help of the energy industry it is doomed to fail. Technology changes, economies change, and even the FERC itself changes, and will again. This is all part of the energy journey. RTOs, pools, ISOs, RTOs, and, yes, Transcos are a part of the evolution of energy regulation and perhaps deregulation to some degree

  3. Impact of GB transmission charging on renewable electricity generation

    International Nuclear Information System (INIS)

    2006-01-01

    The Government is committed to meeting its objective of producing 10% of UK electricity supplies from renewable sources by 2010, subject to the cost to the consumer being acceptable. It is generally believed that northern Scotland - and the Highlands and Islands in particular - will be a significant source of renewable energy in future, mostly in the form of wind power; wave and tidal energy may also be important. The National Grid Company (NGC) is responsible for formulating a cost-reflective and. non-discriminatory electricity transmission charging methodology for Great Britain (GB). This determines Transmission Network Use of System (TNUoS) tariffs, which are paid by transmission-connected generators and suppliers for the use of the high voltage transmission network. Following the publication of National Grid Company's 'GB Transmission Charging: Initial Thoughts' document on 16 December 2003, there was particular concern that the level of future Transmission Network Use of System (TNUoS) tariffs in northern Scotland might impede the achievement of the Government's 2010 target for renewable electricity supplies. That document and subsequent revisions indicate that generation TNUoS charges in northern Scotland were likely to be significantly higher than anywhere else in GB. The study attempts to quantify the effect of the proposed GB-wide TNUoS charging methodology on the future growth of renewable electricity so as to ascertain the impact on the likelihood of meeting the Government's 2010 target. (UK)

  4. Optimal pricing of transmission and distribution services in electricity supply

    International Nuclear Information System (INIS)

    Farmer, E.D.; Cory, B.J.; Perera, B.L.P.P.

    1995-01-01

    A new strategy for the separate pricing of transmission and distribution services in electricity supply is formulated and evaluated. The proposed methodology is a multivariate transmission generalisation of the method of peak load pricing previously applied to the optimal time-of-use pricing of generation on a power system with diverse generation technologies and with elastic demand. The method allocates both capacity and operational costs on a time-of-use basis, in an optimal manner, that avoids cross-subsidisation both between differing supply system participants and differing times of usage. The method is shown to promote the optimal development of the transmission, distribution or interconnecting systems, rewarding justified investments in transmission capacity and discouraging overinvestment. It also leads to appropriate returns on invested capital without significant 'revenue reconciliation'. This contrasts with SRMC pricing as is shown by a comparative revenue evaluation. It is concluded that the method has wide potential application in electricity supply. (author)

  5. Electricity transmission and distribution in Ontario : a look ahead

    International Nuclear Information System (INIS)

    2004-01-01

    This paper addressed changes and challenges that can guide the Ontario government in developing a policy framework for sustainable development in the electric power industry, particularly the power distribution and transmission sector. The government is taking action to adopt a balanced approach to energy policy that combines features of both regulated and competitive industries. It is taking a more responsible approach to electricity pricing that ends subsidies in order to reflect the true cost of electricity. The major issues facing the wires sector are: improving efficiencies by consolidating activities, streamlining operations and unbundling power transmission and distribution into separate entities; developing distributed generation; and, investing in new transmission to relieve congestion. It was noted that distributed generation will become more important as coal-fired generation facilities are replaced. Distributed generation offers many benefits for the wires sector, including delaying the need to upgrade the existing wires network, offering local solutions to transmission constraints, reducing system losses, improving load factor and improving the reliability of supply. An increase in distributed generation will likely mean that more of Ontario's electricity supply will come from small-scale renewable generation facilities. The government promotes private sector investment to assist in the rebuilding of the electricity sector

  6. Impacts of Demand-Side Resources on Electric Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanstad, Alan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  7. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  8. Alternative electrical transmission systems and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.

    1977-08-01

    A general description is provided of electrical transmission systems as an aid in determining their environmental impacts. Alternating current, direct current, overhead systems, underground systems, and water crossings are treated. The cost, performance, reliability, safety, and environmental impact of these systems are compared.

  9. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  10. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  11. Transmission and wind investment in a deregulated electricity industry

    DEFF Research Database (Denmark)

    Maurovich-Horvat, Lajos; Boomsma, Trine Krogh; Fleten, Stein-Erik

    2013-01-01

    carrying out investment in wind farms. In this paper, we analyse the interaction between the two conflicting objectives under various assumptions about the electricity market structure and the degree of producers' market power. Via a three-node illustrative example, we show that a merchant investor...... the auspices of a regulated welfare-maximising planner, recent restructuring of electricity industries has introduced a merchant model for transmission investment, which provides congestion rents from construction of a new line. Thus, the merchant investor's incentives are different from those of producers...... typically builds less transmission capacity than a welfare-maximising transmission system operator or central planner. Although social welfare is lower and nodal prices are generally higher with a merchant investor and when producers are assumed to behave à la Cournot, the effect of lower price response...

  12. Market tools: the immaterial part of the electricity transmission network

    International Nuclear Information System (INIS)

    Maillard, Dominique

    2014-01-01

    The author first evokes the activities of RTE (Reseau de transport d'electricite - the French power transmission network) to improve the performance of its technical and industrial equipment (notably equipment evolution, maintenance policies) with, for example, the installation of a fibre optic network for network control automation, the development of software for a better exploitation and steering of electricity fluxes, notably the electricity produced by wind and photovoltaic power. He more particularly addresses the role of RTE in the construction of the electricity market. He outlines the role of the European electricity market in the economic optimization, the new approaches and tools for a higher flexibility of the electric system, the expertise of RTE, and the perspective of always more smart grids

  13. Creating a robust and integrated electrical transmission system

    International Nuclear Information System (INIS)

    McLain, S.

    2004-01-01

    The service territory for Puget Sound Energy (PSE) was presented in terms of electric power and gas transmission. Issues affecting the Puget Sound area include high growth and the west coast energy crisis which has had an adverse financial impact on the power industry. The transmission system is basically at capacity and has been impacted by imports and exports between the United States and Canada. Other issues include the separation between energy resources and transmission, modernizing the power grid, and challenges for independent power producers (IPPs). The Northwest Transmission Assessment Committee (NTAC), which was formed under the Northwest Power Pool, has the potential to bring interested parties to study constrained paths and to plan a single utility concept for the region. It is expected that new challenges such as financing and risk management will emerge once the technical solutions are identified and agreed upon. The issue of enforceable and mandatory reliability standards was also discussed. 1 fig

  14. Electricity transmission arrangements in Great Britain: Time for change?

    International Nuclear Information System (INIS)

    Strbac, Goran; Pollitt, Michael; Konstantinidis, Christos Vasilakos; Konstantelos, Ioannis; Moreno, Rodrigo; Newbery, David; Green, Richard

    2014-01-01

    In Great Britain (GB) and across Europe significant investment in electricity transmission is expected over the coming years as decarbonisation and market integration efforts are intensified. However, there is also significant uncertainty with the amount, location and timing of new generation connection, which in turn will drive the transmission investment needs. Given the absence of efficient market design, we identify three key areas of concern with the current transmission investment arrangements: (i) a mis-aligned incentives framework for transmission investment and operation; (ii) lack of coordination of investment and operation; and (iii) conflicts of interest. We then propose three options for future evolution of transmission regimes, which cover the full spectrum of institutional arrangements with respect to transmission planning and delivery, i.e. how and who plans, owns, builds and operates the transmission system. For each option we present: key characteristics; evolution of the current regimes; the ability of the option to address the concerns; and key strengths and weaknesses. Overall, we conclude in the case of GB (this conclusion could be extended to other European countries) that the most appropriate option would be that of an Independent System Operator (ISO) who would be responsible for planning and operating the transmission system. - Highlights: • We identify three key areas of concern with the current transmission arrangements. • We then propose three options for transmission network planning and delivery. • Key strengths and weaknesses of each above option are identified and studied. • We conclude that the most appropriate option for GB would be that of an ISO

  15. The benefits of transmission expansions in the competitive electricity markets

    International Nuclear Information System (INIS)

    Bresesti, Paola; Calisti, Roberto; Cazzol, Maria Vittoria; Gatti, Antonio; Vaiani, Andrea; Vailati, Riccardo; Provenzano, Dario

    2009-01-01

    The paper presents an innovative method for assessing simultaneously technical and economic benefits of transmission expansions. This method takes into account the new needs of the transmission planning process for competitive electricity markets, in which benefits of major transmission expansions include: (a) improved reliability, (b) increased availability of efficient supply and (c) increased competition among suppliers. The fundamental elements of the REliability and MARKet (REMARK) tool, which we implemented based on the aforementioned method, are: a yearly probabilistic simulation of power system operation; use of the non-sequential Monte Carlo method to pick the operational status of the network elements; full network representation; adoption of the simplified direct current model; quantitative assessment of the reliability benefits through the expected energy not supplied index; simulation of the strategic behaviour of suppliers based on a simplified model that correlates the price-cost mark-up to structural market variables (residual supply index and demand); a quantitative assessment of ''economic'' benefits through the calculation of the social welfare index. A test case application of the tool on the IEEE 24-bus reliability test system shows that the method can assess benefits of transmission expansions, in addition to the overall social perspective, for each market zone as well as separately for consumers, producers and transmission system operators. The results emphasize that the effect of transmission expansions in mitigating market power may be significant and that a simple and traditional cost-based approach may lead to a wrong evaluation of benefits given by transmission expansions. (author)

  16. A universal calculation model for the controlled electric transmission line

    International Nuclear Information System (INIS)

    Zivzivadze, O.; Zivzivadze, L.

    2009-01-01

    Difficulties associated with the development of calculation models are analyzed, and the ways of resolution of these problems are given. A version of the equivalent circuit as a six-pole network, the parameters of which do not depend on the angle of shift Θ between the voltage vectors of circuits is offered. The interrelation between the parameters of the equivalent circuit and the transmission constants of the line was determined. A universal calculation model for the controlled electric transmission line was elaborated. The model allows calculating the stationary modes of lines of such classes at any angle of shift Θ between the circuits. (author)

  17. Generation adequacy and transmission interconnection in regional electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Saguan, Marcelo; Finon, Dominique; Pignon, Virginie

    2009-01-01

    The power system capacity adequacy has public good features that cannot be entirely solved by electricity markets. Regulatory intervention is then necessary and established methods have been used to assess adequacy and help regulators to fix this market failure. In regional electricity markets, transmission interconnections play an important role in contributing to adequacy. However, the adequacy problem and related policy are typically considered at a national level. This paper presents a simple model to study how the interconnection capacity interacts with generation adequacy. First results indicate that increasing interconnection capacity between systems improves adequacy up to a certain level; further increases do not procure additional adequacy improvements. Furthermore, besides adequacy improvement, increasing transmission capacity under asymmetric adequacy criteria or national system characteristics could create several concerns about externalities. These results imply that regional coordination of national adequacy policies is essential to internalise adequacy of cross-border effects.

  18. Electric and magnetic field reduction by alternative transmission line options

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  19. Economies of scale in electricity generation and transmission since 1945

    International Nuclear Information System (INIS)

    Tombs, F.

    1978-01-01

    Progress in the electricity supply industry since 1945 is reviewed with particular reference to increased ratings of plant and transmission. The contribution of nuclear energy is emphasised. Developments which have taken place, and policy within the nuclear industry since the construction of Calder Hall, are examined. The performance of the Magnox stations, difficulties with AGRs, and the debate on the choice of reactors are discussed. (U.K.)

  20. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  1. Optimal transmission planning under the Mexican new electricity market

    International Nuclear Information System (INIS)

    Zenón, Eric; Rosellón, Juan

    2017-01-01

    This paper addresses electricity transmission planning under the new industry and institutional structure of the Mexican electricity market, which has engaged in a deep reform process after decades of a state-owned-vertically-integrated-non-competitive-closed industry. Under this new structure, characterized by a nodal pricing system and an independent system operator (ISO), we analyze welfare-optimal network expansion with two modeling strategies. In a first model, we propose the use of an incentive price-cap mechanism to promote the expansion of Mexican networks. In a second model, we study centrally-planned grid expansion in Mexico by an ISO within a power-flow model. We carry out comparisons of these models which provide us with hints to evaluate the actual transmission planning process proposed by Mexican authorities (PRODESEN). We obtain that the PRODESEN plan appears to be a convergent welfare-optimal planning process. - Highlights: • We model transmission planning (PRODESEN) in the Mexican new electricity market. • We propose a first model with a price-cap mechanism to promote network expansion. • In a second power-flow model, we study centrally-planned grid expansions. • The PRODESEN appears to be a convergent welfare-optimal planning process. • Incentive regulation could further help to implement such an optimal process.

  2. Commercial information system of Slovak Electricity Transmission System, Plc

    International Nuclear Information System (INIS)

    Laznicka, L.

    2004-01-01

    Commercial Information System (CIS), which main role of is to support the commercial activities of the company, is built up by business department of SEPS, Plc in close co-operation with the supplier company Sfera, Plc. The system entries are data from electricity meters obtained by automatized data acquisition and from bugging sheets, contractual hour diagrams, parameters of transmission system like measuring schemes and formulas for calculation of demand and supply, contractual data resulting from agreements, business conditions, URSO decisions and valid legislative. A part of the system is also support of process of data evaluation like calculation of transmitted energy quantity, calculation of actual output diagrams, comparison of actual and contractual diagrams, calculation of system divergence, calculation of demand divergence, etc. The final price for the drawings of services, which are joined with transmission of the electric power will be determined by the accounting process. In this causality there are automatically made out invoices for access, losses, system charges, system services, short-term and long-term transits, divergences and for cross-border transmission auctions. System also generates various specialized synopses and statistics for the evaluation requirements of important aspects and for parameter observations. Successive liberalisation of the electricity power market, changes in legislative and URSO decisions require CIS to be sufficiently configurable and to adapt flexible on the alternating environs. (author)

  3. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  4. An incentive mechanism for electricity transmission expansion in Mexico

    International Nuclear Information System (INIS)

    Rosellon, Juan

    2007-01-01

    This study proposes an incentive regulatory framework for expanding electricity transmission in Mexico. A two-part pricing model is implemented within a combined merchant-regulatory structure. Three cases are considered. In the first, a monopolist with 'postage stamp tariffs' serves the whole country using uniform prices. In the second case, one firm holds a regional monopoly in each of the five electricity areas. In the third, a monopolist operates in all areas of the national electricity system and discriminates in the prices it charges in each of the regions. This approach is described and then applied to the Mexican electricity transmission network. Using real data, the study compares all three cases in terms of profits, capacity increases, and network expansion. The results are found to depend on two effects: the 'economies-of-scale effect', in which the maximum level is reached with a single network; and the 'discriminatory effect' that results when a firm can discriminate among types of consumers. The economies-of-scale effect produces greater capacity and network expansion, whereas the discriminatory effect increases profits

  5. An incentive mechanism for electricity transmission expansion in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosellon, Juan [Division de Economia, Centro de Investigacion y Docencia Economicas (CIDE), Carret. Mexico-Toluca 3655, Lomas de Santa Fe, C.P. 01210, Mexico DF (Mexico)

    2007-05-15

    This study proposes an incentive regulatory framework for expanding electricity transmission in Mexico. A two-part pricing model is implemented within a combined merchant-regulatory structure. Three cases are considered. In the first, a monopolist with ''postage stamp tariffs'' serves the whole country using uniform prices. In the second case, one firm holds a regional monopoly in each of the five electricity areas. In the third, a monopolist operates in all areas of the national electricity system and discriminates in the prices it charges in each of the regions. This approach is described and then applied to the Mexican electricity transmission network. Using real data, the study compares all three cases in terms of profits, capacity increases, and network expansion. The results are found to depend on two effects: the ''economies-of-scale effect'', in which the maximum level is reached with a single network; and the ''discriminatory effect'' that results when a firm can discriminate among types of consumers. The economies-of-scale effect produces greater capacity and network expansion, whereas the discriminatory effect increases profits. (author)

  6. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  7. Medium-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui

    2018-06-01

    Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.

  8. Short-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  9. Electricity market equilibrium model with resource constraint and transmission congestion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F. [ABB, Inc., Santa Clara, CA 95050 (United States); Sheble, G.B. [Portland State University, Portland, OR 97207 (United States)

    2010-01-15

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  10. Electricity market equilibrium model with resource constraint and transmission congestion

    International Nuclear Information System (INIS)

    Gao, F.; Sheble, G.B.

    2010-01-01

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  11. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  12. Integrated Cost Allocation of Transmission Usage under Electricity Markets

    Directory of Open Access Journals (Sweden)

    Hermagasantos Zein

    2012-08-01

    Full Text Available Cost allocation of transmission usage on the power networks is an important issue especially in the modern electricity market mechanism. In this context, all costs that have been embedded in the transmission, embedded cost, should be covered by the transmission users. This paper follows general methods, where generators are fullyresponsible to cover the embedded cost. It proposes a method to determine the cost allocation of transmission usage based on decomposition through the superposition techinique to determine power flow contributions from an integrated base case of the results of the power flow calculations of all transactions, bilateral and nonbilateral contracts. Mathematically, the applied formulations are illustrated clearly in this paper. The proposed method has been tested with 5-bus system and the results are much different compared to a few of the published methods. This is shown by the test results on the 5 bus system. The published methods produce total power flow contributions in each line is greater than the actual. And they earn total revenues approximately 11.6% greater than the embedded cost. While on the proposed method, the power flow contribu tions are equal to the actual and the revenues are equal to the embedded cost. It shows also that the proposed method gives results as expected.

  13. Transmission of electric dipole radiation through an interface

    Energy Technology Data Exchange (ETDEWEB)

    Arnoldus, Henk F., E-mail: hfa1@msstate.edu [Department of Physics and Astronomy, Mississippi State University, P.O. Drawer 5167, Mississippi State, MS 39762-5167 (United States); Berg, Matthew J., E-mail: matt.berg@msstate.edu [Department of Physics and Astronomy, Mississippi State University, P.O. Drawer 5167, Mississippi State, MS 39762-5167 (United States); Li, Xin, E-mail: Xin.Li@millersville.edu [Department of Physics, P.O. Box 1002, Millersville University, Millersville, PA 17551 (United States)

    2014-02-07

    We consider the transmission of electric dipole radiation through an interface between two dielectrics, for the case of a vertical dipole. Energy flows along the field lines of the Poynting vector, and in the optical near field these field lines are curves (as opposed to optical rays). When the radiation passes through the interface into a thicker medium, the field lines bend to the normal (as rays do), but the transmission angle is not related to the angle of incidence. The redirection of the radiation at the interface is determined by the angle dependence of the transmission coefficient. This near-field redistribution is responsible for the far-field angular power pattern. When the transmission medium is thinner than the embedding medium of the dipole, some energy flows back and forth through the interface in an oscillating fashion. In each area where field lines dip below the interface, an optical vortex appears just above the interface. The centers of these vortices are concentric singular circles around the dipole axis.

  14. High voltage transmission of electrical energy over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, S W

    1962-07-01

    Technical aspects of ac transmission lines, additional means of improving stability ac transmisson lines, insulation problems, ac transmission by cables, high voltage dc transmission, advantages of dc over ac transmission, disadvantages of dc transmission, use of underground cables for dc transmission, history of the development of conversion equipment; transmission schemes adopted on Gotland Island, Sweden; and economics of ac and dc transmission are discussed.

  15. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    Science.gov (United States)

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Heuristic procedures for transmission planning in competitive electricity markets

    International Nuclear Information System (INIS)

    Lu, Wene; Bompard, Ettore; Napoli, Roberto; Jiang, Xiuchen

    2007-01-01

    The network structure of the power system, in an electricity market under the pool model, may have severe impacts on market performance, reducing market efficiency considerably, especially when producers bid strategically. In this context network re-enforcement plays a major role and proper strategies of transmission planning need to be devised. This paper presents, for pool-model electricity markets, two heuristic procedures to select the most effective subset of lines that would reduce the impacts on the market, from a set of predefined candidate lines and within the allowed budget for network expansion. A set of indices that account for the economic impacts of the re-enforcing of the candidate lines, both in terms of construction cost and market efficiency, are proposed and used as sensitivity indices in the heuristic procedure. The proposed methods are applied and compared with reference to an 18-bus test system. (author)

  17. Fabrication and electric measurements of nanostructures inside transmission electron microscope

    International Nuclear Information System (INIS)

    Chen, Qing; Peng, Lian-Mao

    2011-01-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. -- Research highlights: → We review in-situ works using manipulation holder in TEM. → In-situ electric measurements, fabrication and structure modification are focused. → We discuss important issues that should be considered for reliable results. → In-situ TEM is becoming a very powerful tool for many research fields.

  18. Electric power transmission system: A new expansion scheme

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    2000-01-01

    With the purpose of responding to the interconnection requirements among the main cities of the country, a company of public character was created, in charge of the planning and of the development of the national interconnected system (NIS), in such form that their work optimized the use of the available energy resources for the electricity supply and it improved the accounting levels and quality of the service. Starting from 1967, interconnection electric Corp., ISA, a very important task began in the development of methodologies and strategies of expansion of the INS that it allowed, in very short term, to connect the areas of Bogota the Atlantic Cost, Antioquia and the Cauca Valley and to develop important generation projects for the supply of electric power of the country. Then, the electric sector was reformed through the laws 142 and 143 of 1994, in search of the specialization of the business and in that sense, ISA is divided in two companies: ISAGEN that the activities degeneration and electric power commercialization, and ISA, company electric power transport, that it takes charge of the interconnection of the national system assumes. In connection with the execution of the transmission works and in the face of the possibility of lingering courts of energy, the law establishes that ISA will carry out the works that are needed and that the particular initiative doesn't develop. For that same time, it is considered that the planning should be carried out in an integral way, taking into account the requirements of the population's energy and its possibilities of supply and through programs and actions of appropriate use of the available energy resources. The UPME (Unit of Planning Miner Energetic) was created for assumes this work, so with their analyses they already offer signs to the state the investors, about the population's necessities and of the business opportunities, respectively

  19. Evaluating congestion management in the Dutch electricity transmission grid

    International Nuclear Information System (INIS)

    Blijswijk, Martti J. van; Vries, Laurens J. de

    2012-01-01

    Due to the increase in electricity generation capacity in the Netherlands and a new connection policy, transmission system operator (TSO) TenneT expects a significant increase in congestion in the Dutch transmission grid. To manage this, the Dutch government implemented redispatching, a method which is argued in the literature to potentially impose large congestion costs upon the TSO. A quantitative model of the Dutch electricity system was developed in order to evaluate this method. The outcomes were compared to the performance of three alternative congestion management methods. Regardless of the method, congestion costs were found to be substantially lower than in previous studies. Because combined-cycle gas turbines are the marginal generation technology in almost all cases, the costs of up and down regulation do not differ much. Consequently, the redispatching costs for the TSO are expected to be relatively low, and the opportunities for abuse of market power appear to be limited. While all the evaluated methods are effective and economically efficient, they have significantly different welfare effects. Market splitting creates significantly larger welfare effects than the different varieties of redispatching. - Highlights: ► Congestion management was recently introduced in the Netherlands. ► We quantitatively evaluate the effects of its application. ► We compare this to other congestion management methods. ► Given the specific situation that the marginal cost curve of production is flat, congestion costs are expected to be low.

  20. Origin and prevention of infection with Legionella pneumophila through cooling towers and evaporative cooling towers

    International Nuclear Information System (INIS)

    Schulze-Roebbecke, R.

    1994-01-01

    Evaporative cooling towers and industrial ventilator cooling towers have repeatedly been described as the origin of Legionnaires' disease. This article describes the design and function of cooling towers and evaporative cooling towers, sums up knowledge on the colonization of such systems with Legionella pneumophila, and describes conditions permitting the transmission of Legionella. Furthermore, design, maintenance, cleaning and disinfection measures are indicated which are believed to reduce the risk of infection through industrial and evaporative cooling towers. (orig.) [de

  1. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory

    Directory of Open Access Journals (Sweden)

    Dongqing Peng

    2016-11-01

    Full Text Available Based on Time-Frequency (TF analysis and a-contrario theory, this paper presents a new approach for extraction of linear arranged power transmission tower series in Polarimetric Synthetic Aperture Radar (PolSAR images. Firstly, the PolSAR multidimensional information is analyzed using a linear TF decomposition approach. The stationarity of each pixel is assessed by testing the maximum likelihood ratio statistics of the coherency matrix. Then, based on the maximum likelihood log-ratio image, a Cell-Averaging Constant False Alarm Rate (CA-CFAR detector with Weibull clutter background and a post-processing operator is used to detect point-like targets in the image. Finally, a searching approach based on a-contrario theory is applied to extract the linear arranged targets from detected point-like targets. The experimental results on three sets of PolSAR data verify the effectiveness of this approach.

  2. Estimating zonal electricity supply curves in transmission-constrained electricity markets

    International Nuclear Information System (INIS)

    Sahraei-Ardakani, Mostafa; Blumsack, Seth; Kleit, Andrew

    2015-01-01

    Many important electricity policy initiatives would directly affect the operation of electric power networks. This paper develops a method for estimating short-run zonal supply curves in transmission-constrained electricity markets that can be implemented quickly by policy analysts with training in statistical methods and with publicly available data. Our model enables analysis of distributional impacts of policies affecting operation of electric power grid. The method uses fuel prices and zonal electric loads to determine piecewise supply curves, identifying zonal electricity price and marginal fuel. We illustrate our methodology by estimating zonal impacts of Pennsylvania's Act 129, an energy efficiency and conservation policy. For most utilities in Pennsylvania, Act 129 would reduce the influence of natural gas on electricity price formation and increase the influence of coal. The total resulted savings would be around 267 million dollars, 82 percent of which would be enjoyed by the customers in Pennsylvania. We also analyze the impacts of imposing a $35/ton tax on carbon dioxide emissions. Our results show that the policy would increase the average prices in PJM by 47–89 percent under different fuel price scenarios in the short run, and would lead to short-run interfuel substitution between natural gas and coal. - Highlights: • We develop a method to estimate of zonal supply curves in electricity markets. • The model estimates zonal electricity prices and zonal fuel utilization. • The model implicitly captures the average impacts of transmission constraints. • Using the method, we project supply curves for the seventeen utility zones of PJM. • We use the estimated supply curves to study the impacts of Pennsylvania's Act 129 and a carbon tax of $35 per ton

  3. Water tower

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    The water tower, being built on the highest point of the site, 460.5 m above the sea level. The tank will hold 750 m3 of water, and the tower will be topped by a knob which can serve as a geological survey reference mark.

  4. Getting to Gender Equality in Energy Infrastructure : Lessons from Electricity Generation, Transmission, and Distribution Projects

    OpenAIRE

    Orlando, Maria Beatriz; Janik, Vanessa Lopes; Vaidya, Pranav; Angelou, Nicolina; Zumbyte, Ieva; Adams, Norma

    2018-01-01

    Getting to Gender Equality in Electricity Infrastructure: Lessons from Electricity Generation, Transmission, and Distribution Projects examines the social and gender footprint of large-scale electricity generation, transmission, and distribution projects to establish a foundation on which further research and replication of good practices can be built. The main impact pathways analyzed are...

  5. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    Science.gov (United States)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  6. Unbundling generation and transmission services for competitive electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those 'necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.' The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC's landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  7. Transmission capacities and competition in Western European electricity market

    International Nuclear Information System (INIS)

    Spiridonova, Olga

    2016-01-01

    The integration of national electricity markets into a single European one is expected to reduce the ability of dominant players to exercise market power. This paper investigates whether or not existing transmission capacities of cross-border interconnectors are sufficient to achieve this result and create vigorous competition in the market. A model with two decision levels is used. On the first level profit maximizing generators play Cournot game against each other. On the last level the system operator clears the market and determines flows in the network to maximize social welfare subject to a set of physical constraints. As each strategic generator anticipates her impact on equilibrium prices and congestion in the system, her optimization problem is subject to equilibrium constraints from the system operator's problem. The analysis demonstrates that interconnector capacities in Western Europe are insufficient for integration alone to reduce the exercise of market power. I compare several possible competition-enhancing policies: expansion of interconnectors and different scenarios of national markets’ restructuring. I show that although increase of line capacity is a useful tool to stimulate competition in an integrated market, it is not a substitute for the restructuring of large players. - Highlights: •The ability of integration to reduce market power depends on transmission capacities. •In the model firms compete in quantities, know their impact on prices and congestion. •In Western Europe integration will not diminish market power. •Line extension stimulates competition but is not a substitute for the regulation.

  8. Frequency domain analysis of the lightning current distribution to ground at the transmission line tower with cellular phone base station

    NARCIS (Netherlands)

    Grcev, L.; Deursen, van A.P.J.; Waes, van J.B.M.

    2003-01-01

    Cellular phone base stations are often placed in the poles of power transmission lines. We consider the case when such base stations are powered from the low-voltage network. Of special concern is the current that might be led through the cable metallic shields to other customers' premises in case

  9. FEV's new parallel hybrid transmission with single dry clutch and electric torque support

    Energy Technology Data Exchange (ETDEWEB)

    Hellenbroich, Gereon [VKA, RWTH Aachen (Germany); Rosenburg, Volker [FEV Motorentechnik GmbH, Aachen (Germany)

    2009-07-01

    FEV is currently developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gear set layout combines the advantages of modern AMTs such as best efficiency, low costs and few components with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short-shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during start/stop phases. (orig.)

