WorldWideScience

Sample records for electric road vehicle

  1. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  2. A General Overview of Electric Road Vehicles

    International Nuclear Information System (INIS)

    Lamblin, Veronique

    2018-01-01

    In July 2017 Nicolas Hulot, the French Minister of Ecological and Inclusive Transition, presented a climate plan featuring an end to electricity generation from coal by 2022, a reduction in the nuclear component of electricity supply by one third, a total ban on the sale of petrol or diesel cars by 2040 and an incentive scheme designed gradually to remove polluting vehicles from the roads. Other European partners are following suit and promoting the spread of electric vehicles (Norway, Germany, Netherlands etc.). Yet is this the panacea that will meet the targets for greenhouse gas reduction in the battle against climate change? Futuribles examines the question in this issue with two articles: the first of these by Pierre Bonnaure, above, assesses the forces driving the spread of electric cars and the impediments to that process; this second article by Veronique Lamblin offers a general over - view of electric road vehicles (passenger cars, heavy good vehicles, bicycles etc.) throughout the world. (author)

  3. The hybrid electric vehicle revolution, off road

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B.E. [ePower Technologies (United States)

    2004-07-01

    In this presentation the author presents concepts and details of hybrid vehicles in general, including their benefits, then describes off-road hybrid vehicles. Hybrid vehicles have been experimented with for over a century. Demonstrator vehicles include a diesel-electric tractor, an electric lawn tractor, a hybrid snow thrower, and a hybrid wheel loader. A duty cycle for the loader is shown with battery-assisted acceleration, and regenerative braking. Both of these keep the size of the engine small, the loads on it less variable, thus improving fuel economy. A hybrid excavator and its duty cycle is shown. A fuel cell lift truck that is currently in design is illustrated. The author then describes the possibilities of the hydrogen economy where sourcing and infrastructure are yet to be demonstrated on a commercial scale. The author predicts that off-road hydrogen fuel cell vehicles will be commercially viable five years before on-road applications. The author predicts hydrogen sourced from biogas, photovoltaics, and wind power. tabs, figs.

  4. Comparison of electric drives for road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bader, C; Stephan, W [Deutsche Automobilgesellschaft m.b.H., Esslingen (Germany, F.R.)

    1977-01-01

    The low energy-storage capacity of the electrolytic energy-storage apparatus available at the moment limits the practical use of electric vehicles to meeting the requirements for restricted areas. But in this field of application, conversion from drive with internal combustion engine to electric drive can be considered only if a reduction of costs is achieved with electric drive. From the wide range of possible drive units the most suitable is found to be the dc squirrelcage motor the speed of which is controlled by field weakening. In the case of a motor with conventional design, the controllable drive range is limited to about 1 : 3, so that generally additional measures are required for extending the drive range. But if the motor is fitted with a compensation winding, field weakening to give a controlled speed range of 1 : 8 can be obtained. To evaluate the different drive units under consideration use is made of the acceleration when, according to the drive system, advantages are obtained from the point of view of energy consumption with disadvantages in acceleration time, and vice versa. By using vehicles proven in practice with different drive systems, either with hydrodynamic transducer and battery switchover, or else with changeover gear and mechanical clutch, the overall construction of the different control and protective arrangements are demonstrated. It is then found that the extra cost of regulation in the case of automatic drive operation is partly compensated by the additional protective devices which are required to limit the effects of any incorrect operations with a manually-operated drive.

  5. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B; Johansson, Arne; Selaanger, P [Catella Generics, Kista (Sweden)

    1996-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  6. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  7. Sodium-sulphur batteries for electric road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, M.F. (Chloride Silent Power Ltd., Runcorn (UK))

    1989-04-01

    The sodium sulphur couple is, in principle, very well behaved and has operational characteristics which make it ideal for electric vehicle use. Design of the battery system for road use requires that a number of practical considerations are addressed. In particular, the battery operates at 350 deg C and requires a thermal enclosure with thermal management. The cell interconnection network must address the consequences of end-of-life failure and the voltages across the individual cells should be limited, both in charge and discharge. (author).

  8. Electric Vehicle Careers: On the Road to Change

    Science.gov (United States)

    Hamilton, James

    2012-01-01

    Many occupations related to electric vehicles are similar to those that help to make and maintain all types of automobiles. But the industry is also adding some nontraditional jobs, and workers' skill sets must evolve to keep up. This article describes careers related to electric vehicles. The first section is about the electric vehicle industry…

  9. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Zhao

    2014-01-01

    Full Text Available Vehicle velocity and roll angle are important information for active safety control systems of four-wheel independent drive electric vehicle. In order to obtain robustness estimation of vehicle velocity and roll angle, a novel method is proposed based on vehicle dynamics and the measurement information provided by the sensors equipped in modern cars. The method is robust with respect to different road and friction conditions. Firstly, the dynamic characteristics of four-wheel independent drive electric vehicle are analyzed, and a four-degree-of-freedom nonlinear dynamic model of vehicle and a tire longitudinal dynamic equation are established. The relationship between the longitudinal and lateral friction forces is derived based on Dugoff tire model. The unknown input reconstruction technique of sliding mode observer is used to achieve longitudinal tire friction force estimation. A simple observer is designed for the estimation of the roll angle of the vehicle. And then using the relationship, the estimated longitudinal friction forces and roll angle, a sliding mode observer for vehicle velocity estimation is provided, which does not need to know the tire-road friction coefficient and road angles. Finally, the proposed method is evaluated experimentally under a variety of maneuvers and road conditions.

  10. Slip Control of Electric Vehicle Based on Tire-Road Friction Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    Gaojian Cui

    2017-01-01

    Full Text Available The real-time change of tire-road friction coefficient is one of the important factors that influence vehicle safety performance. Besides, the vehicle wheels’ locking up has become an important issue. In order to solve these problems, this paper comes up with a novel slip control of electric vehicle (EV based on tire-road friction coefficient estimation. First and foremost, a novel method is proposed to estimate the tire-road friction coefficient, and then the reference slip ratio is determined based on the estimation results. Finally, with the reference slip ratio, a slip control based on model predictive control (MPC is designed to prevent the vehicle wheels from locking up. In this regard, the proposed controller guarantees the optimal braking torque on each wheel by individually controlling the slip ratio of each tire within the stable zone. Theoretical analyses and simulation show that the proposed controller is effective for better braking performance.

  11. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    Science.gov (United States)

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  12. Electric and hydrogen consumption analysis in plug-in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ribau, Joao P.; Silva, Carla M.; Faria, Tiago L. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Av. Rovisco Pais, 1 Pav. Mecanica I, 2 andar, 1049-001 Lisboa (Portugal)

    2010-07-01

    The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg) ratio (0.044 to 0.150) were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle's power train components (including energy regeneration) along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg) demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh) of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC). The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per

  13. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-01-01

    Full Text Available For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of the Fixed Timing Fishhook steering and grade B road excitation. The results show that the electromagnetic force has a certain effect on the load transfer and can reduce the antirollover performance of the vehicle. Therefore, the effect of the electromagnetic force on the rollover characteristic should be considered in the vehicle design. To this end, extensive analysis was conducted on the effect of the road level, vehicle speed, and the road adhesion coefficient on the vehicle rollover stability. The results indicate that vehicle rollover stability worsens when the above-mentioned factors increase, the most influential factor being the road adhesion coefficient followed by vehicle speed and road level. This paper can offer certain theory basis for the design of the in-wheel-motor-driven electric vehicles.

  14. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  15. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    CERN Document Server

    Unger, Johannes; Jakubek, Stefan

    2016-01-01

    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  16. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles

    International Nuclear Information System (INIS)

    Capasso, Clemente; Veneri, Ottorino

    2014-01-01

    Highlights: • Performance analysis for lithium storage technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries. • Actual capacity of lithium technologies analyzed almost close to their nominal capacity also for high discharging current. • The charging efficiency for Li[NiCoMn]O 2 positively affects the regenerative breaking and fast recharging operations. • The analyzed battery packs follow dynamic power requirements on performed road driving cycles. • Experimental results demonstrate driving range is much higher when battery packs are based on lithium technology. - Abstract: This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained

  17. DEVELOPING CONVENIENT MOTOR SELECTION ALGORITHM ACCORDING TO ROAD CONDITIONS IN ELECTRIC VEHICLES

    OpenAIRE

    BAŞER, EKREM; ALTUN, YUSUF

    2016-01-01

    Nowadays, automotive industry is tending to electric vehicles due to reduction of fuel reserves in order to save energy, reduce air pollution and carbon emission. With the impact of technological advencements on battery and power electronics, the studies on electric vehicles have been gradually increased and many of automobile manifacturers have produced new electric vehicles. Different type of electric motors has been tried on electric vehicles until today. This motors have difference feautu...

  18. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  19. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  20. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    Science.gov (United States)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  1. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  2. Electric road vehicles in the field of tension between technology, ecology and society

    International Nuclear Information System (INIS)

    Schaefer, H.

    1993-01-01

    The increasing mobility of people has resulted in a growing air pollution, particularly in the inner cities. There will only be an improvement if environmentally friendly modes of transport are introduced, as people will not lower their mobility expectations. This is approached by e.g. electric-powered vehicles, which today have reached a very high technical standard. Distances of up to 30 km make up 90% of the total traffic, which is at the same time 44% of the driving capacity. This can presently be achieved by most electric-powered vehicles without any recharging. In the context of this article ordinary and electric-powered vehicles are compared with one another regarding their energy consumption as well as their exhaust emission. (BWI) [de

  3. Electric vehicle energy consumption modelling and prediction based on road information

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    The limited driving range is considered as a significant barrier to the spread of electric vehicles. One effective method to reduce “range anxiety” is to offer accurate information to the driver on the remaining driving range. However, the energy consumption during driving is largely determined by

  4. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  5. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  6. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  7. On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin K.; Junginger, Martin; Perujo, Adolfo; Bonnel, Pierre; Grootveld, Geert van

    2012-01-01

    Hybrid-electric vehicles (HEVs) and battery-electric vehicles (BEVs) are currently more expensive than conventional passenger cars but may become cheaper due to technological learning. Here, we obtain insight into the prospects of future price decline by establishing ex-post learning rates for HEVs and ex-ante price forecasts for HEVs and BEVs. Since 1997, HEVs have shown a robust decline in their price and price differential at learning rates of 7±2% and 23±5%, respectively. By 2010, HEVs were only 31±22 € 2010 kW −1 more expensive than conventional cars. Mass-produced BEVs are currently introduced into the market at prices of 479±171 € 2010 kW −1 , which is 285±213 € 2010 kW −1 and 316±209 € 2010 kW −1 more expensive than HEVs and conventional cars. Our forecast suggests that price breakeven with these vehicles may only be achieved by 2026 and 2032, when 50 and 80 million BEVs, respectively, would have been produced worldwide. We estimate that BEVs may require until then global learning investments of 100–150 billion € which is less than the global subsidies for fossil fuel consumption paid in 2009. These findings suggest that HEVs, including plug-in HEVs, could become the dominant vehicle technology in the next two decades, while BEVs may require long-term policy support. - Highlights: ► Learning rates for hybrid-electric and battery-electric vehicles. ► Prices and price differentials of hybrid-electric vehicles show a robust decline. ► Battery-electric vehicles may require policy support for decades.

  8. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade and vehicle' mass for a hybrid electric bus

    Science.gov (United States)

    Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou

    2016-02-01

    This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.

  9. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  10. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  11. Optimization of the lead-acid battery for powering electric road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Friedheim, G [Accumulatorenfabriken Wilhem Hagen A.G., Soest (Germany, F.R.)

    1977-01-01

    A report is given on tests for the optimization of the lead accumulator for electric vehicles. The aim is to increase the specific energy (with adequate strength per cycle) and service life. For investigating this function systematic tests were made with different plate thicknesses and suitable plate surface. Further improvements were made by such factors, as the specific energy, which give low maintenance for the lead battery. Improved properties can be achieved by the construction and material of the casing and supports, and of the plate insulation.

  12. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  13. Trajectory of a road vehicle during road maintenance

    OpenAIRE

    Stachová Darina

    2017-01-01

    Consider a vehicle moving on a road whose usage over time creates an uneven surface on the road. Road unevenness that we encounter on surface communications often arises as a consequence of dynamical effects of moving vehicles, of weather changes, and due to road construction works. This article concerns with mathematical modeling of the trajectory of a road vehicle moving on such a surface during the course of road maintenance.

  14. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  15. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

    OpenAIRE

    Di Tan; Haitao Wang; Qiang Wang

    2016-01-01

    For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of...

  16. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  17. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  18. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  19. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  20. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  1. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  2. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  3. Development of electric road vehicles in France. Political measures, large-scale tests, and strategy of PSA Peugeot Citroen

    International Nuclear Information System (INIS)

    Beau, J.C.

    1993-01-01

    France offers particularly favourable conditions for the further development and the market introduction of electric vehicles: On account of the electricity production with almost no exhaust emission and due to the concentrated population structure stemming from the historical background in densely populated historical towns up to the innovational, electrochemical and electrotechnical industries and last but not least the automotive industry itself. The article is structured as follows: A) Political measures, large scale experiments in France; B) Strategy of PSA Peugeot Citroen; C) Activities by Peugeot in Germany. (orig.) [de

  4. How Might People Near National Roads Be Affected by Traffic Noise as Electric Vehicles Increase in Number? A Laboratory Study of Subjective Evaluations of Environmental Noise.

    Science.gov (United States)

    Walker, Ian; Kennedy, John; Martin, Susanna; Rice, Henry

    2016-01-01

    We face a likely shift to electric vehicles (EVs) but the environmental and human consequences of this are not yet well understood. Simulated auditory traffic scenes were synthesized from recordings of real conventional and EVs. These sounded similar to what might be heard by a person near a major national road. Versions of the simulation had 0%, 20%, 40%, 60%, 80% and 100% EVs. Participants heard the auditory scenes in random order, rating each on five perceptual dimensions such as pleasant-unpleasant and relaxing-stressful. Ratings of traffic noise were, overall, towards the negative end of these scales, but improved significantly when there were high proportions of EVs in the traffic mix, particularly when there were 80% or 100% EVs. This suggests a shift towards a high proportion of EVs is likely to improve the subjective experiences of people exposed to traffic noise from major roads. The effects were not a simple result of EVs being quieter: ratings of bandpass-filtered versions of the recordings suggested that people's perceptions of traffic noise were specifically influenced by energy in the 500-2000 Hz band. Engineering countermeasures to reduce noise in this band might be effective for improving the subjective experience of people living or working near major roads, even for conventional vehicles; energy in the 0-100 Hz band was particularly associated with people identifying sound as 'quiet' and, again, this might feed into engineering to reduce the impact of traffic noise on people.

  5. Vehicle State Estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; van Boekel, J.J.P.; Iersel, van S.S.; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the electric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  6. Electricity for Road Transport, Flexible Power Systems and Wind Power

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Ravn, Hans; Meibom, Peter

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles....... The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle...

  7. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  8. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  9. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  10. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  11. The Legal Status of Low Speed, Electric, Automated Vehicles in Texas : Policy Brief

    Science.gov (United States)

    2018-01-01

    This report explores whether vehicles that are both Neighborhood Electric Vehicles (NEVs) and Automated Vehicles (AVs) may operate legally on public roads in Texas. First is an examination of Neighborhood Electric Vehicles and how they are governed i...

  12. Placarding of road vehicles carrying radioactive materials

    International Nuclear Information System (INIS)

    1977-09-01

    The purpose of this Code is to give guidance on the placarding requirements for vehicles carrying radioactive materials by road in Great Britain and on the continent of Europe. Additional placards may be required regarding dangerous properties other than radioactivity. The labelling of packages for transport is dealt with in AECP 1030. This Code deals with two aspects of road vehicle placarding:-(a) placarding on the outside of road vehicles in Great Britain and on the continent of Europe, (b) a fireproof placard fixed in the driver's cab. Responsibility for placarding the vehicle rests with the carrier, but in practice the consignor may need to provide the placards. (U.K.)

  13. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  14. Electric vehicle energy impacts.

    Science.gov (United States)

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  15. Vehicle speed control using road bumps

    Directory of Open Access Journals (Sweden)

    T. A. O. Salau

    2004-06-01

    Full Text Available Road bumps play a crucial role in enforcing speed limits, thereby preventing overspeeding of vehicles. It significantly contributes to the overall road safety objective through the prevention of accidents that lead to deaths of pedestrians and damage of vehicles. Despite the importance of road bumps, very little research has been done to investigate into their design. While documentation exists on quantitative descriptions of road bumps, they offer little guidance to decision making. This work presents a unique approach to solving road bumps design problems. The results of our study reveal three important road bumps variables that influence the control of vehicle speeds. The key variables are bump height, bump width, and effective distance between two consecutive road bumps. Since vehicle speed control is the ultimate aim of this study the relationship between vehicle speed and other variables earlier mentioned is established. Vehicle speed is defined as the product of frequency at which a vehicle is moving over road bumps and the sum of effective distance between two consecutive road bumps. In the determination of bump height we assume a conical shaped curve for analysis as a matter of research strategy. Based on this, two stages of motion were analysed. The first concerns the motion over the bump itself while the second relates to the motion between two consecutive road bumps. Fourier series was then used to formulate a holistic equation that combines these two stages. We used trigonometric functions to model the behaviour of the first stage while with the second stage giving a functional value of zero since no changes in height are observed. We carried out vibration analysis to determine the effect of road bumps on a vehicular system. Arising from this a model component is referred to as an isolation factor. This offers guidance to the safe frequency at which vehicles could travel over road bumps. The work appears to contribute to knowledge

  16. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  17. The electric vehicle

    International Nuclear Information System (INIS)

    Sanchez duran, R.

    2010-01-01

    The decarbonization of transport is a key element in both energy and environmental European policies as well as one of the levers that will help us achieve the goals of improving energy efficiency, reducing CO 2 emissions and energy dependence. The use of electricity compared to other low-carbon fuels such as bio fuels and hydrogen has the advantage of its existing infrastructure (power generation plants, transmission and distribution networks), being only necessary to developed recharging infrastructures. We emphasize the role of electricity networks and their evolution, which will enable to manage demand and maximise the potential of renewable energies. The idea of an electric vehicle is not a recent one but dates back to the beginning of the last century, when first units appeared. Unfortunately, technological barriers were too high at the time to let them succeed. Namely those barriers limited the range of the electric vehicle due to problems with battery recharges. Nowadays, those difficulties have almost been solved and we can state that institutional support and coordination among all actors involved have made the electric vehicle a plausible reality. While the technological improvements needed for the electric vehicle to become cost competitive are carried out, the plug-in hybrid vehicle represents the intermediate step to reach a total decarbonization of transport. Endesa is committed to this revolution in transport mobility and believes that now is the right time to focus our efforts on it. Our goal is to contribute to a more balanced and sustainable world in the near future. (Author)

  18. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  19. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  20. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  1. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  2. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  3. Electrical Vehicles Activities Around the World

    DEFF Research Database (Denmark)

    Schauer, Gerd; Garcia-Valle, Rodrigo

    2013-01-01

    engine. In the 1990s research and demonstrations intensified and built a good basis for actual development of electrical vehicles. Discussion of the results achieved and lessons learned from millions of kilometers of road testing is worthwhile but in addition to technological developments such as light...... which have jointly changed how mobility is viewed in recent years. We describe key points concerning such field testing and the renaissance in electric vehicles that occurred around 2010. We discuss progress in lithium battery technology for high power and high energy density, improvement in integrated...... business models, and the availability of high-performance electric vehicles have become key enablers of this new technology. In this regard, it is promising that electric vehicles will soon be a part of a green transport solution (green mobility) powered by renewable energy and a new smart electricity...

  4. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  5. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  6. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  7. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  8. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  9. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  10. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  11. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  12. Electric vehicle speed control

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; Mc Auliffe, G.N.; Schlageter, G.A.

    1987-06-23

    This patent describes an electric vehicle driven by a DC motor. The vehicle has a field winding, an electric resistance element in circuit with the field winding, a switch in the circuit operative when closed to place. The element in parallel with the field winding weakens the field and increases potential motor speed. Also are relay means for operating the switch, means to determine motor speed, computer means for determining whether the motor speed is increasing or decreasing, and means for operating the relay means to close the switch at a first speed. If the motor speed is increased, it actuates the switch at a second speed lower than the first speed but only if switch has been closed previously and motor speed is decreasing.

  13. White noise excitation of road vehicle structures

    Indian Academy of Sciences (India)

    Road vehicle structures are modelled as mechanical systems ... in detail and recommendations for the choice of the design parameters are given. 2. ..... where q˙ζ denotes the noise intensity of ˙ζ(t) and δ(τ) is the Dirac distribution. Assuming.

  14. 2nd Road Vehicle Automation Workshop

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation

    2014-01-01

    This contributed volume covers all relevant aspects of road vehicle automation including societal impacts, legal matters, and technology innovation from the perspectives of a multitude of public and private actors. It is based on an expert workshop organized by the Transportation Research Board at Stanford University in July 2013. The target audience primarily comprises academic researchers, but the book may also be of interest to practitioners and professionals. Higher levels of road vehicle automation are considered beneficial for road safety, energy efficiency, productivity, convenience, and social inclusion. The necessary key technologies in the fields of object-recognition systems, data processing, and infrastructure communication have been consistently developed over the recent years and are mostly available on the market today. However, there is still a need for substantial research and development, e.g. with interactive maps, data processing, functional safety, and the fusion of different data sources...

  15. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  16. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  17. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  18. 36 CFR 261.15 - Use of vehicles off roads.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Use of vehicles off roads... PROHIBITIONS General Prohibitions § 261.15 Use of vehicles off roads. It is prohibited to operate any vehicle off National Forest System, State or County roads: (a) Without a valid license as required by State...

  19. Electricity for road transport, flexible power systems and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Henrik; Ravn, H.; Meibom, P. (and others)

    2011-12-15

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles. The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power system and the transport sector. (Author)

  20. VIII international electric vehicle symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The proceedings from the symposium are presented. Major topics discussed include: battery technology, powertrains; hybrid vehicles, marketing and economics, propulsion, and electric vehicle design and performance. Each paper has been separately indexed for inclusion in the Energy Data Base.

  1. Going Green with Electric Vehicles

    Science.gov (United States)

    Deal, Walter F., III

    2010-01-01

    There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…

  2. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Buchheim, R.

    1993-01-01

    Electric cars must have the same safety standards as those which are now state of the art for the compact class of car. Electric vehicles should substitute for conventional vehicles and should not lead to an increase in the stock of vehicles. The current subject of 'side impact protection' shows that design measures are necessary for this, which cannot be achieved in the smallest vehicles. (orig.) [de

  3. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  4. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  5. Experimental Autonomous Road Vehicle with Logical Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Sergey Sergeevich Shadrin

    2017-01-01

    Full Text Available This article describes some technical issues regarding the adaptation of a production car to a platform for the development and testing of autonomous driving technologies. A universal approach to performing the reverse engineering of electric power steering (EPS for the purpose of external control is also presented. The primary objective of the related study was to solve the problem associated with the precise prediction of the dynamic trajectory of an autonomous vehicle. This was accomplished by deriving a new equation for determining the lateral tire forces and adjusting some of the vehicle parameters under road test conductions. A Mivar expert system was also integrated into the control system of the experimental autonomous vehicle. The expert system was made more flexible and effective for the present application by the introduction of hybrid artificial intelligence with logical reasoning. The innovation offers a solution to the major problem of liability in the event of an autonomous transport vehicle being involved in a collision.

  6. Marketing of electric vehicles

    International Nuclear Information System (INIS)

    Gaerling, A.; Thoegersen, J.

    2001-01-01

    Substituting electric vehicles for traditional ones could reduce local pollution and greenhouse emissions from the transportation system. However, these societal benefits come at high costs to the owner of the EV in terms of price, driving range, availability, loading capacity, speed and acceleration. In addition, the usability of an EV is hampered by the lack of an infrastructure for recharging. Such a product hardly sells itself to potential customers. Besides supportive national policies, skillful marketing is needed to get it accepted and diffused throughout society. This paper outlines a two-phase strategy for the marketing of EVs based on a discussion of current and expected future characteristics of EVs and on a review of research on early adopters. (author)

  7. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  8. Improving Drive Files for Vehicle Road Simulations

    Science.gov (United States)

    Cherng, John G.; Goktan, Ali; French, Mark; Gu, Yi; Jacob, Anil

    2001-09-01

    Shaker tables are commonly used in laboratories for automotive vehicle component testing to study durability and acoustics performance. An example is development testing of car seats. However, it is difficult to repeat the measured road data perfectly with the response of a shaker table as there are basic differences in dynamic characteristics between a flexible vehicle and substantially rigid shaker table. In addition, there are performance limits in the shaker table drive systems that can limit correlation. In practice, an optimal drive signal for the actuators is created iteratively. During each iteration, the error between the road data and the response data is minimised by an optimising algorithm which is generally a part of the feed back loop of the shake table controller. This study presents a systematic investigation to the errors in time and frequency domains as well as joint time-frequency domain and an evaluation of different digital signal processing techniques that have been used in previous work. In addition, we present an innovative approach that integrates the dynamic characteristics of car seats and the human body into the error-minimising iteration process. We found that the iteration process can be shortened and the error reduced by using a weighting function created by normalising the frequency response function of the car seat. Two road data test sets were used in the study.

  9. Electric Vehicles and the Customers

    DEFF Research Database (Denmark)

    Christensen, Linda

    2011-01-01

    This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour.......This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour....

  10. CFD analysis for road vehicles - case study

    Directory of Open Access Journals (Sweden)

    Eugen Mihai NEGRUS

    2011-09-01

    Full Text Available This is a case study on the influence of the lower part of road vehicles on the global drag characteristics. Reducing overall drag by redesigning the lower part of the road vehicles has a potential of almost 20% in the overall drag breakdown, mainly due to the viscous effects and the fluidic interaction of the flow under the car with the typical bluff body flow pattern behind the vehicle. A special parameterization is proposed for the global shape of the sedan car, with respect to the lower part of the body, taking into account most of the specificities of the system. For such a complex interaction, CFD analysis is probably the only efficient tool in order to assess specific design parameterization of a generic car shape. Building on the credibility of such instruments is one of the major goals of this paper. Also, with respect to a target sedan car configuration, examples of successful design strategies are presented. Based on the CFD results, possible strategies to be used in order to reduce viscous drag and global drag characteristics are proposed.

  11. Environmental implication of electric vehicles in China.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Wang, Michael Q; Streets, David G; He, Kebin

    2010-07-01

    Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO(2), SO(2), and NO(x) emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO(2) emissions currently, but greater CO(2) reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO(2) emissions by 3-10 times and also double NO(x) emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NO(x) emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO(2). EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives.

  12. Analysis of electric vehicles measurements

    NARCIS (Netherlands)

    Vonk, B.M.J.; Geldtmeijer, D.A.M.; Slootweg, J.G.

    2013-01-01

    Electric vehicles are expected to have a significant impact on electricity grids. Intelligent charging strategies are suggested by literature and tested in the field to prevent overloading of network assets in electricity grids by using the flexibility of electro-mobility. This paper covers an

  13. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  14. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  15. Research on Dynamic Optimization for Road-friendly Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2014-10-01

    Full Text Available The heavy vehicle brings large dynamic loads to the road surface, which would reduce vehicle ride comfort and shorten road service life. The structure characteristic of heavy vehicle suspension has a significant impact on vehicle performance. Based on the D'Alembert principle, the dynamics models of independent and integral balanced suspension are proposed considering mass and inertia of balancing rod. The sprung mass acceleration and the tire dynamic force for two kinds of balanced suspension and the traditional quarter vehicle model are compared in frequency-domain and time-domain respectively. It is concluded that a quarter vehicle model simplified for balanced suspension could be used to evaluate the ride comfort of vehicle well, but it has some limitations in assessing the vehicle road-friendliness. Then, the sprung mass acceleration and the road damage coefficients are also analyzed under different vehicle design and running parameters at detail. Some conclusions are obtained: low suspension stiffness, high suspension damping and low tire stiffness are all favorable to improve vehicle performance; there is a saturation range of suspension damping enhancing vehicle performance; improving the road surface roughness and avoiding the no-load running are two effective methods to accomplish the better ride comfort and road-friendliness. The suspension stiffness and damping parameters are chosen for optimal parameters matching of road friendliness based on the approximation optimization method.

  16. Electric vehicles: energy consumption and the comparision with other new vehicle technologies

    NARCIS (Netherlands)

    Weijer, C.J.T. van de; Schillemans, R.A.A.

    1996-01-01

    In the end of the 19th century the electric vehicle (EV) controlled the market for road transport. But with remarkable improvements in the performance of internal combustion engine vehicles (ICEVs), EVs had vanished from the scene by the 1930's. Since then, they have attracted interest from time to

  17. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  18. Cold Regions Issues for Off-Road Autonomous Vehicles

    Science.gov (United States)

    2004-04-01

    the operation of off-road autonomous vehicles . Low-temperature effects on lubricants, materials, and batteries can impair a robot’s ability to operate...demanding that off-road autonomous vehicles must be designed for and tested in cold regions if they are expected to operate there successfully.

  19. [Risk factors for road traffic injury in agricultural vehicle drivers].

    Science.gov (United States)

    Cui, M J; Chen, Y; Li, Y; Hu, J; Zhang, X J

    2017-08-20

    Objective: To examine the risk factors for road traffic injury in agricultural vehicle drivers. Methods: A total of 103 drivers (who had suffered agricultural vehicle road traffic injury within the past year based on the road traffic injury registrar from the Traffic Management Bureau) who were involved in the annual agricultural vehicle inspection from December 2014 to January 2015 were randomly sampled from the Yixing Agricultural Vehicle Station as the case group for this study. Based on a 1∶2 assignment ratio and matched for sex, age, and education, a total of 206 drivers who had not suffered any agricultural vehicle road traffic injury within the past year were selected as the control group. The general information, vehicle information, driving information, driving behavior, and accident details of the agricultural vehicle drivers were analyzed. Results: The incidence rate of road traffic injury was 7.24% given the 103 agricultural vehicle drivers who had suffered agricultural vehicle road traffic injury in the past year. Univariate logistic regression analysis showed that drinking, debt, pressure, history of car accident, history of drunk driving, smoking and phone use during driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =2.332, 2.429, 19.778, 5.589, 8.517, 2.125, 3.203, 10.249 and 5.639, respectively) . Multivariate logistic regression analysis also demonstrated that pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =12.139, 11.184, 6.729, 5.939, and 6.544, respectively) . Conclusion: Pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness are the major risk factors for road traffic injury in agricultural vehicle drivers.

  20. Electric Vehicle Interaction at the Electrical Circuit Level

    Science.gov (United States)

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  1. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  2. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  3. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  4. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  5. Issues of using Longer Heavier Vehicles on Roads

    Science.gov (United States)

    Matuszkova, R.; Heczko, M.; Cepil, J.; Radimsky, M.

    2018-03-01

    Many logistics companies aim to save on freight costs. Recently, not only on Czech roads and on motorways, longer and heavier vehicles that exceed dimensions’ limits appeared. For these vehicles, it is necessary to apply for a special permit, which is, however, much more liberal than the permit for oversized and overweight load transport. This paper informs about checking routes of these vehicles by swept path analysis and finding locations on roads that can generate both safety risks and traffic fluency problems.

  6. Substantiation of the road toll for heavy transport vehicles

    OpenAIRE

    Burmaka, N.; Chernykh, A.

    2010-01-01

    The existing and possible additional sources of developing state and local road funds of Ukraine have been considered. The formula for calculating monthly road toll for heavy transport vehicles has been proposed. This formula includes the payment rate per every kilometer of distance, the vehicle capacity utilization factor and the run with the load. The payment rate per every kilometer of distance for transport vehicles depending on the allowed total weight has been substantiated. The given r...

  7. Distributed Road Grade Estimation for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sahlholm, Per

    2011-07-01

    An increasing need for goods and passenger transportation drives continued worldwide growth in traffic. As traffic increases environmental concerns, traffic safety, and cost efficiency become ever more important. Advancements in microelectronics open the possibility to address these issues through new advanced driver assistance systems. Applications such as predictive cruise control, automated gearbox control, predictive front lighting control, and hybrid vehicle state-of-charge control decrease the energy consumption of vehicles and increase the safety. These control systems can benefit significantly from preview road grade information. This information is currently obtained using specialized survey vehicles, and is not widely available. This thesis proposes new methods to obtain road grade information using on-board sensors. The task of creating road grade maps is addressed by the proposal of a framework where vehicles using a road network collect the necessary data for estimating the road grade. The estimation can then be carried out locally in the vehicle, or in the presence of a communication link to the infrastructure, centrally. In either case the accuracy of the map increases over time, and costly road surveys can be avoided. This thesis presents a new distributed method for creating accurate road grade maps for vehicle control applications. Standard heavy duty vehicles in normal operation are used to collect measurements. Estimates from multiple passes along a road segment are merged to form a road grade map, which improves each time a vehicle retraces a route. The design and implementation of the road grade estimator are described, and the performance is experimentally evaluated using real vehicles. Three different grade estimation methods, based on different assumption on the road grade signal, are proposed and compared. They all use data from sensors that are standard equipment in heavy duty vehicles. Measurements of the vehicle speed and the engine

  8. Possibilities for increasing the use of electric vehicles in Switzerland

    International Nuclear Information System (INIS)

    Dijamatovic, Y.

    1996-01-01

    In the towns, it is becoming urgent to define an environment friendly mobility and transport strategy for medium and long distance transportation. Electrical vehicle, whether dependent on an electrical system or battery powered, must be supported as the only solution capable of efficiently fighting against the concentration of chemical and especially noise pollution. By replacing 10% of the Swiss vehicles on the road with electrical vehicles, the electricity consumption in Switzerland would increase by 1.1%. The effects of a massive introduction of electrical vehicles can be beneficial in various sectors of activity. The Swiss confederation has invested money in this sector and the EV promotion is carried out by the electrical utilities, associations, clubs, publications, automobile fairs. These different aspects are discussed in further details. (author)

  9. Air-Conditioning for Electric Vehicles

    Science.gov (United States)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  10. Price Based Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth

    2012-01-01

    It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This pa......It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid...... method where distribution system operator (DSO) optimizes the cost of EV charging while taking substation transformer capacity into account....

  11. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  12. The effect of vehicle characteristics on road accidents

    CERN Document Server

    Jones, I S

    2016-01-01

    The Effect of Vehicle Characteristics on Road Accidents investigates whether vehicle characteristics related to handling and stability contribute to road accidents. Using multiple regression analysis, this book addresses driver and vehicle effects separately in order to define both the magnitude of the handling/accident causation problem as well as the relative importance of the various performance measures. This monograph is comprised of six chapters and begins with detailed studies of accidents to determine the circumstances which lead to loss of control or overturning of a car on the road, and which accidents are likely to be influenced by the handling and stability characteristics of cars. Accident rates for these types of accident are then examined for the more popular models of car. Measures of vehicle handling and stability related to accident rates are also discussed. This text will be a useful resource for motorists and road engineers as well as transportation officials.

  13. Prediction of electric vehicle penetration.

    Science.gov (United States)

    2017-05-01

    The object of this report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. : markets. The sales values for 2016 show a strong year of PEV sales both in the...

  14. Self regulation initiative in heavy vehicle transport to address road safety, accelerated road deterioration and transport productivity in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2006-06-01

    Full Text Available Heavy vehicle overloading and road safety continue to be major problems in South Africa notwithstanding efforts at more effective enforcement by the road and traffic authorities. Overloading causes premature road deterioration and, together...

  15. Properties of road unevenness inducing the kinematical excitation of vehicles

    Directory of Open Access Journals (Sweden)

    Kúdelčíková Mária

    2017-01-01

    Full Text Available The submitted paper is devoted to the mapping of the surface road profile and to the mathematical description of unevenness in one vehicle track. Its statistical parameters are analyzed and the classification of the road into a category based on power spectral density of unevenness is made.

  16. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  17. Considering Variable Road Geometry in Adaptive Vehicle Speed Control

    Directory of Open Access Journals (Sweden)

    Xinping Yan

    2013-01-01

    Full Text Available Adaptive vehicle speed control is critical for developing Advanced Driver Assistance Systems (ADAS. Vehicle speed control considering variable road geometry has become a hotspot in ADAS research. In this paper, first, an exploration of intrinsic relationship between vehicle operation and road geometry is made. Secondly, a collaborative vehicle coupling model, a road geometry model, and an AVSC, which can respond to variable road geometry in advance, are developed. Then, based on H∞ control method and the minimum energy principle, a performance index is specified by a cost function for the proposed AVSC, which can explicitly consider variable road geometry in its optimization process. The proposed AVSC is designed by the Hamilton-Jacobi Inequality (HJI. Finally, simulations are carried out by combining the vehicle model with the road geometry model, in an aim of minimizing the performance index of the AVSC. Analyses of the simulation results indicate that the proposed AVSC can automatically and effectively regulate speed according to variable road geometry. It is believed that the proposed AVSC can be used to improve the economy, comfort, and safety effects of current ADAS.

  18. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  19. Construction of Three-Dimensional Road Surface and Application on Interaction between Vehicle and Road

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2018-01-01

    Full Text Available The quantitative description is given to three-dimensional micro and macro self-similar characteristics of road surface from the perspective of fractal geometry using FBM stochastic midpoint displacement and diamond-square algorithm in conjunction with fractal characteristics and statistical characteristics of standard pavement determined by estimation method of box-counting dimension. The comparative analysis between reconstructed three-dimensional road surface spectrum and theoretical road surface spectrum and correlation coefficient demonstrate the high reconstruction accuracy of fractal reconstructed road spectrum. Furthermore, the bump zone is taken as an example to reconstruct a more arbitrary 3D road model through isomorphism of special road surface with stochastic road surface model. Measurement is taken to assume the tire footprint on road surface to be a rectangle, where the pressure distribution is expressed with mean stiffness, while the contact points in the contact area are replaced with a number of springs. Two-DOF vehicle is used as an example to analyze the difference between three-dimensional multipoint-and-plane contact and traditional point contact model. Three-dimensional road surface spectrum provides a more accurate description of the impact effect of tire on road surface, thereby laying a theoretical basis for studies on the dynamical process of interaction of vehicle-road surface and the road friendliness.

  20. Consistent haul road condition monitoring by means of vehicle response normalisation with Gaussian processes

    CSIR Research Space (South Africa)

    Heyns, T

    2012-12-01

    Full Text Available Suboptimal haul road management policies such as routine, periodic and urgent maintenance may result in unnecessary cost, both to roads and vehicles. A recent idea is to continually access haul road condition based on measured vehicle response...

  1. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  2. Perspectives for Electric Vehicles in Denmark

    DEFF Research Database (Denmark)

    Horstmann, Jørgen; Jørgensen, Kaj

    1997-01-01

    Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective.......Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective....

  3. Spine Trauma Associated with Off-Road Vehicles.

    Science.gov (United States)

    Reid, David C.; And Others

    1988-01-01

    A seven-year review of 1,447 cases of spine trauma showed that 53 cases were associated with the use of off-road vehicles, such as all-terrain vehicles, snowmobiles, and motorized dirt bikes. The development of safe riding areas, legislation governing safe operation, and public safety education are advised to curb this trend. (Author/JL)

  4. Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation

    CSIR Research Space (South Africa)

    Ngwangwa, HM

    2010-04-01

    Full Text Available -1 Journal of Terramechanics Volume 47, Issue 2, April 2010, Pages 97-111 Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation H.M. Ngwangwaa, P.S. Heynsa, , , F...

  5. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  6. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-02

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  7. ROMO - The Robotic Electric Vehicle

    OpenAIRE

    Brembeck, Jonathan; Ho, Lok Man; Schaub, Alexander; Satzger, Clemens; Tobolar, Jakub; Bals, Johann; Hirzinger, Gerhard

    2011-01-01

    This paper outlines the development of the ROboMObil, an innovative electro-mobility concept based on intelligent central control of four Wheel Robots, which integrate the drivetrain, brakes, steering and dampers. The motivation behind the Wheel Robot concept, the implementation details together with the suspension design are described. The electric power system, consisting of a Li-Ion battery cluster to provide high-voltage power for propulsion and a low-voltage supply for vehicle control, i...

  8. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  9. Electric vehicle test report Cutler-Hammer Corvette

    Science.gov (United States)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  10. An electric-drive vehicle strategy for Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, D.; Lipman, T. [California Univ., Davis, CA (United States). Inst. of Transportation Studies; Lundberg, M. [Swedish Transport and Communications Research Board, Stockholm (Sweden)

    2000-07-01

    The strategy that Sweden has taken regarding the use of electric-powered vehicles (EVs) to mitigate the environmental impacts caused by the transportation sector was discussed. Sweden's unique attributes include inexpensive and clean electricity, a strong environmental ethic and a strong automotive sector. All versions of electric-drive technology are considered to be environmentally superior to internal combustion engine vehicles. While the cost of batteries is dropping, they will remain highly priced. However, manufacturers are making larger investments into hybrid EVs and fuel cell EVs. Electric drive buses are also gaining in popularity as a means by which to reduce exhaust gases in urban areas. Sweden's industrial policy is aimed at manufacturing electrically driven heavy duty vehicles such as buses and trucks. The environmental policy is aimed at deploying small EVs for on and off-road transportation use, as well as heavy duty EVs targeted by the industrial policy. refs.

  11. Estimation of road profile variability from measured vehicle responses

    Science.gov (United States)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  12. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  13. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  14. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  15. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  16. Electric vehicle equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  17. Traction control of an electric vehicle based on nonlinear observers

    Directory of Open Access Journals (Sweden)

    Diego A. Aligia

    2017-12-01

    Full Text Available A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform.

  18. RoadRail: An economically viable infrastructure which facilitates the transition from oil to electricity for all forms of road transport

    DEFF Research Database (Denmark)

    Connolly, David

    2012-01-01

    to convert road transport from oil to electricity. This involves the electrification of major roads so that electric cars, vans, busses, and trucks can use electricity as their primary fuel over long distance, which in this study is referred to as ‘RoadRail’. This is a new and radical alternative......In recent decades, economic renewable energy technologies have been developed for the electricity and heat sectors. Although there has been some development in the transport sector, there is still no well-establish sustainable alternatives to oil. In this study, a new alternative is proposed...... and electricity/oil costs, Denmark is presented as a case study for the installation of RoadRail. The results indicate that based on 2020 cost assumptions, RoadRail is a more socio-economic alternative than a business-as-usual using oil. This is primarily due to decreasing electric vehicle costs, decreasing...

  19. Electric Vehicle Smart Charging using Dynamic Price Signal

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Pedersen, Anders Bro; Marinelli, Mattia

    2014-01-01

    , however, be resolved by using intelligent EV charging strategies, commonly referred to as ”Smart Charging”. The basic approach involves modifying the default vehicle charging scheme of ”immediate charging”, to a more optimal one that is derived from insight into the current state of the grid. This work......With yearly increases in Electric Vehicle (EV) sales, the future for electric mobility continues to brighten, and with more vehicles hitting the roads every day, the energy requirements on the grid will increase, potentially causing low-voltage distribution grid congestion. This problem can...... proposed in this paper, involves a real-time control strategy for charging the EV using a dynamic price tariff, with the objective of minimizing the charging cost. Two different charging scenario are investigated, and the results are verified by experiments on a real Electric Vehicle. Finally, the costs...

  20. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  1. Road traffic injuries among riders of electric bike/electric moped in southern China.