  10. 76 FR 58101 - Electric Reliability Organization Interpretation of Transmission Operations Reliability Standard

    Science.gov (United States)

    2011-09-20

    ....C. Cir. 2009). \\4\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC... for maintaining real and reactive power balance. \\14\\ Electric Reliability Organization Interpretation...; Order No. 753] Electric Reliability Organization Interpretation of Transmission Operations Reliability...

  11. Electric power transmission and distribution in Germany - an NTPA success

    International Nuclear Information System (INIS)

    Staschus, K.

    2002-01-01

    The German Energy Law of April 1998 opened 100 percent of the German electricity market to competition without any transition phase. Over four years later, the degree of market opening is still ahead of that in many other European countries. Transition phases elsewhere have been dominated by the need to develop detailed rules not only for the functioning of the power markets - e.g. in power exchanges - but also for the transmission and distribution system operators and for the data exchange between market participants. Especially the data exchange needs for the handling of household customers switching suppliers has been a challenge in all the countries that have opened the household customer market. But also the network access fees on both transmission and distribution level are still being debated in many countries. The German governments have so far chosen to let the network operators develop the access rules, pricing rules and data exchange standards in intense - and intensely observed - negotiations with the network users. Important outcomes of such negotiations include the well-known A ssociations' Agreements , GridCode, DistributionCode, MeteringCode as well as the government's Best Practice Recommendations on data exchange standards for the switching between suppliers. One important advantage of this negotiation-based rather than regulatory approach is its speed and flexibility. For example, the Associations' Agreement on network access fees is now valid in its third version, and each successive version included important learning from the experience of both network operators and network users with the previous agreement. This paper will summarise the legal framework of the liberalised power market in Germany and focus on the current state of pricing rules in the Associations' Agreement, of well advanced comparisons run by VDN, of the network access fees of hundreds of distribution system operators including specific data on structural differences of their

  12. Wireless Sensor Network for Electric Transmission Line Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, Bruce

    2009-06-30

    . On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization

  13. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  14. Distance Protection Impedance Measurement for Inhomogeneous Multiple-Circuit 400/150 kV Transmission Lines with Shared Towers

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Sigurbjörnsson, Ragnar; Bukh, Bjarne

    2016-01-01

    are interconnected in a simple way but via transformers and infeed from remaining parts of the network. Distance relay measured fault loop impedance shows wide ranges of variations for both phase-phase loops as well as phase-earth loops. No simple relations exist. Simulation models can be used to study fault loop...... impedance for combined faults and thereby shed light on relay trips. This study uses actual fault records, analytical method and PSCAD simulation studies to analyse combined faults in an existing 400 and 150 kV transmission line owned by Danish TSO Energinet.dk. The results clearly show that an accurate...

  15. 76 FR 44323 - National Grid Transmission Services Corporation; Bangor Hydro Electric Company; Notice of...

    Science.gov (United States)

    2011-07-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-49-000] National Grid Transmission Services Corporation; Bangor Hydro Electric Company; Notice of Petition for Declaratory Order Take..., 18 CFR 385.207, National Grid Transmission Services Corporation and Bangor Hydro Electric Company...

  16. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Science.gov (United States)

    2011-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TS11-4-000] The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver or Exemption Take notice that on June 8, 2011, the Connecticut Transmission Municipal Electric Energy Cooperative filed a petition...

  17. Tower counts

    Science.gov (United States)

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  18. Electric Utility Transmission and Distribution Line Engineering Program

    Energy Technology Data Exchange (ETDEWEB)

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular

  19. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  20. The future cooling tower; Fremtidens koeletaarn

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, C.H. (Vestas Aircoil A/S, Lem St. (Denmark)); Schneider, P. (Teknologisk Institut, AArhus (Denmark)); Haaning, N. (Ramboell A/S, Copenhagen (Denmark)); Lund, K. (Nyrup Plast A/S, Nyrup (Denmark)); Soerensen, Ole (MultiWing A/S, Vedbaek (Denmark)); Dalsgaard, T. (Silhorko A/S, Skanderborg (Denmark)); Pedersen, Michael (Skive Kommune, Skive (Denmark))

    2011-03-15

    This project has designed and built a pilot-scale cooling tower with an output of up to 100 kW for which good correlation has been ascertained between measured and calculated values for output and pressure loss. The new cooling tower will save approximately 15% of electricity consumption compared with the widespread dry coolers. The pilot tower uses rainwater so that both water consumption and electricity consumption are saved in softening plants. On the basis of this cooling tower, models have been made and these have been implemented in PackCalc II in order to calculate electricity and other operating savings. (Energy 11)

  1. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  2. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  3. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  4. Carbon footprint of the Danish electricity transmission and distribution systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Astrup, Thomas Fruergaard

    . The purpose was to evaluate the potential importance of environmental impacts associated with T&D in current and future electricity systems. Including the emissions from electricity T&D is needed to provide a full carbon footprint of electricity systems, and is essential to properly assess the environmental...

  5. International benchmarking of electricity transmission by regulators: A contrast between theory and practice?

    International Nuclear Information System (INIS)

    Haney, Aoife Brophy; Pollitt, Michael G.

    2013-01-01

    Benchmarking of electricity networks has a key role in sharing the benefits of efficiency improvements with consumers and ensuring regulated companies earn a fair return on their investments. This paper analyses and contrasts the theory and practice of international benchmarking of electricity transmission by regulators. We examine the literature relevant to electricity transmission benchmarking and discuss the results of a survey of 25 national electricity regulators. While new panel data techniques aimed at dealing with unobserved heterogeneity and the validity of the comparator group look intellectually promising, our survey suggests that they are in their infancy for regulatory purposes. In electricity transmission, relative to electricity distribution, choosing variables is particularly difficult, because of the large number of potential variables to choose from. Failure to apply benchmarking appropriately may negatively affect investors’ willingness to invest in the future. While few of our surveyed regulators acknowledge that regulatory risk is currently an issue in transmission benchmarking, many more concede it might be. In the meantime new regulatory approaches – such as those based on tendering, negotiated settlements, a wider range of outputs or longer term grid planning – are emerging and will necessarily involve a reduced role for benchmarking. -- Highlights: •We discuss how to benchmark electricity transmission. •We report survey results from 25 national energy regulators. •Electricity transmission benchmarking is more challenging than benchmarking distribution. •Many regulators concede benchmarking may raise capital costs. •Many regulators are considering new regulatory approaches

  6. 2015 Plan. Project 5: transmission systems of electric power

    International Nuclear Information System (INIS)

    1992-12-01

    The planning aspects of transmission system expansion in Brazil are described, mentioning the evolution at long date of the transmission system, emphasizing the qualitative and strategic aspects. The engineering aspects and the technological development are also presented. (C.G.C.)

  7. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    1975-09-01

    The major issues examined in the comparison of the DIST and HNEC transmission concepts are: (1) type of transmission to be employed and an assessment of its technical feasibility, (2) availability of rights-of-way, (3) economics, (4) environmental impact, and (5) overall reliability of the transmission system. The type of transmission selected for bulk power transfer from an HNEC for the time period studied is overhead AC, 500 kV double or single circuit, a voltage currently used in the PNW system. This type of system can accommodate growth up to at least 23,000 MW of thermal capacity at an HNEC. Significant additional transmountain capacity needs would require 1100 kV transmission, which should be technologically proved by the end of the 1970s. (auth)

  8. Transmission prices in the electric system. Technical constraints and economic efficiency

    International Nuclear Information System (INIS)

    Polidori, P.

    1999-01-01

    This article analyses the two main models at the core of today's theoretical discussion on transmission pricing in electricity sectors under competition. The first aim of the paper is showing how technical constraints that characterise transmission systems may affect energy production and transmission and therefore the definition of the price system for using the electric grid. The second aim of the paper is showing how it is possible to suggest solutions, although not free from limitations, that can be used for an efficient management of electric systems characterised by generation and consumption sectors under competition [it

  9. Transmission pricing in privately-owned electricity grids: An illustration from the Argentine electricity pool

    International Nuclear Information System (INIS)

    Abdala, Manuel A.

    2008-01-01

    The Argentine electricity reform of 1992 offers an interesting example of decentralized transmission pricing arrangements within a competitive system. This paper is a shortened version of an original analysis made in 1994 of the regulation of the Argentine transmission system, with emphasis on investment cost allocation rules. To make up for the limitation of short-run marginal cost (SRMC) pricing, incentives on service quality were put in place, including penalties for lack of line availability. The mechanism for capacity expansion, based on ad-hoc rules for allocations of investment costs, had the potential to produce non-optimal investment outcomes, as such rules ignored beneficiaries on the demand side. For fine tuning of this system, I proposed an alternative rule based on traditional welfare analysis that broadens the universe of identified beneficiaries, and thus can be expected to produce a fairer outcome on investment cost allocation, reducing the potential risks of non-optimal investment. A brief postscript comments on the paper from the perspective of 2007. (author)

  10. Planning Electric Transmission Lines: A Review of Recent Regional Transmission Plans

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-13

    The first Quadrennial Energy Review (QER) recommends that the U.S. Department of Energy (DOE) conduct a national review of transmission plans and assess the barriers and incentives to their implementation. DOE tasked Lawrence Berkeley National Laboratory (LBNL) to prepare two reports to support the agency’s response to this recommendation. This report reviews regional transmission plans and regional transmission planning processes that have been directed by Federal Energy Regulatory Commission (FERC) Order Nos. 890 and 1000. We focus on the most recent regional transmission plans (those issued in 2015 and through approximately mid-year 2016) and current regional transmission planning processes. A companion report focuses on non-plan-related factors that affect transmission projects.

  11. Merchant electricity transmission expansion: A European case study

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, T. [RBS Sempra Commodities, 155 Bishopsgate, London EC2M3TZ (United Kingdom); Rosellon, J. [Centro de Investigacion y Docencia Economicas (CIDE), Division de Economia, Carretera Mexico-Toluca 3655, Lomas de Santa Fe, 01210 Mexico D.F. (Mexico); German Institute for Economic Research (DIW Berlin), Mohrenstrasse 58, 10117, Berlin (Germany)

    2010-10-15

    We apply a merchant transmission model to the trilateral market coupling (TLC) arrangement among the Netherlands, Belgium and France as an example, and note that it could further be applied to other market splitting or coupling of Europe's different national power markets. In this merchant framework the system operator allocates financial transmission rights (FTRs) to investors in transmission expansion based upon their preferences, and revenue adequacy. The independent system operator (ISO) preserves some proxy FTRs to manage potential negative externalities that may result from expansion projects. This scheme could help European market coupling arrangements attract additional investment. (author)

  12. Merchant electricity transmission expansion: A European case study

    International Nuclear Information System (INIS)

    Kristiansen, T.; Rosellon, J.

    2010-01-01

    We apply a merchant transmission model to the trilateral market coupling (TLC) arrangement among the Netherlands, Belgium and France as an example, and note that it could further be applied to other market splitting or coupling of Europe's different national power markets. In this merchant framework the system operator allocates financial transmission rights (FTRs) to investors in transmission expansion based upon their preferences, and revenue adequacy. The independent system operator (ISO) preserves some proxy FTRs to manage potential negative externalities that may result from expansion projects. This scheme could help European market coupling arrangements attract additional investment. (author)

  13. Virtual Tower

    International Nuclear Information System (INIS)

    Wayne, R.A.

    1997-01-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems

  14. Measuring the competitiveness benefits of a transmission investment policy: The case of the Alberta electricity market

    International Nuclear Information System (INIS)

    Wolak, Frank A.

    2015-01-01

    Transmission expansions can increase the extent of competition faced by wholesale electricity suppliers with the ability to exercise unilateral market power. This can cause them to submit offer curves closer to their marginal cost curves, which sets market-clearing prices closer to competitive benchmark price levels. These lower wholesale market-clearing prices are the competitiveness benefit consumers realize from the transmission expansion. This paper quantifies empirically the competitiveness benefits of a transmission expansion policy that causes strategic suppliers to expect no transmission congestion. Using hourly generation-unit level offer, output, market-clearing price and congestion data from the Alberta wholesale electricity market from January 1, 2009 to July 31, 2013, an upper and lower bound on the hourly consumer competitiveness benefits of this transmission policy is computed. Both of these competitiveness benefits measures are economically significant, which argues for including them in transmission planning processes for wholesale electricity markets to ensure that all transmission expansions with positive net benefits to electricity consumers are undertaken. -- Highlights: •Define competitiveness benefits to consumers from transmission expansions in wholesale market. •Compute upper and lower bounds on competitiveness benefits for Alberta market. •Compare no-perceived congestion prices to actual prices to measure competitiveness benefits. •Economically substantial competitiveness benefits found for sample period studied. •To ensure adequate transmission, planning processes should account for these benefits

  15. Transmission grid requirements with scattered and flutuating renewable electricity sources

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2002-01-01

    Denmark is in a situation with many scattered sources of electricity, that are not controlled by the central load dispatch. At the same time, Denmark is being used as an electricity transit corridor between Norway/Sweden and Germany. Through energy systems analyses and load-flow analyses......, it is determined that if scattered load balancing is introduced, electricity transit is enabled to a higher degree than if central load balancing is maintained....

  16. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    Yomi

    2010-08-18

    Aug 18, 2010 ... transmission lines on ornamental plant growth. Zeki Demir ... The effects of proximity to power-line on specific leaf area and seedling dbh were tested .... during vegetation season is about 72% and common wind blow.

  17. Guinea_WADC00320_ADBG_Guinea_Electricity_Transmission_Network

    Data.gov (United States)

    United Nations Cartographic Section — Data for medium and high voltage transmission lines were compiled for the AICD study led by the World Bank. A variety of sources were consulted, including regional...

  18. THE MAIN DIRECTIONS OF IMPROVING THE EFFICIENCY OF PRODUCTION, TRANSMISSION AND DISTRIBUTION OF ELECTRICAL ENERGY

    Directory of Open Access Journals (Sweden)

    I. V. Zhezhelenko

    2018-01-01

    Full Text Available The main directions of increase of efficiency of production, transmission and distribution of electric energy have been formulated. The relation between the values of electricity losses during transmission via power grids of different countries and the level of the economies of these countries characterized by the value of gross domestic product at purchasing power parity per capita has been established. In the countries with a gross domestic product at purchasing power parity per capita less than 20 thousand US dollars electricity losses during its transmission via power grids are 1.5–2.5 times more than the ones transmitted via power grids of the industrialized countries where the specified purchasing power parity is in the range of 30.4–54.5 thousand US dollars. In the countries with more developed economies the technical culture of production, transmission and distribution of electricity is higher; the modern control systems of operation modes of electrical networks are used as well as of monitoring and accounting of electricity; also there are solvent and disciplined consumers in such countries as well as clear regulatory framework and tariff regulation system. However, the process of transmission and distribution of electricity is effective if not only low relative losses take place, but the normal (contractual requirements for carrying capacity, quality and reliability of electricity supply are provided. The possibility of analytical determination of the optimum value of reserve capacity of power plants providing the required level of reliability of the power system has been considered.

  19. The Effects of Average Revenue Regulation on Electricity Transmission Investment and Pricing

    OpenAIRE

    Isamu Matsukawa

    2005-01-01

    This paper investigates the long-run effects of average revenue regulation on an electricity transmission monopolist who applies a two- part tariff comprising a variable congestion price and a non-negative fixed access fee. A binding constraint on the monopolist fs expected average revenue lowers the access fee, promotes transmission investment, and improves consumer surplus. In a case of any linear or log-linear electricity demand function with a positive probability that no congestion occur...

  20. A literature survey on asset management in electrical power [transmission and distribution] system

    OpenAIRE

    Khuntia, S.R.; Rueda Torres, José L.; Bouwman, S.; van der Meijden, M.A.M.M.

    2016-01-01

    Asset management is one of the key components in a transforming electric power industry. Electric power industry is undergoing significant changes because of technical, socio-economical and environmental developments. Also, because of restructuring and deregulation, the focus has been on transmission and distribution assets that include transmission lines, power transformers, protection devices, substation equipment and support structures. This study aims to provide a detailed exposure to ass...

  1. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  2. 78 FR 44900 - Communication of Operational Information Between Natural Gas Pipelines and Electric Transmission...

    Science.gov (United States)

    2013-07-25

    ... Regional Transmission Organizations and Independent System Operators (RTOs/ISOs) also noted that, although... operator from discussions between RTOs/ ISOs and natural gas pipelines regarding the status of a generator... not customers of electric transmission operators. Likewise, in the case of RTOs/ISOs, they are not...

  3. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF ENERGY Western Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No. 5 Substation and the Palo Verde Hub AGENCY... Department of Energy (DOE), is requesting SOIs from entities that are interested in purchasing transmission...

  4. 2015 Plan. Project 7: the environmental issue and the electrical sector. Transmission systems

    International Nuclear Information System (INIS)

    1992-10-01

    The main impacts in socio-environmental analysis of transmission lines and substations for expansion of the Brazilian electrical sector are described, showing the actions of social compensation aiming a better insertion of the transmission lines and the substations. The issues relating with the natural and native reserves, the supply to the large consumer centers and the socio-environmental licensing of transmission enterprises are also discussed. (C.G.C.)

  5. Optimum design of a self-supported power transmission tower type 2M2 for 230 kW; Diseno optimo de una torre de transmision autosoportada tipo 2M2, para 230 kW

    Energy Technology Data Exchange (ETDEWEB)

    Espejel Valdez, Eduardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Millan Monje, Alejandro; Honk Hernandez, Wenceslao [Comision Federal de Electricidad, (CFE), Mexico, D. F. (Mexico)

    1986-12-31

    A group of specialists from the Comision Federal de Electricidad (CFE) and of the Instituto de Investigaciones Electricas (IIE) analyzes the design of various types of power transmission towers in their application stage, in order to enhance them. In this article the structural characteristics of the self-supported tower type 2M2 for 230 kV of two circuits and of suspension, are presented. [Espanol] Un grupo de especialistas de la Comision Federal de Electricidad (CFE) y del Instituto de Investigaciones Electricas (IIE) analiza el diseno de diversos tipos de torres de transmision en su etapa de aplicacion, con el fin de mejorarlos. En este articulo se presentan las caracteristicas estructurales de la torre autosoportada tipo 2M2 para 230 kV, de dos circuitos y de suspension.

  6. Optimum design of a self-supported power transmission tower type 2M2 for 230 kW; Diseno optimo de una torre de transmision autosoportada tipo 2M2, para 230 kW

    Energy Technology Data Exchange (ETDEWEB)

    Espejel Valdez, Eduardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Millan Monje, Alejandro; Honk Hernandez, Wenceslao [Comision Federal de Electricidad, (CFE), Mexico, D. F. (Mexico)

    1985-12-31

    A group of specialists from the Comision Federal de Electricidad (CFE) and of the Instituto de Investigaciones Electricas (IIE) analyzes the design of various types of power transmission towers in their application stage, in order to enhance them. In this article the structural characteristics of the self-supported tower type 2M2 for 230 kV of two circuits and of suspension, are presented. [Espanol] Un grupo de especialistas de la Comision Federal de Electricidad (CFE) y del Instituto de Investigaciones Electricas (IIE) analiza el diseno de diversos tipos de torres de transmision en su etapa de aplicacion, con el fin de mejorarlos. En este articulo se presentan las caracteristicas estructurales de la torre autosoportada tipo 2M2 para 230 kV, de dos circuitos y de suspension.

  7. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    Science.gov (United States)

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  8. Issues affecting the electricity transmission system in Mexico under a competitive integrated model

    Energy Technology Data Exchange (ETDEWEB)

    Avila Rosales, M.A.; Gonzalez Flores, J. [Federal Electricity Commission, Mexico City (Mexico)

    2008-07-01

    The electricity sector in Mexico is undergoing a process of significant structural change. The traditional industry framework has been exposed to new market structures and greater competition, both of which are being introduced by changing regulations regarding who can generate, transmit, distribute and sell electricity. Mexico's power industry is changing to a competitive integrated model. Electricity industry restructuring is partly based on the assumption that transmission systems should be flexible, reliable, and open to all exchanges no matter where the suppliers and consumers of energy are located and who they are. However, neither the existing transmission systems nor its management infrastructure can fully support this open exchange. This paper described the primary issues affecting the transmission system in Mexico under a competitive environment and a transmission expansion planning approach that took the uncertainties associated with the location and size of new generating power stations into consideration in order to produce least-cost and robust transmission plans. The paper described the planning process, including a rigorous analysis of the economics of the resulting transmission plans. Specifically, the paper described the current regulatory framework and supply adequacy as well as current procedures and methodologies for transmission management and expansion planning. The transmission planning methodology was also presented. This included a minimum cost analysis; profit analysis; and least-cost transmission plan. It was concluded that the transmission expansion planning approach stressed that a horizon year viewpoint was important because transmission additions have long-term use. The transmission expansion planning approach, further defined the process of selecting transmission projects as one of comparing and optimizing attributes such as near-term needs; long-term utilization; contribution to overall reliability; and favorable or least

  9. How dangerous are mobile phones, transmission masts, and electricity pylons?

    OpenAIRE

    Wood, A W

    2006-01-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is o...

  10. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Aquifer resistivity range from 4.26 ohm-m to 755.3 ohm-m with maximum thickness of 52.25m. A maximum 55.52m depth- tobasement was obtained in the study area. Based on the model obtained, aquifer Transmissivity was calculated and was used to delineate the study area into prospective low and high groundwater ...

  11. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  12. ELECTRODYNAMICS OF TRANSMISSION AND LOSSES OF POWER IN THE DEVICES OF ELECTRIC TRACTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2014-01-01

    Full Text Available Purpose. Theoretical justification of the "field" approach (based on electromagnetic field to the transmission and losses of power in the devices of traction power supply systems and electric rolling stock. Methodology. The methods of electromagnetic field theory and, in particular, the theory and practice of electromagnetic energy transmission based on the concept of the Poynting vector and elements of the theory of propagation, reflection and refraction of plane electromagnetic waves were used. Findings. Theoretical studies of electromagnetic energy transmission from the traction substation to the electric rolling stock through dielectric (air surrounding traction network: between the contact wire and the rail were carried out. It is proposed strategic designing "squat" (low types of electric rolling stock. The components of electric energy flow through the roof of electric rolling stock and its frontal part of the body were estimated. This allows reliable etimating active power losses in electric traction system. To compensate the reactive power consumed by electric rolling stock, which is conditioned by standing waves, it is proposed (for extinction of the the last to develop and put in front of electric rolling stock the layer of particular environment with the necessary parameters. Originality. The "field" principle of the power transmission analysis and its losses arising in electric traction system was first proposed. The laws of motion of electromagnetic energy flows through the roof and the frontal part of the body of electric rolling stock were established. Practical value. An expression of the absolute value of the Poynting vector in the points of dielectric (air between the contact wire and the rail was obtained. This allows assessing the highest density of energy, which is transferred to the time unit and predicting the main dimensions of the unit of electric rolling stock. The energy indices of the roof of electric rolling stock

  13. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  14. How dangerous are mobile phones, transmission masts, and electricity pylons?

    Science.gov (United States)

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.

  15. Network cost in transmission and distribution of electric power

    International Nuclear Information System (INIS)

    Lindahl, A.; Naeslund, B.; Oettinger-Biberg, C.; Olander, H.; Wuolikainen, T.; Fritz, P.

    1994-01-01

    This report is divided in two parts, where part 1 treats the charges on the regional nets with special emphasis on the net owners tariffs on a deregulated market. Part 2 describes the development of the network costs in electric power distribution for the period 1991-1993. 11 figs, 33 tabs

  16. The Predominance of Electric Transport in Synaptic Transmission

    OpenAIRE

    Hamid Reza Noori

    2008-01-01

    The quantitative description of the motion of neurotransmitters in the synaptic cleft appears to be one of the most difficult problems in the modeling of synapses. Here we show in contradiction to the common view, that this process is merely governed by electric transport than diffusion forces.

  17. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  18. Virtual scarce water embodied in inter-provincial electricity transmission in China

    International Nuclear Information System (INIS)

    Zhang, Chao; Zhong, Lijin; Liang, Sai; Sanders, Kelly T.; Wang, Jiao; Xu, Ming

    2017-01-01

    Highlights: • Virtual water in inter-provincial electricity transmission in China is calculated. • A Water Stress Index is used to reflect relative scarcity of water consumption. • West Inner Mongolia is the largest exporter of scarce water. • Hebei, Beijing and Shandong are the three largest receivers of scarce water. - Abstract: Intra-national electricity transmission drives virtual water transfer from electricity production regions to electricity consumption regions. In China, the water-intensive thermoelectric power industry is expanding quickly in many water-scarce energy production hubs in northern and northwestern provinces. This study constructed a node-flow model of inter-provincial electricity transmission to investigate the virtual water and scarcity-adjusted virtual water (or virtual scarce water) embodied in the electricity transmission network. It is revealed that total inter-provincial virtual water transfer embodied in electricity transmission was 623 million m"3 in 2011, equivalent to 12.7% of the national total thermoelectric water consumption. The top three largest single virtual water flows are West Inner Mongolia-to-Beijing (44 million m"3), East Inner Mongolia-to-Liaoning (39 million m"3), and Guizhou-to-Guangdong (37 million m"3). If the actual volumes of consumptive water use are translated into scarcity-adjusted water consumption based on Water Stress Index, West Inner Mongolia (81 million m"3), Shanxi (63 million m"3) and Ningxia (30 million m"3) become the top three exporters of virtual scarce water. Many ongoing long-distance electricity transmission projects in China will enlarge the scale of scarce water outflows from northwestern regions and potentially increase their water stress.

  19. Can the BestGrid Process Improve Stakeholder Involvement in Electricity Transmission Projects?

    Directory of Open Access Journals (Sweden)

    Nadejda Komendantova

    2015-08-01

    Full Text Available The European Union has set ambitious targets for deployment of renewable energy sources to reach goals of climate change mitigation and energy security policies. However, the current state of electricity transmission infrastructure is a major bottleneck for further scaling up of renewable energy in the EU. Several thousands of kilometers of new lines have to be constructed and upgraded to accommodate growing volumes of intermittent renewable electricity. In many countries, construction of electricity transmission projects has been delayed for several years due to concerns of local stakeholders. The innovative BESTGRID approach, reported here, brings together transmission system operators (TSOs and non-governmental organizations (NGOs to discuss and understand the nature of stakeholder concerns. This paper has three objectives: (1 to understand stakeholder concerns about the deployment of electricity transmission grids in four pilot projects according to five guiding principles: need, transparency, engagement, environment, and impacts on human health as well as benefits; (2 to understand how these principles can be addressed to provide a basis for better decision-making outcomes; and (3 to evaluate the BESTGRID process based on feedback received from stakeholders and the level of participation achieved according to the ladder of Arnstein. This paper goes beyond a discussion of “measures to mitigate opposition” to understand how dialogue between TSOs and the public—represented mainly by NGOs and policy-makers—might lead to a better decision-making process and more sustainable electricity transmission infrastructure deployment.

  20. The effect of electric transmission constraints on how power generation companies bid in the Colombian electrical power market

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gallego Vega

    2010-05-01

    Full Text Available This paper presents the results of research about the effect of transmission constraints on both expected electrical energy to be dispatched and power generation companies’ bidding strategies in the Colombian electrical power market. The proposed model simulates the national transmission grid and economic dispatch by means of optimal power flows. The proposed methodology allows structural problems in the power market to be analyzed due to the exclusive effect of trans- mission constraints and the mixed effect of bidding strategies and transmission networks. A new set of variables is proposed for quantifying the impact of each generation company on system operating costs and the change in expected dispatched energy. A correlation analysis of these new variables is presented, revealing some interesting linearities in some generation companies’ bidding patterns.

  1. Atmospheric cooling tower with reduced plume

    International Nuclear Information System (INIS)

    Gautier, D.M.; Lagoutte, A.

    1985-01-01

    The cooling tower, usable in thermal-electric power plants, has a vertical chimney having a central water tower fed with water to be cooled, a pipe network distributing water coming from the water tower and dispersing it in flows streaming down on a packing, and a basin to receive the water cooled by contact with an air flow passing through apertures at the lower part of the chimney and flowing up through the chimney. The cooling tower has inlet air pipes for the said apertures to a zone of the chimney situated beyond the streaming zone, the said pipes being arranged such their surface is swept by water to be cooled [fr

  2. The study of water droplets electrical charging effect on spray tower scrubber efficiency for feldspar particles removal

    Directory of Open Access Journals (Sweden)

    R Golmohammadi

    2012-01-01

    Full Text Available Background and aims: One of the modern ways introduced nowadays for increasing the collection efficiency of particulate, is the use of electric charge in wet scrubbers. These systems can be used in places in which scrubbers are suitable for contaminant collection. In fact, this system only increases the collection efficiency, and it is not a new technology for contaminant collection.   Methods: First, according to ACGIH recommendation for pilot study a ventilation system was designed and installed. Later, water was charged by using an DC electric exchanger (1275 Volt, DC& product 3×1014 electron on system. Air velocity in the duct was determined by Pitot tube, pressure drop and speed equations, and sampling prop diameter was calculated considering isokenetic conditions. Sampling was performed at two flow rates of 20.3 and 11.4 liter per minute and in overall 72 samples were collected. Sample analysis was performed using gravimetric method and data analysis was performed using SPSS software.      Results: The collection efficiency of inhalable particles in the flow rate of 20.3 liter per minute in a non-electric intervention, and electric intervention with positive and negative charge was 66, 77.67 and 73 percent and in the flow rate of 11.4 liters per minute 60, 69.43 and 68.32 percent respectively. For non-inhalable particles the efficiency in the flow rate 20.3 liter per minute in a non-electric intervention and electric intervention with positive and negative charge was 94.67, 98.33 and 97.67 percent, and in the flow charge of 11/4 liter per minute the flow charge was 91.33, 95, and 97.33 percent respectively.  Conclusion: The results obtained from the experiments, showed that in a certain flow rate, electric intervention increases the efficiency of inhalable particle collection. By the way, this electric intervention has no significant effect on non-inhalable particle collection. Also, the effect of electric intervention with

  3. Cost Allocation of Transmission Losses in Electric Market Mechanism

    Directory of Open Access Journals (Sweden)

    Erwin Dermawan

    2012-06-01

    Full Text Available This paper proposes a new method to calculate cost allocation of transmission losses (losses, based on a certain price of energy (i.e. a marginal price of system. Here is developed a mathematic model through manipulating of the network equation to separate losses. This model uses complex power injection and, does not use approximations and assumptions in determining the cost allocation of losses. Its calculation begins from the results of load flow calculation and then is continued to calculate power distribution from a generator to every load and every line. Finally, to be calculated separating of losses and cost allocation of losses. The proposed method is easy to be understood and applied. An illustration results on IEEE 14-bus system show that the method is always consistent with expectancies and somewhat different with a few reference methods.

  4. Chameleon's behavior of modulable nonlinear electrical transmission line

    Science.gov (United States)

    Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.

    2017-12-01

    We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.

  5. The effects of average revenue regulation on electricity transmission investment and pricing

    International Nuclear Information System (INIS)

    Matsukawa, Isamu

    2008-01-01

    This paper investigates the long-run effects of average revenue regulation on an electricity transmission monopolist who applies a two-part tariff comprising a variable congestion price and a non-negative fixed access fee. A binding constraint on the monopolist's expected average revenue lowers the access fee, promotes transmission investment, and improves consumer surplus. In a case of any linear or log-linear electricity demand function with a positive probability that no congestion occurs, average revenue regulation is allocatively more efficient than a Coasian two-part tariff if the level of capacity under average revenue regulation is higher than that under a Coasian two-part tariff. (author)

  6. Electricity transmission pricing: Tracing based point-of-connection tariff

    International Nuclear Information System (INIS)

    Abhyankar, A.R.; Khaparde, S.A.

    2009-01-01

    Point-of-connection (POC) scheme of transmission pricing in decentralized markets charges the participants a single rate per MW depending on their point-of-connection. Use of grossly aggregated postage stamp rates as POC charges fails to provide appropriate price signals. The POC tariff based on distribution of network sunk costs by employing conventional tracing assures recovery of sunk costs based on extent of use of network by participants. However, the POC tariff by this method does not accommodate economically efficient price signals which correspond to marginal costs. On the other hand, the POC tariff, if made proportional to marginal costs alone, fails to account for sunk costs and extent of use of network. This paper overcomes these lacunae by combining the above stated desired objectives under the recently proposed optimal tracing framework. Since real power tracing problem is amenable to multiple solutions, it is formulated as linearly constrained optimization problem. By employing this methodology, consideration of extent of network use and sunk cost recovery are guaranteed, while objective function is designed such that the spatial pattern of price signals closely follows the pattern of scaled locational marginal prices. The methodology is tested on IEEE 30 bus system, wherein average power flow pattern is established by running various simulation states on congested and un-congested network conditions. (author)

  7. A 10 Gbit/s OCDMA system based on electric encoding and optical transmission

    Science.gov (United States)

    Li, Chuan-qi; Hu, Jin-lin; He, Dong-dong; Chen, Mei-juan; Wang, Da-chi; Chen, Yan

    2013-11-01

    An electric encoded/optical transmission system of code division multiple access (CDMA) is proposed. It encodes the user signal in electric domain, and transfers the different code slice signals via the different wavelengths of light. This electric domain encoder/decoder is compared with current traditional encoder/decoder. Four-user modulation/demodulation optical CDMA (OCDMA) system with rate of 2.5 Gbit/s is simulated, which is based on the optical orthogonal code (OCC) designed in our laboratory. The results show that the structure of electric encoding/optical transmission can encode/decode signal correctly, and can achieve the chip rate equal to the user data rate. It can overcome the rate limitation of electronic bottleneck, and bring some potential applications in the electro-optical OCDMA system.

  8. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...... metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ =0...

  9. Cross-Country Electricity Trade, Renewable Energy and European Transmission Infrastructure Policy

    OpenAIRE

    Abrell, Jan; Rausch, Sebastian

    2016-01-01

    This paper develops a multi-country multi-sector general equilibrium model, integrating high-frequency electricity dispatch and trade decisions, to study the e ects of electricity transmission infrastructure (TI) expansion and re- newable energy (RE) penetration in Europe for gains from trade and carbon dioxide emissions in the power sector. TI can bene t or degrade environ- mental outcomes, depending on RE penetration: it complements emissions abatement by mitigating dispatch problems associ...

  10. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  11. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  12. 76 FR 23222 - Electric Reliability Organization Interpretation of Transmission Operations Reliability

    Science.gov (United States)

    2011-04-26

    ....3d 1342 (DC Cir. 2009). \\5\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693... Reliability Standards for the Bulk-Power System. Action: FERC-725A. OMB Control No.: 1902-0244. Respondents...] Electric Reliability Organization Interpretation of Transmission Operations Reliability AGENCY: Federal...

  13. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...

    Science.gov (United States)

    2013-11-22

    ... Street NE., Washington, DC 20426, (202) 502-8931, [email protected] . Anna Fernandez (Legal Information), Office of the General Counsel, 888 First Street NE., Washington, DC 20426, (202) 502-6682, anna.... Questions Posed by the Commission 100. A. Generator to Electric Transmission Operator 100. Communications 1...

  14. Price-based optimal control of power flow in electrical energy transmission networks

    NARCIS (Netherlands)

    Jokic, A.; Lazar, M.; Bosch, van den P.P.J.; Bemporad, A.; Bicchi, A.; Buttazzo, G.

    2007-01-01

    This article presents a novel control scheme for achieving optimal power balancing and congestion control in electrical energy transmission networks via nodal prices. We develop an explicit controller that guarantees economically optimal steady-state operation while respecting all line flow

  15. An agent-based analysis of the German electricity market with transmission capacity constraints

    International Nuclear Information System (INIS)

    Veit, Daniel J.; Weidlich, Anke; Krafft, Jacob A.

    2009-01-01

    While some agent-based models have been developed for analyzing the German electricity market, there has been little research done on the emerging issue of intra-German congestion and its effects on the bidding behavior of generator agents. Yet, studies of other markets have shown that transmission grid constraints considerably affect strategic behavior in electricity markets. In this paper, the implications of transmission constraints on power markets are analyzed for the case of Germany. Market splitting is applied in the case of congestion in the grid. For this purpose, the agent-based modeling of electricity systems (AMES) market package developed by Sun and Tesfatsion is modified to fit the German context, including a detailed representation of the German high-voltage grid and its interconnections. Implications of transmission constraints on prices and social welfare are analyzed for scenarios that include strategic behavior of market participants and high wind power generation. It can be shown that strategic behavior and transmission constraints are inter-related and may pose severe problems in the future German electricity market.

  16. An agent-based analysis of the German electricity market with transmission capacity constraints

    Energy Technology Data Exchange (ETDEWEB)

    Veit, Daniel J.; Weidlich, Anke; Krafft, Jacob A. [University of Mannheim, Dieter Schwarz Chair of Business Administration, E-Business and E-Government, 68131 Mannheim (Germany)

    2009-10-15

    While some agent-based models have been developed for analyzing the German electricity market, there has been little research done on the emerging issue of intra-German congestion and its effects on the bidding behavior of generator agents. Yet, studies of other markets have shown that transmission grid constraints considerably affect strategic behavior in electricity markets. In this paper, the implications of transmission constraints on power markets are analyzed for the case of Germany. Market splitting is applied in the case of congestion in the grid. For this purpose, the agent-based modeling of electricity systems (AMES) market package developed by Sun and Tesfatsion is modified to fit the German context, including a detailed representation of the German high-voltage grid and its interconnections. Implications of transmission constraints on prices and social welfare are analyzed for scenarios that include strategic behavior of market participants and high wind power generation. It can be shown that strategic behavior and transmission constraints are inter-related and may pose severe problems in the future German electricity market. (author)

  17. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  18. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  19. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Onar, Omer C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Emily [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Burkes, Klaehn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mohammed, Olama [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weeks, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  20. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  1. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  2. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  3. Market power in the European electricity market - The impacts of dry weather and additional transmission capacity

    International Nuclear Information System (INIS)

    Lise, Wietze; Hobbs, Benjamin F.; Hers, Sebastiaan

    2008-01-01

    This paper uses a static computational game theoretic model of a fully opened European electricity market and can take strategic interaction among electricity-producing firms into account. The model is run for a number of scenarios: first, in the baseline under perfect competition, the prices differ due to the presence of various generation technologies and a limited ability to exchange electricity among countries. In addition, when large firms exercise market power, the model runs indicate that prices are the highest in countries where the number of firms is low. Second, dry weather would increase the prices in the hydro-rich Nordic countries followed by the Alpine countries. The price response would be about 20% higher with market power. Third, more transmission capacity would lower the prices in countries with high prices and it also reduces the impact of market power. Hence, more transmission capacity can improve market competitiveness. (author)

  4. Market power in the European electricity market - The impacts of dry weather and additional transmission capacity

    Energy Technology Data Exchange (ETDEWEB)

    Lise, Wietze [IBS Research and Consultancy, Agahamami Cadessi 1/6, Aga Han, Cihangir, 34433 Beyoglu, Istanbul (Turkey); Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands); Hobbs, Benjamin F. [Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Hers, Sebastiaan [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands)

    2008-04-15

    This paper uses a static computational game theoretic model of a fully opened European electricity market and can take strategic interaction among electricity-producing firms into account. The model is run for a number of scenarios: first, in the baseline under perfect competition, the prices differ due to the presence of various generation technologies and a limited ability to exchange electricity among countries. In addition, when large firms exercise market power, the model runs indicate that prices are the highest in countries where the number of firms is low. Second, dry weather would increase the prices in the hydro-rich Nordic countries followed by the Alpine countries. The price response would be about 20% higher with market power. Third, more transmission capacity would lower the prices in countries with high prices and it also reduces the impact of market power. Hence, more transmission capacity can improve market competitiveness. (author)

  5. Transmission rights and market power on electric power networks. 2. Physical rights

    International Nuclear Information System (INIS)

    Joskow, Paul; Tirole, Jean

    1999-01-01

    This discussion paper examines physical transmission rights where the capacity of each potentially congested interface is defined and the rights to use the congested interfaces are created and allocated in some way for suppliers and consumers. The way in which the allocation of physical rights affects competition or increases the buyers or sellers market power in the power generation market when a transmission interface is congested, and how rights markets with different microstructures allocate physical rights and determine rights prices are explored. An electricity market with physical transmission rights in the absence of capacity release rules, and physical transmission rights and market power are addressed. Loop flows, and capacity release rules are discussed. (UK)

  6. Terminological dictionary of electrical power industry in range of generation, transmission and distribution of electric energy

    International Nuclear Information System (INIS)

    Biernacki, T.; Cegla, S.; Ciszewski, W.

    1990-08-01

    The dictionary contains about 5000 terms about conventional and nuclear power plants, energy sources, transmission lines, automation, power systems, environment protection, statistics etc. Each term is given with definition and its equivalents in English, French, German and Russian. Indexes of Polish, English, French, German and Russian terms are provided at the back of dictionary. (A.S.)

  7. Development of a model for integrated simulation of the European transmission networks and electricity markets

    International Nuclear Information System (INIS)

    Rathke, Christian

    2013-01-01

    The liberalisation of electricity markets and the increase of renewable energy generation actually causes dramatic changes for the whole European power industry. The transmission system operators in particular have to meet the challenge to ensure a stable and reliable system operation in the future. Significant changes in power generation will require a substantial extension to current inadequate original transmission grids to handle increased wide area power flows. This is the only way to avoid overloading the grid and to reduce the herefrom resulting limitations for the Pan-European cross-border trade of electricity. This work describes in detail the development of a Pan-European integrated grid and an electricity market simulation tool. For this purpose an overview about the today's structure of the European electricity industry is given initially. Afterwards the configuration of the transmission grid, the used equipment and different methods for the load flow and short circuit calculation are explained. Furthermore models for the calculation of local loads and the power plant dispatch are presented in the following chapters. Following on from this a detailed model of the European electricity industry is developed and the main functions are described by means of some exemplary simulations. The simulation tool developed in this work enables the user to calculate realistic power plant schedules and the consequent resulting physical effects on the European transmission grid. It combines a time series based simulation of the electricity market with a detailed model of the transmission grid. The highly detailing of the model offers the feasibility to execute a complete AC load flow calculation using the Newton Raphson algorithm.Therefore it is possible to identify the active as well as the reactive power flows in the grid. The results of the power flow calculation are the basis for further investigations (e. g. the short circuit calculation) and to decide on

  8. Evaluate electric field strengths in the vicinity of electric transmission systems of electric power; Avaliar intensidades de campo eletrico nas vizinhancas de sistemas de transmissao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.F.; Ulson, J.A.C.; Creppe, R.C.; Serni, P.J.A. [Universidade Estadual Paulista Julio de Mesquita Filho (FEB/UNESP), Bauru, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: jfranc@feb.unesp.br, ulson@feb.unesp.br, creppe@feb.unesp.br, paulojas@feb.unesp.br

    2009-07-01

    The main purpose in this paper is to describe a methodology for the calculation of the profile of the electric field in the level soil and proximities originated by electric energy transmission systems real and in operation in the country. It is also commented the equation used and your computational implementation in order to agile and to optimize the studies. The results of simulations were just presented for the transmission system in the voltage class 500 kV for to simplify the understanding and space restriction in the article, although five others types of configurations have also been used in the complete study with very voltages and respective classes. The results were animating and very nearby of values well-known of electric field of other and publications traditional in the area. The graphic exits of software for better visual comprehension and understanding went in accomplished in the plan (2D) and in the space (3D). (author)

  9. Optimal Planning of the Nordic Transmission System with 100% Electric Vehicle Penetration of passenger cars by 2050

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Wu, Qiuwei; Warland, Leif

    2016-01-01

    This paper presents the optimal planning of the Nordic backbone transmission system with 100% electric vehicle penetration of passenger cars by 2050. Electric vehicles will play an important role in the future energy systems and can reduce the greenhouse gas emission from the transport sector....... However, the electric vehicles will increase the electricity consumption and might induce congestions in the transmission systems. In order to deal with the electricity consumption increase from the electric vehicle integration into the power system and maximize the social welfare, the optimal investments...... of the Nordic transmission system are studied. Case studies were conducted using the market simulation model EMPS and two electric vehicle charging scenarios: a spot price based scenario and a dumb charging scenario. The electric vehicle charging power is assumed to be 3.68 kW with 1 phase 16A. The complete...

  10. Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices

    Science.gov (United States)

    Venance, Laurent; Glowinski, Jacques; Giaume, Christian

    2004-01-01

    Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5–25, 60%; P25–30, 29%; n = 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 ± 0.3%, n = 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABAA receptor antagonist) observed in 19% of SON pairs (n = 62) was reliable (mean failure rate of 6 ± 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 ± 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing. PMID:15235091

  11. Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050

    International Nuclear Information System (INIS)

    Graabak, Ingeborg; Wu, Qiuwei; Warland, Leif; Liu, Zhaoxi

    2016-01-01

    This paper presents the optimal planning of the Nordic backbone transmission system with 100% electric vehicle penetration of passenger cars by 2050. Electric vehicles will play an important role in the future energy systems and can reduce the greenhouse gas emission from the transport sector. However, the electric vehicles will increase the electricity consumption and might induce congestions in the transmission systems. In order to deal with the electricity consumption increase from the electric vehicle integration into the power system and maximize the social welfare, the optimal investments of the Nordic transmission system are studied. Case studies were conducted using the market simulation model EMPS (Efi's multi-area power market simulator) and two electric vehicle charging scenarios: a spot price based scenario and a dumb charging scenario. The electric vehicle charging power is assumed to be 3.68 kW with 1 phase 16 A. The complete electrification of the private passenger fleet increases the yearly power demand in the Nordic region with ca 7.5%. The profitable increases in transmission capacities are highest for dumb charging, but are very low for both dumb and spot price based charging compared to a Reference case. - Highlights: • The electric vehicle distribution is done using population and car statistics. • The 100% penetration electric vehicle demand is obtained for Nordic countries. • The optimal investments in the Nordic transmission system with electric vehicles are studied.

  12. Alternative forms of energy transmission from OTEC plants. [Chemical and electrical

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, A.; Biederman, N.; Talib, A.; Yudow, B.

    1977-01-01

    The transmission of OTEC-derived chemical and electrical energy is compared. The chemical energy-carriers considered are the following: gaseous and liquid hydrogen, liquid ammonia, methanol, gasoline, hydrazine hydrate, anhydrous hydrazine, unsymmetrical dimethylhydrazine (UDMH), 1,7-Octadiyne, and tetrahydrodicyclopentadiene. The assessment assumes that each of the above energy carriers were transported by barge and/or pipeline. The delivered costs were then compared with transmission of electricity by submarine cables. Because chemical and electrical energy are not equivalent, however, their comparison can only be done after the outputs are converted to a common form. Thus, in addition to presenting the delivered cost and overall energy efficiency of the chemical energy-carriers, we have provided a discussion of the equipment, costs, and efficiencies of converting the hydrogen and ammonia delivered into electricity, and the electricity delivered into hydrogen and ammonia. A concise technical assessment and economic analysis of components associated with the conversion, storage, transportation, and shore-based receiving facilities for the conversion of OTEC mechanical energy to chemical energy is provided and compared to the conversion and transmission of electrical power. Results concerning the hydrogen and ammonia analysis were determined as part of the OTEC program at IGT from May 1975 through May 1976 under Contract No. NSF-C1008 (AER-75-00033) with the National Science Foundation and ERDA. Information concerning carbonaceous fuels and high-energy fuels production was developed as part of the current IGT OTEC program under Contract No. E(49-18)-2426 with ERDA.

  13. Calculation and application of energy transaction allocation factors in electric power transmission systems

    Science.gov (United States)

    Fradi, Aniss

    The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.

  14. Economic impact assessment and operational decision making in emission and transmission constrained electricity markets

    International Nuclear Information System (INIS)

    Nanduri, Vishnu; Kazemzadeh, Narges

    2012-01-01

    Highlights: ► We develop a bilevel game-theoretic model for allowance and electricity markets. ► We solve the model using a reinforcement learning algorithm. ► Model accounts for transmission constraints, cap-and-trade constraints. ► Study demonstrated on 9-bus electric power network. ► Obtain insights about supply shares, impact of transmission constraints, and cost pass through. -- Abstract: Carbon constrained electricity markets are a reality in 10 northeastern states and California in the US, as well as the European Union. Close to a Billion US Dollars have been spent by entities (mainly generators) in the Regional Greenhouse Gas Initiative in procuring CO 2 allowances to meet binding emissions restrictions. In the near future, there are expected to be significant impacts due to the cap-and-trade program, especially when the cap stringency increases. In this research we develop a bilevel, complete-information, matrix game-theoretic model to assess the economic impact and make operational decisions in carbon-constrained restructured electricity markets. Our model is solved using a reinforcement learning approach, which takes into account the learning and adaptive nature of market participants. Our model also accounts for all the power systems constraints via a DC-OPF problem. We demonstrate the working of the model and compute various economic impact indicators such as supply shares, cost pass-through, social welfare, profits, allowance prices, and electricity prices. Results from a 9-bus power network are presented.

  15. Fault and load flows analysis of electricity transmission and distribution system in Casanare (Colombia)

    OpenAIRE

    Castro-Galeano, Juan Carlos; Cabra-Sarmiento, Wilson Javier; Ortiz-Portilla, Jhony Fernando

    2017-01-01

    Abstract This article describes a simulation of the electrical local distribution and regional transmission system of Enerca S.A. E.S.P. at 34.5 kV and 115 kV, identifying the most critical circuits and substations. The company is located in one of the major petroleum production areas in Colombia, and because of a massive growth in this sector, the electrical company expanded its networks in a radial way. This expansion was improvised and poorly planned due to the accelerated need to meet the...

  16. Consumption, price asymmetries, transmission congestion and market power in the Norwegian electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Faisal Mehmood

    2011-07-01

    The results from this dissertation add to the ongoing debate in Norway if NordPool spot should shift from zonal price scheme to the nodal price scheme. Academically, the individual papers provide a number of theoretical frameworks that are helpful in analyzing electricity markets around the world. The PhD dissertation investigates price determination process in the Norwegian electricity market and evaluates if the market works at perfectly competitive level or producers exercise market power to drive prices away from their marginal cost of production. Using aggregate hourly electricity supply and demand data, the empirical analysis carried out in this dissertation leads to the following conclusions. 1. Market power at the generation level is not a major problem for the Norwegian electricity market. On average, when we consider the events of binding transmission capacity as exogenous, the average markup in economic terms is small and has not exceeded one percent. 2. Producers can use the information on available transmission capacity between different price areas in Norway and restrict their output to induce transmission congestion in their price area to exercise market power. Average markup during such instances has remained high at 20 percent. 3. Transmission capacity in Norway is not being optimally utilized as import capacity remains at its lowest level during the hours when southern Norway is generally a net importer of electricity, when compared to the rest of the hours of the day. 4. A segment of electricity retailers in the Norwegian electricity market exercises its market power by controlling the pass-through of price changes in the wholesale market to the retail market for variable price contract consumers. The pass-through is asymmetric, whereby cost increase is transmitted completely and quickly when compared to the case of cost decrease. 5.The Daylight saving time (Summer time) policy is helpful in ensuring energy efficiency. It results in electricity

  17. Learning from the blackouts. Transmission system security in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Electricity market reform has fundamentally changed the environment for maintaining reliable and secure power supplies. Growing inter-regional trade has placed new demands on transmission systems, creating a more integrated and dynamic network environment with new real-time challenges for reliable and secure transmission system operation. Despite these fundamental changes, system operating rules and practices remain largely unchanged. The major blackouts of 2003 and 2004 raised searching questions about the appropriateness of these arrangements. Management of system security needs to be transformed to maintain reliable electricity services in this more dynamic operating environment. These challenges raise fundamental issues for policymakers. This publication presents case studies drawn from recent large-scale blackouts in Europe, North America, and Australia. It concludes that a comprehensive, integrated policy response is required to avoid preventable large-scale blackouts in the future.

  18. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  19. Switched causual modeling of transmission with clutch in hybrid electric vehicles

    OpenAIRE

    LHOMME, W; TRIGUI, R; DELARU, P; JEANNERET, B; BOUSCAUROL, A; BADIN, F

    2008-01-01

    Certain difficulties arise when attempting to model a clutch in a power train transmission due to its nonlinear behavior. Two different states have to be taken into account-the first being when the clutch is locked and the second being when the clutch is slipping. In this paper, a clutch model is developed using the Energetic Macroscopic Representation, which is, in turn, used in the modeling of complete hybrid electric vehicles (HEVs). Two different models are used, and a specific condition ...

  20. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  1. Transmission cost allocation for an efficient tariff action of electricity in a liberalised market

    International Nuclear Information System (INIS)

    Bassi, C.; Caldon, R.; Lorenzoni, A.

    1999-01-01

    The work is focused on the evaluation of the costs of an electricity transmission system operator and on their allocation among the users of the grid in liberalized market. After a recall of the goals of an efficient tariff for transmission, an original method for the cost allocation is proposed called ZI. Based on the marginal cost approach, this method could be the base for setting an efficient transmission tariff that at the same time covers costs and stimulates efficient behaviours. The performances of such an approach have been tested on a real 47 bus grid and ZI tariffs have been compared to the traditional postage stamp ones, highlighting the strong differences between them [it

  2. A multi-objective framework for dynamic transmission expansion planning in competitive electricity market

    International Nuclear Information System (INIS)

    Foroud, Asghar Akbari; Abdoos, Ali Akbar; Keypour, Reza; Amirahmadi, Meisam

    2010-01-01

    Restructuring of power system has changed the traditional planning objectives and introduced challenges in the field of Transmission Expansion Planning (TEP). Due to these changes, new approaches and criteria are needed for transmission planning in deregulated environment. Therefore, in this paper, a dynamic expansion methodology is presented using a multi-objective optimization framework. Investment cost, congestion cost and reliability are considered in the optimization as three objectives. To overcome the difficulties in solving the non-convex and mixed integer nature of the optimization problems, a Non-Dominated Sorting Genetic Algorithm (NSGA II) approach is used followed by a fuzzy decision making analysis to obtain the final optimal solution. The planning methodology has been demonstrated on the IEEE 24-bus test system and north-east of Iran national 400 kV transmission grid to show the feasibility and capabilities of the proposed algorithm in electricity market environment. (author)

  3. Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles

    Science.gov (United States)

    Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.

    2018-05-01

    To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.

  4. Research on Poppers Used as Electrical Connectors in High Speed Textile Transmission Lines

    Directory of Open Access Journals (Sweden)

    Leśnikowski Jacek

    2016-12-01

    Full Text Available This paper presents results of research on poppers used as electrical connectors connecting fragments of textile signal lines. These lines can be used in intelligent clothing for connecting electronic modules implemented in it. Intelligent (smart clothing can be used, among others, in the health monitoring of the elderly, newborn babies, or people working in hazardous conditions, for example, firefighters and soldiers. The aim of the present study was to examine the usefulness of poppers, widely used in clothing, as electrical connectors connecting parts of the textile signal lines designed for transmission of high-speed digital signals. The paper presents examples of measured parameters characterizing transmission properties of two fragments of the coplanar, textile transmission line connected to each other using conventional poppers. The presented measurement results contain the so-called s parameters, characteristic impedance of the poppers, and eye measurements characterizing distortions of digital signals passing through the tested line. In the article, the effect of temperature and humidity of air surrounding the tested poppers on their characteristic impedance was also presented. This property and its stability are important in signal lines designed for high-speed data transmission.

  5. Mortality of persons resident in the vicinity of electricity transmission facilities

    Energy Technology Data Exchange (ETDEWEB)

    McDowall, M E

    1986-02-01

    Several studies have raised the possibility that exposure to electrical and/or magnetic fields may be injurious to health in particular by the promotion or initiation of cancer. To investigate whether the electricity transmission system presents a long term hazard to public health, the mortality of nearly 8,000 persons, identified as living in the vicinity of electrical transmission facilities at the time of the 1971 Population Census, has been followed to the end of 1983. All identified transmission installations within pre-defined areas were included in the study with the result that the greater part of the study group were believed to be resident near relatively low voltage sub-stations. Overall mortality was lower than expected and no evidence of major health hazards emerged. The only statistically significant excess mortality was for lung cancer (in women overall, and in persons living closest to the installations); this result is difficult to interpret in the absence of smoking data, and is not supported by other evidence but does not appear to be due to the social class distribution of the study group. The study did not support previously reported associations of exposure to electro-magnetic fields with acute myeloid leukaemia, other lymphatic cancers and suicide.

  6. Cartographic Analysis of Antennas and Towers: A Novel Approach to Improving the Implementation and Data Transmission of mHealth Tools on Mobile Networks.