    Science.gov (United States)

    Zhang, Xujun; Yang, Yaming; Yang, Jie; Hu, Jie; Li, Yang; Wu, Ming; Stallones, Lorann; Xiang, Henry

    2018-05-19

    Electric bike/moped-related road traffic injuries have become a burgeoning public health problem in China. The objective of this study was to identify the prevalence and potential risk factors of electric bike/moped-related road traffic injuries among electric bike/moped riders in southern China. A cross-sectional study was used to interview 3,151 electric bike/moped riders in southern China. Electric bike/moped-related road traffic injuries that occurred from July 2014 to June 2015 were investigated. Data were collected by face-to-face interviews and analyzed between July 2015 and June 2017. The prevalence of electric bike/moped-related road traffic injuries among the investigated riders was 15.99%. Electric bike/moped-related road traffic injuries were significantly associated with category of electric bike (adjusted odds ratio [AOR] = 1.36, 95% confidence interval [CI], 1.01-1.82), self-reported confusion (AOR = 1.77, 95% CI, 1.13-2.78), history of crashes (AOR = 6.14, 95% CI, 4.68-8.07), running red lights (AOR = 3.57, 95% CI, 2.42-5.25), carrying children while riding (AOR = 1.96, 95% CI, 1.37-2.85), carrying adults while riding (AOR = 1.68, 95% CI, 1.23-2.28), riding in the motor lane (AOR = 2.42, 95% CI, 1.05-3.93), and riding in the wrong traffic direction (AOR = 1.63, 95% CI, 1.13-2.35). In over 77.58% of electric bike/moped-related road traffic crashes, riders were determined by the police to be responsible for the crash. Major crash-causing factors included violating traffic signals or signs, careless riding, speeding, and riding in the wrong lane. Traffic safety related to electric bikes/moped is becoming more problematic with growing popularity compared with other 2-wheeled vehicles. Programs need to be developed to prevent electric bike/moped-related road traffic injuries in this emerging country.

  2. Physiological demands of off-road vehicle riding.

    Science.gov (United States)

    Burr, Jamie F; Jamnik, Veronica K; Shaw, Jim A; Gledhill, Norman

    2010-07-01

    The purpose of this study was to characterize the physiological demands of recreational off-road vehicle riding under typical riding conditions using habitual recreational off-road vehicle riders (n = 128). Comparisons of the physical demands of off-road vehicle riding were made between vehicle types (all-terrain vehicle (ATV) and off-road motorcycle (ORM)) to the demands of common recreational activities. Habitual riders (ATV = 56, ORM = 72) performed strength assessments before and after a representative trail ride (48 +/- 24.2 min), and ambulatory oxygen consumption was measured during one lap (24.2 +/- 11.8 min) of the ride. The mean VO2 requirement (mL x kg(-1) x min(-1)) while riding an off-road vehicle was 12.1 +/- 4.9 for ATV and 21.3 +/- 7.1 for ORM (P = 0.002), which is comparable to the VO2 required of many common recreational activities. Temporal analysis of activity intensity revealed approximately 14% of an ATV ride and 38% of an ORM ride are within the intensity range (940% VO2 reserve) required to achieve changes in aerobic fitness. Riding on a representative course also led to muscular fatigue, particularly in the upper body. On the basis of the measured metabolic demands, evidence of muscular strength requirements, and the associated caloric expenditures with off-road vehicle riding, this alternative form of activity conforms to the recommended physical activity guidelines and can be effective for achieving beneficial changes in health and fitness.

  3. Mobility in Turkey. Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yazgan, M. [Embassy of the Kingdom of the Netherlands, Turan Gunes Bulvari, Hollanda Caddesi, No.5,06550 Yildiz-Ankara (Turkey)

    2013-01-15

    The purpose of this report is to provide information about electric vehicles (EVs) and e-mobility as an emerging market in Turkey. EVs receive attention from the Turkish government for a number of reasons: Turkey has a strong automotive industry and needs to follow the technological developments taking place regarding intelligent vehicles and intelligent transport systems, as well as electric transportation technologies. Secondly, a considerable amount of carbon emissions from motor vehicles is of great concern in relation to climate change. EVs might be an alternative which can break the dependence of Turkey on imported fuel that has a negative influence on its current account deficit (CAD). On top of these factors, the Prime Minister of Turkey has a desire to have a 'Local Brand Vehicle' before the 100th year of the establishment of the Republic in 2023 and preferably an 'EV'. EVs are included in the strategy documents and action plans of almost all ministries and public institutions. Among all ministries, the Ministry of Science, Industry and Technology (MoSI and T) takes a leading position. It holds bi-annual meetings with stakeholders to monitor and evaluate progress about the level of actualization of the identified policies on e-mobility. MoSI and T's related institution of the Scientific and Technological Research Council of Turkey (TUBITAK) co-ordinates the R and D activities and provides generous R and D incentives. EVs have been put on sale in Turkey in 2012 and are still very limited in number. Public institutions are taking the lead by converting their vehicle fleet to EVs. EVs are also more suitable for businesses/ duties with a fixed/short route; therefore it is expected that the growth of the sector will mainly come from the vehicle fleet of the public organisations and institutions, followed by the private vehicle fleet of companies, e.g. freight companies. Although there are some on-going test drives, it is not yet proven

  4. Using endemic road features to create self-explaining roads and reduce vehicle speeds.

    Science.gov (United States)

    Charlton, Samuel G; Mackie, Hamish W; Baas, Peter H; Hay, Karen; Menezes, Miguel; Dixon, Claire

    2010-11-01

    This paper describes a project undertaken to establish a self-explaining roads (SER) design programme on existing streets in an urban area. The methodology focussed on developing a process to identify functional road categories and designs based on endemic road characteristics taken from functional exemplars in the study area. The study area was divided into two sections, one to receive SER treatments designed to maximise visual differences between road categories, and a matched control area to remain untreated for purposes of comparison. The SER design for local roads included increased landscaping and community islands to limit forward visibility, and removal of road markings to create a visually distinct road environment. In comparison, roads categorised as collectors received increased delineation, addition of cycle lanes, and improved amenity for pedestrians. Speed data collected 3 months after implementation showed a significant reduction in vehicle speeds on local roads and increased homogeneity of speeds on both local and collector roads. The objective speed data, combined with residents' speed choice ratings, indicated that the project was successful in creating two discriminably different road categories. 2010 Elsevier Ltd. All rights reserved.

  5. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    Science.gov (United States)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  6. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  7. Overview of hybrid electric vehicle trend

    Science.gov (United States)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  8. Electric vehicles in imperfect electricity markets: The case of Germany

    International Nuclear Information System (INIS)

    Schill, Wolf-Peter

    2011-01-01

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future. - Highlights: → We study the effect of electric vehicles on an imperfectly competitive electricity market. → We apply a game-theoretic model to the German market. → There is a market power-mitigating effect of vehicle loading on oligopolistic generating firms. → Consumers benefit from electric vehicles if excess battery capacity can be used for grid storage. → Electric vehicles are unlikely to be a source of market power in Germany in the near future.

  9. Energy management for the electric powernet in vehicles with a conventional drivetrain

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Jager, de A.G.; Bosch, van den P.P.J.; Aneke, N.P.I.; Kok, D.B.

    2007-01-01

    The electric power demand in road vehicles increases rapidly. Energy management (EM) turns out to be a viable solution for supplying all electric loads efficiently. The EM strategies developed in this paper focus on vehicles with a conventional drivetrain. By exploiting the storage capacity of the

  10. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  11. Electric vehicles integration within low voltage electricity networks & possibilities for distribution energy loss reduction

    NARCIS (Netherlands)

    Lampropoulos, I.; Veldman, E.; Kling, W.L.; Gibescu, M.; Slootweg, J.G.

    2010-01-01

    With the prospect of an increasing number of electric vehicles (EVs) on the road, domestic charging will be the most obvious way to recharge the vehicles’ batteries. However, this can have adverse impacts to low voltage (LV) distribution grids such as high current demand, increased 3-phase load

  12. A prospective assessment of electric vehicles

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes a synthetic version of a cost-benefit analysis study of the development of electric vehicles (all-electric vehicles and hybrid-re-chargeable vehicles) by 2020. The authors have assessed the replacement of a conventional thermal engine vehicle by an electric vehicle. They comment the results obtained for the both types of electric vehicle. They outline that costs of ownership of electric vehicles are higher in 2010 but become competitive in 2020, and that environmental benefits are already present in 2010 but depend on the electricity production mode. They observe that some other environmental impacts are not taken into account, outline that a recharge station network has to be developed, and discuss the cost of this infrastructure

  13. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  14. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  15. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  16. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  17. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.

  18. Observers for vehicle tyre/road forces estimation: experimental validation

    Science.gov (United States)

    Doumiati, M.; Victorino, A.; Lechner, D.; Baffet, G.; Charara, A.

    2010-11-01

    The motion of a vehicle is governed by the forces generated between the tyres and the road. Knowledge of these vehicle dynamic variables is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. This study introduces a new estimation process for tyre/road forces. It presents many benefits over the existing state-of-art works, within the dynamic estimation framework. One of these major contributions consists of discussing in detail the vertical and lateral tyre forces at each tyre. The proposed method is based on the dynamic response of a vehicle instrumented with potentially integrated sensors. The estimation process is separated into two principal blocks. The role of the first block is to estimate vertical tyre forces, whereas in the second block two observers are proposed and compared for the estimation of lateral tyre/road forces. The different observers are based on a prediction/estimation Kalman filter. The performance of this concept is tested and compared with real experimental data using a laboratory car. Experimental results show that the proposed approach is a promising technique to provide accurate estimation. Thus, it can be considered as a practical low-cost solution for calculating vertical and lateral tyre/road forces.

  19. Road rage and road traffic accidents among commercial vehicle drivers in Lahore, Pakistan.

    Science.gov (United States)

    Shaikh, M A; Shaikh, I A; Siddiqui, Z

    2012-04-01

    Road rage and road traffic accidents increase the burden of morbidity and mortality in a population. A cross-sectional survey with convenience sampling was conducted among commercial vehicle drivers in Lahore, Pakistan (n = 901) to record their behaviours/experiences regarding road rage and road traffic accidents. Respondents were asked about incidents of shouting/cursing/rude gestures or threats to physically hurt the person/vehicle, by others or themselves, in the previous 24 hours or 3 months, and their involvement in road traffic accidents in the previous 12 months. Auto-rickshaw drivers were significantly more likely to report various road rage experiences/behaviours and involvement in accidents compared with bus and wagon drivers. A total of 112 respondents (12.4%) reported being involved in a road traffic accident in the previous 12 months but traffic police did not record the accident in 52.7% of cases. The results of this study underline the need to improve road safety in Pakistan.

  20. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To

  1. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  2. Test and evaluation of Chrysler T115 electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Three Chrysler T115 mini vans were converted to electric drive in the spring of 1984 and tested in test track, chassis dynamometer, and urban road settings. Vehicle dc energy consumption and driving range were measured on the Society of Automotive Engineers J227a C schedule driving cycle, and at constant speed at the Blainville, Quebec test track. Other tests measured top speed, maximum acceleration, hill climbing, and braking performance of the vehicle. The vehicle's performance achieved the expected results. Net energy consumption, when compared to gasoline powered vehicles, was very favourable. The test program showed that the vehicle electrics and drive system are reliable. However, the acceleration and maximum speed were limited by the voltage output of the lead acid battery. The performance of the vehicle was not adversely affected by wide range as in ambient temperature, due to the thermal management battery system in the vehicle. The range of the vehicle was limited to 80 km due to the power output of the lead acid battery. When tested with the prototype sodium sulphur battery the range exceeded 200 km. With this range, market acceptance of this vehicle will be significantly enhanced. The overall vehicle efficiency of the T115 electric van was calculated to be 58%. This compared very favourably to the gasoline-powered vehicle which has an efficiency of approximately 17%. Results of this program confirmed the fact that until suitable advanced batteries are available, commercial applications of electric vehicles will be limited. 8 refs., 18 figs., 20 tabs.

  3. A comparison of electric vehicle integration projects

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Garcia-Valle, Rodrigo; Kempton, Willett

    2012-01-01

    .g. utilization of electric vehicles for ancillary services. To arrive at standardized solutions, it is helpful to analyze the market integration and utilization concepts, architectures and technologies used in a set of state-of-the art electric vehicle demonstration projects. The goal of this paper......It is widely agreed that an intelligent integration of electric vehicles can yield benefits for electric vehicle owner, power grid, and the society as a whole. Numerous electric vehicle utilization concepts have been investigated ranging from the simple e.g. delayed charging to the more advanced e...... is to highlight different approaches to electric vehicle integration in three such projects and describe the underlying technical components which should be harmonized to support interoperability and a broad set of utilization concepts. The projects investigated are the American University of Delaware's V2G...

  4. Electric vehicle life cycle cost analysis : final research project report.

    Science.gov (United States)

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  5. Stress-oriented driver assistance system for electric vehicles.

    Science.gov (United States)

    Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios

    2014-01-01

    Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.

  6. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  7. Selected road condition, vehicle and freight considerations in pavement life cycle assessment

    CSIR Research Space (South Africa)

    Steyn, WJ vdM

    2014-10-01

    Full Text Available road condition data from two corridors were collected and analyzed to determine the effect of the current road condition and potential changes in these road conditions on the economic and environmental impacts of the situation. Existing Vehicle...

  8. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  9. Road user charges for heavy goods vehicles (HGV)

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air...

  10. 25 years TNO Road-Vehicles Research Institute

    NARCIS (Netherlands)

    1995-01-01

    Since the founding of the TNO Road-Vehicles Research Institute 25years ago, the institute has managed to develop a leading position in automotive research in several disciplines. A steady growth of the institute during the first 20 years has turned into a strong growth during the last 5 years. A

  11. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  12. Agricultural vehicles and rural road safety: tackling a persistent problem.

    Science.gov (United States)

    Jaarsma, Catharinus F; De Vries, Jasper R

    2014-01-01

    Crashes involving agricultural vehicles (AVs) on public roads are an increasing road safety problem. We aim to analyze developments in the appearance and severity of these accidents, identify influencing factors, and draw lessons for possible interventions for accident prevention within the context of modern mechanized agriculture. To analyze developments in the appearance of accidents we use a subset of accidents with AVs involved on public roads in The Netherlands aggregated per year for 1987-2010. To identify and explore preventive measures we use an in-depth study of the Dutch Safety Board. With a study of international literature we put our findings in a wider context. During this time span, Dutch annual averages show 15 registered fatal accidents involving AVs, 93 with hospitalization and 137 with slight injuries. For nonfatal accidents, the numbers are decreasing over time. This decrease is proportionate to the reduction in the total number of traffic victims. For fatalities, however, the number is stable, increasing its proportion in all traffic fatalities from 1 in 1987 to 2 percent in 2010. Related to the number of inhabitants, this number is 2 times the value in the UK and 3 times the value in the United States. Influencing factors can be related to the 3 road system components (AV, driver, and infrastructure). Weak points for AVs are the view from the driver's seat, visibility at night, permitted vehicle width, and crash aggressivity (large kinetic energy of the AV) that is transferred to other road users in case of a collision. Important factors identified for the driver are poor risk perception and high risk acceptance, in combination with speeding, dysfunctional use such as the use of AVs as modes of transport to and from school, and driving on public roads without protecting or removing protruding and sharp components. For infrastructure, the focus is on road design and separation of AVs from other motor vehicles. Lessons to be learned follow from

  13. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  14. IRVIN - Intelligent Road and Vehicle test INfrastructure

    NARCIS (Netherlands)

    Bakker, R.T.; Hogema, J.A.; Huiskamp, W.; Papp, Z.

    2005-01-01

    Simulation, or rather virtual testing, is a good instrument for study and design of traffic management concepts, traffic safety, vehicle safety and ergonomics. Simulation facilitates the evaluation of the design at an early stage and reduces the costs of making prototypes. The Dutch research

  15. Electric vehicle utilization for ancillary grid services

    Science.gov (United States)

    Aziz, Muhammad

    2018-02-01

    Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.

  16. The efficiency of direct torque control for electric vehicle behavior improvement

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2011-01-01

    Full Text Available Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC. For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.

  17. VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Fabio Arnéz

    2014-01-01

    Full Text Available Intelligent Transport Systems (ITS are emerging technologies for building collaborative vehicular networks to increase road safety and to improve driver’s experience. Unfortunately these technologies require heavy infrastructure to be deployed inside and outside the vehicle that is difficult to extend. In this article we present VIRMS (Vehicle Information and Road Monitoring System, an ITS that is based on low-cost and small footprint client and server infrastructure that was designed to increase vehicular security and reduce accident rates along highways. The VIRMS remote client device is an on board vehicle electronic device that gathers data from sensors and processes the collected data that is sent to the VIRMS server in order to keep drivers informed with precise context information through the detection and identification of events (accidents, traffic jams, bad weather conditions, etc. along the roads. A prototype running tests on Bolivian highways show that VIRMS can give a technological answer to a real problem where road safety is one of the highest issues and cause of mortality.

  18. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    Science.gov (United States)

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  20. The Federal electric and hybrid vehicle program

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.

  1. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  2. Electric Vehicle Grid Integration | Transportation Research | NREL

    Science.gov (United States)

    Electric Vehicle Grid Integration Electric Vehicle Grid Integration Illustration of a house with a in the garage, is connected via a power cord to a household outlet. A sustainable transportation sustainable transportation technologies to increase the capacity, efficiency, and stability of the grid

  3. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K [Technical Univ. of Denmark (Denmark); Nielsen, L H [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  4. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Science.gov (United States)

    2010-04-01

    ... qualified electric vehicle. A qualified electric vehicle is a motor vehicle that meets the requirements of section 30(c). Accordingly, a qualified electric vehicle does not include any motor vehicle that has ever been used (for either personal or business use) as a non-electric vehicle. (b) Recapture of credit for...

  5. A database on electric vehicle use in Sweden. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fridstrand, Niklas [Lund Univ. (Sweden). Dept. of Industrial Electrical Engineering and Automation

    2000-05-01

    The Department of Industrial Electrical Engineering and Automation (IEA) at the Lund Institute of Technology (LTH), has taken responsibility for developing and maintaining a database on electric and hybrid road vehicles in Sweden. The Swedish Transport and Communications Research Board, (KFB) initiated the development of this database. Information is collected from three major cities in Sweden: Malmoe, Gothenburg and Stockholm, as well as smaller cities such as Skellefteaa and Haernoesand in northern Sweden. This final report summarises the experience gained during the development and maintenance of the database from February 1996 to December 1999. Our aim was to construct a well-functioning database for the evaluation of electric and hybrid road vehicles in Sweden. The database contains detailed information on several years' use of electric vehicles (EVs) in Sweden (for example, 220 million driving records). Two data acquisition systems were used, one less and one more complex with respect to the number of quantities logged. Unfortunately, data collection was not complete, due to malfunctioning of the more complex system, and due to human factors for the less complex system.

  6. Vehicle to grid: electric vehicles as an energy storage solution

    Science.gov (United States)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  7. Trajectory generation for an on-road autonomous vehicle

    Science.gov (United States)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  8. Optimal Charge control of Electric Vehicles in Electricity Markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Wu, Guang

    2011-01-01

    Environment constraints, petroleum scarcity, high price on fuel resources and recent advancements in battery technology have led to emergence of Electric Vehicles (EVs). As increasing numbers of EVs enter the electricity market, these extra loads may cause peak load and need to be properly...... controlled. In this paper, an algorithm is presented for every individual vehicles to minimize the charging cost while satisfying the vehicle owner’s requirements. The algorithm is based on a given future electricity prices and uses dynamic programming. Optimization aims to find the economically optimal...... solution for each vehicle....

  9. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  10. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  11. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  12. eRoads

    DEFF Research Database (Denmark)

    Connolly, David

    vehicles enable more renewable electricity to be integrated onto the electricity grid. This is particularly evident in 2050, since the price of fossil fuels increases while the price of renewable electricity and batteries decreases. Finally, the electric road scenarios can facilitate more reductions......This study compares electric roads with oil (petrol and diesel) and battery electric vehicles, using Denmark as a case study. Electric roads can reduce the cost of electric vehicles by supplying them with electricity directly from the road rather than via a battery for long-distance journeys....... In this paper, an electric road scenario is compared to both an oil and battery electric vehicle scenario using the 2010 Danish energy system, but for two sets of costs: one set based on historical costs from the year 2010 and one based on projected costs for the year 2050. The results indicate that electric...

  13. Electric vehicles: Technology assessment and commercialization

    International Nuclear Information System (INIS)

    Zabot, S.

    1991-01-01

    This article traces the history of commercialization efforts relative to electric vehicles, assesses the state-of-the-art of electric vehicle technology and identifies the industrial firms that are investing heavily in this field. The main design problems affecting the commercialization of these vehicles (e.g., battery weight, autonomy, operating safety and toxicity) are pointed out. Comparisons of commercialization prospects are made with those for hydrogen fuelled vehicles. With regard to investments in research programs, it is argued that, in addition to car manufacturers and oil companies, the usual active participants in the transport sector, new participants are needed to give added support to the development of electric vehicles, namely, electric utilities and battery manufacturers

  14. Intelligent Control Of An Electric Vehicle ICEV

    Directory of Open Access Journals (Sweden)

    Taoufik Chaouachi

    2017-01-01

    Full Text Available The electric vehicle allows fast gentle quiet and environmentally friendly movements in industrial and urban environments. The automotive industry has seen the opportunity to revive its production by replacing existing vehicles due to the reluctance of oil reserves around the world. In order to greatly reduce countries dependence on oil strategic sectors such as transport must increasingly integrate technologies based primarily on clean and renewable energy. Governments must implement large-scale measures to equip themselves with electric vehicles and build large recharge networks. The traditional system for conversions of conventional vehicles into electric vehicles consists of replacing the internal combustion engine and the gearbox with electrical components engine and gearbox or engine and gearbox retaining the rest of the elements Transmission transmission shafts etc..

  15. Vehicle Unsteady Dynamics Characteristics Based on Tire and Road Features

    Directory of Open Access Journals (Sweden)

    Bin Ma

    2013-01-01

    Full Text Available During automotive related accidents, tire and road play an important role in vehicle unsteady dynamics as they have a significant impact on the sliding friction. The calculation of the rubber viscoelastic energy loss modulus and the true contact area model is improved based on the true contact area and the rubber viscoelastic theory. A 10 DOF full vehicle dynamic model in consideration of the kinetic sliding friction coefficient which has good accuracy and reality is developed. The stability test is carried out to evaluate the effectiveness of the model, and the simulation test is done in MATLAB to analyze the impact of tire feature and road self-affine characteristics on the sport utility vehicle (SUV unsteady dynamics under different weights. The findings show that it is a great significance to analyze the SUV dynamics equipped with different tire on different roads, which may provide useful insights into solving the explicit-implicit features of tire prints in systematically and designing active safety systems.