    Science.gov (United States)

    Brown Iii, William; Ibitoye, Mobolaji; Bakken, Suzanne; Schnall, Rebecca; Balán, Iván; Frasca, Timothy; Carballo-Diéguez, Alex

    2015-06-04

    Most mHealth tools such as short message service (SMS), mobile apps, wireless pill counters, and ingestible wireless monitors use mobile antennas to communicate. Limited signal availability, often due to poor antenna infrastructure, negatively impacts the implementation of mHealth tools and remote data collection. Assessing the antenna infrastructure prior to starting a study can help mitigate this problem. Currently, there are no studies that detail whether and how the antenna infrastructure of a study site or area is assessed. To address this literature gap, we analyze and discuss the use of a cartographic analysis of antennas and towers (CAAT) for mobile communications for geographically assessing mobile antenna and tower infrastructure and identifying signal availability for mobile devices prior to the implementation of an SMS-based mHealth pilot study. An alpha test of the SMS system was performed using 11 site staff. A CAAT for the study area's mobile network was performed after the alpha test and pre-implementation of the pilot study. The pilot study used a convenience sample of 11 high-risk men who have sex with men who were given human immunodeficiency virus test kits for testing nonmonogamous sexual partners before intercourse. Product use and sexual behavior were tracked through SMS. Message frequency analyses were performed on the SMS text messages, and SMS sent/received frequencies of 11 staff and 11 pilot study participants were compared. The CAAT helped us to successfully identify strengths and weaknesses in mobile service capacity within a 3-mile radius from the epicenters of four New York City boroughs. During the alpha test, before CAAT, 1176/1202 (97.84%) text messages were sent to staff, of which 26/1176 (2.21%) failed. After the CAAT, 2934 messages were sent to pilot study participants and none failed. The CAAT effectively illustrated the research area's mobile infrastructure and signal availability, which allowed us to improve study setup and

  7. Asset life and pricing the use of electricity transmission infrastructure in Chile

    International Nuclear Information System (INIS)

    Raineri, Ricardo

    2010-01-01

    Beyond the different approaches to set regulated prices for the use of infrastructure, a key parameter to determine regulated tariffs is the concept of asset life and how it changes with changes in the economic and regulatory context, which determines the optimal infrastructure investment and replacement policies. In this paper we look at the effects that changes in demand, the presence of substitutes and complements, the regulatory framework - both a pro or an anticompetitive framework -, scale economies, and the investment planning horizon, have on the economic service life of an asset and the tariffs for its use. We find that as the electric industry becomes more competitive, a negative effect on the economic service life of electric electricity transmission should be expected. Also, numerical experiments illustrate an inverse relation between scale economies on investment and the ESL of electricity transmission infrastructure. Further, we look at the biases on optimal investment that happen when optimal plans do not observe the life cycle of the investments and the ESL of the equipment, as well as the inconsistency and biases on optimal investment and replacement policies that might result when the Social Planner optimal investment plan lacks of a long-term commitment. (author)

  8. Asset life and pricing the use of electricity transmission infrastructure in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Raineri, Ricardo [Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Santiago (Chile)

    2010-01-15

    Beyond the different approaches to set regulated prices for the use of infrastructure, a key parameter to determine regulated tariffs is the concept of asset life and how it changes with changes in the economic and regulatory context, which determines the optimal infrastructure investment and replacement policies. In this paper we look at the effects that changes in demand, the presence of substitutes and complements, the regulatory framework - both a pro or an anticompetitive framework -, scale economies, and the investment planning horizon, have on the economic service life of an asset and the tariffs for its use. We find that as the electric industry becomes more competitive, a negative effect on the economic service life of electric electricity transmission should be expected. Also, numerical experiments illustrate an inverse relation between scale economies on investment and the ESL of electricity transmission infrastructure. Further, we look at the biases on optimal investment that happen when optimal plans do not observe the life cycle of the investments and the ESL of the equipment, as well as the inconsistency and biases on optimal investment and replacement policies that might result when the Social Planner optimal investment plan lacks of a long-term commitment. (author)

  9. Deregulating with no regulator: Is the German electricity transmission regime institutionally correct?

    International Nuclear Information System (INIS)

    Glachant, Jean-Michel; Dubois, Ute; Perez, Yannick

    2008-01-01

    From 1998 to 2005, the German transmission grid has been put under a self-regulated arrangement. It seems hard to believe that transmission lines can be opened to 'third-party access' only with a 'negotiated access regime' and no regulator supervision. It seems contradictory with the notion of 'ex post contractual hazards' promoted by V. Goldberg and O. Williamson. If a weak institutional arrangement is implemented, one might assume that it has to be harmful to network and market access. If it is not to be inefficient, why and how could it work? When looking at rules and prices for accessing the transmission network and the corresponding wholesale markets in Germany, the 'club' arrangement for transmission opening does not appear so harmful. Accordingly, we have to reconsider the ex ante and ex post institutional mechanism of such a 'club' arrangement. Ex ante, we first reconsider skills and strengths of industrial consumers and German Business associations in defining and assessing rules of transmission access. We underline that incomplete vertical and horizontal integration of German electricity companies impeded extensive cartel collusion. Ex post, we first look at a strong Competition Authority backing. Then we discover that ex ante and ex post dimensions are much more mixed and reinforced in an open 'cumulative pro-competition process' framed by the Competition Authority

  10. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    Science.gov (United States)

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  12. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Science.gov (United States)

    2010-10-01

    ... electrical transmission tower footings, ground cables, or counterpoise, or in other areas where it is... Corrosion Control § 195.575 Which facilities must I electrically isolate and what inspections, tests, and... other structures as a single unit. (b) You must install one or more insulating devices where electrical...

  13. Transmission of prices and price volatility in Australian electricity spot markets: a multivariate GARCH analysis

    International Nuclear Information System (INIS)

    Worthington, A.; Kay-Spratley, A.; Higgs, H.

    2005-01-01

    This paper examines the transmission of spot electricity prices and price volatility among the five regional electricity markets in the Australian National Electricity Market: namely, New South Wales, Queensland, South Australia, the Snowy Mountains Hydroelectric Scheme and Victoria. A multivariate generalised autoregressive conditional heteroskedasticity model is used to identify the source and magnitude of price and price volatility spillovers. The results indicate the presence of positive own mean spillovers in only a small number of markets and no mean spillovers between any of the markets. This appears to be directly related to the physical transfer limitations of the present system of regional interconnection. Nevertheless, the large number of significant own-volatility and cross-volatility spillovers in all five markets indicates the presence of strong autoregressive conditional heteroskedasticity and generalised autoregressive conditional heteroskedasticity effects. This indicates that shocks in some markets will affect price volatility in others. Finally, and contrary to evidence from studies in North American electricity markets, the results also indicate that Australian electricity spot prices are stationary. (author)

  14. A surface acoustic wave electric field strength meter for environmental studies of HV transmission lines

    International Nuclear Information System (INIS)

    Grandolfo, M.; Ranghiasci, C.; Verona, E.

    1988-01-01

    In recent years, there has been a significant increase in concern over the health and safety aspects of high voltage transmission lines (HVTL). The majority of research has focused on effects directly or indirectly involved with the central nervous system, including physiological, ultrastructural, and biochemical alterations, changes in blood composition, behaviour, reproduction, and development. Several recent epidemiological reports have presented preliminary data suggesting an increase in the incidence of cancer among children and adults exposed to magnetic fields through living close to various types of electrical power lines or devices. With the increase in environmental concerns there has been a concomitant consideration of biological effects and health implications related to presently existing HVTL and those planned in the future. It was concluded that the electric and magnetic field strengths and the electrical discharges are the most important electrophysical factors. Thus, it has been deemed necessary to develop measuring means to determine the field strengths in areas surrounding electric installations, in particular at ground level. In the present paper an electric field meter, based on the use of a surface acoustic wave (SAW) delay line, is presented and the experimental results obtained are discussed

  15. On Long-Term Transmission Rights in the Nordic Electricity Markets

    Directory of Open Access Journals (Sweden)

    Petr Spodniak

    2017-03-01

    Full Text Available In vein with the new energy market rules drafted in the EU this paper presents and discusses two contract types for hedging the risks connected to long-term transmission rights, the financial transmission right (FTR and the electricity price area differentials (EPAD that are used in the Nordic electricity markets. The possibility to replicate the FTR contracts with a combination of EPAD contracts is presented and discussed. Based on historical evidence and empirical analysis of ten Nordic interconnectors and twenty bidding areas, we investigate the pricing accuracy of the replicated FTR contracts by quantifying ex-post forward risk premia. The results show that the majority of the studied FTR contain a negative risk premium, especially the monthly and the quarterly contracts. Reverse flow (unnatural pricing was identified for two interconnectors. From a theoretical policy point of view the results imply that it may be possible to continue with the EPAD-based system by using EPAD Combos in the Nordic countries, even if FTR contracts would prevail elsewhere in the EU. In practice the pricing of bi-directional EPAD contracts is more complex and may not always be very efficient. The efficiency of the EPAD market structure should be discussed from various points of view before accepting their status quo as a replacement for FTRs in the Nordic electricity markets.

  16. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    Science.gov (United States)

    Oughton, Edward J.; Skelton, Andrew; Horne, Richard B.; Thomson, Alan W. P.; Gaunt, Charles T.

    2017-01-01

    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.

  17. One-dimensional pressure transfer models for acoustic-electric transmission channels

    Science.gov (United States)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  18. Statistics Analysis Measures Painting of Cooling Tower

    Directory of Open Access Journals (Sweden)

    A. Zacharopoulou

    2013-01-01

    Full Text Available This study refers to the cooling tower of Megalopolis (construction 1975 and protection from corrosive environment. The maintenance of the cooling tower took place in 2008. The cooling tower was badly damaged from corrosion of reinforcement. The parabolic cooling towers (factory of electrical power are a typical example of construction, which has a special aggressive environment. The protection of cooling towers is usually achieved through organic coatings. Because of the different environmental impacts on the internal and external side of the cooling tower, a different system of paint application is required. The present study refers to the damages caused by corrosion process. The corrosive environments, the application of this painting, the quality control process, the measures and statistics analysis, and the results were discussed in this study. In the process of quality control the following measurements were taken into consideration: (1 examination of the adhesion with the cross-cut test, (2 examination of the film thickness, and (3 controlling of the pull-off resistance for concrete substrates and paintings. Finally, this study refers to the correlations of measurements, analysis of failures in relation to the quality of repair, and rehabilitation of the cooling tower. Also this study made a first attempt to apply the specific corrosion inhibitors in such a large structure.

  19. Development of BLDC Electric Motor Control System In Hydraulic Servo Drive Based on Variable Hydrostatic Transmission

    Directory of Open Access Journals (Sweden)

    O. I. Tarasov

    2014-01-01

    Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.

  20. Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen

    2018-01-01

    In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.

  1. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  2. The insertion of environmental impact assessment in the planning process of electrical energy transmission systems

    International Nuclear Information System (INIS)

    Pires, S.H.

    1994-03-01

    The main objective of this work is to identify and propose adequate methodologies in each stage of the planning process of electrical energy transmission systems. The aim is to incorporate the environmental dimension as a variable of this process, along with the economic and technical aspects. All these factors are to be taken into consideration in the decision-making, design and management of these projects. The environmental impact assessment (EIA) concepts, methods and procedures were analysed, as well as the roles that it should play, as a means to become the effective instrument of the Environmental Policy. In this study we analysed the whole planning process of the implementation of transmission lines and their impact on the environment. The current attitudes about this subject were investigated and scrutinized. Critical evaluations were made to suggest an orientation in the formulation of the proposed methodology. (author). 125 refs, 11 figs, 13 tabs

  3. Rényi entropies of electrical transmission lines with Fibonacci distribution of inductances

    Energy Technology Data Exchange (ETDEWEB)

    Lazo, E., E-mail: elazo@uta.cl [Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Arica (Chile); Mellado, F. [Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Arica (Chile); Escuela Universitaria de Ingeniería Eléctrica-Electrónica, Universidad de Tarapacá, Arica (Chile); Saavedra, E. [Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Arica (Chile)

    2012-10-01

    We study classical dual transmission lines with constant capacitances C{sub j}=C{sub 0}, ∀j, when we distribute two inductance values L{sub A} and L{sub B} according to the Fibonacci sequence. Using the electric current function I{sub j}(ω), we study the normalized localization length Λ(ω), the Rényi entropies R{sub m}(ω) and the normalized information length β(ω). We found three kinds of behavior of the I{sub j}(ω) function: localized, extended and intermediate. In addition, it is found that the transmission line with Fibonacci distribution of inductances shows a behavior characteristic of quasi-periodic systems, namely, a self-similar frequency spectrum, where each subband is divided into three subbands, but the number of global subbands is greater than four.

  4. Design optimization of the transmission system for electric vehicles considering the dynamic efficiency of the regenerative brake

    NARCIS (Netherlands)

    Zhao, Bolin; Lv, Chen; Hofman, Theo; Steinbuch, Maarten; Zhang, Junzhi; Cao, Dongpu

    2018-01-01

    In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the

  5. Trends in transmission, distribution, and administration costs for U.S. investor-owned electric utilities

    International Nuclear Information System (INIS)

    Fares, Robert L.; King, Carey W.

    2017-01-01

    This paper analyzes the cost of transmission, distribution, and administration for U.S. investor-owned electric utilities. We analyze data reported to the Federal Energy Regulatory Commission (FERC) from 1994 to 2014 using linear regression to understand how the number of customers in a utility's territory, annual peak demand, and annual energy sales affect annual TD&A spending. Then, we use Edison Electric Institute data for 1960 to 1992 to show trends in TD&A spending between 1960 and 2014. We find that the number of customers in a utility's territory is the single best predictor for annual TD&A costs. Between 1994 and 2014, the average cost per customer was $119/Customer-Year for transmission, $291/Customer-Year for distribution, and $333/Customer-Year for utility administration. Total TD&A costs per customer have been approximately $700–$800/Customer-Year since 1960, but the cost per kWh of energy sold was significantly higher in the 1960s because the average customer used less than half as much energy annually versus 2014. Thus, TD&A costs per kWh are likely to increase if kWh energy sales decline in the future unless cost recovery is transitioned to a mechanism not based solely on kWh sales. - Highlights: • U.S. investor-owned electric utility delivery costs from 1960? 2014 are investigated. • Transmission, distribution, and utility administrative costs are analyzed separately. • The number of utility customers is the best predictor for annual delivery costs. • Delivery costs per kWh are likely to increase if kWh sales decrease in the future.

  6. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  7. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  8. Are the British electricity trading and transmission arrangements future-proof?

    International Nuclear Information System (INIS)

    Green, Richard

    2010-01-01

    In Great Britain, electricity is traded in an energy-only market that relies upon bilateral trading until shortly before real time. The GB System Operator also uses bilateral trading to respond to changes in demand and generation and resolve transmission constraints. Prices are not explicitly spatial, although well-placed generators can charge the system operator more for their output. This paper argues that these arrangements are not well-suited for the challenges of accommodating nearly thirty percent of intermittent wind generation, often located far from demand. The market design already implemented in the north-eastern United States is likely to be more efficient. (author)

  9. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  10. SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks

    NARCIS (Netherlands)

    Pambour, Kwabena Addo; Cakir Erdener, Burcin; Bolado-Lavin, Ricardo; Dijkema, Gerhard P.J.

    2017-01-01

    The integration of renewable energy sources into existing electric power systems is connected with an increased interdependence between natural gas and electricity transmission networks. To analyse this interdependence and its impact on security of supply, we developed a novel quasi-dynamic

  11. Transmission topologies for the integration of renewable power into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2013-01-01

    A cost-minimizing electricity market model was used to explore optimized infrastructures for the integration of renewable energies in interconnected North African power systems until 2030. The results show that the five countries Morocco, Algeria, Tunisia, Libya and Egypt could together achieve significant economic benefits, reaching up to €3.4 billion, if they increase power system integration, build interconnectors and cooperate on joint utilization of their generation assets. Net electricity exports out of North Africa to Europe or Eastern Mediterranean regions, however, were not observed in the regime of integrated electricity markets until 2030, and could only be realized by much higher levels of renewable energy penetration than currently foreseen by North African governments. - Highlights: • Market model to optimize North Africa's generation and transmission infrastructures until 2030. • Simulations consider existing interconnectors, power plant inventories, as well as national renewable goals. • Savings of up to €3.4 billion can be realized by more cooperation and integrated system planning. • No electricity exports to Europe in a competitive market framework, except for very high renewable penetrations

  12. A proposal for transmission pricing methodology in Thailand based on electricity tracing and long-run average incremental cost

    International Nuclear Information System (INIS)

    Limpasuwan, T.; Bialek, J.W.; Ongsakul, W.; Limmeechokchai, B.

    2004-01-01

    Although there is no universally accepted methodology for restructuring of electricity supply industry, the transformations often involve separation of generation and transmission. Such separation results in a need for a transmission service charge to be levied on the system users. The National Energy Policy Office (NEPO) of Thailand has commissioned PricewaterhouseCooper (PwC) to propose a transmission service charge that is to be used during the market reform for the transmission business unit of the Electricity Generating Authority of Thailand (EGAT). Although the PwCs transmission use of system charge (TUOS) based on the long-run average incremental cost (LRAIC) and average transmission loss can satisfy the financial requirements, the charge allocations are not economically efficient since they do not provide any locational signal which could reflect costs imposed on the system by locating a system user in a particular geographical location. This paper describes the TUOS methodology suggested by PwC and makes a comparison with a transmission pricing method based on combination of the electricity tracing and LRAIC. The results indicate that, with electricity tracing, the charge allocations are improved in terms of fairness, as the charge reflects the geographical location and system conditions

  13. Air quality and climate benefits of long-distance electricity transmission in China

    Science.gov (United States)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  14. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    Science.gov (United States)

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model.

  15. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  16. Effects of long-term contracts on firms exercising market power in transmission constrained electricity markets

    International Nuclear Information System (INIS)

    Nam, Young Woo; Yoon, Yong Tae; Park, Jong-Keun; Hur, Don; Kim, Sung-Soo

    2006-01-01

    The electricity markets with only few large firms are often vulnerable to less competitive behaviors than the desired. The presence of transmission constraints further restrict the competition among firms and provide more opportunities for firms to exercise market power. While it is generally acknowledged that the long-term contracts provide good measures for mitigating market power in the spot market (thus reducing undesired price spikes), it is not even more clear how effective these contracts are if the market is severely limited due to transmission constraints. In this paper, an analytical approach through finding a Nash equilibrium is presented to investigate the effects of long-term contracts on firms exercising market power in a bid-based pool with transmission constraints. Surprisingly the analysis in this paper shows that the presence of long-term contracts may result in the reduced expected social welfare. A straightforward consequence of the analysis presented in this paper will be helpful for the regulators in Korea to reconsider offering vesting contracts to generating companies in the near future. (author)

  17. A comprehensive approach for computation and implementation of efficient electricity transmission network charges

    Energy Technology Data Exchange (ETDEWEB)

    Olmos, Luis; Perez-Arriaga, Ignacio J. [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Alberto Aguilera, 23, 28015 Madrid (Spain)

    2009-12-15

    This paper presents a comprehensive design of electricity transmission charges that are meant to recover regulated network costs. In addition, these charges must be able to meet a set of inter-related objectives. Most importantly, they should encourage potential network users to internalize transmission costs in their location decisions, while interfering as least as possible with the short-term behaviour of the agents in the power system, since this should be left to regulatory instruments in the operation time range. The paper also addresses all those implementation issues that are essential for the sound design of a system of transmission network charges: stability and predictability of the charges; fair and efficient split between generation and demand charges; temporary measures to account for the low loading of most new lines; number and definition of the scenarios to be employed for the calculation and format of the final charges to be adopted: capacity, energy or per customer charges. The application of the proposed method is illustrated with a realistic numerical example that is based on a single scenario of the 2006 winter peak in the Spanish power system. (author)

  18. Wind power development in the United States: Effects of policies and electricity transmission congestion

    Science.gov (United States)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  19. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  20. Transmission Lines or Poles, Electric, Electric transmission lines locations provided to us from Kansas City Power and Light and City of Gardner only at this time. AIMS is working on getting other providers in area. Data is limited to CUE (Collaborative Utility Exchange) Participants and subc, Published in 2004, Johnson County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Transmission Lines or Poles, Electric dataset current as of 2004. Electric transmission lines locations provided to us from Kansas City Power and Light and City of...

  1. Transmission Line Security Monitor: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  2. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  3. Development of a superconducting cable for transmission of high electric power

    International Nuclear Information System (INIS)

    Moisson, F.; Leroux, J.M.

    1971-01-01

    The opportunities opened by the use of cryoresistive and superconducting materials in underground transmission systems have led to a cryocable program. A first set of problems associated with the development of cryogenic cables deals with the cable system, i.e., design, safety, terminal equipment including leads, cryogenic equipment, refrigerators, and problems related to overload capability and reliability. A second set concerns the cable itself, i.e., scientific and technological problems associated with the conductor, the electrical insulation, and the thermal exchange between conductor and helium. Useful experience is gained on the design problems and on the technological problems involved in the construction of a cryoconducting cable. A 20-M aluminum cable cooled down to 25 0 K with pressurized helium flow was built and tested with 3500-A dc under 20 Kv; results are presented. On this model the following types of problems were solved. First, mechanical problems concerning cooling of the cable, thermal contraction of the pipes, electrical insulation and conductors, construction of an invariable cable constituted by elementary helically wound conductors were solved. Second, thermal problems of reduction of heat leaks, conception of thermal insulation, and segmentation of vacuum jackets were solved. Third, electrical problems of design of 300 0 to 25 0 K leads were solved; this problem of losses at both ends is, in proportion, more important for the short model than for long cable. Finally, refrigeration problems of helium and nitrogen flows, thermal shields and design of refrigerators (optimal capacity and spacing) were solved

  4. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  5. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  6. Composite wind turbine towers

    Energy Technology Data Exchange (ETDEWEB)

    Polyzois, D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2008-07-01

    This paper discussed experiments conducted to optimized the advanced composite materials such as fiberglass reinforced plastics (FRP) used to fabricate wind turbine towers. FRP materials are used in tubular steel, lattice, guyed, and reinforced concrete towers. The towers and turbine blades are transported in segments and assembled on-site, sometimes in offshore or remote locations.The FRP composites are used to build towers with a high strength-to-weight ratio as well as to provide resistance to chemical attacks and corrosion. Use of the materials has resulted in towers that do not require heavy installation equipment. Experimental programs were conducted to verify the structural behaviour of the tower structure's individual-scaled cells as well as to evaluate the performance of multi-cell assemblies. Joint assembly designs were optimized, and a filament winding machine was used to conduct the experimental study and to test individual cells. Failure mode analyses were conducted to determine local buckling and shear rupture. Tension, compression, and shear properties of the FRP materials were tested experimentally, and data from the test were then used to develop finite element models of the composite towers as well as to obtain load deflection curves and tip oscillation data. A case study of a 750 kW wind turbine in Churchill, Manitoba was used to test the design. tabs., figs.

  7. Improved Performance of Connected Foundations for Resilient Energy Transmission Infrastructure in Soft Soils

    Directory of Open Access Journals (Sweden)

    Doohyun Kyung

    2015-12-01

    Full Text Available The connected foundation is an effective structural type of foundation that can improve the sustainability of electrical transmission towers in soft soils to serve as a resilient energy supply system. In this study, the performance of electrical transmission towers reinforced with connected beams was investigated using a series of field load tests. Model transmission tower structures were manufactured and adopted into the tests. Based on the load capacity mobilization and failure mechanism, a criterion to define the load carrying capacity for connected foundation was proposed. It was found that the performance of connected foundation varies with the mechanical property of connection beam. The load capacity and differential settlement increased and decreased, respectively, with increasing connection beam stiffness. Such effect of connection beam was more pronounced as the height of load application point or tower height (zh increases. Based on the load test results, a design model was proposed that can be used to evaluate the sustainable performance and load carrying capacity of connected foundations. Field load tests with prototype transmission tower structure models were conducted to check and confirm the performance of connected foundation and the proposed design method.

  8. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is a nonthermal food preservation process where organoleptic and nutritional properties of the food are maintained. PEF is known to inactivate microorganisms by causing dielectric breakdown of the cell membrane, thus altering the functionality of the membrane as a semipermeable barrier. The extent of damage of the cell membrane, whether visible in the form of a pore or as loss of membrane functionality leads to the inactivation of the microorganism. The objective of this study was to investigate under transmission electron microscopy (TEM) the morphological changes on Listerit innocua as a result of PEF treatment in skimmed milk containing nisin. L. innocua was subjected to PEF at selected electric field intensities of 30, 40, and 50 kV/cm. L. innocua was treated by PEF in both skimmed milk with and without 37 IU nisin/ml. L. innocua treated by PEF in skimmed milk exhibited an increase in the cell wall roughness. cytoplasmic clumping, leakage of cellular material, and rupture of the cell walls and cell membranes. L. innocua subjected to PEF in skimmed milk containing 37 IU nisin/ml exhibited an increased cell wall width. At the highest electric field intensity, 50 kV/cm, elongation of the cell length was observed. There were no morphological differences between cells treated by PEF in skimmed milk with or without nisin. The combination of PEF and nisin exhibit an additive effect in the morphological damage observed on L. innocua. Pore formation was observed on L. innocua for an electric field intensity of 40 kV/cm. The inactivation of L. innocua was a consequence of rupture of the cell membrane and loss of cell membrane functionality.

  9. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    Science.gov (United States)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  10. Methods to Regulate Unbundled Transmission and Distribution Business on Electricity Markets

    International Nuclear Information System (INIS)

    Forsberg, Kaj; Fritz, Peter

    2003-11-01

    The regulation of distribution utilities is evolving from the traditional approach based on a cost of service or rate of return remuneration, to ways of regulation more specifically focused on providing incentives for improving efficiency, known as performance-based regulation or ratemaking. Modern regulation systems are also, to a higher degree than previously, intended to simulate competitive market conditions. The Market Design 2003-conference gathered people from 18 countries to discuss 'Methods to regulate unbundled transmission and distribution business on electricity markets'. Speakers from nine different countries and backgrounds (academics, industry and regulatory) presented their experiences and most recent works on how to make the regulation of unbundled distribution business as accurate as possible. This paper does not claim to be a fully representative summary of everything that was presented or discussed during the conference. Rather, it is a purposely restricted document where we focus on a few central themes and experiences from different countries

  11. Economic evaluation of reliability-centred maintenance (RCM): an electricity transmission industry perspective

    International Nuclear Information System (INIS)

    Bowler, D.J.; Primrose, P.L.; Leonard, R.

    1995-01-01

    Traditional approaches to appraising the introduction of reliability centred maintenance (RCM) are shown to exhibit severe limitations. In particular, the economic implications surrounding its adoption are repeatedly mis-stated, with the consequence that organisations may be investing in unprofitable RCM ventures. Previously quoted benefits are examined and, contrary to established opinion, it is shown that these 'generalised' statements, once redeemed, are able to be quantified. The paper then proceeds to describe a financial methodology, developed by NGC and UMIST, by which the introduction of RCM can be evaluated. Moreover, it shows that, by regarding RCM as an investment decision, rather than an 'act of faith', the economic viability of a potential application can be determined before vital resources are committed. Finally, it is demonstrated that when the methodology is applied within the context of the electricity transmission industry, the economic case underlying the adoption of RCM can be realistically appraised. (author)

  12. Methods to Regulate Unbundled Transmission and Distribution Business on Electricity Markets

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Kaj; Fritz, Peter

    2003-11-01

    The regulation of distribution utilities is evolving from the traditional approach based on a cost of service or rate of return remuneration, to ways of regulation more specifically focused on providing incentives for improving efficiency, known as performance-based regulation or ratemaking. Modern regulation systems are also, to a higher degree than previously, intended to simulate competitive market conditions. The Market Design 2003-conference gathered people from 18 countries to discuss 'Methods to regulate unbundled transmission and distribution business on electricity markets'. Speakers from nine different countries and backgrounds (academics, industry and regulatory) presented their experiences and most recent works on how to make the regulation of unbundled distribution business as accurate as possible. This paper does not claim to be a fully representative summary of everything that was presented or discussed during the conference. Rather, it is a purposely restricted document where we focus on a few central themes and experiences from different countries.

  13. The quantity of algae colonizing the inside face of cooling towers and the consequences for wear of the shell

    International Nuclear Information System (INIS)

    Aprosi, G.; Chauvel, D.

    1990-01-01

    These studies are part of the interdirectorate working group's mandate relating to lifespan project on cooling towers. Involving the collaboration of several divisions of Electricity de France: the Construction Division (SEPTEN). The Generation and Transmission Division (SPT) and the Research and Development Division (EAA). Among the biological colonies which proliferate in the cooling circuits of power stations, algae are broadly represented in the form of wall coatings which cover the inside face of cooling towers: shell algae. They can also grow at other points in the cooling circuit; in the cold water basin, in the fill, and, in some cooling towers, in the hot water basin. These plant organisms hamper the operation of power stations by clogging the grids located in the pipe from the cold water basin to the condenser. In addition, when algae come free of the shell, they remove micro-fragments of the concrete, which could accelerate wear. This paper presents the findings of studies conducted by the Aquatic and Atmospheric Department on the infestation of cooling towers by algae. In particular, the results of studies to evaluate the quantity of algae on the inside face of the shell of cooling towers. Many scenarios will be proposed, linked to the operation of the plant and to the local meteorological conditions

  14. Ejection Tower Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Ejection Tower Facility's mission is to test and evaluate new ejection seat technology being researched and developed for future defense forces. The captive and...

  15. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.

    Science.gov (United States)

    Schiel, Christoph; Lind, Pedro G; Maass, Philipp

    2017-09-14

    A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.

  16. 76 FR 70122 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Science.gov (United States)

    2011-11-10

    ... regional reliability councils, regional transmission organizations (RTOs) and independent system operators... transmission organizations (RTOs), independent system operators (ISOs), and other stakeholders to describe...

  17. Mycobacteria in Finnish cooling tower waters.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  18. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  19. An Optimal Domestic Electric Vehicle Charging Strategy for Reducing Network Transmission Loss While Taking Seasonal Factors into Consideration

    Directory of Open Access Journals (Sweden)

    Yuancheng Zhao

    2018-01-01

    Full Text Available With the rapid growth of domestic electric vehicle charging loads, the peak-valley gap and power fluctuation rate of power systems increase sharply, which can lead to the increase of network losses and energy efficiency reduction. This paper tries to regulate network loads and reduce power system transmission loss by optimizing domestic electric vehicle charging loads. In this paper, a domestic electric vehicle charging loads model is first developed by analyzing the key factors that can affect users’ charging behavior. Subsequently, the Monte Carlo method is proposed to simulate the power consumption of a cluster of domestic electric vehicles. After that, an optimal electric vehicle charging strategy based on the 0-1 integer programming is presented to regulate network daily loads. Finally, by taking the IEEE33 distributed power system as an example, this paper tries to verify the efficacy of the proposed optimal charging strategy and the necessity for considering seasonal factors when scheduling electric vehicle charging loads. Simulation results show that the proposed 0-1 integer programming method does have good performance in reducing the network peak-valley gap, voltage fluctuation rate, and transmission loss. Moreover, it has some potential to further reduce power system transmission loss when seasonal factors are considered.

  20. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Science.gov (United States)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  1. Study on Remote Monitoring System of Crossing and Spanning Tangent Tower

    Science.gov (United States)

    Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan

    2017-05-01

    In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.

  2. Improving performance and reducing costs of cooling towers

    International Nuclear Information System (INIS)

    Bartz, J.A.

    1992-01-01

    Cooling towers represent a significant capital investment at a steam electric power station. In addition, deficiencies in thermal performance can result in major operating penalties of fuel cost, replacement energy, and capacity addition. This paper summarizes two recent EPRI research projects aimed at reducing thermal performance deficiencies and decreasing installed costs of evaporative cooling towers. First, EPRI Research Project 2113, Cooling Tower Performance Prediction and Improvement, is summarized. This project has resulted in published data sets on the measured thermal performance characteristics of a variety of cooling tower packings, computer codes to predict tower performance, and computer code validation through large-scale tower performance measurements. Principal results are contained in an EPRIGEMS software module, Cooling Tower Advisor. This PC- based software contains a tutorial plus codes to predict tower thermal performance, arranged in a user-friendly format. The second EPRI effort, Research Project 2819-10/11, Fabric Structures for Power Plant Applications, has resulted in designs and costs of large structures with shells constructed of recently-developed fabrics. Primary power plant applications for such structures are the shells of natural draft cooling towers and coal-pile covers. Fabric structures offer low initial cost, acceptable life, and seismic superiority, among other advantages. Detailed conceptual designs and installed cost data are reviewed. 8 refs., 9 figs., 3 tabs

  3. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    International Nuclear Information System (INIS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-01-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered

  4. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccown, Andrew William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)ory

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  5. Analyzing the Health Risks Resulting from Extending the 400kV High Voltage Transmission Lines on the Human

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan Dervish

    2018-01-01

    Full Text Available Although it is difficult to imagine life without electricity, there are compiling confirmations show thatexposure to magnetic fields correlated electricity and radio frequencies pose magnificent hazards to human health. The most economist method to transfer electricity from power generation stations to users is by measures of high power transmission lines, buoyed by big transmission towers. The cables laced between the towers radiate magnetic and electric fields. In this research study, the magnetic field at ground level under 400 kV network lines extended in residential places have been conducted in two ways, mathematical calculation and practical measurement then the obtained results analyzed and compared with the international standards reference values. the reason of chose this type of transmission line is frequently using. The results indicate that they fall within the safe limiter commended by the WorldHealth Organization. the strength of radiation increasing with high of sea level and moisture ratiobecause of air ionization.

  6. Market power in the European electricity market-The impacts of dry weather and additional transmission capacity

    Energy Technology Data Exchange (ETDEWEB)

    Lise, Wietze [IBS Research and Consultancy, Agahamami Cadessi 1/6, Aga Han, Cihangir, 34433 Beyoglu, Istanbul (Turkey); Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands)], E-mail: wietze.lise@ibsresearch.com; Hobbs, Benjamin F. [Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Hers, Sebastiaan [Energy Markets and International Environmental Policy Group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands)

    2008-04-15

    This paper uses a static computational game theoretic model of a fully opened European electricity market and can take strategic interaction among electricity-producing firms into account. The model is run for a number of scenarios: first, in the baseline under perfect competition, the prices differ due to the presence of various generation technologies and a limited ability to exchange electricity among countries. In addition, when large firms exercise market power, the model runs indicate that prices are the highest in countries where the number of firms is low. Second, dry weather would increase the prices in the hydro-rich Nordic countries followed by the Alpine countries. The price response would be about 20% higher with market power. Third, more transmission capacity would lower the prices in countries with high prices and it also reduces the impact of market power. Hence, more transmission capacity can improve market competitiveness.

  7. Electricity transmission. Transmission providers' duties to permit and possibilities to deny TPA to the network; Durchleitung von Strom. Pflichten und Verweigerungsmoeglichkeiten von Elektrizitaetsversorgungsunternehmen

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, O.

    2001-07-01

    The author gives a full account of the new legal situation in the German electricity market and explains the recent changes induced by implementation of the legal framework of the European Union for building the internal electricity market, and by recent national legislation amending laws and regulations. The juridical changes and the new legal provisions and their effects in practice are explained in ten chapters. Some important keywords: the concept of third-party access (TPA) to electricity transmission networks - the IEM Directive of the EU - the reform of the German energy industry law - objectives and consequences of the reform - market deregulation - transmission pricing - competences of the national supervisory energy authority - national cartel law, market dominating position and abuse of a dominant market position - European cartel law. (orig./CB) [German] Der Autor gibt eine umfassende Darstellung der neuen Rechtslage im Strommarkt in Deutschland und erlaeutert die Veraenderungen, die sich aus den Vorgaben der Europaeischen Union zur Herstellung des Strom-Binnenmarkts und durch neue deutsche Gesetzgebung und Novellierung bestehender Regelungen ergaben. In zehn Kapiteln werden die neuen rechtlichen Bestimmungen und ihre Auswirkungen in der Praxis angesprochen. Einige wichtige Stichworte: Durchleitungsbegriff und Durchleitungsbedingungen - Binnenmarkt-Richtlinie Elektrizitaet - Neuregelung des deutschen Energiewirtschaftsrechts - Ziele und Folgen der Energierechtsreform - Deregulierung des Marktes - Bestimmung von Durchleitungsentgelten - Zustaendigkeit der nationalen Energieaufsichtsbehoerde - nationales Kartellrecht und kartellrechtlicher Missbrauchstatbestand - Europaeisches Kartellrecht. (orig./CB)

  8. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis

  9. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  10. Analysis model for the physical dimension in the environmental studies of electric transmission projects

    International Nuclear Information System (INIS)

    Garcia Gomez; Maria Aleyda; Caballero Acosta, Humberto

    2001-01-01

    This study makes a description and analysis of the physical aspects of the environment, which are contemplated, in the environmental studies of the projects of high voltage for electric transmission lines. Its meaning and out reach are defined in this projects, in its different phases of implementation; that is in the stages of design, construction and operation, making proposals to improve the adequate incorporation of physical dimension in the environmental activities. A very important aspect, worked out in the investigation, has to do with the way as this dimension is described in the real terms of reference for EIA of the Ministry of Environment; that is why it is analysed and some elements are proposed which are to correct and to articulate properly the information in these studies, because some problems were found in the articulation and contents of the physical aspects in the studies of environmental impact (EIA). Another very important aspect, which was obtained with this research, is the methodological proposal for the integration of the components of the physical dimension in which s ynthesis units are defined in different scales for the integration of those components. These facts will facilitate a better understanding of the natural processes in the areas of influence of the projects and a better understanding of the reciprocal relations between the project and the physical surroundings. In the process of searching a methodology for integration of the components of the physical dimension it is hoped that the studies be more congruent from the environmental point of view

  11. Theory of the electric current transmission coefficient in the superconductor-insulator-superconductor geometry

    International Nuclear Information System (INIS)

    Navani, R.

    1974-01-01

    Tunneling in the superconductor-insulator-superconductor (S'-I-S) geometry, where the two superconductors are not necessarily the same, is studied theoretically. Two different models of the S'-I-S geometry - which we call the ''initial model'' and the ''improved model'' are discussed. For the initial model the potential barrier is flat. In the improved model, however, the differing material properties of the three regions - S', I, and S - are taken into account in an approximate fashion. In addition, applied, contact, and image potentials in the insulator are included. The solid state material properties that are taken to be different are the effective electronic masses in the three regions and the Fermi energies in the two superconductors. The quasiparticle wave functions in the S', I, and S regions are determined for both models as solutions to the Bogoliubov-de Gennes equations. The electric current transmission coefficients (also the reflection coefficient for the initial model) are derived and their behavior is extensively analyzed. Their forms in the thick barrier limit - where L greater than or approximately equal to 5 A - are related to the BCS densities of states. The tunneling current density is found to depend strongly on the tunneling angle. A relation between the angular position of the tunneling current peak and the barrier thickness is given. Finally, it is shown that the choice of insulator material effects the tunneling current, and the effect is greater the thicker the insulating film

  12. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  13. Does more international transmission capacity increase competition in the Belgian electricity market?

    NARCIS (Netherlands)

    Kupper, G.; Delarue, E.; Delvaux, B.; Meeus, L.; Bekaert, D.; Willems, Bert; Proost, S.; D'haeseleer, W.; Deketelaere, K.; Belmans, R.

    2009-01-01

    From a national market perspective, taking transmission capacity into account reduces current concentration measures, although they remain fairly high even after substantial capacity increases. From an international perspective, a more efficient use of current transmission capacity by coupling

  14. Non-Contact Magnetic Transmission For Hybrid/Electric Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion has the potential to revolutionize aircraft design and architecture. A distributed electric propulsion system for a VTOL aircraft can exploit...

  15. Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.

    2012-01-01

    The subject of this paper is the analysis of an electrical transmission system with the objective of identifying its most critical elements with respect to failures and attacks. The methodological approach undertaken is based on graph-theoretical (topological) network analysis. Four different perspectives of analysis are considered within the formalism of weighed networks, adding to the purely topological analysis of the system, the reliability and electrical characteristics of its components. In each phase of the analysis: i) a graph-theoretical representation is offered to highlight the structure of the most important system connections according to the particular characteristics examined (topological, reliability, electrical or electrical-reliability), ii) the classical degree index of a network node is extended to account for the different characteristics considered. The application of these concepts of analysis to an electrical transmission system of literature confirms the importance of different perspectives of analysis on such a critical infrastructure. - Highlights: ► We analyze a power system from topological, reliability and electrical perspectives. ► We rank critical components within a vulnerability assessment framework. ► We compute an extended degree to rank critical energy paths. ► We compare several analytical approaches and provide a table for choosing among them. ► We suggest network changes to increase the reliability of highly loaded energy paths.

  16. Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments?

    International Nuclear Information System (INIS)

    Sauma, Enzo E.; Oren, Shmuel S.

    2009-01-01

    This paper examines the incentives that generation firms have in restructured electricity markets for supporting long-term transmission investments. In particular, we study whether generation firms, which arguably play a dominant role in the restructured electricity markets, have the incentives to fund or support incremental social-welfare-improving transmission investments. We examine this question in a two-node network and explore how such incentives are affected by the ownership of financial transmission rights (FTRs) by generation firms. In the analyzed two-node network, we show both (1) that the net exporter generation firm has the correct incentives to increase the transmission capacity incrementally up to a certain level and (2) that, although a policy that allocates FTRs to the net exporter generation firm can be desirable from a social point of view, such a policy would dilute the net-importer-generation-firm's incentives to support transmission expansion. Moreover, if all FTRs were allocated or auctioned off to the net exporter generation firm, then it is possible to increase both consumer surplus and social welfare while keeping the net exporter generation firm revenue neutral. (author)

  17. TacTower

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Jürgensen, Christine

    2009-01-01

    Learning from the multiplayer interaction in sports, we describe our project TacTower; a flexible system for professional elite handball players to train game perception and kinesthetic em- pathy. The design is founded in ideas of Collective Interaction and qualities that is inherent in sport...

  18. Cell Towers and Songbirds

    Science.gov (United States)

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  19. Talking Towers, Making Withs.

    Science.gov (United States)

    Lemke, J. L.

    The notion of a linguistic "register" is useful in posing questions about how the ways language is used differ from one kind of human activity to another. This paper analyzes a videotaped segment of male grade 4/5 students (n=3) who are talking as they work to build a tower from plastic drinking straws and pins. Discussion of the…

  20. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  1. TacTower

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Jürgensen, Christine

    2009-01-01

    Learning from the multiplayer interaction in sports, we describe our project TacTower; a flexible system for professional elite handball players to train game perception and kinesthetic em- pathy. The design is founded in ideas of Collective Interaction and qualities that is inherent in sport...... and is based on consid- erations about paralanguage, kinesthetic emphatic interaction, physical positioning of players and collaborative interaction....

  2. Engineering photochemical smog through convection towers

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L. [Los Alamos National Lab., NM (United States); Jacobson, M.Z.; Turco, R.P. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Los Angeles, CA (United States). Atmospheric Sciences Dept.

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  3. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Hydraulic transmissivity determination for the groundwater exploration using vertical electric sounding method in comparison to the traditional methods

    International Nuclear Information System (INIS)

    Arshad, M.; Shakoor, A.; Ahmad, M.

    2013-01-01

    An important aquifer characteristic, transmissivity significantly contributes to the development of local and regional groundwater resources and solute transport management. Estimation of this property allows quantitative prediction of the hydraulic response and solute transport of the aquifer to recharge and pumping. This study presents the three techniques, used to compare transmissivity determination by Vertical Electric Sounding (VES) over the traditional techniques. The validation of VES was compared with the old widely used methods such as grain size distribution and pumping test techniques. Grain size distribution analysis was carried out to determine transmissivity. Pumping test was performed to determine transmissivity using the type curves solution for unconfined aquifer and taking into account the delayed yield. In resistivity imaging survey, the soil layers were detected through interpretation of resistivity data. Formation factor for each layer was determined with the relation of aquifer soil resistivity and ground water resistivity. The estimated transmissivities though grain size distribution, pumping test and resistivity survey were 0.588, 0.578 and 0.756m/sup 2//min, respectively. The results emphasized the potential of the resistivity survey for aquifer transmissivity determination. (author)

  5. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    Science.gov (United States)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  6. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  7. Design and Implementation of an over Current Protection Laboratory for Electrical Power Transmission Systems Based on PLC Techniques

    Directory of Open Access Journals (Sweden)

    Hassaan Th. H. Thabet

    2018-01-01

    Full Text Available This paper describes a modern approach for the protection of transmission lines to ensure theirsafety against the faults occurred in power systems. Our approach uses a Programmable LogicController (PLC to realize a transmission line as an over current protection relay. A conditioningcircuit was designed, implemented and tested to collect data obtained from Hall Effect sensors which convert them to suitable analog values compatible with PLC's inputs. Results obtained by our PLC control system are very similar to those obtained by the conventional relays but more efficient. An Automatic Reclosing System (ARS for remote faults is also included in this approach. Our PLC control system and its algorithm are illustrated in this paper also. This approach is designed to be used in electrical networks laboratories as an educational unit in electrical departments of engineering collages and technical institutes; it can be used also in real power systems through suitable interfacing facilities.

  8. Solar tower enhanced natural draft dry cooling tower

    Science.gov (United States)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  9. Transient Simulation of Wind Turbine Towers under Lightning Stroke

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available A simulation algorithm is proposed in this paper for lightning transient analysis of the wind turbine (WT towers. In the proposed algorithm, the tower body is first subdivided into a discrete multiconductor system. A set of formulas are given to calculate the electrical parameters of the branches in the multiconductor system. By means of the electrical parameters, each branch unit in the multiconductor system is replaced as a coupled π-type circuit and the multiconductor system is converted into a circuit model. Then, the lightning transient responses can be obtained in different parts on the tower body by solving the circuit equations of the equivalent discretization network. The laboratory measurement is also made by a reduced-scale tower for checking the validity of the proposed algorithm.

  10. Good Towers of Function Fields

    DEFF Research Database (Denmark)

    Bassa, Alp; Beelen, Peter; Nguyen, Nhut

    2014-01-01

    In this paper, we will give an overview of known and new techniques on how one can obtain explicit equations for candidates of good towers of function fields. The techniques are founded in modular theory (both the classical modular theory and the Drinfeld modular theory). In the classical modular...... setup, optimal towers can be obtained, while in the Drinfeld modular setup, good towers over any non-prime field may be found. We illustrate the theory with several examples, thus explaining some known towers as well as giving new examples of good explicitly defined towers of function fields....

  11. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  12. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    International Nuclear Information System (INIS)

    Chatterjee, Bishu; Sharp, Peter A.

    2006-01-01

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  13. SEA for strategic grid planning in South Africa: Enabling the efficient and effective roll out of strategic electricity transmission infrastructure

    CSIR Research Space (South Africa)

    Fischer, TD

    2016-05-01

    Full Text Available | Resilience and Sustainability 36th Annual Conference of the International Association for Impact Assessment 11 - 14 May 2016 | Nagoya Congress Center | Aichi-Nagoya | Japan | www.iaia.org SEA FOR STRATEGIC GRID PLANNING IN SOUTH AFRICA: Enabling... the efficient and effective roll out of strategic electricity transmission infrastructure Abstract ID: 409 Authors: Marshall Mabin(1) , Paul Lochner and Dee Fischer Council for Scientific and Industrial Research (CSIR), PO Box 320 Stellenbosch 7599 South...

  14. Development of electric power transmission line anomaly approaching alarm system. Sodensen ijo sekkin keiho sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kusaba, Masaro; Tabata, Takatoshi; Miyazaki, Shusuke [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1989-03-30

    In order to plan preventive measures from the occurrence of electric power transmission line accident, a power transmission line anomaly approaching alarm system was developed to automatically alarm the operators and surveillants. The surveillance system, composed of camera, surveillance unit proper and alarm receiving portion, generates alarm and indicate hazard to the operators, when animal invades a hazardous area designated on the monitor. Wireless telegraph for the alarm transmission use used frequency around a 322MHz band with the Radio Ray law and preventive measures from noise, taken into consideration. The prototype is characterized by unnecessary ancillary fitting to the surveillance object, rare erroneous operations and high reliability. While the hazardous area can be simply designated, changed and released, as made by volume on the control panel. It is moreover easy to designate, as done by confirming the surveillance object on the display. It is also possible in multidimensional surveillance and easy to use on site. 7 figs.

  15. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  16. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng [Iowa State Univ., Ames, IA (United States)

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  17. Financing investment in the European electricity transmission network: Consequences on long-term sustainability of the TSOs financial structure

    International Nuclear Information System (INIS)

    Henriot, Arthur

    2013-01-01

    This article focuses on the ability of European TSOs to meet the demand for substantial investments in the electricity transmission grid over the next two decades. We employ quantitative analysis to assess the impact of the required capital expenditures under a set of alternative financing strategies. We consider a best-case scenario of full cooperation between the European TSOs. It appears that under current trends in the evolution of transmission tariffs, only half the volumes of investment currently planned could be funded. A highly significant increase in transmission tariffs will be required to ensure the whole-scale investments can be delivered. Finally, alternative strategies can dampen the impact on tariffs but they can only partially substitute for this increase in charges paid by network users. -- Highlights: •We applied balance-sheet modelling to a single European Electricity TSO. •Investments planned will not be achievable under current tariffs evolution. •A three-fold higher growth of transmission network tariffs would be necessary. •New financing strategies can dampen the impact on tariffs, to a minor extent

  18. Overview of U.S. electric utilities: Transmission and distribution systems

    International Nuclear Information System (INIS)

    Brown, R.D.

    1994-01-01

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all

  19. Improvement of the electric power sector through the access to the national power transmission system - SINTREL (Brazilian National System of Electric Power Transmission); Aperfeicoamento do setor de energia eletrica atraves do acesso a transmissao - SINTREL (Sistema Nacional de Transmissao de Energia Eletrica)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    This report presents the organization and the operation of SINTREL (Brazilian National System of Electric Power Transmission), the national power transmission system, and it defines its function in the process of reform of the Brazilian electric sector. Besides showing the traditional organization of the companies and of the electric system, and the evolution of the organization of the Brazilian electric system to favor the competition.

  20. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  1. TacTowers

    DEFF Research Database (Denmark)

    Ludvigsen, Martin; Fogtmann, Maiken Hillerup; Grønbæk, Kaj

    2010-01-01

    The interactive training equipment, TacTower, is aimed at supporting multiple elite athletes, such as handball players in training their micro-tactical skills in close-contact situations. It focuses on psychomotor abilities and trains the skills involved in reading the opponents’ actions and anti...... for the elite athletic community, as this domain holds interesting challenges while also inspiring relevant, new forms of interaction design for other domains....

  2. Electric Current Transmission Through Tissues of the Vestibular Labyrinth of a Patient: Perfection of the Vestibular Implant

    Science.gov (United States)

    Demkin, V. P.; Shchetinin, P. P.; Melnichuk, S. V.; Kingma, H.; Van de Berg, R.; Pleshkov, M. O.; Starkov, D. N.

    2018-03-01

    An electric model of current transmission through tissues of the vestibular labyrinth of a patient is suggested. To stimulate directly the vestibular nerve in surgical operation, terminations of the electrodes are implanted through the bone tissue of the labyrinth into the perilymph in the vicinity of the vestibular nerve. The biological tissue of the vestibular labyrinth surrounding the electrodes and having heterogeneous composition possesses conductive and dielectric properties. Thus, when a current pulse from the vestibular implant is applied to one of the electrodes, conductive disturbance currents may arise between the electrodes and the vestibular nerves that can significantly deteriorate the direct signal quality. To study such signals and to compensate for the conductive disturbance currents, an equivalent electric circuit with actual electric impedance properties of tissues of the vestibular system is suggested, and the time parameters of the conductive disturbance current transmission are calculated. It is demonstrated that these parameters can reach large values. The suggested electric model and the results of calculations can be used for perfection of the vestibular implant.

  3. Calculation of Voltages in Electric Power Transmission Lines During Historic Geomagnetic Storms: An Investigation Using Realistic Earth Impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-02-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  4. Calculation of voltages in electric power transmission lines during historic geomagnetic storms: An investigation using realistic earth impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-01-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  5. Valuation of physical transmission rights—An analysis of electricity cross-border capacities between Germany and the Netherlands

    International Nuclear Information System (INIS)

    Wobben, Magnus; Dieckmann, Birgit; Reichmann, Oleg

    2012-01-01

    The purpose of this paper is to discuss market-coherent valuation of physical transmission rights for cross-border capacities between Germany and the Netherlands. Aiming at a fair valuation of these contracts, the most important stylized facts of electricity prices such as mean reversion, spikes and correlations of regional prices have to be considered. We present different approaches to the valuation of physical transmission rights and perform a quantitative analysis of the results. On the one hand various challenges of modeling regional price spreads are analyzed. On the other hand we indicate a structural undervaluation of physical transmission rights in all model constellations, i.e. market prices are below theoretical prices of PTR's flexibility. We discuss several reasons for this undervaluation and finally state that regulatory modifications have to be made to avoid missing incentives for the extension of cross-border capacities. - Highlights: ► Modeling transmission rights as option contracts. ► Analysis of regional price spreads. ► Indication of a structural undervaluation of physical transmission rights.

  6. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  7. Reducing the risk of Legionnaires' disease associated with cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Freije, M.R. [HC Information Resources Inc., Carlsbad, CA (United States)

    2008-08-15

    To reduce the health and legal risks associated with Legionnaires' disease, facility managers should take steps to minimize Legionella bacteria in plumbing systems, open industrial equipment, water features, cooling towers, and other aerosolizing water systems. The risk of Legionnaires' disease associated with cooling towers can be reduced by controlling Legionella bacteria in cooling water and preventing transmission of the bacteria from towers to people. This paper presents nine reasonable ways to accomplish these goals. (orig.)

  8. The solar two power tower project

    International Nuclear Information System (INIS)

    Chavez, J.M.; Klimas, P.C.; Laquil, P. de III; Skowronski, M.

    1993-01-01

    A consortium of United States utility concerns led by Southern California Edison Company (SCE) has begun a cooperative project with the U.S. Department of Energy (DOE) and industry to convert the 10-MWe Solar One Tower Pilot Plant to molten nitrate salt technology. Successful operation of the convert plant to be called Solar Two, will reduce the economic risks in building the initial commercial power tower projects and accelerate the commercial acceptance of this promising renewable energy technology. In a molten salt power tower plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver, atop a tower. Molten salt is heated in the receiver and stored until it is needed to generate steam to power a conventional turbine generator. Joining the SCE and DOE in sponsoring in sponsoring this project are the following organizations: Los Alamos department of Water Power, Idaho Power Company, PacifiCorp, Pacific Gas and Electric Company, Sacramento Municipal Utility District, Arizona Public Service Company, Salt River Project, City of Pasadena, California Energy Commission, Electric Power Research Institute, South Coast Air Quality Commission, Electric Power research Institute, South Coast Air Quality Management District, and Bechtel Corporation. The Solar Two project will convert the Solar One heat transfer system from a water/steam type to molten nitrate salt by replacing the water/steam receiver and oil/rock thermal storage system with a nitrate salt receiver, salt thermal storage, and steam generator. The estimate cost of Solar Two, including 3-year test period, is 48.5 millions. The plant will be on line in early 1995. (authors)

  9. Wireless acoustic-electric feed-through for power and signal transmission

    Science.gov (United States)

    Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  10. A literature survey on asset management in electrical power [transmission and distribution] system

    NARCIS (Netherlands)

    Khuntia, S.R.; Rueda Torres, José L.; Bouwman, S.; van der Meijden, M.A.M.M.

    2016-01-01

    Asset management is one of the key components in a transforming electric power industry. Electric power industry is undergoing significant changes because of technical, socio-economical and environmental developments. Also, because of restructuring and deregulation, the focus has been on

  11. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  12. Induced draught circular cooling tower

    International Nuclear Information System (INIS)

    Blanquet, J.C.

    1980-01-01

    Induced draught atmospheric cooling towers are described, to wit those in which the circulation is by power fans. This technique with fans grouped together in the centre enables a single tower to be used and provides an excellent integration of the steam wreath into the atmosphere. This type of cooling tower has been chosen for fitting out two 900 MW units of the Chinon power station in France [fr

  13. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  14. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  15. Towers of hybrid mesons

    International Nuclear Information System (INIS)

    Semay, Claude; Buisseret, Fabien; Silvestre-Brac, Bernard

    2009-01-01

    A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schroedinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.

  16. Audit of the process of determination of available cross-border electricity transmission capacity in the Netherlands

    International Nuclear Information System (INIS)

    Haubrich, H.J.; Fritz, W.

    2001-02-01

    The objective of this audit has been to analyse and to evaluate the process of determination of available cross-border electricity transmission capacity in the Netherlands as applied by the Dutch transmission system operator TenneT. In particular, the scope has been to give a survey of the corresponding responsibilities of TenneT as defined primarily by the Dutch Grid Code, to analyse the way TenneT fulfils these responsibilities, and to analyse and evaluate the decisions taken and the methods applied by TenneT for each step of this process. In addition, recommendations regarding possibilities of netting imports and exports in day-ahead capacity allocation have been requested. We have based this audit on comprehensive meetings with TenneT, on publicly available documents mainly from DTe and TenneT, and on non-public documents made available to us by TenneT. 26 refs

  17. Some problems relating to the transmission of electrical power at very high voltage

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A

    1965-01-01

    Some of the technical and economic factors which influence the choice of a transmission system, particularly a very high voltage one, are discussed. The stability of transmission overvoltages at mains frequency and their control by means of compensating reactances is described. Overvoltages due to circuit-breaker operation and those of atmospheric origin, and appropriate protective devices, the behaviour of equipment at 750 kV, and problems of testing are included. Finally, the 735 kV network now being installed to carry 5300 MW of hydroelectric power 650 km from the Manicouagan River to Quebec and Montreal is described.

  18. Transient signals on transmission lines an introduction to non-ideal effects and signal integrity issues in electrical systems

    CERN Document Server

    Peterson, Andrew

    2009-01-01

    This lecture provides an introduction to transmission line effects in the time domain. Fundamentals including time of flight, impedance discontinuities, proper termination schemes, nonlinear and reactive loads, and crosstalk are considered. Required prerequisite knowledge is limited to conventional circuit theory. The material is intended to supplement standard textbooks for use with undergraduate students in electrical engineering or computer engineering. The contents should also be of value to practicing engineers with interests in signal integrity and high-speed digital design.Table of Cont

  19. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  20. Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry

    Directory of Open Access Journals (Sweden)

    Manuel Llorca

    2014-03-01

    Full Text Available In this paper we advocate using the latent class model (LCM approach to control for technological differences in traditional efficiency analysis of regulated electricity networks. Our proposal relies on the fact that latent class models are designed to cluster firms by uncovering differences in technology parameters. Moreover, it can be viewed as a supervised method for clustering data that takes into account the same (production or cost relationship that is analysed later, often using nonparametric frontier techniques. The simulation exercises show that the proposed approach outperforms other sample selection procedures. The proposed methodology is illustrated with an application to a sample of US electricity transmission firms for the period 2001–2009.

  1. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex

    DEFF Research Database (Denmark)

    Rekling, J C; Shao, X M; Feldman, J L

    2000-01-01

    Breathing pattern is postulated to be generated by brainstem neurons. However, determination of the underlying cellular mechanisms, and in particular the synaptic interactions between respiratory neurons, has been difficult. Here we used dual recordings from two distinct populations of brainstem...... respiratory neurons, hypoglossal (XII) motoneurons, and rhythmogenic (type-1) neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, to determine whether electrical and chemical transmission is present. Using an in vitro brainstem slice preparation from newborn...... mice, we found that intracellularly recorded pairs of XII motoneurons and pairs of preBötC inspiratory type-1 neurons showed bidirectional electrical coupling. Coupling strength was low (neurons was heavily filtered (corner frequency,

  2. Wind-induced response of CN-Tower: comparison of model and full scale

    International Nuclear Information System (INIS)

    Monbaliu, J.; Ruigrok, C.; Isyumov, N.

    1985-01-01

    The approximately 555-m high CN Communications Tower in Toronto has now been operational for nearly a decade. The action of wind on this tower was extensively tested at the Boundary Layer Wind Tunnel Laboratory during the design of the tower. This study provided information on the overall wind loads and responses of the structure, the action of wind on various components, and its effects on the tower performance including transmission quality. A program of monitoring and recording the wind induced response and various meteorological data was started in 1977. This paper presents some results of that program and makes comparisons with wind tunnel model data. (author)

  3. Transmission congestion and voltage profile management coordination in competitive electricity markets

    International Nuclear Information System (INIS)

    Yamin, H.Y.; Shahidehpour, S.M.