  16. Prediction on the charging demand for electric vehicles in Chengdu

    Science.gov (United States)

    yun, Cai; wanquan, Zhang; wei, You; pan, Mao

    2018-03-01

    The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.

  17. Macroeconomic analysis of road vehicles related environmental pollution in Hungary

    Science.gov (United States)

    Török, Árpád; Török, Ádám

    2014-06-01

    The article aims to examine the relationship between road transport and macro economy, especially the use of fossil energy in transport sector. Nowadays environmental pollution is a key issue on the EU level as well as in Hungary. Lots of effort have been already done in order to decrease emissions in road transport, but a lot more need to be done. The article aims to prove that the only possible solution is technological innovation in order to reach emission reduction target without decline of the GDP. The basic idea is to ensure sustainable development, to decrease environmental pollution in road transport without harming the economy. In the EU and in Hungary road vehicles are powered by fossil fuelled internal combustion engines. This paper aims to analyse the role of the fossil fuel-based road transport sector within the economy with the usage of constant elasticity substitution (CES) production functions. Authors have built CES production function for Hungary. Parameters were calculated based on the validated model.

  18. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  19. CHOOSING THE POWER OF TRACTION ELECTRIC MOTORS FOR ELECTRIC VEHICLES

    OpenAIRE

    O. Smirnov; A. Borisenko

    2017-01-01

    Recommendations on choosing the power of the electric motor, depending on the weight of the vehicle, its speed and the run distance in the «only electricity» mode are developed. Based on mathematical modeling and a number of field tests of electric vehicles, a three-dimensional dependance of the power on the weight and the speed set is built and conclusions are presented.

  20. CHOOSING THE POWER OF TRACTION ELECTRIC MOTORS FOR ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    O. Smirnov

    2017-06-01

    Full Text Available Recommendations on choosing the power of the electric motor, depending on the weight of the vehicle, its speed and the run distance in the «only electricity» mode are developed. Based on mathematical modeling and a number of field tests of electric vehicles, a three-dimensional dependance of the power on the weight and the speed set is built and conclusions are presented.

  1. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  2. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  3. 78 FR 5494 - Off-Road Vehicle Management Plan, Draft Environmental Impact Statement, Lake Meredith National...

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-IMR-LAMR-10224; 2310-0091-422] Off-Road... Service (NPS) is releasing a Draft Environmental Impact Statement (DEIS) for the Off- Road Vehicle... impacts of four alternatives that address off-road vehicle (ORV) management in the national recreation...

  4. 36 CFR 9.50 - Use of roads by commercial vehicles.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Use of roads by commercial... INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.50 Use of roads by commercial vehicles. (a) After January 8, 1978, no commercial vehicle shall use roads administered by the National Park Service...

  5. 36 CFR 9.15 - Use of roads by commercial vehicles.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Use of roads by commercial... INTERIOR MINERALS MANAGEMENT Mining and Mining Claims § 9.15 Use of roads by commercial vehicles. (a) After January 26, 1977, no commercial vehicle shall use roads administered by the National Park Service without...

  6. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  7. GM's road to hydrogen powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauling, D. [General Motors, Oshawa, ON (Canada)

    2007-07-01

    General Motor's (GM) long term vision is to remove the automobile from environmental and energy debates. Auto emissions comprise of smog (volatile organic compounds, nitrogen oxides and particulates) and greenhouse gases (carbon dioxide). In the 1970s, GM introduced the catalytic converter to reduce smog forming emissions by more than 99 per cent. This presentation included a pie chart depicting the Canadian contribution to smog forming emissions by sector in 2005. New vehicles were shown to contribute 0.1 per cent. The author stated that the auto sector is the only sector that is significantly reducing smog in Canada and cautioned that the size of vehicle and volume of fuel consumed does not correlate to smog forming emissions. The Car Heaven Program was launched in July 2000 as a partnership between the Clean Air Foundation and various corporate partners including GM Canada. The objective of the program was to accelerate the retirement of older, highly polluting vehicles and switching consumers to more fuel efficient vehicles which will reduce GHG emissions. The program has been conducted in lower mainland British Columbia, Alberta, Manitoba, Quebec and Atlantic Canada. In terms of GHG contribution by sector, new vehicles were shown to contribute 1 per cent. GM's advanced propulsion technology strategy was also presented with reference to hybrid electric vehicles, hydrogen fuel cells, battery electric vehicles, internal combustion engines and E-Flex systems. It was noted that GM has a broad portfolio of fuel efficient vehicles. The company's total vehicle approach to advanced technology vehicles and fuel efficiency was outlined, including it's ethanol capable vehicle technology, hybrid strategy, and fuel cell propulsion system. tabs., figs.

  8. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  9. Electric Vehicles--A Historical Snapshot

    Science.gov (United States)

    Kraft, Thomas E.

    2012-01-01

    Most people don't realize that the history of electric vehicles (EVs) predates the Civil War. This article provides a historical snapshot of EVs to spark the interest of both teachers and students in this important transportation technology.

  10. Electric Vehicle and Wireless Charging Laboratory

    Science.gov (United States)

    2018-03-23

    Wireless charging tests of electric vehicles (EV) have been conducted at the EVTC Wireless Laboratory located at the Florida Solar Energy Center, Cocoa, FL. These tests were performed to document testing protocols, evaluate standards and evaluate ope...

  11. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  12. Energy recuperation in fully electric vehicles subject to stability and drivability requirements

    NARCIS (Netherlands)

    Ólafsdóttir, J.M.; Lidberg, M.; Falcone, P.; Iersel, S. van; Jansen, S.T.H.

    2012-01-01

    This paper presents a combined control and estimation framework for energy recuperation in fully electric vehicles. We consider a fully electric powertrain, with a driven front axle operating on low friction road surfaces. Our objective is to find the blending of regenerative and friction braking

  13. Electric vehicles: Market survey. Marktuebersicht Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A.

    1993-01-01

    In the context of this article a tabular list of electric vehicles is shown, which are licensed and available on the German market. This contains one- to two-seated light-weight vehicles with ordinary serial bodyworks as well as transporters and busses. (BWI)

  14. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  15. Road traffic safety in conjunction with in-vehicle ITS

    Directory of Open Access Journals (Sweden)

    Darja TOPOLŠEK

    2014-06-01

    Full Text Available Interest in Intelligent Transportation Systems comes from the problems caused by traffic congestion, road accidents and air pollution. Traffic congestion continues to grow worldwide as a result of increased motorization, population growth, changes in population density and urbanization. Interest in ITS can also be attributed to reducing road accidents and increasing traffic safety. The most common causes for road accidents are excessive speed, inattentive driving and ignorance of the right-of-way rules. To eliminate these causes, experience, knowledge of traffic regulations and a new car are not enough – vehicle safety systems have to take part as well. Therefore, the European Union issued a directive on the installation of intelligent systems, whose functions are active support during driving, warning the driver in dangerous situations and alerting passengers of the car in case of irregularities in motor function or actions carried out by the driver that may cause danger, such as swerving while falling asleep. These systems help drivers to avoid accidents, and in the event of a collision, an emergency call is automatically made. Furthermore, they can be used to regulate traffic patterns or to reduce engine performance, which would reduce pollution. With these benefits in mind, the EU has indicated to the automotive industry that installation of these new Intelligent Transportation Systems should be mandatory in their new vehicles.

  16. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  17. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  19. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    Science.gov (United States)

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  20. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  1. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  2. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  3. Characterizing information propagation through inter-vehicle communication on a simple network of two parallel roads

    Science.gov (United States)

    2010-10-01

    In this report, we study information propagation via inter-vehicle communication along two parallel : roads. By identifying an inherent Bernoulli process, we are able to derive the mean and variance of : propagation distance. A road separation distan...

  4. On Electrohydraulic Pressure Control for Power Steering Applications : Active Steering for Road Vehicles

    OpenAIRE

    Dell'Amico, Alessandro

    2016-01-01

    This thesis deals with the Electrohydraulic Power Steering system for road vehicles, using electronic pressure control valves. With an ever increasing demand for safer vehicles and fewer traffic accidents, steering-related active safety functions are becoming more common in modern vehicles. Future road vehicles will also evolve towards autonomous vehicles, with several safety, environmental and financial benefits. A key component in realising such solutions is active steering. The power steer...

  5. Battery electric vehicles - implications for the driver interface.

    Science.gov (United States)

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  6. A comparative, simulation supported study on the diffusion of battery electric vehicles in Norway and Sweden

    OpenAIRE

    Testa, Ginevra

    2017-01-01

    We are living at a point in history where global cost dynamics and specific political choices may lead to an integral transformation of the mobility system as we know it. After a century where the internal combustion engine vehicle dominated the scene, the battery electric vehicle (BEV) is making its way into the market- and in giant steps. The world’s transition to electricity and thereby a lower carbon future, depends heavily on electrifying road transportation. Norway and Sweden’s differen...

  7. Smart and secure charging of electric vehicles in public parking spaces

    OpenAIRE

    Strobbe, Matthias; Mets, Kevin; Tahon, Mathieu; Tilman, M; Spiessens, F; Gheerardyn, J; De Craemer, K; Vandael, S; Geebelen, K; Lagaisse, B; Claessens, B; Develder, Chris

    2012-01-01

    Governments worldwide are starting to give incentives to promote the use of (hybrid) electrical vehicles to achieve cleaner and more energy-efficient road transport with a low carbon footprint. Through tax/VAT reductions and free additional services — such as free parking, and/or battery charging or lower traffic congestion taxes — private users, public organizations and car fleet operators are stimulated to adopt the plug-in (hybrid) electrical vehicle (PHEV). This upcoming breakthrough of P...

  8. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  9. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  10. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  11. Universal Safety Distance Alert Device for Road Vehicles

    Directory of Open Access Journals (Sweden)

    Matic Virant

    2016-04-01

    Full Text Available Driving with too short of a safety distance is a common problem in road traffic, often with traffic accidents as a consequence. Research has identified a lack of vehicle-mountable devices for alerting the drivers of trailing vehicles about keeping a sufficient safe distance. The principal requirements for such a device were defined. A conceptual study was performed in order to select the components for the integration of the device. Based on the results of this study, a working prototype of a flexible, self-contained device was designed, built and tested. The device is intended to be mounted on the rear of a vehicle. It uses radar as the primary distance sensor, assisted with a GPS receiver for velocity measurement. A Raspberry Pi single-board computer is used for data acquisition and processing. The alerts are shown on an LED-matrix display mounted on the rear of the host vehicle. The device software is written in Python and provides automatic operation without requiring any user intervention. The tests have shown that the device is usable on almost any motor vehicle and performs reliably in simulated and real traffic. The open issues and possibilities for future improvements are presented in the Discussion.

  12. Evolution of on-road vehicle exhaust emissions in Delhi

    Science.gov (United States)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  13. Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain

    OpenAIRE

    Zaira Navas-Anguita; Diego García-Gusano; Diego Iribarren

    2018-01-01

    The penetration of electric vehicles (EV) seems to be a forthcoming reality in the transport sector worldwide, involving significant increases in electricity demand. However, many countries such as Spain have not yet set binding policy targets in this regard. When compared to a business-as-usual situation, this work evaluates the life-cycle consequences of the increased electricity demand of the Spanish road transport technology mix until 2050. This is done by combining Life Cycle Assessment ...

  14. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  15. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  16. Medium Duty Electric Vehicle Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Robin J. D. [Smith Electric Vehicles Corporation, Kansas City, MO (United States)

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  17. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  18. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  19. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  20. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  1. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Willer, B.

    1993-01-01

    An electrical drive is an alternative to the present internal combustion engines. The electric car produces no exhaust gas where it is used and drives practically noiselessly. The energy required for driving is usually taken from an electro-chemical battery. The necessary electricity generation generates emission and CO 2 , depending on the primary energy used. An alternative is provided by electricity generation with the aid of regenerative energy. Apart from hydroelectric and wind energy, solar energy can make a considerable contribution in the future. (orig.) [de

  2. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    Science.gov (United States)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  3. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  4. Disturbance of beach sediment by off-road vehicles

    Science.gov (United States)

    Anders, Fred J.; Leatherman, Stephen P.

    1987-10-01

    A three-year investigation was undertaken to examine the effects of off-road vehicles (ORVs) on the beach at Fire Island, New York. Within the National Seashore over 45,000 vehicle trips per year are concentrated in the zone seaward of the dune toe. The experimental approach was adopted in order to assess the environmental effects of ORVs. Specially developed instrumentation was used to measure the direct displacement of sand by vehicles traversing the beach. Direct displacement data were reduced graphically and analyzed by stepwise linear regression. The results of 89 field experiments (788 cases) showed that slope, sand compaction, and number of vehicle passes in the same track were the principal factors controlling the measured net seaward displacement of sand. The data suggest that ORV use levels within the National Seashore could be contributing to the overall erosion rate by delivering large quantities of sand to the swash zone (max. of 119,300 m3/yr). However, with proper management downslope movement of sand could be reduced by an order of magnitude. While vehicular passage over the open beach displaces sand seaward, it is not known if such activity actually increases the amount of erosion, measured as net loss to the beach face.

  5. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  6. Modeling an impact of road geometric design on vehicle energy consumption

    Science.gov (United States)

    Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad

    2017-11-01

    Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.

  7. Privacy-Preserving Billing Scheme against Free-Riders for Wireless Charging Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xingwen Zhao

    2017-01-01

    Full Text Available Recently, scientists in South Korea developed on-line electric vehicle (OLEV, which is a kind of electric vehicle that can be charged wirelessly while it is moving on the road. The battery in the vehicle can absorb electric energy from the power transmitters buried under the road without any contact with them. Several billing schemes have been presented to offer privacy-preserving billing for OLEV owners. However, they did not consider the existence of free-riders. When some vehicles are being charged after showing the tokens, vehicles that are running ahead or behind can switch on their systems and drive closely for a free charging. We describe a billing scheme against free-riders by using several cryptographic tools. Each vehicle should authenticate with a compensation-prepaid token before it can drive on the wireless-charging-enabled road. The service provider can obtain compensation if it can prove that certain vehicle is a free-rider. Our scheme is privacy-preserving so the charging will not disclose the locations and routine routes of each vehicle. In fact, our scheme is a fast authentication scheme that anonymously authenticates each user on accessing a sequence of services. Thus, it can be applied to sequential data delivering services in future 5G systems.

  8. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  9. Flinders University Electric Vehicle Project

    Science.gov (United States)

    Atkinson, D. A.

    1973-01-01

    Outlines the specifications and principles involved in the operation of an electric car developed by the Institute of Solar and Electochemical Energy Conversion at Flinders University in South Australia. (JR)

  10. Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-12-01

    Full Text Available The growing development of hybrid electric vehicles (HEVs has seen the spread of architectures with transmission based on planetary gear train, realized thanks to two electric machines. This architecture, by continuously regulating the transmission ratio, allows the internal combustion engine (ICE to work in optimal conditions. On the one hand, the average ICE efficiency is increased thanks to better loading situations, while, on the other hand, electrical losses are introduced due to the power circulation between the two electrical machines mentioned above. The aim of this study is then to accurately evaluate electrical losses and the average ICE efficiency in various operating conditions and over different road missions. The models used in this study are presented for both the Continuously Variable Transmission (CVT architecture and the Discontinuously Variable Transmission (DVT architecture. In addition, efficiency maps of the main components are shown. Finally, the simulation results are presented to point out strengths and weaknesses of the CVT architecture.

  11. PBF: A New Privacy-Aware Billing Framework for Online Electric Vehicles with Bidirectional Auditability

    Directory of Open Access Journals (Sweden)

    Rasheed Hussain

    2017-01-01

    Full Text Available Recently an online electric vehicle (OLEV concept has been introduced, where vehicles are propelled by the wirelessly transmitted electrical power from the infrastructure installed under the road while moving. The absence of secure-and-fair billing is one of the main hurdles to widely adopt this promising technology. This paper introduces a new secure and privacy-aware fair billing framework for OLEV on the move through the charging plates installed under the road. We first propose two extreme lightweight mutual authentication mechanisms, a direct authentication and a hash chain-based authentication between vehicles and the charging plates that can be used for different vehicular speeds on the road. Second, we propose a secure and privacy-aware wireless power transfer on move for the vehicles with bidirectional auditability guarantee by leveraging game theoretic approach. Each charging plate transfers a fixed amount of energy to the vehicle and bills the vehicle in a privacy-aware way accordingly. Our protocol guarantees secure, privacy-aware, and fair billing mechanism for the OLEVs while receiving electric power from the infrastructure installed under the road. Moreover, our proposed framework can play a vital role in eliminating the security and privacy challenges in the deployment of power transfer technology to the OLEVs.

  12. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  13. Smart Electric Vehicle Charging Infrastructure Overview

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, Joshua; Chung, Ching-Yen; Qiu, Charlie; Chu, Peter; Gadh, Rajit

    2014-02-19

    WINSmartEV™ is a smart electric vehicle charging system that has been built and is currently in operation. It is a software and network based EV charging system designed and built around the ideas of intelligent charge scheduling, multiplexing (connecting multiple vehicles to each circuit) and flexibility. This paper gives an overview of this smart charging system with an eye toward its unique features and capabilities.

  14. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  15. Life cycle analysis and environmental effect of electric vehicles market evolution in Portugal

    OpenAIRE

    João P. Ribau, Ana F. Ferreira

    2014-01-01

    Fossil fuel dependency in Portugal is represented in around 76% of the total primary energy use, from which almost half is associated to the road transport sector. The reduction of imported fossil energy, pollutants and CO2 emissions is seen as a solution to a more sustainable energy system. This paper analyzes the market penetration of battery electric vehicles in the road transport sector as an alternative and more efficient technology, considering its maximum share in the transport sector ...

  16. Evaluation of hybrid electric road train (HERT) as an alternative ...

    African Journals Online (AJOL)

    EDSA has been one of the busiest roads in the Philippines and essential component of the spatial structure of the Metro Manila. The decent growth of the areas around the avenue adds a great volume of traffic which cause traffic congestion and at the same time pollution. HERT is a 40 meter long vehicle, powered by an ...

  17. Smart Automation, Customer Experience and Customer Engagement in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Asad Ullah

    2018-04-01

    Full Text Available A major challenge to cleaner and more sustainable transportation is the lack of adoptability of electric vehicles (EVs by customers. Therefore, most of the vehicles we see on the road use fossil fuel instead of sustainable green energy sources. One way to improve customer acceptance is to market EVs as a socially desirable product, rather than only environmentally friendly. The silver lining to promote is the potential of information and communications technology (ICT features in EVs, which can lead to a deeper connection between the EVs and their users. These engaging technologies can bring customers closer to the company, resulting in generating big data, which can lead to even deeper insights into customer preferences. Because the technology of vehicle connectivity and automation is just taking off, it is important to understand how these technologies in EVs can enhance customer experiences and result in sustainable customer engagement. Unfortunately, this important research area remains neglected. This research, therefore, is focused on building a conceptual framework for understanding the influence of electric vehicle (EV automation and connectivity on customer experience, and ultimately, customer engagement.

  18. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  19. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  20. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  1. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  2. An international perspective on electric transportation. Survey on electric road transport 2012

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, M; Kroon, P [ECN Policy Studies, Petten (Netherlands); Appels, D [Agentschap NL, Utrecht (Netherlands)

    2012-09-15

    To compare the Dutch governmental efforts and developments in the field of electric road transport, the Ministry of Economic Affairs, Agriculture and Innovation has asked ECN Policy Studies and NL Agency to conduct an international assessment on electric mobility. The countries that have been considered are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles and is one of the leaders as for the envisaged number of charging points. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the assessment has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure.

  3. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture

  4. 36 CFR 293.6 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Commercial enterprises, roads..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.6 Commercial enterprises, roads, motor vehicles... National Forest Wilderness no commercial enterprises; no temporary or permanent roads; no aircraft landing...

  5. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial enterprises, roads, motor... Rules § 35.5 Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft... private rights, there shall be no commercial enterprise and no permanent road within a wilderness unit...

  6. 36 CFR 261.56 - Use of vehicles off National Forest System roads.

    Science.gov (United States)

    2010-07-01

    ... Forest System roads. 261.56 Section 261.56 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT... National Forest System roads. When provided by an order, it is prohibited to possess or use a vehicle off National Forest System roads. [42 FR 2957, Jan. 14, 1977, as amended at 66 FR 3218, Jan. 12, 2001] ...

  7. Wireless power transfer for electric vehicle

    OpenAIRE

    Mude, Kishore Naik

    2015-01-01

    Wireless Power Transfer (WPT) systems transfer electric energy from a source to a load without any wired connection. WPTs are attractive for many industrial applications because of their advantages compared to the wired counterpart, such as no exposed wires, ease of charging, and fearless transmission of power in adverse environmental conditions. Adoption of WPTs to charge the on-board batteries of an electric vehicle (EV) has got attention from some companies, and efforts are being made for ...

  8. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  9. All-terrain vehicle fatalities on paved roads, unpaved roads, and off-road: Evidence for informed roadway safety warnings and legislation.

    Science.gov (United States)

    Denning, Gerene M; Jennissen, Charles A

    2016-05-18

    All-terrain vehicles (ATVs) are designed for off-highway use only, and many of their features create increased risk with roadway travel. Over half of all ATV-related fatalities occur on roadways, and nonfatal roadway crashes result in more serious injuries than those off the road. A number of jurisdictions have passed or have considered legislation allowing ATVs on public roadways, sometimes limiting them to those unpaved, arguing that they are safe for ATVs. However, no studies have determined the epidemiology of ATV-related fatalities on different road surface types. The objective of the study was to compare ATV-related deaths on paved versus unpaved roads and to contrast them with off-road fatalities. Retrospective descriptive and multivariable analyses were performed using U.S. Consumer Product Safety Commission fatality data from 1982 through 2012. After 1998, ATV-related deaths increased at twice the rate on paved versus unpaved roads. Still, 42% of all roadway deaths during the study period occurred on unpaved surfaces. States varied considerably, ranging from 18% to 79% of their ATV-related roadway deaths occurring on unpaved roads. Paved road crashes were more likely than those on unpaved surfaces to involve males, adolescents and younger adults, passengers, and collisions with other vehicles. Both the pattern of other vehicles involved in collisions and which vehicle hit the other were different for the 2 road types. Alcohol use was higher, helmet use was lower, and head injuries were more likely in paved versus unpaved roadway crashes. However, head injuries still occurred in 76% of fatalities on unpaved roads. Helmets were associated with lower proportions of head injuries among riders, regardless of road surface type. Relative to off-road crashes, both paved and unpaved roads were more likely to involve collisions with another vehicle. The vast majority of roadway crashes, however, did not involve a traffic collision on either paved or unpaved roads

  10. Experimental Autonomous Road Vehicle with Logical Artificial Intelligence

    OpenAIRE

    Sergey Sergeevich Shadrin; Oleg Olegovich Varlamov; Andrey Mikhailovich Ivanov

    2017-01-01

    This article describes some technical issues regarding the adaptation of a production car to a platform for the development and testing of autonomous driving technologies. A universal approach to performing the reverse engineering of electric power steering (EPS) for the purpose of external control is also presented. The primary objective of the related study was to solve the problem associated with the precise prediction of the dynamic trajectory of an autonomous vehicle. This was accomplish...