    2003-01-01

    This paper describes a generalized active/reactive iterative coordination process between GENCOs and the Independent System Operator (ISO) for active (transmission congestion) and reactive (voltage profile) management in the day-ahead market. GENCOs apply priced-based unit commitment without transmission and voltage security constraints, schedule their units and submit their initial bids to the ISO. The ISO executes congestion and voltage profile management for eliminating transmission and voltage profile violations. If violations are not eliminated, the ISO minimizes the transmission and voltage profile violations and sends a signal via the Internet to GENCOs. GENCOs reschedule their units taking into account the ISO signals and submit modified bids to the ISO. The voltage problem is addressed and a linear model is formulated and used in the proposed method. The voltage problem is formulated as a linear programming with a block-angular structure and Dantzig-Wolfe decomposition is applied to generate several smaller problems for a faster and easier solution of large-scale power systems. Two 36 unit GENCOs are used to demonstrate the performance of the proposed generalized active/reactive coordination algorithm. (author)

  4. Transmission-grid requirements with scattered and fluctuating renewable electricity-sources

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2003-01-01

    The article analysis the requirements of the transmission grids in a year 2020 situation with power balancing (matching production and consumption)as it is now on the few large power plants, and a year 2020 situation with geographically-scattered power balancing using e.g. CHP plants, heat pumps...

  5. Column Generation for Transmission Switching of Electricity Networks with Unit Commitment

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, Andy B.

    2011-01-01

    This paper presents the problem of finding the minimum cost dispatch and commitment of power generation units in a transmission network with active switching.We use the term active switching to denote the use of switches to optimize network topology in an operational context. We propose a Dantzig...

  6. A two-phase control algorithm for gear-shifting in a novel multi-speed transmission for electric vehicles

    Science.gov (United States)

    Roozegar, M.; Angeles, J.

    2018-05-01

    In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.

  7. Further Development of the Nordic Electricity Market - a Common Solution for Investments in Transmission, Congestion Management and Peak Load Capacity

    International Nuclear Information System (INIS)

    Granstroem, Per-Olof

    2005-06-01

    The Nordic market fits well into place as a regional market in the over all European development, and it is therefore necessary to change the perspectives from a national one to a common Nordic approach. Despite the fact that the Nordic market is seen as a success, significant further improvements for customers and society can be made through deeper Nordic integration. The ongoing work on the Nordic electricity market within the Nordic Council of Ministers is therefore very welcomed and the Nordel report 'Enhancing Efficient Functioning of the Nordic Electricity Market' constitutes a good basis material for the further development of the market. There is a need to accelerate the pace of the harmonisation process, by making a clear timetable and prioritisation for the further work. Key issues for the next step are: Harmonisation of the legal framework and hence intensified co-operation among the Nordic governments; Implementation of the five known transmission investments, including a cost-benefit analysis; A more precise definition of the TSO responsibilities and core businesses, including operational reserves a prerequisite for further work on, e.g. the peak load issue; Initiation of cost-benefit analysis concerning future transmission investments; Guaranteed cross border capacity for market players; An analysis on settlement of imbalances and how this is affecting the peak load issue

  8. Transmission of electric fields and photoelectron fluxes between conjugate ionospheric F2-regions

    International Nuclear Information System (INIS)

    Petelski, E.F.

    1975-01-01

    The dynamic behaviour of the ionospheric F2-layer requires considerable vertical transport of ionization. Possible causes of such transport are ambipolar diffusion, neutral air winds and electric fields. Here mid-latitude electric fields are investigated. Real height variations of the F2-layer indicate that the phases and amplitudes of these fields are similar at well conjugate points and that the field strengths can become unexpectedly high. It is further shown that photoelectrons can migrate between the two hemispheres along the geomagnetic field lines. (orig.) [de

  9. IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD) Annex IV: - Transmission Systems Final report

    Energy Technology Data Exchange (ETDEWEB)

    Uhlen, Kjetil; Cirio, Diego

    2012-11-01

    This is the final report from Annex IV under the IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD). The Annex has worked out a long-term perspective in the evolution of transmission system planning and operation. This is motivated by the established targets for energy system developments, which in turn are affected by economic paradigms, environmental concerns, and security of supply requirements for the well-being of citizens. The Annex work concludes that urgent action is needed to make the power system able to accommodate in a safe and economic way the dramatic changes it is required to undergo. A main message is that the 'right' investment in transmission capacity, which must be stimulated, may be regarded as 'overinvestment'. Transmission lines may be 'necessary' even though there is a chance that they may be underutilised in parts of their lifetime. In reality, underinvestment could be more costly than overinvestment (contradictory to the motivation for deregulation; to improve efficiency and avoid overinvestment). This is necessary, taking into account the very long planning and consenting processes and accounting for the technical aspects in the regulatory and market framework.(auth)

  10. Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, James A. [Argonne National Lab. (ANL), Argonne, IL (United States); Krummel, John R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hlava, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, H. Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Orr, Andrew B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schlueter, Scott O. [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Zvolanek, Emily A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-21

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines.

  11. Minutes of the Meeting - Pennsylvania Electric Association, Engineering Section, Transmission and Distribution Committee, Spring, 1981

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Proceedings includes 8 papers dealing with underground and submarine crossings of electric power cables, underground fault locating equipment, lightning arresters, the current carrying capacity of conductors in distribution systems, emergency warning facilities in nuclear power plants, and the use of fiberglass/polyester materials in fiberglass poles

  12. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  13. Network cost in transmission and distribution of electric power; Naetkostnader i oeverfoering och distribution av el

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, A; Naeslund, B; Oettinger-Biberg, C; Olander, H; Wuolikainen, T; Fritz, P

    1994-12-31

    This report is divided in two parts, where part 1 treats the charges on the regional nets with special emphasis on the net owners tariffs on a deregulated market. Part 2 describes the development of the network costs in electric power distribution for the period 1991-1993. 11 figs, 33 tabs

  14. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois.

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.; Thimmapuram, P.; Veselka, T.; Koritarov, V.; Conzelmann, G.; Macal, C.; Boyd, G.; North, M.; Overbye, T.; Cheng, X.; Decision and Information Sciences; Univ. of Illinois

    2006-04-30

    Despite the current adequacy of the generation and transmission system in Illinois, there is concern that the uncertainties of electricity restructuring warrant a more detailed analysis to determine if there might be pitfalls that have not been identified under current conditions. The problems experienced elsewhere in the country emphasize the need for an evaluation of how Illinois might fare under a restructured electricity market. The Illinois Commerce Commission (ICC) commissioned this study to be undertaken as a joint effort by the University of Illinois at Urbana-Champaign and Argonne National Laboratory to evaluate the Illinois situation in the 2007 period when restructuring is scheduled to be fully implemented in the State. The purpose of this study is to make an initial determination if the transmission system in Illinois and the surrounding region would be able to support a competitive electricity market, would allow for effective competition to keep prices in check, and would allow for new market participants to effectively compete for market share. The study seeks to identify conditions that could reasonably be expected to occur that would enable a company to exercise market power in one or more portions of the State and thereby create undue pressure on the prices charged to customers and/or inhibit new market participants from entering the market. The term 'market power' has many different definitions, and there is no universal agreement on how to measure it. For the purposes of this study, the term is defined as the ability to raise prices and increase profitability by unilateral action. A more complete definition is provided later. With this definition, the central question of this analysis becomes: 'Can a company, acting on its own, raise electricity prices and increase its profits?' It should be noted that the intent of the study is not to predict whether or not such market power would be exercised by any company. Rather, it is

  15. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  16. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  17. Identification of Conflicts between Transmission and Distribution System Operators when Acquiring Ancillary Services from Electric Vehicles

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Knezovic, Katarina; Marinelli, Mattia

    2017-01-01

    ancillary services from flexible units. The investigation is carried out considering a 3-area power system which allows to take into account local constraints as well as system-wide needs. As outcome, this paper identifies the conflicts from both a theoretical and a practical point of view, by means...... products according to requests coming from both distribution and transmission system operators. The goal of this paper is to provide an identification procedure that is able to detect, identify and catalogue possible conflicts among the involved stakeholders that take place when requesting and/or acquiring...

  18. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-01-01

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni 80 Fe 20 ) thin film strip sputtered onto SiO 2 substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected

  19. Electric industry governance. Reconciling competitive power markets and the physics of complex transmission interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Stalon, Charles G. [Energy Regulation, Cape Girardeau, MO (United States)

    1997-03-01

    Creating efficient, competitive power markets in an electric industry composed of interconnected control areas requires the existence of some agency with authority to define, impose and enforce rules for the operation of all control areas so interconnected. It has been noted that `the pursuit of self-interest, unrestrained by suitable institutions, carries no guarantee of anything except chaos`. In no part of the economy is this lesson more relevant than in the North American electric industry. As the industry evolves from one dominated by vertically-integrated utilities into one with competitive power markets and unregulated generators, the system of coordinating institutions that has worked acceptably well to restrain and guide self-interested decision makers of economically regulated firms must now be reconstructed to restrain and guide self-interested decision makers of unregulated generating companies (gencos), power merchants and brokers

  20. Numerical study of coupled heat and mass transfer in geothermal water cooling tower

    International Nuclear Information System (INIS)

    Bourouni, K.; Bassem, M.M.; Chaibi, M.T.

    2008-01-01

    Cross flow mechanical cooling towers, widely spreads all over the south region of Tunisia are used for cooling geothermal water for agriculture and domestic ends. These towers are sized empirically and present several problems in regard to operation and electrical energy consumption. This work aims to study the thermal behaviour of this type of cooling towers through a developed mathematical model considering the variation of the water mass flow rate inside the tower. The analysis of the water and air temperatures distribution along the cooling tower had underlined the negative convection phenomenon at a certain height of the tower. This analysis has shown also that the difference in water temperature between the inlet and the outlet of the tower is much higher than the one of air due to the dominance of the evaporative potential compared to the convective one. In addition, the variations of the air humidity along the cooling tower and the quantity of evaporated water have been investigated. The loss of water by evaporation is found to be 5.1% of the total quantity of water feeding the cooling tower. Interesting future prospects are expected for validation of the developed model to optimize the operating of the cooling tower

  1. Sitting duck or wise old owl. [electricity generation and transmission and public relations

    Energy Technology Data Exchange (ETDEWEB)

    Rappoport, D.M.

    1993-02-15

    Utilities are building few generating stations these days, but modest customer growth means that transmission and distribution facilities must be built or rebuilt in the coming years. This means a customer typically opposing a construction project is likely to be a suburbanite worried about the effect a distribution or transmission line or substation may have on home values as well as the potential health risks posed by that facility. Those worried about the prospect of falling home prices or potential health risks have the motivation and the means to make life difficult for utilities that don't understand how the rules of the game have changed. While the profile of the protestors has changed in recent years, the views of many utility executives have not. Too many still believe the public can be ignored when it comes to siting facilities or structuring rates. Utilities will spend mightily to mollify the public after it becomes angry. But it would be less costly - and more productive - to invest in advance in an ongoing program to help avoid an angry public. If that approach is successful, those in media and government relations will find they have fewer brushfires.

  2. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  3. Analysis of the network capacities and possible congestion of the electricity transmission networks within the accession countries

    International Nuclear Information System (INIS)

    Kristiansen, Tarjei; Hewicker, Cristian

    2005-01-01

    Since the passage of the first Electricity Directive, the gradual establishment of the Internal Electricity Market (IEM) of the European Union has resulted in a remarkable growth of cross-border trade in electricity that have made trading and flow patterns more dynamic and less predictable. Simultaneously, market actors are increasingly facing congestion on several cross-border lines, limiting their opportunities to exploit the existing economic export and import potential between different markets to the benefit of European consumers. Ten new countries joined the European Union in May 2004 and thus became part of the IEM. In addition, Bulgaria, Romania and Turkey have been granted the status of Candidate Countries and may join the EU in the future. This paper describes a study commissioned by the European Commission (Directorate-General Energy and Transport) about the electricity market modelling of the these countries and their neighbour countries with respect to transmission congestion and investments. Our focus is on the following objectives: 1) Determining the economic export and import potential for the new parts of the Internal Electricity Market, covering exchanges between the Accession Countries, and between the Accession Countries and those countries that had already been part of the IEM before May 2004. 2) Developing a methodology for assessing transmission projects based on the market simulations and an assessment of investment costs. We have chosen to simulate market behaviour through a production simulation tool that allows us to determine the least-cost dispatch of power plants, while simultaneously taking account of limited cross-border capacities. Based on existing data and information and the expertise of our specialists, we have thus built a European market model in the well-known production simulation tool PROSYM. This tool is based on a minimum cost dispatch where the underlying power system is described with power plant characteristics and

  4. Essays on empirical analysis of multi-unit auctions: Impacts of financial transmission rights on the restructured electricity industry

    Science.gov (United States)

    Zang, Hailing

    This dissertation uses recently developed empirical methodologies for the study of multi-unit auctions to test the impacts of Financial Transmission Rights (FTRs) on the competitiveness of restructured electricity markets. FTRs are a special type of financial option that hedge against volatility in the cost of transporting electricity over the grid. Policy makers seek to use the prices of FTRs as market signals to incentivize efficient investment and utilization of transmission capacity. However, prices will not send the correct signals if market participants strategically use FTRs. This dissertation uses data from the Texas electricity market to test whether the prices of FTRs are efficient to achieve such goals. The auctions studied are multi-unit, uniform-price, sealed-bid auctions. The first part of the dissertation studies the auctions on the spot market of the wholesale electricity industry. I derive structural empirical models to test theoretical predictions as to whether bidders fully internalize the effect of FTRs on profits into their bidding decisions. I find that bidders are learning as to how to optimally bid above marginal cost for their inframarginal capacities. The bidders also learn to bid to include FTRs into their profit maximization problem during the course of the first year. But starting from the second year, they deviated from optimal bidding that includes FTRs in the profit maximization problems. Counterfactual analysis show that the primary effect of FTRs on market outcomes is changing the level of prices rather than production efficiency. Finally, I find that in most months, the current allocations of FTRs are statistically equivalent to the optimal allocations. The second part of the dissertation studies the bidding behavior in the FTR auctions. I find that FTRs' strategic impact on the FTR purchasing behavior is significant for large bidders---firms exercising market power in the FTR auctions. Second, trader forecasts future FTR credit

  5. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C.Y.; Tang, C.C.; Bando, Y.; Lourie, O.

    2006-01-01

    Boron nitride nanotubes filled with magnesium oxides [MgO, MgO 2 ] and/or hydroxide [Mg(OH) 2 ] are electrically probed and delicately manipulated inside a 300 kV JEOL-3000F high-resolution transmission analytical electron microscope equipped with a side-entry 'Nanofactory Instruments' piezoholder. At a low bias the nanotubes demonstrate truly insulating behavior. At a high bias of ±30 V they show reversible breakdown current of several dozens of nA. Under 300 kV electron beam irradiation the nanotubes are positively charged that allows us to perform on-demand manipulation with them through tuning of polarity and/or value of a bias voltage on a gold counterelectrode from -140 to +140 V, owing to the prominent electrostatic nanotube-electrode interactions

  6. You're a What?: Tower Technician

    Science.gov (United States)

    Vilorio, Dennis

    2012-01-01

    In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…

  7. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  8. The Design of Akhmat Tower

    Science.gov (United States)

    Beardsley, Sara; Stochetti, Alejandro; Cerone, Marc

    2018-03-01

    Akhmat Tower is a 435m supertall building designed by Adrian Smith + Gordon Gill Architecture. It is currently under construction in the city of Grozny, in the Chechen Republic, in the North Caucasus region of Russia. The design of the tower was done during a collaborative process by a multi-disciplinary architectural and engineering team, based primarily in the United States and Russia. During this process, the designers considered many factors including, most primarily, the cultural and historical context, the structural requirements given the high seismicity of the region, and the client's programmatic needs. The resulting crystalline-shaped tower is both an aesthetic statement and a performative architectural solution which will be a new landmark for Chechnya. "The Design of Akhmat Tower" describes in detail the design process including structural considerations, exterior wall design, building program, interior design, the tuned mass damper, and the use of building information modeling.

  9. Allegheny County Cell Tower Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used...

  10. A review of electrical generation, transmission and distribution in the Northwest Territories: a design for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-06

    This report was commissioned by the Government of the Northwest Territories to determine whether current approaches to electrical system management in the NWT serve the public interest with respect to assuring security of supply, quality, reliability and cost of service, affordability of rates, responsiveness to client needs, adaptability to changing service conditions, and return on public investment. In assessing the ability of the current regime to serve the evolving needs of the people of the NWT, authors of the report also examined recent developments in other jurisdictions, significant issues affecting operation of the Northwest Territories Power Corporation (NTPC), the feasibility of privatization, alternative energy sources, the potential impact of the Mackenzie Valley gas pipeline and hydro resource development. Recommendations include (1) restructuring the NTPC, (2) giving the NTPC a distribution monopoly for all currently served locations, (3) requiring the purchase of alternative energy, (4) repealing the Public Utilities Act, (5) resolving stranded asset issues by amending the Cities, Towns and Villages Act, (6) establishing two rate zones (hydro and other) and the appropriate rates for each, (7) awarding natural gas distribution franchise rights to the NTPC for all NWT communities not currently serviced by others, (8) opening future and additional electric power generation to competition, provided that all technical requirements established by the operating utilities are met, and (9) ensuring that any and all debts associated with Nunavut be removed from NTPC books before the end of FY 2001. 19 refs., tabs., 5 appendices.

  11. Studies of column supported towers

    International Nuclear Information System (INIS)

    Chauvel, D.; Costaz, J.-L.

    1991-01-01

    As a result of a research and development programme into the civil engineering of cooling towers launched in 1978 by Electricite de France, very high cooling towers were built at Golfech and Chooz, in France, using column supports. This paper discusses the evolution of this new type of support from classical diagonal supports, presents some of the results of design calculations and survey measurements taken during construction of the shell and analyses the behaviour of the structure. (author)

  12. A framework for cost-based pricing of transmission and ancillary services in competitive electric power markets

    International Nuclear Information System (INIS)

    Zobian, A.; Ilic, M.D.

    1995-01-01

    In this paper the authors propose a framework for accurate cost determination and pricing of transmission and ancillary services in competitive electric power markets. The proposed framework is based on their anticipation of the evolving environment and industry structure. They envision the future as a competitive energy market with a centralized control entity that coordinates system activities, prices transmission and ancillary services and controls various system resources. This control entity has control over a certain (pre-defined) geographical area. It is proposed that the system operation and control be kept as they are currently done in control centers, no major change in these functions is required for the proposed pricing strategy. The pricing strategy is divided into two main classes based on time scale separation and firmness, short and long term, firm and interruptible contracts. The approach is based on superposition of different transaction on the network, and a three-part tariff design. The charges are directly related to the impact of each transaction on the system

  13. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38 μm in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  14. Volatility transmission and volatility impulse response functions in European electricity forward markets

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    Using daily data from March 2001 to June 2005, we estimate a VAR-BEKK model and find evidence of return and volatility spillovers between the German, the Dutch and the British forward electricity markets. We apply Hafner and Herwartz [2006, Journal of International Money and Finance 25, 719-740] Volatility Impulse Response Function(VIRF) to quantify the impact of shock on expected conditional volatility. We observe that a shock has a high positive impact only if its size is large compared to the current level of volatility. The impact of shocks are usually not persistent, which may be an indication of market efficiency. Finally, we estimate the density of the VIRF at different forecast horizon. These fitted distributions are asymmetric and show that extreme events are possible even if their probability is low. These results have interesting implications for market participants whose risk management policy is based on option prices which themselves depend on the volatility level. (authors)

  15. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-62) - Rocky Reach - Maple Valley

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Mark A. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2002-04-16

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 98/2 to structure 110/1. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  16. Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission

    Directory of Open Access Journals (Sweden)

    Mingjie Zhao

    2018-02-01

    Full Text Available The conventional battery electric buses (BEBs have limited potential to optimize the energy consumption and reach a better dynamic performance. A practical dual-motor equipped with 4-speed Automated Manual Transmission (AMT propulsion system is proposed, which can eliminate the traction interruption in conventional AMT. A discrete model of the dual-motor-AMT electric bus (DMAEB is built and used to optimize the gear shift schedule. Dynamic programming (DP algorithm is applied to find the optimal results where the efficiency and shift time of each gear are considered to handle the application problem of global optimization. A rational penalty factor and a proper shift time delay based on bench test results are set to reduce the shift frequency by 82.5% in Chinese-World Transient Vehicle Cycle (C-WTVC. Two perspectives of applicable shift rule extraction methods, i.e., the classification method based on optimal operating points and clustering method based on optimal shifting points, are explored and compared. Eventually, the hardware-in-the-loop (HIL simulation results demonstrate that the proposed structure and extracted shift schedule can realize a significant improvement in reducing energy loss by 20.13% compared to traditional empirical strategies.

  17. Testing Realistic Disaster Scenarios for Space Weather: The Economic Impacts of Electricity Transmission Infrastructure Failure in the UK

    Science.gov (United States)

    Gibbs, M.; Oughton, E. J.; Hapgood, M. A.

    2017-12-01

    The socio-economic impacts of space weather have been under-researched, despite this threat featuring on the UK's National Risk Register. In this paper, a range of Realistic Disaster Scenarios due to failure in electricity transmission infrastructure are tested. We use regional Geomagnetically Induced Current (GIC) studies to identify areas in the UK high-voltage power system deemed to be high-risk. The potential level of disruption arising from a large geomagnetic disturbance in these `hot spots' on local economic activity is explored. Electricity is a necessary factor of production without which businesses cannot operate, so even short term power loss can cause significant loss of value. We utilise a spatially disaggregated approach that focuses on quantifying employment disruption by industrial sector, and relating this to direct Gross Value Added loss. We then aggregate this direct loss into a set of shocks to undertake macroeconomic modelling of different scenarios, to obtain the total economic impact which includes both direct and indirect supply chain disruption effects. These results are reported for a range of temporal periods, with the minimum increment being a one-hour blackout. This work furthers our understanding of the economic impacts of space weather, and can inform future reviews of the UK's National Risk Register. The key contribution of the paper is that the results can be used in the future cost-benefit analysis of investment in space weather forecasting.

  18. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  19. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  20. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  1. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Science.gov (United States)

    Guo, Hanzheng

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some well-accepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated. For the initial poling process, microstructural origins for the piezoelectricity development in the three most promising lead-free piezoceramic systems were investigated. For the non-ergodic relaxor ferroelectric compositions ( x = 6% - 9%) in the (1-x)(Bi1/2Na 1/2)TiO3-xBaTiO3 system, well-developed piezoelectricity was realized at poling fields far below the coercive field and phase transition field. Such

  2. Navajo transmission project Draft Environmental Impact Statement (DEIS)

    International Nuclear Information System (INIS)

    1996-09-01

    Dine Power Authority, a Navajo Nation enterprise, proposes to construct a 500 kilovolt transmission line planned to deliver electrical power from the Shiprock Substation in northwestern New Mexico to either the Mead or the Marketplace Substation in southern Nevada. The line would relieve constraints on transmission of electricity west from the Four Comers area; improve operational flexibility and reliability of the overall system; and allow increased economical transfers, sales, and purchases in the Rocky Mountains/Four Comers/Desert Southwest region. Also, the project allows an opportunity for the Navajo Nation to participate in the electrical utility industry and promote economic development to benefit the people of the Navajo Nation. Alternatives considered include energy conservation and electric load management, new generation facilities, use of existing transmission systems, alternative transmission technologies, no action, and the proposed action. For the proposed action, several alternative routes and ancillary facility locations are addressed: four alternative routes and five substations in the eastern portion of the project area; and six alternative routes, three substation sites, and a microwave communication facility in the western portion of the project area. The existing condition of the environmental resources in the project area is described and potential impacts on those resources as a result of the proposed action are addressed. The impacts of the proposed action would be caused mainly by access roads, tower sites, and other associated facilities on soils, vegetation, wildlife, and cultural and paleontological resources, and the impact of the transmission line's presence on visual resources and land uses

  3. Analytical Assessment of Environmental Impact for APR1400DC UHS Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaiho [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Hot process water is pumped from the plant process to the cooling towers. Heat is rejected through evaporation of the process water, interacting with ambient air blown upward by fans.. Plumes generated from exit ports of the cooling tower may have adverse effects on the environment, such as deposition of cooling tower drift release, fogging, icing, shadowing, and ground-level temperature and humidity increase. These kinds of environmental impact of the cooling tower are linked closely with the dispersion of the cooling tower plumes. In this respect, predicting the behavior of the plumes has become one of the most important issues in the environmental assessments of the cooling towers. The SACTI (seasonal/annual cooling tower impact) model is an analytical tool to predict the environmental effect of cooling tower, which was developed by Argonne National Laboratory and University of Illinois with support from EPRI (electric power research institute). The initial version of SACTI has been widely used to assess the environmental effect of cooling towers in many industrial fields such as steam power plants and NPPs. Guo et. al. investigated impact of heat rejection and cooling tower height on plume dispersion using the SACTI model, for the purpose of the future construction of inland NPPs. They found that increasing cooling tower height decreases the plume length and height frequencies. Their simulation results showed that the increase in heat rejection increases the plum radius frequency. The APR1400DC is an advanced light water reactor developed for the purpose of NRC-DC (design certification). The cooling towers for APR1400DC UHS consist of two linear mechanical draft cooling towers (LMDCTs). The LMDCT for APR1400DC UHS is conceptually designed because the plant site has not been decided yet. In the present study, the dependency of plume dispersion on the number of cooling towers is investigated using SACTI-2-beta, for predicting annual environmental effect of APR

  4. 55th electric science promotion prize (progress prize). Demonstration of optical soliton transmission on OPGW first in the world; Dai 55 kai denki gakujutsu shinkosho (shinposho) jusho. Seiaihatsu no OPGW ni okeru hikari soriton denso no jissho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-10

    Electric science promotion prize (progress prize) is given to `Person who newly proposed a new concept, theory, material, device, system and method on electrical science and technology, or demonstrated these proposals` by the commendation committee of Institute of Electrical Engineers of Japan every year. Eight promotion prizes including that for Kansai Electric Power`s `Demonstration of optical soliton transmission on OPGW first in the world` were given. This research succeeded in development of the transmission/ receiving device suitable for optical soliton transmission, and the prediction method of an optimum transmission condition by computer simulation. In addition, this research succeeded in 10Gbit transmission of 784km and 40Gbit transmission (4-wave multiplex) of 392km by applying the above research result to Okurobe trunk line OPGW (98.2km). This demonstration of optical soliton transmission on OPGW is first in the world. (NEDO)

  5. Integration of Small Solar tower Systems into Distributed Power Islands

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S. [Ciemat, Madrid (Spain)

    2000-07-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-paks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leadings to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begum. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostat configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs.

  6. Integration of Small Solar Tower Systems Into Distributed Power Islands

    International Nuclear Information System (INIS)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S.

    1999-01-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-parks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leading to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begun. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostats configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs

  7. Information management system for the analysis of the program of electric power transmission construction; Sistema gerencial de informacao para analise do programa de obras de transmissao

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Luiz A. Pecorelli; Lima Junior, Moacir P.; Kayat, Julio; Berer, Ricardo; Sondermann, Luiz O. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    The management of an implementation and coordination program for electric power transmission lines construction needs to have access to up to date information in several areas. Aiming to attend these basic requisites a data base computer program was developed. This work describes such program 7 refs., 4 figs.

  8. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  9. Transmission Integration | Grid Modernization | NREL

    Science.gov (United States)

    Transmission Integration Transmission Integration The goal of NREL's transmission integration integration issues and provide data, analysis, and models to enable the electric power system to more and finding solutions to address them to enable transmission grid integration. Capabilities Power

  10. The Design of Akhmat Tower

    Directory of Open Access Journals (Sweden)

    Beardsley Sara

    2018-01-01

    Full Text Available Akhmat Tower is a 435m supertall building designed by Adrian Smith + Gordon Gill Architecture. It is currently under construction in the city of Grozny, in the Chechen Republic, in the North Caucasus region of Russia. The design of the tower was done during a collaborative process by a multi-disciplinary architectural and engineering team, based primarily in the United States and Russia. During this process, the designers considered many factors including, most primarily, the cultural and historical context, the structural requirements given the high seismicity of the region, and the client’s programmatic needs. The resulting crystalline-shaped tower is both an aesthetic statement and a performative architectural solution which will be a new landmark for Chechnya. “The Design of Akhmat Tower” describes in detail the design process including structural considerations, exterior wall design, building program, interior design, the tuned mass damper, and the use of building information modeling.

  11. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  12. Round Earthen Towers in Zhangzhou

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The round earthen towers inZhangzhou,Fujifan Province,have long been famous a-round the world.Built of rammedearth,each tower consists uf four tofive stories and Is nearly 100 metersin diameter and 17 to 18meters high.Scatteredaround the mountains,valleys and plains insouthwestern Fujian,thetowers look very muchlike round castles.SomeChinese and foreign ar-chitercts,historians andfolk-custom researcherscall them“flyng sau-cers”from outer spaceor“mushrooms”fromearth.They represent,indeed,a unique archi-tectural style in theworld.

  13. Cooling towers in the landscape

    International Nuclear Information System (INIS)

    Boernke, F.