  11. Wheel-Based Ice Sensors for Road Vehicles

    Science.gov (United States)

    Arndt, G. Dickey; Fink, Patrick W.; Ngo, Phong H.; Carl, James R.

    2011-01-01

    Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another

  12. Electric Vehicle Modeling and Simulation.

    Science.gov (United States)

    1983-08-01

    7* * E L E C T R I C V E t I C L E S U L A T I 0 N VEHICLE CCNITANTS AgE: FRCNIAL AREA- i.eO SCUARE PETERS PAYLCAD PASS=270. KILOCRAMS FIXEC...34 1CC ,FdPPqFM qOA lFCRPAIt35x 71-C2AC CCEFFICIENT.,F5.Z,,15Xl3HFqCNTAL AQEA.,FS.Z,3.AH CSCUARE PETERS ,]13PAYLOAC PASS-j,.O 4CH KCILOCRAPS9/35XILHFIXED...SPO CALL TRP.EFFPFETAh,?AATT.VVhRRAR.8SPO.TSTP,1TSTP ,ETATETAI C 10 ICo . zec 9204 ppP.EQ.0.I ~,9ZOS ;2C 5 P pCT-p5PC6cRIquiijcR1Ij5 S3 E"’EXPE.0311.-1

  13. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  14. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  15. New propulsion components for electric vehicles

    Science.gov (United States)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  16. Explaining variance in national electric vehicle policies

    NARCIS (Netherlands)

    Wesseling, Joeri

    2016-01-01

    Abstract Transition studies’ understanding of differences in public policy is limited due to its tendency to focus on single-country cases. This paper assesses differences in plug-in electric vehicle (PEV) policies, comprising RD&D subsidies, infrastructure investments and sales incentives, across

  17. Can Electricity Powered Vehicles Serve Traveler Needs?

    Directory of Open Access Journals (Sweden)

    Jianhe Du

    2013-06-01

    Full Text Available Electric vehicles (EV, Hybrid Electric Vehicles (HEV or Plug-in Hybrid Electric Vehicles (PHEV are believed to be a promising substitute for current gas-propelled vehicles. Previous research studied the attributes of different types of EVs and confirmed their advantages. The feasibility of EVs has also been explored using simulation, retrospective survey data, or a limited size of field travel data. In this study, naturalistic driving data collected from more than 100 drivers during one year are used to explore naturalistic driver travel patterns. Typical travel distance and time and qualified dwell times (i.e., the typical required EV battery recharging time between travels as based on most literature findings are investigated in this study. The viability of electric cars is discussed from a pragmatic perspective. The results of this research show that 90 percent of single trips are less than 25 miles; approximately 70 percent of the average annual daily travel is less than 60 miles. On average there are 3.62 trips made between four-hour dwell times as aggregated to 60 minutes and 50 miles of travel. Therefore, majority of trips are within the travel range provided by most of the currently available EVs. A well-organized schedule of recharging will be capable of covering even more daily travels.

  18. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  19. Electric Vehicles. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John E., Comp.

    This document reviews the literature in the collections of the Library of Congress on electric vehicles. Not intended as a comprehensive bibliography, this guide is designed as the title implies, to put the reader "on target." This is of greatest utility to the beginning student of the topic. (AA)

  20. Urban electric vehicles: a contemporary business case

    Directory of Open Access Journals (Sweden)

    Noha SADEK

    2012-01-01

    Full Text Available In a world where energy supply security and environmental protection are major concerns, the development of green vehicles is becoming a necessity. The Electric vehicle (EV is one of the most promising technologies that will make the “green dream” come true. This paper is a contemporary business case that encourages the immediate deployment of urban EVs. It proposes a model in which we can profit from the benefits of urban EVs namely, high energy efficiency, emissions reduction, small size and noise reduction. The model mitigates the EV potential limitations such as energy source, charging infrastructure, impact on electrical power system and cost issues. It also provides ideas to overcome the barriers of the technology application in order to speed up their commercialization. This study reveals that having an environmentally friendly vehicle can soon become a reality if our collaborative efforts are properly directed.

  1. Electromechanical converters for electric vehicles

    Science.gov (United States)

    Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.

    2018-01-01

    The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.

  2. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  3. The new car market for electric vehicles and the potential for fuel substitution

    International Nuclear Information System (INIS)

    Kihm, Alexander; Trommer, Stefan

    2014-01-01

    Electric vehicles are expected to significantly reduce road transport emissions, given an increasingly renewable power generation. While technological issues are more and more being overcome, the economic viability and thus possible adoption is still constrained, mainly by higher prices than for conventional vehicles. In our work we analyze possible market developments for electric vehicles with an application to Germany. We develop a drivetrain choice model with economical, technical and social constraints on the current vehicle registrations and inventory. It estimates the demand for electric vehicles until 2030 for private and commercially registered cars as well as light commercial vehicles. The results show a replacement potential of almost one third of the total German annual mileage for these vehicles. The result has a high granularity to allow for detailed emission calculation along different spatial areas as well as vehicle and engine types. Besides a baseline forecast, our method allows for calculating different scenarios regarding policy actions or the future development of important parameters such as energy prices. The results provide insights for policy measures as well as for transport and environmental modeling. - Highlights: • We model the potential German market for electric vehicles using total cost of ownership. • The results show a substitution potential of one third of the total German annual mileage. • Plug-in hybrid drivetrains outperform battery electric ones due to their cost advantages. • Suburbia around large cities is the largest market for EVs. • The first main vehicle categories for EVs are large and medium-sized company cars

  4. Test experiences with the DaimlerChrysler: Fuel cell electric vehicle NECAR

    OpenAIRE

    Friedlmeier Gerardo; Friedrich J.; Panik F.

    2002-01-01

    The DalmlerChrysler fuel cell electric vehicle NECAR 4, a hydrogen-fueled zero-emission compact car based on the A-Class of Mercedes-Benz, is described. Test results obtained on the road and on the dynamometer are presented. These and other results show the high technological maturity reliability and durability already achieved with fuel cell technology.

  5. A Data-Driven Approach to Manage Charging Infrastructure for Electric Vehicles in Parking Lots

    NARCIS (Netherlands)

    J. Babic (Jurica); A. Carvalho (Arthur); W. Ketter (Wolfgang); V. Podobnik (Vedran)

    2017-01-01

    textabstractThe ever-increasing number of electric vehicles (EV) on the road is in line with many governments' efforts to tackle urgent environmental challenges. This inherently means that there is a growing need for charging infrastructure as well. A potential solution to address the need for

  6. Test experiences with the DaimlerChrysler: Fuel cell electric vehicle NECAR

    Directory of Open Access Journals (Sweden)

    Friedlmeier Gerardo

    2002-01-01

    Full Text Available The DalmlerChrysler fuel cell electric vehicle NECAR 4, a hydrogen-fueled zero-emission compact car based on the A-Class of Mercedes-Benz, is described. Test results obtained on the road and on the dynamometer are presented. These and other results show the high technological maturity reliability and durability already achieved with fuel cell technology.

  7. Integrated traction control strategy for distributed drive electric vehicles with improvement of economy and longitudinal driving stability

    OpenAIRE

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    This paper presents an integrated traction control strategy (ITCS) for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode control (SMC) algorithm is implemented to guarantee the wheel slip ratio around the optimal slip ratio po...

  8. Conversion of Diesel Vehicles to Electric Vehicles and Controlled by PID Controller

    OpenAIRE

    Mengi, Onur Özdal

    2017-01-01

    Internal combustion engine vehicles are the most producedand sold vehicles on the market. In recent years, interest in electric vehicleshas begun to increase, especially due to the environmental problems. In thenear future, it is estimated that gasoline and diesel vehicles will becompletely electric vehicles. For this reason, many studies have been conductedon electric vehicles. Particularly the change of the engine parts, the turningof the internal combustion part to the electric motor, and ...

  9. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  10. Study on Reverse Reconstruction Method of Vehicle Group Situation in Urban Road Network Based on Driver-Vehicle Feature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-01-01

    Full Text Available Vehicle group situation is the status and situation of dynamic permutation which is composed of target vehicle and neighboring traffic entities. It is a concept which is frequently involved in the research of traffic flow theory, especially the active vehicle security. Studying vehicle group situation in depth is of great significance for traffic safety. Three-lane condition was taken as an example; the characteristics of target vehicle and its neighboring vehicles were synthetically considered to restructure the vehicle group situation in this paper. The Gamma distribution theory was used to identify the vehicle group situation when target vehicle arrived at the end of the study area. From the perspective of driver-vehicle feature evolution, the reverse reconstruction method of vehicle group situation in the urban road network was proposed. Results of actual driving, virtual driving, and simulation experiments showed that the model established in this paper was reasonable and feasible.

  11. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    OpenAIRE

    Zhen-Feng Wang; Ming-Ming Dong; Liang Gu; Jagat-Jyoti Rath; Ye-Chen Qin; Bin Bai

    2017-01-01

    Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steer...

  12. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  13. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  14. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... different vehicles. A unified method for testing the efficiency of the charger in EVs, without direct access to the component, is presented. The method is validated through extensive tests of the models Renault Zoe, Nissan LEAF and Peugeot iOn. The results show a loss between 15 % and 40 %, which is far...

  15. Dynamics of a motor vehicle taking into consideration the interaction of wheels and road pavement surface

    Directory of Open Access Journals (Sweden)

    O. Prentkovskis

    2002-12-01

    Full Text Available The authors of this article focus on the simulation of the motor vehicle on a certain road and propose their specific solution of this problem. A mathematical model of the system “motor vehicle – road” is presented. The motor vehicle is simulated by concentrated masses interconnected by elastic and dissipative links. The presented model of the motor vehicle evaluates the movement of the motor vehicle body in space; the movement and turning of front and rear suspensions with respect to the body; the interaction of the wheel with the road pavement surface; the blocking of the wheel; the changing cohesive forces which influence the motor vehicle. The investigated road pavement surface is simulated by triangular finite elements, the certain height of road pavement surface roughness and the cohesion coefficients of road pavement surface and the motor vehicle wheel in the longitudinal and transverse directions of the wheel are selected in each finite element nodal point. The presented results illustrate: the motor vehicle movement trajectories braking at various initial conditions and on a certain pavement surface of the road section under investigation and the motor vehicle driving on the speed reduction bump (“sleeping policeman”.

  16. IMPROVEMENT OF TRAFFIC SAFETY BY ROAD-VEHICLE COOPERATIVE SMART CRUISE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Akio HOSAKA

    2000-01-01

    Full Text Available Hopes have been pinned on the development of intelligent systems for road traffic as a way of solving road traffic safety and other such issues. To be sure, work is moving ahead with the incorporation of intelligent systems into automobiles but, with automobiles alone, there are limits in areas such as environment recognition. Compensation for the limits imposed by automobiles can be provided by the support given to environment recognition and related areas of road infrastructure. This paper examines the special features of vehicles and road infrastructure, and describes what role is played by roads and what role is played by vehicles. On the basis of the observations made, road-vehicle cooperative support systems called “smart cruise systems”, which are currently being developed, will be introduced and the expected effects of these systems will be outlined.

  17. Studying the Effect of Roughness of Wet Road on Critical speed of Vehicle

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available Hydroplaning is one the most dangerous phenomena which effect on the safety of driving cars on wet roads, then, the critical speed of slipping cars is an important parameter in the hydroplaning ,and depends on the properties of  the following three  parameters: tires, water layer and  road surface. The road texture is the main property of road specifications which affect directly on the critical speed of the vehicle. In the present work, the properties of road roughness and influence of surface texture on critical speed of vehicle are studied with variation of the following parameters: thickness and dynamic viscosity of water on the road surface and the vehicle load. The results showed that increasing the road surface roughness and the vehicle load both has a appositive influence on the critical speed (increaseof the vehicle, while increasing the dynamic viscosity and thickness of the water layer on the road surface has a negative influence on the critical speed (decrease of the vehicle. DOI: http://dx.doi.org/10.25130/tjes.24.2017.24

  18. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  19. Use of fatal real-life crashes to analyze a safe road transport system model, including the road user, the vehicle, and the road.

    Science.gov (United States)

    Stigson, Helena; Krafft, Maria; Tingvall, Claes

    2008-10-01

    To evaluate if the Swedish Road Administration (SRA) model for a safe road transport system, which includes the interaction between the road user, the vehicle, and the road, could be used to classify fatal car crashes according to some safety indicators. Also, to present a development of the model to better identify system weakness. Real-life crashes with a fatal outcome were classified according to the vehicle's safety rating by Euro NCAP (European Road Assessment Programme) and fitment of ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol. Each crash was compared with the model criteria, to identify components that might have contributed to fatal outcome. All fatal crashes where a car occupant was killed that occurred in Sweden during 2004 were included: in all, 215 crashes with 248 fatalities. The data were collected from the in-depth fatal crash data of the Swedish Road Administration (SRA). It was possible to classify 93% of the fatal car crashes according to the SRA model. A number of shortcomings in the criteria were identified since the model did not address rear-end or animal collisions or collisions with stationary/parked vehicles or trailers (18 out of 248 cases). Using the further developed model, it was possible to identify that most of the crashes occurred when two or all three components interacted (in 85 of the total 230 cases). Noncompliance with safety criteria for the road user, the vehicle, and the road led to fatal outcome in 43, 27, and 75 cases, respectively. The SRA model was found to be useful for classifying fatal crashes but needs to be further developed to identify how the components interact and thereby identify weaknesses in the road traffic system. This developed model might be a tool to systematically identify which of the components are

  20. Vehicle operation characteristic under different ramp entrance conditions in underground road: Analysis, simulation and modelling

    Science.gov (United States)

    Yao, Qiming; Liu, Shuo; Liu, Yang

    2018-05-01

    An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.

  1. Panorama 2017 - Development of electric vehicle: where are we now?

    International Nuclear Information System (INIS)

    Ternel, Cyprien

    2016-09-01

    Electric vehicles - a term which refers to battery electric vehicles (BEV) and plug-in hybrid vehicles (PHEV) - are regarded as one way to lower energy costs and reduce the environmental impact of transport. While mild or full hybrid vehicles are gradually becoming more widespread, the market for electric vehicles is still developing. While the symbolic threshold of one million electric vehicles in circulation worldwide was surpassed in 2015 and sales are increasing from year to year, certain limitations could nevertheless hinder this growth. High purchase prices, the need to establish incentive-based public policies to significantly increase sales, and vehicle range are challenges to overcome before electric vehicles become a sustainable part of the world's automobile fleet. This memorandum takes stock of this specific market and highlights the reasons to believe in its continued progress. It mainly discusses private vehicles (including micro-cars) and utility vehicles, but a specific section is dedicated to mopeds and motorbikes

  2. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  3. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas

    International Nuclear Information System (INIS)

    Brady, John; O’Mahony, Margaret

    2016-01-01

    Highlights: • Development of a driving cycle to evaluate energy economy of electric vehicles. • Improves on existing driving cycles by using real world data from electric vehicles. • Driving data from different road types and traffic conditions included. - Abstract: Understanding real-world driving conditions in the form of driving cycles is instrumental in the design of efficient powertrains and energy storage systems for electric vehicles. In addition, driving cycles serve as a standardised measurement procedure for the certification of a vehicle’s fuel economy and driving range. They also facilitate the evaluation of the economic and lifecycle costs of emerging vehicular technologies. However, discrepancies between existing driving cycles and real-world driving conditions exist due to a number of factors such as insufficient data, inadequate driving cycle development methodologies and methods to assess the representativeness of developed driving cycles. The novel aspect of the work presented here is the use of real-world data from electric vehicles, over a six month period, to derive a driving cycle appropriate for their assessment. A stochastic and statistical methodology is used to develop and assess the representativeness of the driving cycle against a separate set of real world electric vehicle driving data and the developed cycle performs well in that comparison. Although direct comparisons with internal combustion engine driving cycles are not that informative or relevant due to the marked differences between how they and electric vehicles operate, some discussion around how the developed electric vehicle cycle relates to them is also included.

  4. An SCR inverter for electric vehicles

    Science.gov (United States)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  5. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  6. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  7. Policy Pathways: Improving the Fuel Economy of Road Vehicles - A policy package

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The transportation sector accounts for approximately one-fifth of global final energy consumption and will account for nearly all future growth in oil use, particularly for road vehicles. The right policy mix can allow countries to improve the fuel economy of road vehicles, which in turn can enhance energy security and reduce CO2 emissions. Improving the Fuel Economy of Road Vehicles highlights lessons learned and examples of good practices from countries with experience in implementing fuel economy policies for vehicles. The report, part of the IEA’s Policy Pathway series, outlines key steps in planning, implementation, monitoring and evaluation. It complements the IEA Technology Roadmap: Fuel Economy for Road Vehicles, which outlines technical options, potentials, and costs towards improvement in the near, medium and long term.

  8. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  9. Energy Intensity of the Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Mieczysław Dziubiński

    2017-12-01

    Full Text Available Continuous energy intensity is a dependency between continuous energy intensity and energy intensity of movement. In the paper it is proposed analyze energy intensity of the movement, as the size specifying the power demand to the wheel drive and presented the balance of power of an electric car moving in the urban cycle. The object of the test was the hybrid vehicle with an internal combustion engine and electric motor. The measurements were carried out for 4 speeds and 2 driving profiles.

  10. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  11. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  12. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  13. Measuring Electrical Current: The Roads Not Taken

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2011-01-01

    Recently I wrote about the standard Weston meter movement, that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  14. Anaheim electric vehicle car-sharing project

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, D. [City of Anaheim Transportation Programs Planner, Anaheim, CA (United States); Chase, B. [Costa Mesa Planning Center, Costa Mesa, CA (United States)

    2000-07-01

    This paper described how the city of Anaheim in California is looking into a variety of clean transportation options for visitors, employees and residents in an effort to minimize air quality and congestion impacts. The city, which attracts approximately 24 million visitors annually, is looking into an electric vehicle (EV) car-sharing program that promotes EV use in multiple applications for both short- and long-term rental opportunities. There are two components to the program which provides eight 5-passenger electric Toyota RAV4 vehicles to both local employees and visitors. The electric RAV4s include nickel-hydride batteries which provide a range of 120 miles per charge. The city has already developed a network of public accessible EV charging stations and this project is a perfect extension of the city's continued efforts to seek opportunities to apply EV technologies within its jurisdictions. The Station Car Program provides flexibility for rail commuters to get from the rail station to their place of employment. On weekdays, the EVs are available to registered commuters at two rail stations to drive to and from work. A total of 32 commuters can benefit from the program at a cost of $40 per month. On weekends, the EVs are offered to visitors through Budget Rent-a-Car Agency at a rate comparable to gasoline-fueled vehicles. So far, participant feedback has been positive and the city is looking into expanding its efforts to provide clean transportation options. tab.

  15. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  16. Research and development of electric vehicles for clean transportation.

    Science.gov (United States)

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  17. Environmental impacts of electric vehicles in South Africa

    OpenAIRE

    Liu, Xinying; Hildebrandt, Diane; Glasser, David

    2012-01-01

    Electric vehicles have been seen by some policymakers as a tool to target reductions in greenhouse gas emissions.1,2 Some researchers have shown that the full environmental impact of electric vehicles depends very much on the cleanliness of the electricity grid.3 In countries such as the USA and China, where coal-fired power plants still play a very important role in electricity generation, the environmental impact of electric vehicles is equivale...

  18. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao

    2017-01-01

    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  19. Strategies for Charging Electric Vehicles in the Electricity Market

    DEFF Research Database (Denmark)

    Juul, Nina; Pantuso, Giovanni; Iversen, Jan Emil Banning

    2015-01-01

    . We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.......This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting...... optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming...

  20. Grid Integration of Electric Vehicles in Open Electricity Markets

    DEFF Research Database (Denmark)

    congestion management scenario within electric distribution networks •optimal EV charging management with the fleet operator concept and smart charging management •EV battery technology, modelling and tests •the use of EVs for balancing power fluctuations from renewable energy sources, looking at power......Presenting the policy drivers, benefits and challenges for grid integration of electric vehicles (EVs) in the open electricity market environment, this book provides a comprehensive overview of existing electricity markets and demonstrates how EVs are integrated into these different markets...... of the technologies for EV integration, this volume is informative for research professors and graduate students in power systems; it will also appeal to EV manufacturers, regulators, EV market professionals, energy providers and traders, mobility providers, EV charging station companies, and policy makers....

  1. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  2. Dynamic electricity pricing for electric vehicles using stochastic programming

    International Nuclear Information System (INIS)

    Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita

    2017-01-01

    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.

  3. Methodology for assessing electric vehicle charging infrastructure business models

    International Nuclear Information System (INIS)

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage. - Highlights: • Ecosystem is a network of actors who collaborate to create a positive business case. • Electro-mobility (electricity-powered road vehicles and ICT) is a complex ecosystem. • Methodological analysis to ensure that all actors benefit from electro-mobility. • Economic analysis of charging infrastructure deployment linked to its usage. • Comparison of EV ownership cost vs. ICE for vehicle users.

  4. Effective business models for electric vehicles

    Directory of Open Access Journals (Sweden)

    Gavrilescu Ileana

    2017-07-01

    Full Text Available The proposed study aims to use asyncretic and synthetic approach of two elements that have an intrinsic efficiency value: business models and electric vehicles. Our approach seeks to circumscribe more widespread concerns globally - on the one hand, to oil shortages and climate change - and on the other hand, economic efficiency to business models customized to new types of mobility. New “electric” cars projects besiege the traditional position of the conventional car. In the current economy context the concept of efficiency of business models is quite different from what it meant in a traditional sense, particularly because of new technological fields. The arguments put forward by us will be both factual and emotional. Therefore, we rely on interviews and questionnaires designed to fit significantly to the point of the study. Research in the field of new propulsion systems for vehicles has been exploring various possibilities lately, such as: electricity, hydrogen, compressed air, biogas, etc. Theoretically or in principle, it is possible for tomorrow’s vehicles to be driven by the widest variety if resources. A primary goal of our study would be to theoretically reconsider some of the contemporary entrepreneurship coordinates and secondly to provide minimum guidance for decision-making of businesses that will operate in the field of electric mobility. To achieve this, we shall specifically analyze an electric mobility system but in parallel we will address business models that lend themselves effectively on aspects of this field. With a methodology based on questionnaires that had to overcome the conventional mechanism using some of the most unusual ingredients, we hope that the results of our research will successfully constitute a contribution to the goals and especially as a means of managerial orientation for entrepreneurs in the Romanian market.

  5. Towards low energy mobility using light and ultralight electric vehicles

    OpenAIRE

    Van den Bossche, Alex; Sergeant, Peter; Hofman, Isabelle

    2012-01-01

    Electrical vehicles are seriously considered today. However their energy needs depend seriously on the way how they are designed, ranging from electric bicycles to the electrical utility vehicle, it can differ from 1kWh to more than 20kWh/100km. One can look at the problem if it is better to use compressed natural gas in a vehicle directly or is it better to make electricity first and use that electricity in an electric vehicle. A special attention is given to the development of ultra-ligh...

  6. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  7. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  8. Vehicle infrastructure integration (VII) based road-condition warning system for highway collision prevention.

    Science.gov (United States)

    2009-05-01

    As a major ITS initiative, the Vehicle Infrastructure Integration (VII) program is to revolutionize : transportation by creating an enabling communication infrastructure that will open up a wide range of : safety applications. The road-condition warn...

  9. Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age

    OpenAIRE

    Hulse, Lynn M.; Xie, Hui; Galea, Edwin R.

    2018-01-01

    Fully automated self-driving cars, with expected benefits including improved road safety, are closer to becoming a reality. Thus, attention has turned to gauging public perceptions of these autonomous vehicles. To date, surveys have focused on the public as potential passengers of autonomous cars, overlooking other road users who would interact with them. Comparisons with perceptions of other existing vehicles are also lacking. This study surveyed almost 1000 participants on their perceptions...

  10. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal

    -effects econometrics model used in this paper predicts that the energy saving speed of driving is between 45 and 56 km/h. In addition to the contribution to the literature about energy efficiency of electric vehicles, the findings from this study enlightens consumers to choose appropriate cars that suit their travel......This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up...

  11. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  12. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  13. Mobile electric vehicles online charging and discharging

    CERN Document Server

    Wang, Miao; Shen, Xuemin (Sherman)

    2016-01-01

    This book examines recent research on designing online charging and discharging strategies for mobile electric vehicles (EVs) in smart grid. First, the architecture and applications are provided. Then, the authors review the existing works on charging and discharging strategy design for EVs. Critical challenges and research problems are identified. Promising solutions are proposed to accommodate the issues of high EV mobility, vehicle range anxiety, and power systems overload. The authors investigate innovating charging and discharging potentials for mobile EVS based on real-time information collections (via VANETS and/or cellular networks) and offer the power system adjustable load management methods.  Several innovative charging/discharging strategy designs to address the challenging issues in smart grid, i.e., overload avoidance and range anxiety for individual EVs, are presented. This book presents an alternative and promising way to release the pressure of the power grid caused by peak-time EV charging ...

  14. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  15. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  16. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost

    International Nuclear Information System (INIS)

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Yang, Fuyuan; Lu, Languang; Hua, Jianfeng

    2013-01-01

    Highlights: ► An analytical model for vehicle performance and power-train parameters. ► Quantitative relationships between vehicle performance and power-train parameters. ► Optimal sizing rules that help designing an optimal PEM fuel cell power-train. ► An on-road testing showing the performance of the proposed vehicle. -- Abstract: This paper presents an optimal sizing method for plug-in proton exchange membrane (PEM) fuel cell and lithium-ion battery (LIB) powered city buses. We propose a theoretical model describing the relationship between components’ parameters and vehicle performance. Analysis results show that within the working range of the electric motor, the maximal velocity and driving distance are influenced linearly by the parameters of the components, e.g. fuel cell efficiency, fuel cell output power, stored hydrogen mass, vehicle auxiliary power, battery capacity, and battery average resistance. Moreover, accelerating time is also linearly dependant on the abovementioned parameters, except of those of the battery. Next, we attempt to minimize fixed and operating costs by introducing an optimal sizing problem that uses as constraints the requirements on vehicle performance. By solving this problem, we attain several optimal sizing rules. Finally, we use these rules to design a plug-in PEM fuel cell city bus and present performance results obtained by on-road testing.

  17. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Wang

    2017-06-01

    Full Text Available Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steering wheel input on vehicle roll behavior. Then, a 9 degree of freedom (9-DOF full-car roll nonlinear model including vertical and lateral dynamics was developed to study vehicle roll dynamics with or without of road excitation. Based on a 6-DOF half-car roll model and 9-DOF full-car nonlinear model, relationship between three-dimensional (3-D road excitation and various steering wheel inputs on vehicle roll performance was studied. Finally, an E-Class (SUV level car model in CARSIM® was used, as a benchmark, with and without road input conditions. Both half-car and full-car models were analyzed under steering wheel inputs of 5°, 10° and 15°. Simulation results showed that the half-car model considering road input was found to have a maximum accuracy of 65%. Whereas, the full-car model had a minimum accuracy of 85%, which was significantly higher compared to the half-car model under the same scenario.

  18. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  19. Performance tests of communal electric-powered vehicles

    International Nuclear Information System (INIS)

    Nagel, J.

    1993-01-01

    The use of electric vehicles within the service industry (such as the town's sanitation, its trash collection and horticultural authority) can lead to a visible environmental relief, particularly in the inner city. The RWE in Essen has been supporting the development and use of electric vehicles for over 20 years and introduced a program in 1990 for the communities(ProKom) which provides 5 million DM for over 5 years for the support of electric vehicles. In this article the communities' requirements for electric vehicles are discussed, the types of vehicles which are mediated by ProKom are introduced and the first practical experiences made are also reported. (BWI) [de

  20. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  1. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  2. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  3. Advanced vehicle dynamics of heavy trucks with the perspective of road safety

    Science.gov (United States)

    Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel

    2017-10-01

    This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.

  4. Accidents involving off-road motor vehicles in a northern community.

    Science.gov (United States)

    Hasselback, P; Wilding, H R

    1987-01-01

    The increasing number of accidents associated with off-road motor vehicles used for recreational purposes prompted this prospective study. During 1985 the records of victims of all motor vehicle accidents who were seen at the Hudson Bay Union Hospital, Hudson Bay, Sask., were studied; patients involved in on-road vehicle accidents were included for comparison. Emphasis was placed on age, vehicle type, mechanism of accident, injury severity and the use of safety features. Almost half of the victims of off-road vehicle accidents were under 16 years of age. The poor adherence to government legislation and manufacturer recommendations was evident in the number of people who did not wear helmets or use headlights. PMID:3651929

  5. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  6. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  7. The Nikola project intelligent electric vehicle integration

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Marinelli, Mattia; Olesen, Ole Jan

    2014-01-01

    The electric vehicle (EV) has certain properties that elevate its relevance to the smart grid. If EV integration is to meet its potential in supporting an economic and secure power system and at the same time lower the operating costs for the owner, it is necessary to thoroughly and systematically...... investigate the value-adding services that an EV may provide. The Danish Nikola project defines EV services as the act of influencing the timing, rate and direction of the power and energy exchanged between the EV battery and the grid to yield benefits for user, system, and society. This paper describes...

  8. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  9. All-terrain vehicles (ATVs) on the road: a serious traffic safety and public health concern.

    Science.gov (United States)

    Denning, Gerene; Jennissen, Charles; Harland, Karisa; Ellis, David; Buresh, Christopher

    2013-01-01

    On-road all-terrain vehicle (ATV) crashes are frequent occurrences that disproportionately impact rural communities. These crashes occur despite most states having laws restricting on-road ATV use. A number of overall risk factors for ATV-related injuries have been identified (e.g., lack of helmet, carrying passengers). However, few studies have determined the relative contribution of these and other factors to on-road crashes and injuries. The objective of our study was to determine whether there were differences between on- and off-road ATV crashes in their demographics and/or mechanisms and outcomes of injuries. Data were derived from our statewide ATV injury surveillance database (2002-2009). Crash location and crash and injury mechanisms were coded using a modification of the Department of Transportation (DOT) coding system. Descriptive analyses and statistical comparisons (chi-square test) of variables were performed. Multivariate logistic regression analysis was used to determine relative risk. 976 records were included in the final analysis, with 38 percent of the injured individuals from on-road crashes. Demographics were similar for crashes at each location, with approximately 80 percent males, 30 percent under the age of 16, and 15 percent passengers. However, females and youths under 16 were over 4 times more likely to be passengers (P ≤ 0.0001), regardless of crash location. Compared to those off-road, on-road crash victims were approximately 10 times more likely to be involved in a vehicle-vehicle collision (P road crashes were also twice as likely to test positive for alcohol as those off-road (P road victims were only half as likely to be helmeted (P road crashes involved a collision with another vehicle, suggesting that ATVs on the road represent a potential traffic safety concern. Of note, helmets were associated with reduced risk for the number and severity of brain injuries, providing further support for the importance of helmet use. Finally

  10. Driver perceptions of the safety implications of quiet electric vehicles.

    Science.gov (United States)

    Cocron, Peter; Krems, Josef F

    2013-09-01

    Previous research on the safety implications of quiet electric vehicles (EVs) has mostly focused on pedestrians' acoustic perception of EVs, and suggests that EVs are more difficult for pedestrians to hear and, therefore, compromise traffic safety. The two German field studies presented here examine the experiences of 70 drivers with low noise emissions of EVs and the drivers' long-term evaluation of the issue. Participants were surveyed via interviews and questionnaires before driving an EV for the first time, after 3 months of driving, and in the first study, again after 6 months. Based on participants' reports, a catalogue of safety-relevant incidents was composed in Study 1. The catalogue revealed that low noise-related critical incidents only rarely occur, and mostly take place in low-speed environments. The degree of hazard related to these incidents was rated as low to medium. In Study 1, driver concern for vulnerable road users as a result of low noise diminished with increasing driving experience, while perceived comfort due to this feature increased. These results were replicated in Study 2. In the second study, it was additionally examined, if drivers adjust their perceived risk of harming other road users over time. Results show that the affective assessment of risk also decreased with increased driving experience. Based on individual experience, drivers adjust their evaluation of noise-related hazards, suggesting that dangers associated with low noise emissions might be less significant than previously expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  12. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  13. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success -

    Science.gov (United States)

    Continuum Magazine | NREL Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel -metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe

  14. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  15. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  16. Electric Vehicle Service Personnel Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  17. Environmentally friendly traffic management system using integrated road-vehicle system

    NARCIS (Netherlands)

    Mahmod, M.M.; Arem, B. van

    2008-01-01

    Local habitability is coming under increasing pressure from harmful traffic emissions. This emission is strongly correlated to the characteristics and dynamics of traffic: type of vehicle, speed, acceleration and deceleration. This paper investigates the use of integrated road-vehicle systems for

  18. Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Directory of Open Access Journals (Sweden)

    Qingwu Li

    2015-01-01

    Full Text Available In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT. The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions.

  19. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  20. Electric passenger and goods vehicles: A review of UK activities

    International Nuclear Information System (INIS)

    Escombe, F.; Rawnsley, A.

    1993-01-01

    The production of electric-powered vehicles has been reduced to only a few hundred, after several thousand had been produced in Great Britain during the past five years. In the framework of this article, the different components of electric-powered vehicles are being examined regarding the economical situation: such as the vehicle itself, the batteries, the motor and the vehicle control. (BWI) [de

  1. An overview of the development of lead/acid traction batteries for electric vehicles in India

    Science.gov (United States)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  2. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Sound Requirements for Hybrid and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register...-0148] RIN 2127-AK93 Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and...

  3. Impact of the Road Profile on Vehicle Deceleration

    Directory of Open Access Journals (Sweden)

    Vidas Žuraulis

    2012-11-01

    Full Text Available The article analyzes the impact of the longitudinal road profile on the efficiency of car braking estimated applying deceleration value. Different formulas are used for theoretical calculations, and therefore experimental brakes in different road slopes were performed to obtain the most accurate results. Deceleration, as one of the most important safety parameters, depends on the technical condition of the braking system, road conditions and structural and dynamic properties of the other car. Road alignments can significantly affect car manageability, because of weight transfer and extra track resistance, which may change the overall balance of the car and affect the nature of dynamic characteristics that may vary from certain critical values. The results of corrections to deceleration dependence on the road profile can be used for investigating traffic accidents, optimizing traffic control arrangements and implementing advanced systems for automotive active safety.

  4. Incorporating Road Crossing Data into Vehicle Collision Risk Models for Moose (Alces americanus) in Massachusetts, USA.

    Science.gov (United States)

    Zeller, Katherine A; Wattles, David W; DeStefano, Stephen

    2018-05-09

    Wildlife-vehicle collisions are a human safety issue and may negatively impact wildlife populations. Most wildlife-vehicle collision studies predict high-risk road segments using only collision data. However, these data lack biologically relevant information such as wildlife population densities and successful road-crossing locations. We overcome this shortcoming with a new method that combines successful road crossings with vehicle collision data, to identify road segments that have both high biological relevance and high risk. We used moose (Alces americanus) road-crossing locations from 20 moose collared with Global Positioning Systems as well as moose-vehicle collision (MVC) data in the state of Massachusetts, USA, to create multi-scale resource selection functions. We predicted the probability of moose road crossings and MVCs across the road network and combined these surfaces to identify road segments that met the dual criteria of having high biological relevance and high risk for MVCs. These road segments occurred mostly on larger roadways in natural areas and were surrounded by forests, wetlands, and a heterogenous mix of land cover types. We found MVCs resulted in the mortality of 3% of the moose population in Massachusetts annually. Although there have been only three human fatalities related to MVCs in Massachusetts since 2003, the human fatality rate was one of the highest reported in the literature. The rate of MVCs relative to the size of the moose population and the risk to human safety suggest a need for road mitigation measures, such as fencing, animal detection systems, and large mammal-crossing structures on roadways in Massachusetts.

  5. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    Science.gov (United States)

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  6. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    Science.gov (United States)

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  7. A Comprehensive Analysis for Widespread use of Electric Vehicles

    OpenAIRE

    Yu Zhou; Zhaoyang Dong; Xiaomei Zhao

    2011-01-01

    This paper mainly investigates the environmental and economic impacts of worldwide use of electric vehicles. It can be concluded that governments have good reason to promote the use of electric vehicles. First, the global vehicles population is evaluated with the help of grey forecasting model and the amount of oil saving is estimated through approximate calculation. After that, based on the game theory, the amount and types of electricity generation needed by electronic ...

  8. Study on Emission Measurement of Vehicle on Road Based on Binomial Logit Model

    OpenAIRE

    Aly, Sumarni Hamid; Selintung, Mary; Ramli, Muhammad Isran; Sumi, Tomonori

    2011-01-01

    This research attempts to evaluate emission measurement of on road vehicle. In this regard, the research develops failure probability model of vehicle emission test for passenger car which utilize binomial logit model. The model focuses on failure of CO and HC emission test for gasoline cars category and Opacity emission test for diesel-fuel cars category as dependent variables, while vehicle age, engine size, brand and type of the cars as independent variables. In order to imp...

  9. Game Theoretic Analysis of Road User Safety Scenarios Involving Autonomous Vehicles

    OpenAIRE

    Michieli, Umberto; Badia, Leonardo

    2018-01-01

    Interactions between pedestrians, bikers, and human-driven vehicles have been a major concern in traffic safety over the years. The upcoming age of autonomous vehicles will further raise major problems on whether self-driving cars can accurately avoid accidents; on the other hand, usability issues arise on whether human-driven cars and pedestrian can dominate the road at the expense of the autonomous vehicles which will be programmed to avoid accidents. This paper proposes some game theoretic...

  10. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  11. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  12. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  13. Influence of tyre-road contact model on vehicle vibration response

    Science.gov (United States)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  14. The long road back for a reborn Philadelphia Electric

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 31 March 1987, the US NRC ordered Philadelphia Electric to shut down its Peach Bottom BWR station because of operator inattentiveness. Since then Philadelphia Electric has undergone the most complete transformation of corporate and nuclear management of any US utility. Everyone in direct line supervision was replaced, from the chairman of the board down to shift supervisors. Nuclear operations were completely reorganized and a dedicated nuclear group formed. Procedures were rewritten and operator training and career development upgraded. Plant maintenance and housekeeping have been raised to new levels of excellence. It has been a long road back for Philadelphia Electric. But all major goals are now being met and a corporate culture is being developed focused on excellence in nuclear operations. (author)

  15. A model-based eco-routing strategy for electric vehicles in large urban networks

    OpenAIRE

    De Nunzio , Giovanni; Thibault , Laurent; Sciarretta , Antonio

    2016-01-01

    International audience; A novel eco-routing navigation strategy and energy consumption modeling approach for electric vehicles are presented in this work. Speed fluctuations and road network infrastructure have a large impact on vehicular energy consumption. Neglecting these effects may lead to large errors in eco-routing navigation, which could trivially select the route with the lowest average speed. We propose an energy consumption model that considers both accelerations and impact of the ...

  16. Strategies for Charging Electric Vehicles in the Electricity Market

    Directory of Open Access Journals (Sweden)

    Nina Juul

    2015-06-01

    Full Text Available This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting a model of four alternative charging strategies. We think of them as increasing in sophistication from dumb via delayed to deterministic and stochastic model-based charging. We show that 29% of the total savings from ‘dumb’ are due to delayed charging and that substantial additional gains come charging optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming. We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.

  17. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  18. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  19. Vehicle Speed Determination in Case of Road Accident by Software Method and Comparing of Results with the Mathematical Model

    OpenAIRE

    Hoxha Gezim; Shala Ahmet; Likaj Rame

    2017-01-01

    The paper addresses the problem to vehicle speed calculation at road accidents. To determine the speed are used the PC Crash software and Virtual Crash. With both methods are analysed concrete cases of road accidents. Calculation methods and comparing results are present for analyse. These methods consider several factors such are: the front part of the vehicle, the technical feature of the vehicle, car angle, remote relocation after the crash, road conditions etc. Expected results with PC Cr...

  20. A Modelling Framework for estimating Road Segment Based On-Board Vehicle Emissions

    International Nuclear Information System (INIS)

    Lin-Jun, Yu; Ya-Lan, Liu; Yu-Huan, Ren; Zhong-Ren, Peng; Meng, Liu Meng

    2014-01-01

    Traditional traffic emission inventory models aim to provide overall emissions at regional level which cannot meet planners' demand for detailed and accurate traffic emissions information at the road segment level. Therefore, a road segment-based emission model for estimating light duty vehicle emissions is proposed, where floating car technology is used to collect information of traffic condition of roads. The employed analysis framework consists of three major modules: the Average Speed and the Average Acceleration Module (ASAAM), the Traffic Flow Estimation Module (TFEM) and the Traffic Emission Module (TEM). The ASAAM is used to obtain the average speed and the average acceleration of the fleet on each road segment using FCD. The TFEM is designed to estimate the traffic flow of each road segment in a given period, based on the speed-flow relationship and traffic flow spatial distribution. Finally, the TEM estimates emissions from each road segment, based on the results of previous two modules. Hourly on-road light-duty vehicle emissions for each road segment in Shenzhen's traffic network are obtained using this analysis framework. The temporal-spatial distribution patterns of the pollutant emissions of road segments are also summarized. The results show high emission road segments cluster in several important regions in Shenzhen. Also, road segments emit more emissions during rush hours than other periods. The presented case study demonstrates that the proposed approach is feasible and easy-to-use to help planners make informed decisions by providing detailed road segment-based emission information

  1. On-Road Driver Monitoring System Based on a Solar-Powered In-Vehicle Embedded Platform

    Directory of Open Access Journals (Sweden)

    Yen-Lin Chen

    2014-01-01

    Full Text Available This study presents an on-road driver monitoring system, which is implemented on a stand-alone in-vehicle embedded system and driven by effective solar cells. The driver monitoring function is performed by an efficient eye detection technique. Through the driver’s eye movements captured from the camera, the attention states of the driver can be determined and any fatigue states can be avoided. This driver monitoring technique is implemented on a low-power embedded in-vehicle platform. Besides, this study also proposed monitoring machinery that can detect the brightness around the car to effectively determine whether this in-vehicle system is driven by the solar cells or by the vehicle battery. On sunny days, the in-vehicle system can be powered by solar cell in places without the vehicle battery. While in the evenings or on rainy days, the ambient solar brightness is insufficient, and the system is powered by the vehicle battery. The proposed system was tested under the conditions that the solar irradiance is 10 to 113 W/m2 and solar energy and brightness at 10 to 170. From the testing results, when the outside solar radiation is high, the brightness of the inside of the car is increased, and the eye detection accuracy can also increase as well. Therefore, this solar powered driver monitoring system can be efficiently applied to electric cars to save energy consumption and promote the driving safety.

  2. State-of-the-art assessment of electric vehicles and hybrid vehicles

    Science.gov (United States)

    1977-01-01

    The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.

  3. Multiple Attribute Decision Making Based Relay Vehicle Selection for Electric Vehicle Communication

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2015-01-01

    Full Text Available Large-scale electric vehicle integration into power grid and charging randomly will cause serious impacts on the normal operation of power grid. Therefore, it is necessary to control the charging behavior of electric vehicle, while information transmission for electric vehicle is significant. Due to the highly mobile characteristics of vehicle, transferring information to power grid directly might be inaccessible. Relay vehicle (RV can be used for supporting multi-hop connection between SV and power grid. This paper proposes a multiple attribute decision making (MADM-based RV selection algorithm, which considers multiple attribute, including data transfer rate, delay, route duration. It takes the characteristics of electric vehicle communication into account, which can provide protection for the communication services of electric vehicle charging and discharging. Numerical results demonstrate that compared to previous algorithm, the proposed algorithm offer better performance in terms of throughput, transmission delay.