    1977-01-01

    The cooling tower as a large technical construction is one of the most original industrial buildings. It sticks out as an outlandish element in our building landscape, a giant which cannot be compared with the traditional forms of technical buildings. If it is constructed as a reinforced-concrete hyperboloid, its shape goes beyond all limits of building construction. Judgment of these highly individual constructions is only possible by applying a novel standard breaking completely with tradition. This new scale of height and dimension in industrial construction, and in particular the modern cooling tower, requires painstaking care and design and adaptation to the landscape around it. (orig.) [de

  14. Windfarms and telecommunications towers (Scotland)

    International Nuclear Information System (INIS)

    Munro, Hector; Kellett-Bowman, Elaine; Harris, David

    1996-01-01

    A debate in the United Kingdom House of Commons on the environmental impact of windfarms and telecommunications towers in Scotland is reported. Concern was expressed over the adverse visual impact of such structures in rural areas which are often of considerable natural beauty. Counter arguments were based on the positive effects of new technology. The need to reconcile environmental protection with technological innovation was expressed. A Government spokesman described the comprehensive planning policy framework which has been put in place to secure sound planning decisions on renewable energy developments and the conditions on amenity protection in the regulations governing the erection of telecommunications towers. (UK)

  15. Dynamic analysis of cooling towers

    International Nuclear Information System (INIS)

    Bittnar, Z.

    1987-01-01

    Natural draught cooling towers are shell structures subjected to random vibrations due to wind turbulence and earthquake. The need of big power plant units has initiated the design of very large cooling towers. The random response of such structures may be analysed using a spectral approach and assuming a linear behaviour of the structure. As the modal superposition method is the most suitable procedure for this purpose it is necessary to determine the natural frequencies and mode shapes with adequate accuracy. (orig./GL)

  16. Windfarms and telecommunications towers (Scotland)

    Energy Technology Data Exchange (ETDEWEB)

    Munro, Hector; Kellett-Bowman, Elaine; Harris, David [and others

    1996-10-30

    A debate in the United Kingdom House of Commons on the environmental impact of windfarms and telecommunications towers in Scotland is reported. Concern was expressed over the adverse visual impact of such structures in rural areas which are often of considerable natural beauty. Counter arguments were based on the positive effects of new technology. The need to reconcile environmental protection with technological innovation was expressed. A Government spokesman described the comprehensive planning policy framework which has been put in place to secure sound planning decisions on renewable energy developments and the conditions on amenity protection in the regulations governing the erection of telecommunications towers. (UK)

  17. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    Science.gov (United States)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  18. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    Science.gov (United States)

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  19. A maintenance performance measurement framework that includesmaintenenace human factors: a case study from the electricity transmission industry

    Directory of Open Access Journals (Sweden)

    Peach, Rina

    2016-08-01

    Full Text Available Over the past two to three decades, maintenance management has undergone a paradigm shift; it is no longer seen as a necessary evil, but as an integral part of the business process that creates value for the organisation. The next step in the evolution of maintenance management is a maintenance performance measurement that includes human factors. The human factors in maintenance are well- known in the aviation industry, as it gained momentum in the early 1990s after a series of serious aviation accidents. Other industries, however, have been slow to integrate the human factor in their maintenance performance measurements. This paper discusses the results of a research project that investigated the use and importance of maintenance management performance measurements that focus specifically on human factors as part of the overall performance management system. From the research presented in this paper, ‘motivation’ and ‘competence’ were identified as the most important human performance factors in the maintenance of electricity transmission systems.

  20. A modular interpretation of various cubic towers

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Bassa, Alp; Beelen, Peter

    2017-01-01

    In this article we give a Drinfeld modular interpretation for various towers of function fields meeting Zink's bound.......In this article we give a Drinfeld modular interpretation for various towers of function fields meeting Zink's bound....

  1. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  2. Dynamic interaction effects in cooling tower groups

    International Nuclear Information System (INIS)

    Riera, J.D.

    1984-01-01

    A theoretical and experimental determination of the dynamic response of reinforced concrete cooling towers, taking into consideration group effects, are described. The results for an individual tower are thoroughly examined. A complete analysis is then performed for the critical wind orientations, for each tower in a six towers group. It's shown that ignoring group effects in the analysis may lead to a significant underestimation of the structural response. (E.G.) [pt

  3. Dwelling towers of Czech castles

    Czech Academy of Sciences Publication Activity Database

    Durdík, Tomáš

    2009-01-01

    Roč. 63, - (2009), s. 139-150 ISSN 1875-2896. [Meeting of Europa Nostra Scientific Council /44./. Kilkenny, 27.09.2008-02.10.2008] Institutional research plan: CEZ:AV0Z80020508 Keywords : castle * castellology * dwelling tower * donjon * keep * medieval archaeology * architecture * Bohemia * Middle Ages Subject RIV: AC - Archeology, Anthropology, Ethnology

  4. Mobile Tower Radiation Protection System

    Directory of Open Access Journals (Sweden)

    Jabbar Slman Hussein

    2017-12-01

    Full Text Available Clean environment is one of the most necessarily needs for Human life. So what about mobile effect and its towers pollution? It's effect on public health? Effect of huge groan of mobile networks. In counting of these dangers that will harm us from mobile towers in the far run, was the reasons for writing this research, came this study to look at the mobile towers and mobile effects possible health harm for the purpose of diagnosis of these effects and to suggest ways that can be used to avoid or minimize the risks.  Faraday Cage, is the solution suggested here, also there are many other solutions for this problem, a Faraday cage is a metallic enclosure that stops the entry or escape of an EM field. Also, two experiments are accomplished, first one showing the effect of Faraday cage on preventing the EMR from mobile cellphone, and the second  experiment gives the effect of Faraday cage on preventing the EMR from mobile tower EMR on human health listed in the research, that have been done by using conducting shell (grid design according the EM wavelength used by three company's mobile working in Iraq, the result show good isolations.

  5. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  6. Evaluation of the reliability of electric power transmission systems; Evaluacion de confiabilidad de sistemas de transmision de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Vega Ortiz, Miguel

    1989-07-01

    In this thesis it is attacked the problem of Reliability Evaluation of the Electrical Power Transmission Systems for aims of its integral planning. Once described the problem the indexes that measure the electric power systems reliability are presented. Later the methods to evaluate the transmission nets, such as the Contingencies Enumeration, the Monte Carlo, the one of Markov and the methods for complex systems such as the Minimum Interruptions, are described. This last one is widely developed for the advantages that its application presents in the planning of large and complex networks. The method of minimum interruptions consists of two big steps: To determine the minimum interruptions for the load points and to calculate the reliability indexes in base of the minimum interruptions. The conventional algorithms for the determination of minimum interruptions consider a problem for each load point in an independent form going through a determination of minimum tracks. In this type of algorithms the CPU time and the space in memory required grow exponentially for the case of large transmission systems, which represents a strong restriction for its application. In order to solve this problem a methodology was established in which the system is modeled by means of a grapho and the minimum interruptions are determined with an algorithm based on the construction of cycles in the dual grapho. With these interruptions the connectivity and the capacity of the network is evaluated, obtaining the reliability indexes for each bus and the system. These indexes are calculated with the equivalent representation for complex systems of series parallel connections defined by the minimum interruptions. One of the fundamental objectives in this study is to integrate the reliability to the planning process, with the concept of the expected value of the non-supplied energy and its penalty cost. In order to demonstrate the capacity, effectiveness and rapidity of the new implemented

  7. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-60) - Rocky Reach - Maple Valley No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Mark A. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2002-04-15

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 110/1 to the Maple Valley Substation. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  8. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  9. Cooling tower modification for intermittent operation

    International Nuclear Information System (INIS)

    Midkiff, W.S.

    1975-03-01

    One of the cooling towers at Los Alamos Scientific Laboratory is being operated intermittently. The cooling tower has been modified to restrict air flow and to keep the tower from drying out. The modifications are relatively inexpensive, simple to operate, and have proved effective. (U.S.)

  10. Dry cross-flow cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Fordyce, H E

    1975-01-23

    The invention deals with dry cooling towers in particular a circular cooling tower of the mechanical-draught construction whose operating characteristics should be independent of the wind direction. The recycling of the hot air should be as low as possible without necessitating high fan or natural-draught shafts, so that the costs of the tower can be brought down to a minimum.

  11. Plant Vogtle cooling tower studies

    International Nuclear Information System (INIS)

    O'Steen, L.

    2000-01-01

    Intensive ground-based field studies of plumes from two large, natural-draft cooling towers were conducted in support of the MTI modeling effort. Panchromatic imagery, IR imagery, meteorological data, internal tower temperatures and plant power data were collected during the field studies. These data were used to evaluate plume simulations, plume radioactive transfer calculations and plume volume estimation algorithms used for power estimation. Results from six field studies indicate that a 3-D atmospheric model at sufficient spatial resolution can effectively simulate a cooling tower plume if the plume is of sufficient size and the ambient meteorology is known and steady. Small plumes and gusty wind conditions degrade the agreement between the simulated and observed plumes. Thermal radiance calculations based on the simulated plumes produced maximum IR temperatures (near tower exit) which were in good agreement with measured IR temperatures for the larger plumes. For the smaller plumes, the calculated IR temperature was lower than the measured temperature by several degrees. Variations in maximum IR plume temperature with decreasing power (one reactor was undergoing a shutdown process), were clearly observed in the IR imagery and seen in the simulations. These temperature changes agreed with those calculated from an overall tower energy and momentum balance. Plume volume estimates based on camcorder images at three look angles were typically 20--30 percent larger than the plume volumes derived from the simulations, although one estimate was twice the simulated volume. Volume overestimation is expected and will have to be accounted for to some degree if plume volume is to be a useful diagnostic quantity in power estimation. Volume estimation with MTI imagery will require a large, stable plume and two looks in the visible bands (5m GSD) along with a solar shadow

  12. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  13. Obligations to transmission grid enlargement and cooperation of operators of transmission grids after the enactment of EnLAG and the Third regulation of single market for electricity 2009/72 EG from 13th July, 2009; Netzausbau- und Kooperationsverpflichtungen der Uebertragungsnetzbetreiber nach Inkrafttreten des EnLAG und der Dritten StromRL 2009/72 EG vom 13.7.2009

    Energy Technology Data Exchange (ETDEWEB)

    Saecker, Franz Juergen [Hogan und Hartson Raue LLP/LBD Beratungsgesellschaft mbH, Berlin (Germany)

    2009-10-15

    paragraph 11 EnWG (Energy Economy Law) in the version of the Electricity Grid Expansion Act (EnLAG) obliges the operators of transmission grids to an optimization of transmission grids. The obligation for optimization refers to the development of the existing grids and to an extended co-operation of the operators of transmission grids for the improvement of the transmission of the electricity. Under this aspect, the author of the contribution under consideration reports on: (a) Contents of the obligation for the optimization of transmission grids and the development of transmission grids; (b) Fulfilment of the obligation for co-operation in accordance with paragraph 12 sect. 1 and paragraph 22 sect. 2 sentence 4 EnWG by forming a virtual grid company for the transmission of electricity; (c) Model of a cooperation contract; (d) Formation of a 'Deutsches Netz AG' as an alternative concept.

  14. A method for assessing occupational exposure to power-frequency magnetic fields for electricity generation and transmission workers

    International Nuclear Information System (INIS)

    Renew, D C; Cook, R F; Ball, M C

    2003-01-01

    A new method for assessing both current and historical occupational exposures to magnetic fields has been developed and used in health studies involving a cohort of electricity generation and transmission workers in England and Wales. The exposure values are derived by calculation from engineering and operational data about the power stations rather than from measurements. They are provided for each of 11 job categories for each year of operation of each power station represented in the cohort. The engineering data are used to determine the average magnetic fields in specified areas of work within the power station and then applied to information about the time spent in these areas by each of the job categories. The operational data are used to adjust the exposures for each year according to the power station output for the year. Earlier methods used measurements or the advice of panels of experts to provide exposure scores for a number of job categories across all power stations and years. Such methods were not able to distinguish exposures from different power facilities or during the different years of their operation. Measurement surveys at 10 power stations of the magnetic fields in the work areas gave confidence that the calculations were realistic. Exposure measurements on 215 workers at three power stations were compared in job groups with the exposures predicted by the method. The Pearson correlation coefficient was 0.86 and the slope and intercept of the line of best fit were 0.87 and 0.07 μT respectively. The method gives a good prediction of measured exposure and is being used for studies of occupational exposure to magnetic fields and leukaemia, and of cardiovascular disease, and a reanalysis of brain cancer

  15. Innovative protection and control systems for a reliable and secure operation of electrical transmission systems; Innovative Schutz- und Leitsysteme zur zuverlaessigen und sicheren elektrischen Energieuebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sven C.; Kubis, Adreas; Rehtanz, Christian [Technische Univ. Dortmund (Germany). Inst. fuer Energiesysteme, Energieeffizienz und Energiewirtschaft (ie3); Brato, Sebastian; Goetze, Juergen [Technische Univ. Dortmund (Germany). Arbeitsgebiet Datentechnik

    2012-07-01

    The integration of European electricity markets as well as the increasing power feed-in by renewable energy sources pose new challenges to the operation of electrical transmission systems. Modern protection and control systems based on wide-area information can substantially contribute to a reliable and secure system operation even against the background of future demands. In this paper research advances regarding new applications for wide-area monitoring, protection and control as well as an integrated simulation for power and ICT systems are presented that have been developed in the course of DFG research unit FOR1511 at TU Dortmund. (orig.)

  16. Ice Cover Prediction of a Power Grid Transmission Line Based on Two-Stage Data Processing and Adaptive Support Vector Machine Optimized by Genetic Tabu Search

    OpenAIRE

    Xiaomin Xu; Dongxiao Niu; Lihui Zhang; Yongli Wang; Keke Wang

    2017-01-01

    With the increase in energy demand, extreme climates have gained increasing attention. Ice disasters on transmission lines can cause gap discharge and icing flashover electrical failures, which can lead to mechanical failure of the tower, conductor, and insulators, causing significant harm to people’s daily life and work. To address this challenge, an intelligent combinational model is proposed based on improved empirical mode decomposition and support vector machine for short-term forecastin...

  17. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  18. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  19. Cross-border trading and transmission networks: a model for competition in natural gas and electricity grids

    International Nuclear Information System (INIS)

    Hogan, W.W.

    1992-01-01

    Cross border energy trading, for which transmission networks are a vital policy, is expanding. Within an environment of competition and open access, reform of transmission pricing, access and investment is needed. A theoretical framework for such reform is outlined. The design objectives advocated are to maintain a reliable service; to provide economic efficiency; to allow for long-term transmission contracts; to arrange compensation through a settlements system; to allow decomposition by region and company and to preserve administrative feasibility. A ''contract network'' model for transmission rights in a network is discussed. (UK)

  20. Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft

    Directory of Open Access Journals (Sweden)

    Yuji Ohya

    2016-12-01

    Full Text Available A new type of solar tower was developed through laboratory experiments and numerical analyses. The solar tower mainly consists of three components. The transparent collector area is an aboveground glass roof, with increasing height toward the center. Attached to the center of the inside of the collector is a vertical tower within which a wind turbine is mounted at the lower entry to the tower. When solar radiation heats the ground through the glass roof, ascending warm air is guided to the center and into the tower. A solar tower that can generate electricity using a simple structure that enables easy and less costly maintenance has considerable advantages. However, conversion efficiency from sunshine energy to mechanical turbine energy is very low. Aiming to improve this efficiency, the research project developed a diffuser-type tower instead of a cylindrical tower, and investigated a suitable diffuser shape for practical use. After changing the tower height and diffuser open angle, with a temperature difference between the ambient air aloft and within the collector, various diffuser tower shapes were tested by laboratory experiments and numerical analyses. As a result, it was found that a diffuser tower with a semi-open angle of 4° is an optimal shape, producing the fastest updraft at each temperature difference in both the laboratory experiments and numerical analyses. The relationships between thermal updraft speed and temperature difference and/or tower height were confirmed. It was found that the thermal updraft velocity is proportional to the square root of the tower height and/or temperature difference.

  1. Hybrid Tower, Designing Soft Structures

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders

    2015-01-01

    and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....

  2. Sicilian Castles and Coastal Towers

    Directory of Open Access Journals (Sweden)

    Kirk Scott

    2017-11-01

    Full Text Available While much attention has been paid to the development of castles as the hallmark architectural symbol of the Middle Ages, less attention has been given to the changes in European defensive strategies that occurred between the 15th and 17th centuries. It was at this time when the modern nations of Europe began to take form, as sea-based trade between distant nations took precedence over land-based trade routes. This paper examines how this transformation manifested in the defensive structures of Sicily, Italy, where the hilltop castles of the Middle Ages gradually gave way to a more cohesive network of coastal towers around the island. Putting this transition in its historical context, presenting an anthropological model from which to view this transition, and using geospatial methods to track these changes, the results of this study indicate that as defensive towers began to dominate the Sicilian coast around the 16th century, their command over the environment was no greater than that of the feudal castles which were still in use. Yet, unlike the castles of feudal lords, these towers represented an island-wide system of defense and the beginning of an adherence to a more centralized power structure then seen previously.

  3. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    Science.gov (United States)

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  4. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    Science.gov (United States)

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  5. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  6. Experimental study of the Fermi–Pasta–Ulam recurrence in a bi-modal electrical transmission line

    International Nuclear Information System (INIS)

    Farota, Abdou K; Faye, Mansour M

    2013-01-01

    We report on the experimental observation of the Fermi–Pasta–Ulam (FPU) recurrence in an experimental bi-modal nonlinear transmission line. The FPU recurrence is observed in the two transmission modes known as the low frequency mode and the high frequency mode. In each case, a spectrum analysis is performed in order to study the waves along the line. (paper)

  7. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Science.gov (United States)

    2010-04-01

    ... prevailing cost allocation methods for upgrades or expansions. (4) Long-term firm transmission rights must be... other direct assignment of congestion costs for the period covered and quantity specified. Once... must have priority over non-load serving entities in the allocation of long-term firm transmission...

  8. Easy steel tower elevation. Development of a steel tower elevating aiding device; Tetto shoko wo rakuraku to. Tetto shoko hojo sochi no kaihatsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tobe, Y. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-02-10

    Elevation of a transmission line steel tower is performed by an operator`s own force upon fixing a safety device to prevent a fall on a safety wire (SW) previously installed on a specified tower leg. It is a considerable burden for the operator to move the tower having a height of 80 to 100 m up and down several times a day. In order to reduce the fatigue, a portable, small and light-weight steel tower elevation aiding device was developed. The existing SW is used to fix the device, requiring no additional facility to be fixed on the tower. Safety assurance depends on the safety device on the SW as currently used. The device has pulling force of 50 kgf (the device operates in a range of 4 to 50 kgf to assure workability in elevation and stopping), and elevation speed of 15 to 20 m/minute (equivalent to the present work. The braking force can be adjusted in three steps at descent according to the ability of the operator). An Ni-hydrogen battery is used, capable of two returns on a tower per charge. Considering the device to be transported in mountainous area, the shape is such that a single unit can be put into a backpack. The device can also be used in general construction sites. (NEDO)

  9. The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty

    International Nuclear Information System (INIS)

    Weijde, Adriaan Hendrik van der; Hobbs, Benjamin F.

    2012-01-01

    Aggressive development of renewable electricity sources will require significant expansions in transmission infrastructure. We present a stochastic two-stage optimisation model that captures the multistage nature of transmission planning under uncertainty and use it to evaluate interregional grid reinforcements in Great Britain (GB). In our model, a proactive transmission planner makes investment decisions in two time periods, each time followed by a market response. Uncertainty is represented by economic, technology, and regulatory scenarios, and first-stage investments must be made before it is known which scenario will occur. The model allows us to identify expected cost-minimising first-stage investments, as well as estimate the value of information, the cost of ignoring uncertainty, and the value of flexibility. Our results show that ignoring risk in planning transmission for renewables has quantifiable economic consequences, and that considering uncertainty can yield decisions that have lower expected costs than traditional deterministic planning methods. In the GB case, the value of information and cost of disregarding uncertainty in transmission planning were of the same order of magnitude (approximately £100 M, in present worth terms). Further, the best plan under a risk-neutral decision criterion can differ from the best under risk-aversion. Finally, a traditional sensitivity analysis-based robustness analysis also yields different results than the stochastic model, although the former's expected cost is not much higher.

  10. Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights - Budget Period 2

    Energy Technology Data Exchange (ETDEWEB)

    Sritharan, Sri [Iowa State Univ., Ames, IA (United States)

    2017-05-01

    Interest in designing taller towers for wind energy production in the United States (U.S.) has been steadily growing. In May 2015, it was revealed that taller towers will make wind energy production a reality in all 50 states, including some states that have nearly zero renewables in their energy portfolio. Facilitating wind energy production feasibility in all 50 states will no doubt contribute to increasing the electricity produced by wind from 4.5% in 2013 to a targeted scenario of 35% by 2050 in the Wind Vision report. This project focuses on the Hexcrete tower concept developed for tall towers using High Strength Concrete (HSC) and/or Ultra-High Performance Concrete (UHPC). Among other benefits, the Hexcrete concept overcomes transportation and logistical challenges, thus facilitating construction of towers with hub heights of 100-m (328-ft) and higher. The goal of this project is to facilitate widespread deployment of Hexcrete towers for harvesting wind energy at 120 to 140-m (394 to 459-ft) hub heights and reduce the Levelized Cost of Energy (LCOE) of wind energy production in the U.S. The technical scope of the project includes detailed design and optimization of at least three wind turbine towers using the Hexcrete concept together with experimental validation and LCOE analyses and development of a commercialization plan.

  11. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  12. Cooling tower drift: comprehensive case study

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Ulanski, S.L.

    1979-01-01

    A comprehensive experiment to study drift from mechanical drift cooling towers was conducted during June 1978 at the PG and E Pittsburg Power Plant. The data from this study will be used for validation of drift deposition models. Preliminary results show the effects of tower geometry and orientation with respect to the wind and to single- or two-tower operation. The effect of decreasing relative humidity during a test run can also be seen

  13. Transmission Lines or Poles, Electric, MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast Lighting poles, Published in 2011, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Transmission Lines or Poles, Electric dataset current as of 2011. MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast...

  14. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  15. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  16. Use of Electrical Penetration Graph Technology to Examine Transmission of ‘Candidatus Liberibacter solanacearum’ to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae)

    Science.gov (United States)

    Mustafa, Tariq; Horton, David R.; Cooper, W. Rodney; Swisher, Kylie D.; Zack, Richard S.; Pappu, Hanu R.; Munyaneza, Joseph E.

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring

  17. Use of Electrical Penetration Graph Technology to Examine Transmission of 'Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae.

    Directory of Open Access Journals (Sweden)

    Tariq Mustafa

    Full Text Available The potato psyllid, Bactericera cockerelli (Šulc (Hemiptera: Triozidae, is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso, the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern. All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in

  18. Mechanical Properties of UHPFRC Joint for FORIDA Wind Turbine Tower

    DEFF Research Database (Denmark)

    Sørensen, Eigil Verner

    FORIDA Development, Vestas and Aalborg University are currently undertaking the project “FORIDA Hybrid Towers – The towers for next generation of wind turbines”, aiming to develop a new wind turbine tower structure (The FORIDA Tower) for very tall turbines. The tower is going to be a hybrid of ma...

  19. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-07-01

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioactive waste disposal are briefly considered. The health effects of concern are those leading to definable human disease and injury. Health effects are scaled to numbers of persons and activities associated with a nominal 1000-megawatt electric plant fueled by either option. Comparison of the total health effects to the general public shows that the health risks from the coal cycle are about 50 times greater than for the nuclear cycle (coal, 0.7-3.7 major health effects per 1000 MWe per year; nuclear, 0.03-0.05 per 1000 MWe per year). For workers, these rates are higher. No evidence is found that electrical transmission contributes any health effects to the general public, except when broken power lines come in contact with people

  20. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    Major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use are evaluated. Only existing technology is evaluated. The only health effects of concern are those leading to definable human disease and injury. Health effects are scaled to a nominal 1000 Megawatt (electric) plant fueled by either option. Comparison of the total health effects to the general public gives: nuclear, 0.03 to 0.05 major health effects per 1000 MWe per year; coal, 0.7 to 3.7 per 1000 MWe per year. Thus for the general public the health risks from the coal cycle are about 50 times greater than for the nuclear cycle. Health effects to workers in the industry are currently quite high. For the nuclear cycle, 4.6 to 5.1 major health impacts per 1000 MWe per year; for coal, 6.5 to 10.9. The two-fold greater risk for the coal cycle is primarily due to high injury rates in coal miners. There is no evidence that electrical transmission contributes any health effects to the general public, except for episodes where broken power lines come in contact with people. For power line workers, the risk is estimated at 0.1 serious injury per 1000 MWe per year

  1. Nonlinear Seismic Behavior of Different Boundary Conditions of Transmission Line Systems under Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Li Tian

    2016-01-01

    Full Text Available Nonlinear seismic behaviors of different boundary conditions of transmission line system under earthquake loading are investigated in this paper. The transmission lines are modeled by cable element accounting for the nonlinearity of the cable. For the suspension type, three towers and two span lines with spring model (Model 1 and three towers and four span lines’ model (Model 2 are established, respectively. For the tension type, three towers and two span lines’ model (Model 3 and three towers and four span lines’ model (Model 4 are created, respectively. The frequencies of the transmission towers and transmission lines of the suspension type and tension type are calculated, respectively. The responses of the suspension type and tension type are investigated using nonlinear time history analysis method, respectively. The results show that the responses of the transmission tower and transmission line of the two models of the suspension type are slightly different. However, the responses of transmission tower and transmission line of the two models of the tension type are significantly different. Therefore, in order to obtain accurate results, a reasonable model should be considered. The results could provide a reference for the seismic analysis of the transmission tower-line system.

  2. National development plan for transmission arrangement in the electric power system 1995-2005; Nasjonal utbyggingsplan for overfoeringsanlegg i elkraftsystemet 1995-2005

    Energy Technology Data Exchange (ETDEWEB)

    Moi, K.A.; Trengereid, F.

    1996-09-01

    The report concerns the national development plan for the electric power transmission system in Norway. The aim of the plan is to give a simple and collected survey of estimated demand of investment connected to the regional and central grids in the period from 1995 to 2005 based on these development plans, and to give a survey over the different power and energy prognoses being used. There is emphasized that the work of planning is a continuous process where changed premises can make an influence on both the schedule and the extent of necessary measures. The investment is calculated to be about NOK 15 billion in the period mentioned which comprise both new system designs and modernization of existing transmission systems. Dimensioned power capacity and the energy consumption are assumed to increase on an average of about 1.8 per cent towards the year of 2010. 10 figs., 2 tabs.

  3. Is an inefficient transmission market better than none at all? On zonal and nodal pricing in electricity systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Joachim

    2015-09-15

    In this paper, the trade-off between inefficient transmission forward markets (in nodal pricing regimes) and the inefficiency induced by hiding transmission constraints from the market (in zonal pricing regimes) is analyzed. First, a simple two node model formalizing the general trade-off is developed. Then, comparative statics are performed with a stochastic equilibrium model including more nodes, loop flows and an energy and transmission forward market. Inefficiency in the transmission forward market is introduced via a bid-ask-spread and risk aversion of market participants. The welfare impacts for a broad range of supply, demand, grid and inefficiency parameters are analyzed numerically. For efficient spot and forward markets, the results of the literature of nodal pricing being the efficient benchmark are confirmed. With inefficient transmission forward markets, however, zonal pricing proves advantageous in situations with little congestion and low costs. The results imply that the trade-off between the pricing regimes should be considered carefully when defining the geographical scope of bidding zones.

  4. Electricity exchange and the valuation of transnational transmission access: A case study of intra-regional integration of the electric industries of Argentina and Chile

    Science.gov (United States)

    Brereton, Beverly Ann

    The interconnection of neighboring electricity networks provides opportunities for the realization of synergies between electricity systems. Examples of the synergies to be realized are the rationalized management of the electricity networks whose fuel source domination differs, and the exploitation of non-coincident system peak demands. These factors allow technology diversity in the satisfaction of electricity demand, the coordination of planning and maintenance schedules between the networks by exploiting the cost differences in the pool of generation assets and the load configuration differences in the neighboring locations. The interconnection decision studied in this dissertation focused on the electricity networks of Argentina and Chile whose electricity systems operate in isolation at the current time. The cooperative game-theoretic framework was applied in the analysis of the decision facing the two countries and the net surplus to be derived from interconnection was evaluated. Measurement of the net gains from interconnection used in this study were reflected in changes in generating costs under the assumption that demand is fixed under all scenarios. With the demand for electricity assumed perfectly inelastic, passive or aggressive bidding strategies were considered under the scenarios for the generators in the two countries. The interconnection decision was modeled using a linear power flow model which utilizes linear programming techniques to reflect dispatch procedures based on generation bids. Results of the study indicate that the current interconnection project between Argentina and Chile will not result in positive net surplus under a variety of scenarios. Only under significantly reduced interconnection cost will the venture prove attractive. Possible sharing mechanisms were also explored in the research and a symmetric distribution of the net surplus to be derived under the reduced interconnection cost scenario was recommended to preserve equity

  5. Casebook on electric safety accidents

    International Nuclear Information System (INIS)

    1987-09-01

    This book gives concentration on electric safety accidents in domestic and abroad, which introduces general electrical safety with property of electricity, safe equipment and maintenance and protection of electric shock. It lists the cases of accident caused of electricity in domestic like accident in power substation, utilization equipment, load system and another accident by electricity like death in electric shock another by electricity like death in electric shock in new building construction, the cases caused of electricity in abroad like damage in electric shock by high voltage electric transformer, electric shock in summer and earth fault accident by fault cooling tower.