  4. Effects of weather conditions, light conditions, and road lighting on vehicle speed.

    Science.gov (United States)

    Jägerbrand, Annika K; Sjöbergh, Jonas

    2016-01-01

    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  5. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sleep-related vehicle crashes on low speed roads.

    Science.gov (United States)

    Filtness, A J; Armstrong, K A; Watson, A; Smith, S S

    2017-02-01

    Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes

  7. Total dynamic response of a PSS vehicle negotiating asymmetric road excitations

    Science.gov (United States)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-12-01

    A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.

  8. Automated Vehicle Location (AVL) for Road Condition Reporting

    OpenAIRE

    McCullouch, Bob G.; Leung, Michelle; Kang, Wonjin

    2009-01-01

    This project developed an AVL system for INDOT that utilized the statewide wireless network, SAFE-T. This option was chosen after doing a cost analysis of commercial AVL systems that use cellular data communications. The system developed provides real time information collected during snow and ice removal. Information includes weather and road conditions, truck speed, amount of chemicals spread, time, location, plow position, and road temperature. This information is displayed on INDOT GIS ma...

  9. Predicting the Potential Market for Electric Vehicles

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo; Cherchi, Elisabetta; Mabit, Stefan Lindhard

    2017-01-01

    diffusion models in marketing research use fairly simple demand models. In this paper we discuss the problem of predicting market shares for new products and suggest a method that combines advanced choice models with a diffusion model to take into account that new products often need time to gain......Forecasting the potential demand for electric vehicles is a challenging task. Because most studies for new technologies rely on stated preference (SP) data, market share predictions will reflect shares in the SP data and not in the real market. Moreover, typical disaggregate demand models...... are suitable to forecast demand in relatively stable markets, but show limitations in the case of innovations. When predicting the market for new products it is crucial to account for the role played by innovation and how it penetrates the new market over time through a diffusion process. However, typical...

  10. Statistical classification of road pavements using near field vehicle rolling noise measurements.

    Science.gov (United States)

    Paulo, Joel Preto; Coelho, J L Bento; Figueiredo, Mário A T

    2010-10-01

    Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

  11. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  12. "Can Vehicle-to-Grid Revenue Help Electric Vehicles on the Market?"

    OpenAIRE

    George R. Parsons; Michael K. Hidrue; Willett Kempton; Meryl P. Gardner

    2011-01-01

    Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when power prices are high. Since providing this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the first study of the potential consumer demand for V2G electric vehicles. In our choice experiment, 3029 responden...

  13. Motor vehicle and pedestrian collisions: burden of severe injury on major versus neighborhood roads.

    Science.gov (United States)

    Rothman, Linda; Slater, Morgan; Meaney, Christopher; Howard, Andrew

    2010-02-01

    To determine whether the severity of injuries sustained by pedestrians involved in motor vehicle collisions varies by road type and age. All police-reported pedestrian motor vehicle collisions in the city of Toronto, Canada, between January 1, 2000, and December 31, 2005, were analyzed. Geographic Information Systems software was used to determine whether the collisions occurred on major or neighborhood roads. Age-specific estimates of the burden of pedestrian collisions are presented. Odds ratios and 95 percent confidence intervals were calculated to examine age-specific relationships between injury severity and road type. A second analysis comparing the distribution of severe injury location between age groups was also performed. The majority of collisions involved adults (68%), although elderly pedestrians were overrepresented in fatal collisions (49%). Severe and fatal collisions involving working-age and elderly adult pedestrians were more likely on major roads. Odds of severe injury occurring on a major road were 1.36 (95% CI: 1.17-1.57) times higher for adults ages 18 to 64, and 1.55 (95% CI: 1.22-1.99) times higher for elderly aged 65+. By contrast, severe injuries among children were more common on neighborhood roads, with odds of severe injury on a major road of 0.64 (95% CI: 0.37-1.1) for children aged 5 to 9. Among children under 9, 64-67 percent of hospitalized or fatal injuries occurred on neighborhood roads, a marked difference from the distribution of such injuries in adults or the elderly, for whom only 29-30 percent of hospitalized or fatal injuries occurred on neighborhood roads (chi-square = 52.6, p roads alone will not make child pedestrians safer. Pedestrian interventions specific to children and focused on neighborhood roads must be considered in urban centers like Toronto.

  14. On-road emissions of light-duty vehicles in europe.

    Science.gov (United States)

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  15. Increasing Road Infrastructure Capacity Through the Use of Autonomous Vehicles

    Science.gov (United States)

    2016-12-01

    considerably in recent years. In many urban areas, individuals have foregone purchasing vehicles and have instead joined car - sharing programs like...lots throughout the metropolitan area.107 Car sharing has expanded to include bike-sharing programs like Capital Bikeshare in Washington, DC.108...vehicles could also enhance ride-sharing and car - sharing services, in which a user could request a vehicle via a mobile device to drive directly to the

  16. Positive impact of electric vehicle and ngv on environment

    International Nuclear Information System (INIS)

    Shahidul I Khan; Kannan, K.S.; Md Shah Majid

    1999-01-01

    Electric Vehicle uses electricity from batteries as fuel and is environment friendly with zero emission. The occurrence of haze in 1997 in Malaysia and neighbouring countries has called for new studies about motor vehicle emission as it aggravates the problem. In big cities like Kuala Lumpur, Penang and Johor Bahru where it is estimated that over 300,000 vehicles enter the city everyday, smoke pollution from vehicles is identified as the major contributor to air quality. One of the solutions to air pollution problem could be the use of Electric Vehicles (EV) and Natural Gas for Vehicle (NGV). The NGV uses compressed natural gas mainly methane, is lead free and clean burning with low emission. The electric vehicles use batteries as power source. These batteries are charged off-peak hour, specifically after mid-night when the electric load curve has its least demand period. The number of electric vehicles and NGV in future years is calculated considering the penetration level. The reduction in pollution is estimated considering the number of automobiles replaced by electric vehicles and NGV. Finally, it is concluded that EV and NGV could be the ultimate solution for pollution control and could improve the environment specifically that of congested cities of Malaysia. (Author)

  17. Design of RFID Mesh Network for Electric Vehicle Smart Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-09-04

    With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers

  18. Dual extended Kalman filter for combined estimation of vehicle state and road friction

    Science.gov (United States)

    Zong, Changfu; Hu, Dan; Zheng, Hongyu

    2013-03-01

    Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.

  19. Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available This paper presents an integrated traction control strategy (ITCS for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode control (SMC algorithm is implemented to guarantee the wheel slip ratio around the optimal slip ratio point to make full use of road adhesion capacity. In order to avoid the disturbance on slip ratio calculation due to the low vehicle speed, wheel rotational speed is taken as the control variable. Since the optimal slip ratio varies according to different road conditions, Bayesian hypothesis selection is utilized to estimate the road friction coefficient. Additionally, the ITCS is designed for combining the vehicle economy and stability control through three traction allocation cases: economy-based traction allocation, pedal self-correcting traction allocation and inter-axles traction allocation. Finally, simulations are conducted in CarSim and Matlab/Simulink environment. The results show that the proposed strategy effectively reduces vehicle energy consumption, suppresses wheels-skid and enhances the vehicle longitudinal stability and dynamic performance.

  20. Vehicles under electricity. Result booklet; Autos unter Strom. Ergebnisbroschuere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The booklet under consideration reports on the environmental relief of electric-driven vehicles by means of the research project OPTUM 'Potentials of environmental relief of electric driven vehicles - Integrated analysis of vehicle usage and energy economy'. Experts from the Institute for Applied Ecology (Freiburg, Federal Republic of Germany) and the Institute for Social-Ecological Research (Frankfurt (Main), Federal Republic of Germany) are devoted to the following issues: (1) What is the acceptance for electric-driven vehicles?; (2) What is their future market potential?; (3) What are the advantages of electromobility with respect to the climate?; (4) Are their supply shortages concerning major raw materials?.

  1. Reference architecture for interoperability testing of Electric Vehicle charging

    NARCIS (Netherlands)

    Lehfuss, F.; Nohrer, M.; Werkmany, E.; Lopezz, J.A.; Zabalaz, E.

    2015-01-01

    This paper presents a reference architecture for interoperability testing of electric vehicles as well as their support equipment with the smart grid and the e-Mobility environment. Pan-European Electric Vehicle (EV)-charging is currently problematic as there are compliance and interoperability

  2. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  3. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    . This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...

  4. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  5. Using fleets of electric-drive vehicles for grid support

    International Nuclear Information System (INIS)

    Tomic, Jasna; Kempton, Willett

    2007-01-01

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th.nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th.nk City fleet is from US$ 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US$ 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid. (author)

  6. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  7. Regulatory adaptation: Accommodating electric vehicles in a petroleum world

    International Nuclear Information System (INIS)

    Lutsey, Nicholas; Sperling, Daniel

    2012-01-01

    This paper addresses the policy challenges of adjusting established regulations to accommodate evolving and new technologies. We examine energy and emissions regulations for older petroleum powered vehicles and newer plug-in electric vehicles. Until now, vehicle regulations across the world have ignored energy consumption and emissions upstream of the vehicle (at refineries, pipelines, etc), largely because of the convenient fact that upstream emissions and energy use are nearly uniform across petroleum-fueled vehicles and play a relatively minor role in total lifecycle emissions. Including upstream impacts would greatly complicate the regulations. But because the vast majority of emissions and energy consumption for electric vehicles (and hydrogen and, to a lesser extent, biofuels) are upstream, the old regulatory design is no longer valid. The pressing regulatory question is whether to assign upstream GHG emissions to electric vehicles, or not, and if so, how. We find that assigning zero upstream emissions—as a way of incentivizing the production and sale of PEVs—would eventually lead to an erosion of 20% of the GHG emission benefits from new vehicles, assuming fixed vehicle standards. We suggest alternative policy mechanisms and strategies to account for upstream emissions and energy use. - Highlights: ► We quantify the effects of electric vehicles within greenhouse gas (GHG) regulation. ► Electric vehicle GHG impacts are substantial and vary greatly by grid power sources. ► Existing “zero emission” electric vehicle incentives undermine regulation benefits. ► 10% electric vehicle sales leads to 20% erosion in regulation benefits by 2020–2025. ► Lifecycle crediting improves policy cost-effectiveness and technology neutrality.

  8. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  9. A road safety performance indicator for vehicle fleet compatibility.

    NARCIS (Netherlands)

    Christoph, M. Vis, M.A. Rackliff, L. & Stipdonk, H.

    2013-01-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle

  10. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  11. Antisideslip and Antirollover Safety Speed Controller Design for Vehicle on Curved Road

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available When the drivers cannot be aware of the existing of forthcoming curved roads and fail to regulate their safety speeds accordingly, sideslip or rollover may occur with high probability. The antisideslip and antirollover control of vehicle on curved road in automatic highway systems is studied. The safety speed warning system is set before entering the curved road firstly. The speed adhesion control is adopted to shorten the braking distance while decelerating and to guarantee the safety speed. The velocity controller when decelerating on the straight path and the posture controller when driving on curved road are designed, respectively, utilizing integral backstepping technology. Simulation results demonstrate that this control system is characterized by quick and precise tracking and global stability. Consequently, it is able to avoid the dangerous operating conditions, such as sideslip and rollover, and guarantee the safety and directional stability when driving on curved road.

  12. Real-world emissions of in-use off-road vehicles in Mexico.

    Science.gov (United States)

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road

  13. [Road safety in Italy: epidemiology of two-wheeled motor vehicles accidents. National statistics 2000].

    Science.gov (United States)

    Morandi, Anna; Berzolari, Francesca Gigli; Marinoni, Alessandra

    2004-01-01

    to describe road accidents occurred in Italy focusing, in particular, on two-wheeled motor vehicles. Analysis of road accidents based on current data referring to year 2000. Italy. In Italy, 67,127 two-wheeled motor vehicle accidents occurred in 2000. Two crash types account for 75% of the accidents: side impact and front-side impact. Per one million kilometres travelled 0.4 cars and 1.3 two-wheeled vehicles are involved (0.7 motorcycles and 2.2 mopeds). In 2000 there were 1,229 deaths and 69,543 injured riders. Males up to forty years old are the most represented. The masculinity ratio presents a decreasing trend from motorcycles to mopeds and to cars both for killed people and for injured people. The lethality rate increases with age for all types of vehicles but for mopeds this trend is much more evident. Most of the accident occur in urban road while most of the deaths happen in extra-urban road. Mopeds and motorcycles, which are a small subset of all motor vehicles (approximately 20%), are greatly overrepresented in crashes. Considering the kilometres travelled, the risk to be involved in a crash for mopeds is estimated to be 32.6 times higher than the comparable risk for cars and for motorcycles it is 17 times higher. The risk of death for riders is two times the risk for cars.

  14. Bridge Expansion Joint in Road Transition Curve: Effects Assessment on Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Paola Di Mascio

    2017-06-01

    Full Text Available Properly-designed road surfaces provide a durable surface on which traffic can pass smoothly and safely. In fact, the main causes that determine the structural decay of the pavement and its parts are the traffic loads. These repeated actions can create undesirable unevennesses on the road surface, which induce vertical accelerations on vehicles, up to hindering contact between pavement and tire, with dangerous consequences on traffic safety. The dynamic actions transmitted by the vehicles depend on these irregularities: often, a bridge expansion joint (BEJ, introducing a necessary discontinuity between different materials, determines from the beginning a geometric irregularity in the running surface. Besides, some structural conditions could emphasize the problem (e.g., local cracking due to the settlement of the subgrade near the abutment or the discontinuity of stiffness due to the presence of different materials. When the BEJ is located in a transition curve, an inevitable vertical irregularity between road and joint can reach values of some centimeters, with serious consequences for the road safety. This paper deals with the analysis of a case study of a BEJ. Several test surveys were performed in order to fully characterize the effects on both vehicles and pavement. The three-dimensional representation of the pavement surface and the acceleration measurements on a heavy test vehicle were performed to analyze the joint behavior under traffic. Finally, a finite element model was implemented to evaluate the stress contribution on vehicle components induced by the vertical irregularities.

  15. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  16. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  17. Progress on advanced dc and ac induction drives for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  18. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  19. A Fusion of Sensors Information for Autonomous Driving Control of an Electric Vehicle (EV)

    International Nuclear Information System (INIS)

    Haris, Hasri; Wan, Khairunizam; Hazry, D; Razlan, Zuradzman M

    2013-01-01

    The study uses the environment of the road as input variables for the main system to control steering wheel, brake and acceleration pedals. A camera is installed on the roof of the Electric Vehicles (EV) and is used to obtain image information of the road. On the other hand, users or drivers do not have to directly contact with the main system because it will autonomously control the devices by using fuzzy information of the road conditions. A fuzzy information means in the preliminary experiments, reasoning of the various environments will be done by using fuzzy approach. At the end of the study, several existing algorithms for controlling motors and image processing technique could be combined into an algorithm that could be used to move EV without assist from human

  20. A road safety performance indicator for vehicle fleet compatibility.

    Science.gov (United States)

    Christoph, Michiel; Vis, Martijn Alexander; Rackliff, Lucy; Stipdonk, Henk

    2013-11-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the 'relative severity' of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13EU Member States and Norway, the indicator was used to rank the countries' safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41). Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  2. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  3. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  4. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  5. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  6. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  7. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  8. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Global EV Outlook represents the collective efforts of two years of primary data gathering and analysis from the Electric Vehicles Initiative (EVI) and IEA. Key takeaways and insights include landscape analysis of electric vehicle (EV) stock/sales and charging station deployment. Existing policy initiatives are delineated and future opportunities highlighted in an ''Opportunity Matrix: Pathways to 2020''. Together EVI countries accounted for more than 90% of world EV stock at the end of 2012. Strong government support in EVI countries on both the supply and demand sides are contributing to rising market penetration. 12 out of 15 EVI countries offer financial support for vehicle purchases, and most employ a mix of financial and non-financial incentives (such as access to restricted highway lanes) to help drive adoption. The Global EV Outlook is a unique and data-rich overview of the state of electric vehicles today, and offers an understanding of the electric vehicle landscape to 2020.

  9. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    Science.gov (United States)

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  10. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT. First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  11. 0-6763 : accounting for electric vehicles in air quality conformity.

    Science.gov (United States)

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  12. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    Science.gov (United States)

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  14. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. Congestion patterns of electric vehicles with limited battery capacity

    Science.gov (United States)

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  16. Congestion patterns of electric vehicles with limited battery capacity.

    Science.gov (United States)

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  17. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  18. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  19. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  20. Comparison of Different Battery Types for Electric Vehicles

    Science.gov (United States)

    Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B.

    2017-10-01

    Battery powered Electric Vehicles are starting to play a significant role in today’s automotive industry. There are many types of batteries found in the construction of today’s Electric Vehicles, being hard to decide which one fulfils best all the most important characteristics, from different viewpoints, such as energy storage efficiency, constructive characteristics, cost price, safety and utilization life. This study presents the autonomy of an Electric Vehicle that utilizes four different types of batteries: Lithium Ion (Li-Ion), Molten Salt (Na-NiCl2), Nickel Metal Hydride (Ni-MH) and Lithium Sulphur (Li-S), all of them having the same electric energy storage capacity. The novelty of this scientific work is the implementation of four different types of batteries for Electric Vehicles on the same model to evaluate the vehicle’s autonomy and the efficiency of these battery types on a driving cycle, in real time, digitized by computer simulation.

  1. Sustainable Electric Vehicle Management using Coordinated Machine Learning

    NARCIS (Netherlands)

    K. Valogianni (Konstantina)

    2016-01-01

    markdownabstractThe purpose of this dissertation is to investigate how intelligent algorithms can support electricity customers in their complex decisions within the electricity grid. In particular, we focus on how electric vehicle (EV) owners can be supported in their charging and discharging

  2. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  3. Application of IC Card License for Road Transportation in Commercial Vehicles Supervision and Service

    Directory of Open Access Journals (Sweden)

    Li Weiwei

    2016-01-01

    Full Text Available IC card electronic license for road transport includes the IC card commercial vehicle’s certificate and IC card practitioner’s qualification certificate. In China, the IC card electronic license for road transport is the electronic ID card which must be carried by each commercial vehicles and practitioners. This paper briefly introduces the basic situation, data format and security keys architecture of IC card electronic license for road transportation of China. In order to strengthen the supervision and service of commercial vehicles, this paper puts forward the overall application framework of IC card electronic license for road transport. The application examples of IC card license in the supervision of passenger station, dangerous goods transport management, governance overload and logistics park and port area management are discussed. The practical application results show that the application of IC card electronic license for road transport is an important technical means to improve the supervision ability and service quality of the road transportation industry.

  4. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  5. Road user charges for heavy goods vehicles (HGV):Tables with external costs of air pollution

    OpenAIRE

    Andersen, Mikael Skou

    2013-01-01

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air pollution from industrial facilities (EEA, 2011).

  6. Impact of a Newly Constructed Motor Vehicle Road on Altitude Illness in the Nepal Himalayas.

    Science.gov (United States)

    Reisman, Jonathan; Deonarain, Dinesh; Basnyat, Buddha

    2017-12-01

    This study investigated the impact that motor vehicle travel along a newly constructed road has on altitude illness (including acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema). The new road from Besisahar (760 m) to Manang (3540 m) in Nepal was completed in December 2014. We enrolled all patients diagnosed with altitude illness at the Himalayan Rescue Association Manang clinic in fall 2016. Phi coefficients were calculated to test for an association between Nepali ethnicity and rapid ascent by motor vehicle. A retrospective review looked at all patients with altitude illness from fall (September-November) 2010 to spring (February-May) 2016. In fall 2016, more than half (54%) of patients with altitude illness traveled to Manang by motor vehicle, and one-third (33%) reached Manang from low altitude (Besisahar) in less than 48 hours. Nepali nationality had a significant association with motor vehicle travel (phi +0.69, P road (P constructed road from Besisahar to Manang appears to be related to a significant increase in the number of patients with all forms of altitude illness, especially among Nepalis. The authors believe that educational interventions emphasizing prevention are urgently needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. Use of chemical soil additives to stabilize off-road vehicle trails

    Science.gov (United States)

    J.N. Davis; J.E. Baier; J.P. Fulton; D.A. Brown; T.P. McDonald

    2007-01-01

    Off‐road vehicle (ORV) use is an increasingly popular form of outdoor recreation throughout the United States. This form of motorized recreation, however, can sometimes lead to serious erosion of trail running surfaces, with resulting export of sediment into forested ecosystems causing environmental degradation. This project was conducted to determine the...

  8. AUTOMATIC GENERATION OF ROAD INFRASTRUCTURE IN 3D FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Adam Orlický

    2017-12-01

    Full Text Available One of the modern methods of testing new systems and interfaces in vehicles is testing in a vehicle simulator. Providing quality models of virtual scenes is one of tasks for driver-car interaction interface simulation. Nowadays, there exist many programs for creating 3D models of road infrastructures, but most of these programs are very expensive or canÂtt export models for the following use. Therefore, a plug-in has been developed at the Faculty of Transportation Sciences in Prague. It can generate road infrastructure by Czech standard for designing roads (CSN 73 6101. The uniqueness of this plug-in is that it is the first tool for generating road infrastructure in NURBS representation. This type of representation brings more exact models and allows to optimize transfer for creating quality models for vehicle simulators. The scenes created by this plug-in were tested on vehicle simulators. The results have shown that with newly created scenes drivers had a much better feeling in comparison to previous scenes.

  9. GNSS-based Road Charging Systems - Assessment of Vehicle Location Determination

    DEFF Research Database (Denmark)

    Zabic, Martina

    the collected data from the experiment, in its original for, as it would be used as input for the automated charge calculation process in a road charging system. Furthermore, new methodologies are developed for assessing the performance of the vehicle location determination function in terms of data reliability...

  10. Concerning the debate on electric-powered-vehicle emissions

    International Nuclear Information System (INIS)

    Sporckmann, B.