  6. An integrated system for the energy production and accumulation from renewable sources: a rural tower prototype

    Science.gov (United States)

    Di Francesco, Silvia; Petrozzi, Alessandro; Montesarchio, Valeria

    2014-05-01

    This research work presents the implementation of an architectural prototype aiming at the complete energy self-sufficiency through an integrated system based on renewable energy. It is suitable for historical buildings in rural areas, isolated but important from natural and architectonical point of view. In addition to the energy aspects, it is important to protect the impact in terms of land-use and environment. This idea is also especially powerful because in the rural countries there are many little building centers abandoned because they are devoid of a connection to the electric energy grid and methane piping. Thus, taking inspiration from dove towers, architectural typology widespread in central Italy, a virtual model has been developed as an integrated system for renewable energy production, storage and supply. While recovering the ancient tower, it is possible to design and assembly an integrated intelligent system, able to combine energy supply and demand: a new tower that should be flexible, efficient and replicable in other contexts as manufacturing, commercial and residential ones. The prototype has been applied to a real case of study, an ancient complex located in Umbria Region. The sources for electric production installed on the tower are photovoltaics, on the head and shaft of the tower, hydropower and a biomass gasifier providing thermal too. A tank at the head of the tower allows an available hydraulic potential energy, for the turbine at any time, to cover photovoltaic lacks, caused by sudden loss of production, for environmental causes. Conversely, photovoltaic peaks, otherwise unusable, can be used to reload the water from the receiving tank at the foot of the tower, up to the tank in the head. The same underground tank acts as a thermal flywheel to optimize the geothermal heat pumps for the heat and cold production. Keywords: hydropower, photovoltaics, dove tower.

  7. An assessment of the adequacy of generation and transmission facilities to meet electricity needs in Ontario: From January 2002 to December 2011

    International Nuclear Information System (INIS)

    2001-01-01

    A ten year forecast of electric power generation and transmission capacity, covering the period 2002 to 2011, is provided. The assessment of the Independent Market Operator is that based on existing and proposed facilities, Ontario has a reliable supply of electricity for the next ten years under a wide variety of conditions, even without taking advantage of opportunities to improve the efficiency of the Ontario electricity market. The key assumptions underlying this forecast were a median growth scenario, with energy demand growing at 1.2 per cent per year, from 152 terawatt-hours in 2002 to 168 terrawatt-hours at the end of the forecast period. Median increase in peak demand is expected to rise from 23,700 MW to 26,000 MW at the end of the period. A low demand growth scenario (0.8 per cent ) and a high demand growth scenario (1.7 per cent) were also studied. Support from neighbouring systems was assumed to be limited to the magnitude of existing firm purchase contracts already identified by the IMO. The Pickering A units are assumed to be recommissioned in 2002 on schedule, but the two Bruce A units, also announced to be returning to service during the period, have not been included in the calculations. This forecast also estimates the collective impact of all proposed new generation projects that have been identified to the IMO. If all generation proposals are built and operated, the amount of generation that is exclusively gas fuelled would comprise about 21 per cent of all installed capacity by 2005. Another 6 per cent would be dual-fuelled with gas. It is the judgement of the IMO that the transmission interfaces studied are capable of supplying the various transmission zones under the generation and demand scenarios considered in this study. A major transmission addition , i.e. 1,250 MW high voltage direct current (HVDC) interconnection between Ontario and Quebec near Ottawa, will improve transfer capabilities between the two provinces. This interconnection

  8. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  9. Lightning current distribution to ground at a power line tower carrying a radio base station

    NARCIS (Netherlands)

    Grcev, L.; Deursen, van A.P.J.; Waes, van J.B.M.

    2005-01-01

    Radio base stations are often mounted on towers of power transmission lines. They are usually powered from the low-voltage network through an isolating transformer, to separate the high- and low-voltage networks. The isolating transformer ensures security at customers' premises in the case of nearby

  10. On the prospects for dry cooling tower building in FRG

    International Nuclear Information System (INIS)

    Dzhurinskij, M.B.; Zlotin, A.A.

    1982-01-01

    Advantages and disadvantages of dry cooling towers for NPPs are considered. Construction of a number of cooling towers in FRY are described. The advisability of building cooling towers of a combined type - with wet aud dry sections is noted

  11. Wind turbine tower for storing hydrogen and energy

    Science.gov (United States)

    Fingersh, Lee Jay [Westminster, CO

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  12. Fire ants perpetually rebuild sinking towers

    Science.gov (United States)

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig

    2017-07-01

    In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.

  13. Least cost pathways to a low carbon electricity system for Australia: impacts of transmission augmentation and extension

    Science.gov (United States)

    Dargaville, R. J.

    2016-12-01

    Designing the pathway to a low carbon energy system is complex, requiring consideration of the variable nature of renewables at the hourly timescale, emission intensity and ramp rate constraints of dispatchable technologies (both fossil and renewable) and transmission and distribution network limitations. In this work, an optimization framework taking into account these considerations has been applied to find the lowest cost ways to reduce carbon emissions by either 80% or 100% in 2050 while keeping the system operating reliably along the way. Technologies included are existing and advanced coal and gas technologies (with and without carbon capture and storage), rooftop PV, utility scale PV, concentrating solar thermal, hydro with and without pumped storage, bioenergy, and nuclear. In this study we also also the optimisation to increase transmission capacity along existing lines, and to extend key trunk lines into currently unserved areas. These augementations and extensions come at a cost. The otpimisation chooses these options when the benefits of accessing high quality renewable energy resources outweights the costs. Results show that for the 80% emission reduction case, there is limited need for transmission capacity increase, and that the existing grid copes well with the increased flows due to conversion to distrubuted renewable energy resources. However, in the 100% case the increased reliance on renewables means that signficant transmission augmentation is beneficial to the overall cost. This strongly suggests that it is important to understand the long term emission target early so that infrastructure investments can be optimised.

  14. Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse

    Czech Academy of Sciences Publication Activity Database

    Delville, R.; Malard, B.; Pilch, Jan; Šittner, Petr; Schryvers, D.

    172-174, č. 6 (2011), s. 682-687 ISSN 1012-0394 R&D Projects: GA MŠk(CZ) LA10010 Institutional research plan: CEZ:AV0Z10100520 Keywords : transmission electron microscopy * shape memory alloy * martensitic transformation * dislocation slip * nanograins Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower

    International Nuclear Information System (INIS)

    Lemouari, M.; Boumaza, M.; Kaabi, A.

    2011-01-01

    Thermal and nuclear electric power plants as well as several industrial processes invariably discharge considerable energy to their surrounding by heat transfer. Although water drawn from a nearby river or lake can be employed to carry away this energy, cooling towers offer an excellent alternative particularly in locations where sufficient cooling water cannot be easily obtained from natural sources or where concern for the environment imposes some limits on the temperature at which cooling water can be returned to the surrounding. This paper concerns an experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower. The tower contains a 'VGA.' (Vertical Grid Apparatus) type packing which is 0.42 m high and consists of four (04) galvanised sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross sectional test area of 0.15 m x 0.148 m. The present investigation is focused mainly on the effect of the air and water flow rates on the hydraulic characteristics of the cooling tower, for different inlet water temperatures. The two hydrodynamic operating regimes which were observed during the air/water contact operation within the tower, namely the Pellicular Regime (PR) and the Bubble and Dispersion Regime (BDR) have enabled to distinguish two different states of pressure drop characteristics. The first regime is characterized by low pressure drop values, while in the second regime, the pressure drop values are relatively much higher than those observed in the first one. The dependence between the pressure drop characteristics and the combined heat and mass transport (air-water) through the packing inside the cooling tower is also highlighted. The obtained results indicate that this type of tower possesses relatively good hydraulic characteristics. This leads to the saving of energy. -- Highlights: → Cooling towers are widely used to reject waste heat from thermal and nuclear

  16. Pricing transmission services

    International Nuclear Information System (INIS)

    Haaden, E.

    1995-01-01

    The price structure for transmission of electric power through the main lines in Sweden is analyzed. After deregulation of the electricity market, the main transmission lines are owned by a separate national company, with no interests from the power producers. Comparisons are made to ideal marginal price structures. 6 refs

  17. Assessment of requirements for dry towers

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D E; Sonnichsen, J C

    1976-09-01

    The regional limitations of surface water supplies in the U.S. were assessed with respect to the consumptive use requirements of wet cooling towers. The study simulated unit consumptive use factors by region, assessed regional water supplies, and examined electric load projections through 2000 A.D. to ascertain where and when water limitations may occur and, therefore, where dry cooling may be required. It was concluded that the cooling water supply situation in the United States through the year 2000 is adequate in most areas, but is uncertain over much of the Southwest. The uncertainty is related to increasing competition for the available supplies and to potential Federal and/or State policy decisions that may have a significant effect on power plant cooling. Limitations on coastal siting, seismic zone constraints, and state constraints on the purchase and transfer of water rights from other uses to cooling supply have the potential of bringing wet/dry or dry cooling into relatively common use in the 1990's. (LCL)

  18. Augmented Reality Tower Technology Assessment

    Science.gov (United States)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  19. Cooling towers - terms and definitions

    International Nuclear Information System (INIS)

    1991-02-01

    In the field of cooling tower construction and operation, the use of publications has shown that a systematic glossary has not yet been developed. Therefore a dictionary of the terms used in this field, together with their clear definitions, is urgently required. This work has been started by the V.I.K. (Association for the Industrial Power Economy) in Essen and completed by the VDI-Group 'Energy Engineering'. Because of the strong international links and the increasing overseas trade in this field also the corresponding terms in other languages, English, French and Spanish are included. As to make it possible to find the German terms and definitions when starting from a foreign language, alphabetical lists are included for the various languages giving the number of the corresponding German term. In such cases where the technical term used in the United States is not identical with the corresponding term used in the United Kingdom, both terms are included. (orig./HP) [de

  20. Navajo transmission project. Final Environmental Impact Statement (FEIS)

    International Nuclear Information System (INIS)

    1997-08-01

    Dine Power Authority, a Navajo Nation enterprise, proposes to construct a 500 kilovolt transmission line planned to deliver electrical power from the Shiprock Substation in northwestern New Mexico to the Marketplace Substation in southern Nevada. The line would relieve constraints on transmission of electricity west from the Four Corners area; improve operational flexibility and reliability of the overall system; and allow increased economical transfers, sales, and purchases in the Rocky Mountains/Four Corners/Desert Southwest region. Also, the project allows an opportunity for the Navajo Nation to participate in the electrical utility industry and promote economic development to benefit the people of the Navajo Nation. Six alternatives were considered and include (1) energy conservation and electric load management, (2) new generation facilities, (3) use of existing transmission systems, (4) alternative transmission technologies, (5) no action, and (6) the proposed action. For the proposed action, the following alternative routes and ancillary facility locations are addressed in the EIS: four alternative routes and five substations in the eastern portion of the project area; and six alternative routes, three substation sites, and a microwave communication facility in the western portion of the project area. The existing condition of the environmental resources in the project area is described, and potential impacts on those resources as a result of the proposed action are addressed. The impacts of the proposed action would be caused mainly by access roads, tower sites, and other associated facilities on soils, vegetation, wildlife, and cultural and paleontological resources; and the impact of the transmission line's presence on visual resources and land uses. Public comments on the draft EIS are addressed in this FEIS

  1. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  2. A Common Definition of the System Operators' Core Activities[Electric Power Transmission System Operator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    In this report a common definition of the system operator's core activities in the Nordic countries is identified and also a list of non-core activities is introduced. As a starting point the common tasks for system responsibility as identified by Nordel has been used for the work. The term TSO (Transmission System Operator) is employed as a common denominator in the report. It is found out that the TSOs carry out common core activities in the roles as a transmission operator, a system operator and a balance settlement responsible. The core activities for the TSO as a transmission network operator are: Maintain the adequate transmission system in the long run and network development plan on the national as well as on the Nordic level using sophisticated analysis and planning methods and tools. Plan the transmission network on the national as well as on the Nordic level utilising new investments, renewal and maintenance of existing network components so that the network is secure to operate and adequate transmission capacity is guaranteed. Aim at timely network expansions using enhanced information exchange between the Nordic TSOs, and on the national level between the TSO and distribution and regional network operators, large consumers and large producers. Secure the technical compatibility with networks across the border and within a country by establishing connection requirements on the national level and ensuring that the national requirements are compatible across the Nordic power system. The core activities for the TSO as a system operator are: Define common technical requirements for the secure system operation using common planning, operation, connection and data exchange procedures. Secure the system operation with the operational planning for the following year by using information exchange between TSOs enabling the TSOs to make the best possible forecast of the global grid situation in order to assess the flows in their network and the available

  3. A Cross-Layer Wireless Sensor Network Energy-Efficient Communication Protocol for Real-Time Monitoring of the Long-Distance Electric Transmission Lines

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2015-01-01

    Full Text Available Optimization of energy consumption in Wireless Sensor Network (WSN nodes has become a critical link that constrains the engineering application of the smart grid due to the fact that the smart grid is characterized by long-distance transmission in a special environment. The paper proposes a linear hierarchical network topological structure specific to WSN energy conservation in environmental monitoring of the long-distance electric transmission lines in the smart grid. Based on the topological structural characteristics and optimization of network layers, the paper also proposes a Topological Structure be Layered Configurations (TSLC routing algorithm to improve the quality of WSN data transmission performance. Coprocessing of the network layer and the media access control (MAC layer is achieved by using the cross-layer design method, accessing the status for the nodes in the network layer and obtaining the status of the network nodes of the MAC layer. It efficiently saves the energy of the whole network, improves the quality of the network service performance, and prolongs the life cycle of the network.

  4. A Design of a 345-kV Electric Power Transmission Line Interlinking Ramu and Rouna Grids in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Sakato Francis

    2017-01-01

    Full Text Available According to PNG Power Limited (PPL, Papua New Guinea’s peak power demand is expected to increase from 210 MW in 2012 to 347 MW in 2026. Under the current state of the power sector in Papua New Guinea (PNG, it is critical to implement measures to cope with the increasing power demand to promote investment, economic growth, and ultimately to achieve poverty reduction through economic growth. One of the solutions identified to improve the reliability of PNG power systems and thus to meet the demand is to interconnect the major grids in the country so that the loads could be shared among them. This project embarks in designing a 345-kV electric power transmission line to interlink the Ramu and Rouna power grids of Papua New Guinea. The design is done by analysing all the necessary aspects of the transmission lines with in-depth calculations performed using MATHCAD software. This design is the basis for extra-high voltage (EHV transmission network in anticipation for the power generation and demand growth in PNG.

  5. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    Directory of Open Access Journals (Sweden)

    Serena Fiocchi

    2015-04-01

    Full Text Available During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.

  6. European sail tower SPS [Solar Power Satellite] concept

    Energy Technology Data Exchange (ETDEWEB)

    Seboldt, W.; Leipold, M.; Hanowski, N. [Institute of Space Sensor Technology and Planetary Exploration, Cologne (Germany). German Aerospace Center; Klimke, M. [HOPE Worldwide Deutschland, Berlin (Germany)

    2001-06-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called ''System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE and U)'' a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called ''European Sail Tower SPS'' and consists mainly of deplorable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such an SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150 m x 150 m and is automatically deployed, using four diagonal lightweight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW{sub e}. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology

  7. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  8. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  9. Noise from cooling towers of power parks

    International Nuclear Information System (INIS)

    Zakaria, J.; Moore, F.K.

    1975-01-01

    A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A-weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed

  10. The Schmehausen cable net cooling tower

    International Nuclear Information System (INIS)

    Schlaich, J.; Mayr, G.; Weber, P.; Jasch, E.

    1976-01-01

    The prototype of a large cable net shell as a natural-draught cooling tower for the THTR-300 is presented. Results of wind tunnel tests and calculations are given, and the capacity is discussed. Design features of the main components are presented in illustrations and are described with regard to the construction process of the cooling tower. Finally, it is shown that the cable net cooling tower is a suitable construction for large dimensions and caving-in or seismic areas. (orig./HP) [de

  11. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  12. Planning the expansion of electrical transmission networks with evolutionary programming; Planeacion de la expansion de redes de transmision electrica con programacion evolucionaria

    Energy Technology Data Exchange (ETDEWEB)

    Ceciliano Meza, Jose Luis

    1997-12-31

    In this work it is presented for the first time in the literature the solution of the problem of the planning the expansion of an electrical transmission network (PERTE) with the use of the Evolutionary Programming. The evolutionary programming is a stochastic method of optimization with similar characteristics to the generic algorithms, but different. During the development of this work it is shown what each one of these two heuristic methods of optimization consist of. Additionally, the main characteristics of other two heuristic methods known in the literature are described (Tabu Searching and Simulated Annealing). These two methods together with the genetic algorithms and decomposition of Benders have also been used to solve the problem of planning PERTE. The operation of the proposed algorithm of evolutionary programming was tested in two networks of electrical transmission. The first case of test is a system which is known in the literature. The second case is a representative system of the electrical transmission network of Central America. The results obtained improve all the results shown when applying different heuristic methods of optimization (genetic algorithms, simulated annealing and Tabu searching) to solve the same problem. [Espanol] En este trabajo se presenta por primera vez en la literatura, la solucion del problema de la planeacion de expansion de una red de transmision electrica (PERTE) con el uso de la Programacion Evolucionaria. La programacion evolucionaria es un metodo estocastico de optimizacion con caracteristicas similares a los algoritmos geneticos, pero diferente. Durante el desarrollo de este trabajo se muestra en que consiste cada uno de estos dos metodos heuristicos de optimizacion. Ademas, se describen las caracteristicas principales de otros dos metodos heuristicos conocidos en la literatura (busqueda Tabu y Recorrido Simulado). Estos dos metodos juntos con los algoritmos geneticos y descomposicion de Benders tambien han sido

  13. Design and operation of hybrid cooling towers

    International Nuclear Information System (INIS)

    Alt, W.

    1987-01-01

    The first hybrid cooling tower at a coal-fired power station with a waste heat output of 550 MW has been in operation since the middle of 1985. Experience during the construction stage and the initial period of operation has confirmed the correctness of the design standards and of the design itself and, of course, also offers a wealth of knowledge to be observed on future construction projects. A second cooling tower of similar design is being erected at the present time. This cooling tower serves a power station unit with 2500 MW of waste heat output. The programme for this cooling tower offers the possibility for all the accumulated and evaluated experience to be of influence both on the design and also on the method of operation. This paper reports on the details. (orig.) [de

  14. Dry cooling towers - the Schmehausen example

    International Nuclear Information System (INIS)

    Weber, P.

    1977-01-01

    In a prototype, there are often problems which require special static, constructive, and assembling measures for their solution. In the case of the Schmehausen dry cooling tower, the demands on the assembling technology are particularly high. (orig.) [de

  15. Cooling tower water circuits with raceways

    International Nuclear Information System (INIS)

    Nicollet, G.

    1981-02-01

    Two physical models built at the National Hydraulics Laboratory in Chatou have led to the determination of the design of the works. This new design economizes 4 to 5 MW on pumping power for each cooling tower [fr

  16. LaGuardia air traffic control tower.

    Science.gov (United States)

    2011-01-01

    To celebrate FAA and its LaGuardia Airport employees past, : present, and future this booklet outlines the airports history and accomplishments and includes copies of some of the photographs in the : air traffic control towers history g...

  17. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...

  18. Wind towers architecture, climate and sustainability

    CERN Document Server

    Bahadori, Mehdi N; Sayigh, Ali

    2014-01-01

    This book offers a holistic treatment of wind towers, from their underlying scientific principles to design and operation. Includes suggestions for optimization based on the authors' own research findings from recent analytical studies.

  19. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    International Nuclear Information System (INIS)

    Wojcicki, F. R.; Negrisoli, M. E. M.; Franco, C. V.

    2003-01-01

    With the growth of several areas in modern society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO 4 reference electrode. It is believed that corrosion results from stray currents that flow through the ground to close the loop between neighboring towers. Stray currents originate in the lightning rod cables of the power line towers, induced by the strong electromagnetic and electric fields of the energized power lines. The intensity and direction of those currents were measured, indicating substantial values of both their AC and DC components. The potential of the tower ground system, measured in the perpendicular direction of the main axis of the power line, was plotted as a function of the distance to the tower base. The results clearly indicated the tendency to corrosive attack in the anodic towers as reflected by the slope of the plot, whereas no signs of corrosion could be found in the reverse slope, confirming the visual inspection of the foundation. The profile of the potential plots could be changed providing the electric insulation of the lightning rod cable. (Author) 8 refs

  20. Good towers of function Fields

    DEFF Research Database (Denmark)

    Nguyen, Nhut

    Algebraic curves are used in many different areas, including error-correcting codes. In such applications, it is important that the algebraic curve C meets some requirements. The curve must be defined over a finite field GF(q) with q elements, and then the curve also should have many points over...... this field. There are limits on how many points N(C) an algebraic curve C defined over a finite field can have. An invariant of the curve which is important in this context is the curve’s genus g(C). Hasse and Weil proved that N(C)≤q+1+2g(C) √q and this bound can in general not be improved. However...... of q. In this thesis, we study a construction using Drinfeld modules that produces explicitly defined families of algebraic curves that asymptotically achieve Ihara’s constant. Such families of curves can also be described using towers of function fields. Restated in this language the aim...

  1. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  2. Transmission line capital costs

    International Nuclear Information System (INIS)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy's Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs

  3. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    Energy Technology Data Exchange (ETDEWEB)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  4. Distributed decision-making in electric power system transmission maintenance scheduling using multi-agent systems (MAS)

    Science.gov (United States)

    Zhang, Zhong

    In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but

  5. A new methodology for establishing a system for cross-border transmission tariffication in the internal electricity market

    International Nuclear Information System (INIS)

    Glavitsch, H.; Andersson, G.

    2001-01-01

    Several organisations are working on a scheme for cross-border tariffication as the so-called Florence forum indicates. So far, a provisional concept created by ETSO (European Transmission System Operators) evolved which is oriented towards covering costs but is not quite cost-reflective and does not produce economic signals for the market players. In the present project a flow-oriented model and a corresponding methodology have been developed which derive compensations within super nodes standing for aggregated networks of the countries along transit and domestic paths. Specific fees are derived from overall network costs but may be applied in a flexible way to represent the realistic usage of the horizontal network for transits and domestic supply. Charging of costs can be oriented towards consumers or generators. A combination of shares of costs originally determined for consumers and generators is also possible. In such a way the model is flexible to fulfill the requirements of regulators, operators and the European Commission. Measured flow data of the UCTE network have been provided to check the concept in various directions, i.e. based on different parameters such as uniform and individual postage stamps, compensations for transits only and more elaborate networks of super nodes. The concept is also able to cope with circular flows within the real UCTE network. The methodology is suited for an application in a decentralised fashion as the transmission system operator needs to communicate with its neighboring operator only, i.e. there is no need for a centralised clearing office. (author)

  6. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  7. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  8. Component for articulated offshore loading towers

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H.

    1980-09-01

    The construction of offshore natural gas liquefaction plants must be regarded as technically feasible and the marketing prospects for LNG - a source of clean burning energy - appear excellent. Nevertheless, the optimum loading procedure for LNG tankers in the - sometimes adverse - offshore environment is still a matter under discussion by the experts - with a tendency to adopt and adapt well-proven components from the offshore crude oil sector. Here, articulated towers are in use for tankerloading and the crude oil is pumped at ambient temperature through the cardan joint of the tower itself. In the case of the cryogenic liquid LNG, this method would entail intolerable risks. Leaks and subsequent LNG spills within the tower joint will cause low temperature-embrittlement and most likely damage the cardan connection at the tower's base plate on the sea bed. The described submarine joint for ultra-cold liquids, which has the same cardanic properties as the cardan joint of the tower is completely separated from the latter. Thus a cryogenic leakage in this submarine joint will under no circumstance reach and affect the tower cardan.

  9. Cooling Tower Optimization A Simple Way to Generate Green Megawatts and to Increase the Efficiency of a Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    2014-07-01

    The profitability of nuclear power plants is worldwide challenged by low electricity prices. One hand low cost shale gas is offering a low price electricity production , other hand additional taxes on fuel are reducing the operating income of nuclear power stations. The optimization of cooling towers can help to increase the efficiency and profit of a nuclear power plant. (Author)

  10. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    Science.gov (United States)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The

  11. Observed rise of visible plumes from hyperbolic natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P T [Smith-Singer Meteorologists, Inc., Amityville, NY; Seymour, D E; Butler, M J; Kramer, M L; Smith, M E; Frankenberg, T T

    1976-01-01

    The behavior of natural draft cooling tower plumes and related meteorological variables have been measured from aircraft near three major plants of the American Electric Power System. The rise of those plumes which persisted long enough to reach a stabilized height depended primarily upon the height of the capping inversion aloft. All such plumes rose to elevations of 425 m or more above grade. No significant relationships between plume rise and wind speed, plant load, or ambient temperature were found. We conclude that simple temperature humidity soundings in the vicinity of the towers would serve as effective predictors of plume rise and persistence.

  12. Analysis of the technology for the transmission of electrical energy through by the resonance phenomenon between objects

    International Nuclear Information System (INIS)

    Montiel Cubillo, Jose Alonso

    2011-01-01

    Physical principles that allow the transfer of electrical energy by magnetic resonance between objects are developed, for this was chosen the technology by engineers and physicists of the Massachusetts Institute of Technology called Witricity. Among the most important points covered are: the antecedents, efficiency of the technology, its potential applications, consequences for human health and the nature, scope and experimental designs. The methodology used in its most is bibliographical, mainly focused on the fundamentals nominated by the developers of the technology WiTricity. For future implementations is recommended the utilization of electronic elements of the highest quality, which are capable of withstanding high temperatures and powers. Those components is wished that are usually higher than would be used in the electronics laboratory practice, of the courses Electronic Laboratory I and II; the purchase of such items is even contemplated outside of Costa Rica. (author) [es

  13. Device for protecting the section of the airline electricity transmission with insulated neutral from incomplete phase modes

    Energy Technology Data Exchange (ETDEWEB)

    Sagutdinov, R.Sh.; Batoyev, D.

    1982-01-01

    The device for USSR certificate of authorship 792439 is improved in order to raise reliability of isolating the damage zone by including into operation an antenna filter for voltage of zero sequence (AFNIP) only during the operating time of the electrical unit in incomplete phase mode. The newly introduced circuit breaker contract of the inlet relay of the voltage filter for reverse sequence is connected between the outlet of the AFNIP and the ground. The device additionally has a time relay which is connected to the outlet of the voltage filter of reverse sequence. The circuit breaker contact of the inlet relay AFNIP is connected in series to the closure contact of the time relay and the winding of the second outlet relay of the actuating mechanism.

  14. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Albloushi, Mohammed

    2017-11-01

    The use of seawater in cooling towers for industrial applications has much merit in the Gulf Cooperation Council countries due to the scarcity and availability of fresh water. Seawater make-up in cooling towers is deemed the most feasible because of its unlimited supply in coastal areas. Such latent-heat removal with seawater in cooling towers is several folds more efficient than sensible heat extraction via heat exchangers. Operational challenges such as scaling, corrosion, and biofouling are a major challenge in conventional cooling towers, where the latter is also a major issue in seawater cooling towers. Biofouling can significantly hamper the efficiency of cooling towers. The most popular methods used in cooling treatment to control biofouling are disinfection by chlorination. However, the disadvantages of chlorination are formation of harmful disinfection byproducts in the presence of high organic loading and safety concerns in the storage of chlorine gas. In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities

  15. Calculation of electrical and magnetic field in electric power transmission lines aiming project optimization, environmental impact and alternatives comparisons; O calculo dos campos eletrico e magnetico de L.T. visando a otimizacao do projeto, o impacto ambiental e a comparacao de alternativas

    Energy Technology Data Exchange (ETDEWEB)

    Portela, Carlos M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Moreno O, German [Antioquia Univ., Medellin (Colombia). Dept. de Engenharia Eletrica

    1995-12-31

    The optimization of overhead electric power transmission lines leads to compact projects in which the neighbourhood electric and magnetic field are a critical restriction. The Load Simulation Method enables the reliable calculation of such fields. Presented are equations for the application of such conditions. Results are presented 9 figs., 2 tabs., 10 refs.

  16. In-situ study of cascade defects in silver by simultaneous transmission electron microscopy and electrical resistivity measurements at low temperatures

    International Nuclear Information System (INIS)

    Haga, K.; King, W.E.; Merkle, K.L.; Meshii, M.

    1985-12-01

    A helium-cooled double-tilt specimen stage for transmission electron microscopy (TEM) with the capability of simultaneous electrical resistivity measurements was constructed and used to study defect-production, migration, clustering and recovery processes in ion-irradiated silver. Vacuum-evaporated thin film specimens were irradiated with 1 MeV Kr + -ions up to a dose of 4.0 x 10 10 ions/cm 2 , at T = 10 0 K in the microscope, using the HVEM-tandem accelerator ion beam interface system in the Argonne National Laboratory Electron Microscopy Center. Cascade defect formation during ion bombardment at the low temperature was directly observed both by TEM and electrical resistivity measurements. Ion bombardment created groups of defect clusters with strong strain fields which gave rise to TEM contrast. The specimen resistivity was increased by 16% during the irradiation. Subsequent microstructural changes and resistivity recovery during isochronal annealing were monitored up to room temperature. 58.3% of the irradiation induced resistivity was recovered, while significant reduction in the size of black spot defect clusters was observed by TEM. A small fraction of clusters disappeared, while no nucleation of new defect clusters was observed

  17. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    Science.gov (United States)

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2017-06-01

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  18. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    International Nuclear Information System (INIS)

    Kumar, A A; Hugues-Salas, O; Savini, B; Keogh, W

    2016-01-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods. (paper)

  19. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  20. Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy

    Science.gov (United States)

    Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.

    2018-03-01

    The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.