    1994-01-01

    The fact that electric-powered vehicles do not emit pollutants locally is obvious and must be considered as the main motive for their use. The global air pollution situation can only be of secondary importance because within the foreseeable future emissions linked to the use of electric-powered vehicles will remain within the variation width of power generation emissions that is not to be influenced. All the same, it is indispensable to consider the global situation. The author compares electric-powered vehicles with conventional ones by referring to the power generation of all federal German states. (orig.) [de

  11. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  12. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  13. Intelligent Electric Vehicle Integration - Domain Interfaces and Supporting Informatics

    DEFF Research Database (Denmark)

    Andersen, Peter Bach

    This thesis seeks to apply the field of informatics to the intelligent integration of electric vehicles into the power system. The main goal is to release the potential of electric vehicles in relation to a reliable, economically efficient power system based on renewables. To make intelligent EV...... and services in which the electric vehicle may be best suited to participate. The next stakeholder investigated is the distribution system operator representing the low voltage grid. The challenge is assessed by considering a number of grid impacts studies. Next, a set of grid congestion mitigation strategies...

  14. Lane Changing Trajectory Planning and Tracking Controller Design for Intelligent Vehicle Running on Curved Road

    Directory of Open Access Journals (Sweden)

    Lie Guo

    2014-01-01

    Full Text Available To enhance the active safety and realize the autonomy of intelligent vehicle on highway curved road, a lane changing trajectory is planned and tracked for lane changing maneuver on curved road. The kinematics model of the intelligent vehicle with nonholonomic constraint feature and the tracking error model are established firstly. The longitudinal and lateral coupling and the difference of curvature radius between the outside and inside lane are taken into account, which is helpful to enhance the authenticity of desired lane changing trajectory on curved road. Then the trajectory tracking controller of closed-loop control structure is derived using integral backstepping method to construct a new virtual variable. The Lyapunov theory is applied to analyze the stability of the proposed tracking controller. Simulation results demonstrate that this controller can guarantee the convergences of both the relative position tracking errors and the position tracking synchronization.

  15. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  16. Battery Electric Vehicles: characteristics and research projects

    NARCIS (Netherlands)

    Besselink, I.J.M.

    2010-01-01

    This presentation discusses briefly the history of the electric car and its main characteristics. Two projects introduced: the battery electric VW Lupo EL and URE05e electric Formula Student racecar. Presentation slides.

  17. Electric Vehicle Requirements for Operation in Smart Grids

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Træholt, Chresten

    2011-01-01

    Several European projects on smart grids are considering Electric Vehicles (EVs) as active element in future power systems. Both battery-powered vehicles and plug-in hybrid vehicles are expected to interact with the grid, sharing their energy storage capacity. Different coordination concepts...... for EVs are being investigated, in which vehicles can be intelligently charged or discharged feeding power back to the grid in vehicle-to-grid mode (V2G). To respond to such needs, EVs are required to share their battery internal data as well as respond to external control signals. In this paper...

  18. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  19. China’s electric vehicle subsidy scheme: Rationale and impacts

    International Nuclear Information System (INIS)

    Hao, Han; Ou, Xunmin; Du, Jiuyu; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    To promote the market penetration of electric vehicles (EV), China launched the Electric Vehicle Subsidy Scheme (EVSS) in Jan 2009, followed by an update in Sep 2013, which we named phase I and phase II EVSS, respectively. In this paper, we presented the rationale of China’s two-phase EVSS and estimated their impacts on EV market penetration, with a focus on the ownership cost analysis of battery electric passenger vehicles (BEPV). Based on the ownership cost comparison of five defining BEPV models and their counterpart conventional passenger vehicle (CPV) models, we concluded that in the short term, especially before 2015, China’s EVSS is very necessary for BEPVs to be cost competitive compared with CPVs. The transition from phase I to phase II EVSS will generally reduce subsidy intensity, thus resulting in temporary rise of BEPV ownership cost. However, with the decrease of BEPV manufacturing cost, the ownership cost of BEPV is projected to decrease despite of the phase-out mechanism under phase II EVSS. In the mid term of around 2015–2020, BEPV could become less or not reliant on subsidy to maintain cost competitiveness. However, given the performance disadvantages of BEPV, especially the limited electric range, China’s current EVSS is not sufficient for the BEPV market to take off. Technology improvement associated with battery cost reduction has to play an essential role in starting up China’s BEPV market. - Highlights: • China’s phase I and phase II electric vehicle subsidy schemes were reviewed. • Major electric vehicle models in China’s vehicle market were reviewed. • The ownership costs of five defining electric passenger vehicle models were compared. • Policies to promote electric vehicle deployment in China were discussed

  20. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  1. A Few Large Roads or Many Small Ones? How to Accommodate Growth in Vehicle Numbers to Minimise Impacts on Wildlife

    Science.gov (United States)

    Rhodes, Jonathan R.; Lunney, Daniel; Callaghan, John; McAlpine, Clive A.

    2014-01-01

    Roads and vehicular traffic are among the most pervasive of threats to biodiversity because they fragmenting habitat, increasing mortality and opening up new areas for the exploitation of natural resources. However, the number of vehicles on roads is increasing rapidly and this is likely to continue into the future, putting increased pressure on wildlife populations. Consequently, a major challenge is the planning of road networks to accommodate increased numbers of vehicles, while minimising impacts on wildlife. Nonetheless, we currently have few principles for guiding decisions on road network planning to reduce impacts on wildlife in real landscapes. We addressed this issue by developing an approach for quantifying the impact on wildlife mortality of two alternative mechanisms for accommodating growth in vehicle numbers: (1) increasing the number of roads, and (2) increasing traffic volumes on existing roads. We applied this approach to a koala (Phascolarctos cinereus) population in eastern Australia and quantified the relative impact of each strategy on mortality. We show that, in most cases, accommodating growth in traffic through increases in volumes on existing roads has a lower impact than building new roads. An exception is where the existing road network has very low road density, but very high traffic volumes on each road. These findings have important implications for how we design road networks to reduce their impacts on biodiversity. PMID:24646891

  2. A few large roads or many small ones? How to accommodate growth in vehicle numbers to minimise impacts on wildlife.

    Directory of Open Access Journals (Sweden)

    Jonathan R Rhodes

    Full Text Available Roads and vehicular traffic are among the most pervasive of threats to biodiversity because they fragmenting habitat, increasing mortality and opening up new areas for the exploitation of natural resources. However, the number of vehicles on roads is increasing rapidly and this is likely to continue into the future, putting increased pressure on wildlife populations. Consequently, a major challenge is the planning of road networks to accommodate increased numbers of vehicles, while minimising impacts on wildlife. Nonetheless, we currently have few principles for guiding decisions on road network planning to reduce impacts on wildlife in real landscapes. We addressed this issue by developing an approach for quantifying the impact on wildlife mortality of two alternative mechanisms for accommodating growth in vehicle numbers: (1 increasing the number of roads, and (2 increasing traffic volumes on existing roads. We applied this approach to a koala (Phascolarctos cinereus population in eastern Australia and quantified the relative impact of each strategy on mortality. We show that, in most cases, accommodating growth in traffic through increases in volumes on existing roads has a lower impact than building new roads. An exception is where the existing road network has very low road density, but very high traffic volumes on each road. These findings have important implications for how we design road networks to reduce their impacts on biodiversity.

  3. A few large roads or many small ones? How to accommodate growth in vehicle numbers to minimise impacts on wildlife.

    Science.gov (United States)

    Rhodes, Jonathan R; Lunney, Daniel; Callaghan, John; McAlpine, Clive A

    2014-01-01

    Roads and vehicular traffic are among the most pervasive of threats to biodiversity because they fragmenting habitat, increasing mortality and opening up new areas for the exploitation of natural resources. However, the number of vehicles on roads is increasing rapidly and this is likely to continue into the future, putting increased pressure on wildlife populations. Consequently, a major challenge is the planning of road networks to accommodate increased numbers of vehicles, while minimising impacts on wildlife. Nonetheless, we currently have few principles for guiding decisions on road network planning to reduce impacts on wildlife in real landscapes. We addressed this issue by developing an approach for quantifying the impact on wildlife mortality of two alternative mechanisms for accommodating growth in vehicle numbers: (1) increasing the number of roads, and (2) increasing traffic volumes on existing roads. We applied this approach to a koala (Phascolarctos cinereus) population in eastern Australia and quantified the relative impact of each strategy on mortality. We show that, in most cases, accommodating growth in traffic through increases in volumes on existing roads has a lower impact than building new roads. An exception is where the existing road network has very low road density, but very high traffic volumes on each road. These findings have important implications for how we design road networks to reduce their impacts on biodiversity.

  4. Optimal charging of electric drive vehicles in a market environment

    DEFF Research Database (Denmark)

    Kristoffersen, Trine Krogh; Capion, Karsten Emil; Meibom, Peter

    2011-01-01

    With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market...... participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear...... programming whereas a quadratic programming formulation is required when he/she has market power. A Danish case study illustrates the construction of representative driving patterns through clustering of survey data from Western Denmark and the prediction of electricity price variations through regression...

  5. Marine spark-ignition engine and off-road recreational vehicle emission regulations : discussion document

    International Nuclear Information System (INIS)

    2004-07-01

    In February 2001, the Minister of Environment Canada outlined a series of measures to reduce emissions from vehicles and engines, including off-road engines. This report describes proposed regulations to control emissions form outboard engines, personal watercraft engines, snowmobiles, off-highway motorcycles, all-terrain vehicles and utility vehicles. Since most marine engines and recreational vehicles sold in Canada are imported, the agenda includes the development of new regulations under Division 5 of the Canadian Environmental Protection Act (CEPA) to align Canada's emission standards for off-road vehicles with those of the United States Environmental Protection Agency. A harmonized approach on emissions standards is expected to result in fewer transition and implementation problems. This report describes which vehicles and engines will be subjected to the planned regulations along with those that will be exempted. Planned emission standard swill apply to vehicles and engines of the 2007 and later model years. Persons affected by the planned regulations were also identified. tabs., figs

  6. Wireless Magnetic Sensor Network for Road Traffic Monitoring and Vehicle Classification

    Directory of Open Access Journals (Sweden)

    Velisavljevic Vladan

    2016-12-01

    Full Text Available Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification.

  7. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  8. On-road vehicle emissions and their control in China: A review and outlook.

    Science.gov (United States)

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions

  9. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Science.gov (United States)

    2010-07-01

    ... motor vehicle use on designated roads and trails and in designated areas. 212.57 Section 212.57 Parks... Roads, Trails, and Areas for Motor Vehicle Use § 212.57 Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas. For each administrative unit of the National Forest...

  10. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  11. Off-road vehicles affect nesting behaviour and reproductive success of American Oystercatchers Haematopus palliatus

    Science.gov (United States)

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    As human populations and associated development increase, interactions between humans and wildlife are occurring with greater frequency. The effects of these interactions, particularly on species whose populations are declining, are of great interest to ecologists, conservationists, land managers and natural resource policy-makers. The American Oystercatcher Haematopus palliatus, a species of conservation concern in the USA, nests on coastal beaches subject to various forms of anthropogenic disturbance, including aircraft overflights, off-road vehicles and pedestrians. This study assessed the effects of these human disturbances on the incubation behaviour and reproductive success of nesting American Oystercatchers at Cape Lookout National Seashore, on the Atlantic coast of the USA. We expanded on-going monitoring of Oystercatchers at Cape Lookout National Seashore by supplementing periodic visual observations with continuous 24-h video and audio recording at nests. Aircraft overflights were not associated with changes in Oystercatcher incubation behaviour, and we found no evidence that aircraft overflights influenced Oystercatcher reproductive success. However, Oystercatchers were on their nests significantly less often during off-road vehicle and pedestrian events than they were during control periods before the events, and an increase in the number of off-road vehicles passing a nest during incubation was consistently associated with significant reductions in daily nest survival (6% decrease in daily nest survival for a one-vehicle increase in the average number of vehicles passing a nest each day; odds ratio = 0.94; 95% confidence interval (CI) 0.90, 0.98) and hatching success (12% decrease in hatching success for a one-vehicle increase in the average number of vehicles passing a nest each day; odds ratio = 0.88; 95% CI 0.76, 0.97). Management of vehicles and pedestrians in areas of Oystercatcher breeding is important for the conservation of American

  12. Research on minimum sound specifications for hybrid and electric vehicles

    Science.gov (United States)

    2012-06-30

    This report documents research by the National Highway Traffic Safety Administration (NHTSA) to identify ways : to develop sound specifications for electric and hybrid vehicles. The research was conducted to support activities : related to the implem...

  13. Plug-In Electric Vehicle Handbook for Consumers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  14. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  15. Battery Technologies for Mass Deployment of Electric Vehicles

    Science.gov (United States)

    2018-03-23

    Electric vehicle (EV) batteries have significantly improved since their inception. However, lifetime of these batteries is still strongly dependent on the usage profiles. This report describes aspects of EV battery utilization, and their impact on ba...

  16. Investigations of safety risks in converted electric vehicles

    NARCIS (Netherlands)

    Bolech, M.; Foster, D.L.; Lange, R. de; Rodarius, C.

    2010-01-01

    Within the departments Environmentally Sustainable Transport and Automotive of TNO (Netherlands organisation for applied scientific research) several projects investigating safety aspects of electric vehicles have been conducted, including one in cooperation with KEMA and RDW of the Netherlands.

  17. Optimal Velocity Control for a Battery Electric Vehicle Driven by Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Dongbin Lu

    2014-01-01

    Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.

  18. Panorama 2011: The development of hybrid and electric vehicles

    International Nuclear Information System (INIS)

    Vinot, S.

    2011-01-01

    Car manufacturers are having to deal with increasingly stringent norms and customers who are increasingly demanding with respect to fuel savings. As a result, large numbers of them are now looking into solutions that involve electrifying their vehicles. Hybrid vehicles, some of which can be recharged, and electric vehicles are the new stars of the auto trade shows. But not all manufacturers are necessarily using the same strategies. (author)

  19. Environmental impacts of electric vehicles in South Africa

    Directory of Open Access Journals (Sweden)

    David Glasser

    2012-01-01

    Full Text Available Electric vehicles have been seen by some policymakers as a tool to target reductions in greenhouse gas emissions.1,2 Some researchers have shown that the full environmental impact of electric vehicles depends very much on the cleanliness of the electricity grid.3 In countries such as the USA and China, where coal-fired power plants still play a very important role in electricity generation, the environmental impact of electric vehicles is equivalent to, or even higher than that of cars running on internal combustion engines.4,5 In this study, the environmental impacts of electric vehicles in South Africa were investigated. We found that, as the bulk of South Africa’s electricity is generated from relatively low-quality coal and the advanced exhaust clean up technologies are not implemented in the current coal-fired power plants, the use of electric vehicles in South Africa would not help to cut greenhouse gas emissions now (2010 or in the future (in 2030 using the IRP 2010 Revision 2, policy-adjusted IRP scenario, and actually would lead to higher SOx and NOx emissions.

  20. Search and Pursuit with Unmanned Aerial Vehicles in Road Networks

    Science.gov (United States)

    2013-11-01

    landmark tracking, Andersen and Taylor [7] show that with a planar ground assumption, a homography-based visual odometry algorithm can be combined with...7] Evan D. Andersen and Clark N. Taylor. Improving MAV pose estimation using visual information. In IEEE International Conference on Intelligent...patrol and surveillance missions using multiple unmanned air vehicles. In IEEE Confer- ence on Decision and Control, 2004. [53] Arthur S. Goldstein

  1. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  2. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Balm, S.H.; Hogt, Roeland

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight

  3. Optimal Charging of Electric Drive Vehicles: A Dynamic Programming Approach

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Capion, Karsten Emil; Juul, Nina

    2013-01-01

    , therefore, we propose an ex ante vehicle aggregation approach. We illustrate the results in a Danish case study and find that, although optimal management of the vehicles does not allow for storage and day-to-day flexibility in the electricity system, the market provides incentive for intra-day flexibility....

  4. Online prediction of battery electric vehicle energy consumption

    NARCIS (Netherlands)

    Wang, Jiquan; Besselink, Igo; Nijmeijer, Henk

    2016-01-01

    The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The variance of these factors and the correlation among each other make the energy consumption

  5. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  6. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Hogt, Roeland; Balm, S.H.; Warmerdam, J.M.

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year

  8. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2016-01-01

    Highlights: • Comparison between two braking methods for an EV maximizing the energy recovery. • Wheels slip ratio control based on robust sliding mode and ECE R13 control methods. • Regenerative braking control strategy. • Energy recovery of a HESS with respect to road surface type and road condition. - Abstract: This paper presents the comparison between two braking methods for a two-wheel front driven Electric Vehicle maximizing the energy recovery on the Hybrid Energy Storage System. The first method consists in controlling the wheels slip ratio while braking using a robust sliding mode controller. The second method will be based on ECE R13H constraints for an M1 passenger vehicle. The vehicle model used for simulation is a simplified five degrees of freedom model. It is driven by two 30 kW permanent magnet synchronous motor (PMSM) recovering energy during braking phases. Several simulation results for extreme braking conditions will be performed and compared on various road type surfaces using Matlab/Simulink®. For an initial speed of 80 km/h, simulation results demonstrate that the difference of energy recovery efficiency between the two control braking methods is beneficial to the ECE constraints control method and it can vary from 3.7% for high friction road type to 11.2% for medium friction road type. At low friction road type, the difference attains 6.6% due to different reasons treated in the paper. The stability deceleration is also discussed and detailed.

  9. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  10. Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System

    Directory of Open Access Journals (Sweden)

    S. Gómez-Peñate

    2018-01-01

    Full Text Available A sensor fault diagnosis of an electric vehicle (EV modeled as a Takagi-Sugeno (TS system is proposed. The proposed TS model considers the nonlinearity of the longitudinal velocity of the vehicle and parametric variation induced by the slope of the road; these considerations allow to obtain a mathematical model that represents the vehicle for a wide range of speeds and different terrain conditions. First, a virtual sensor represented by a TS state observer is developed. Sufficient conditions are given by a set of linear matrix inequalities (LMIs that guarantee asymptotic convergence of the TS observer. Second, the work is extended to perform fault detection and isolation based on a generalized observer scheme (GOS. Numerical simulations are presented to show the performance and applicability of the proposed method.

  11. Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2015-01-01

    energy sources like wind in power systems. The EV batteries could be used to charge during periods of excess electricity production from wind power and reduce the charging rate or discharge on deficit of power in the grid, supporting system stability and reliability. By providing such grid services......The prospects of Electric Vehicles (EVs) in providing clean transportation and supporting renewable electricity is widely discussed in sustainable energy forums worldwide. The battery storage of EVs could be used to address the variability and unpredictability of electricity produced from renewable......, the vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results...

  12. Road user charges for heavy goods vehicles (HGV). Tables with external costs of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Skou Andersen, M.

    2013-02-15

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). The amended Eurovignette Directive (2011/76/EU) relating to the charging of HGVs for use of major European motorways prescribes that from 2013, Member States may include air pollution costs in any charging structure for roads under the Trans-European Network (TEN-T) and for comparable domestic motorways. The tables published here provide the basis for the inclusion of a vehicle-specific air pollution component in road user charges. Air pollution costs have been calculated on the basis of the formula prescribed in the directive, taking into account the fact that road transport emissions are mixed in a low volume of air. Following Article 9 in the Eurovignette Directive, additional revenues from external-cost charges must be used by Member States to benefit the transport sector and promote sustainable mobility. Making use of scientific developments subsequent to the 2007 Handbook of external costs (Maibach et al., 2008), the EEA is able to provide an updated estimate of the external costs of air pollution from road transport. The tables in this report indicate for each country and for the relevant vehicle categories, estimates of the external costs of air pollution in 2010 prices. The high level of detail gives member countries an informed basis to group the vehicle categories for administrative purposes. The tables also include estimates for three non-EU member countries of the EEA, of which one (Switzerland) pioneered the first HGV road user charge in Europe. (LN)

  13. SYSTEM FOR AUTOMATIC SELECTION OF THE SPEED RATE OF ELECTRIC VEHICLES FOR REDUCING THE POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2017-06-01

    Full Text Available Purpose. The work is aimed to design a system for automatic selection of the optimal traffic modes and automatic monitoring of the electric energy consumption by electric transport. This automatic system should provide for the minimum energy expenses. Methodology. Current methodologies: 1 mathematical modeling of traffic modes of ground electric vehicles; 2 comparison of modelling results with the statistical monitoring; 3 system development for automatic choice of traffic modes of electric transport with minimal electrical energy consumptions taking into account the given route schedules and the limitations imposed by the general traffic rules. Findings. The authors obtained a mathematical dependency of the energy consumption by electric transport enterprises on the monthly averaged environment temperature was obtained. A system which allows for an automatic selection of the speed limit and provides automatic monitoring of the electrical energy consumption by electric vehicles was proposed in the form of local network, which works together with existing GPS system. Originality. A mathematical model for calculating the motion curves and energy consumption of electric vehicles has been developed. This model takes into account the characteristic values of the motor engine and the steering system, the change of the mass when loading or unloading passengers, the slopes and radii of the roads, the limitations given by the general traffic rules, and other factors. The dependency of the energy consumption on the averaged monthly environment temperature for public electric transport companies has been calculated. Practical value. The developed mathematical model simplifies the calculations of the traffic dynamics and energy consumption. It can be used for calculating the routing maps, for design and upgrade of the power networks, for development of the electricity saving measures. The system simplifies the work of the vehicle driver and allows reducing

  14. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  15. Measurement of power loss during electric vehicle charging and discharging

    International Nuclear Information System (INIS)

    Apostolaki-Iosifidou, Elpiniki; Codani, Paul; Kempton, Willett

    2017-01-01

    When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm. - Highlights: • Grid-to-battery-to-grid comprehensive power loss measurement and analysis. • No previous experimental measurements of Grid-Integrated Vehicle system power loss. • Electric vehicle loss analyzed as a factor of state of charge and charging rate. • Power loss in the building components less than 3%. • Largest losses found in Power Electronics (typical round-trip loss 20%).

  16. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  17. Secondary organic aerosol formation from road vehicle emissions

    Science.gov (United States)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  18. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  19. Modular Electric Vehicle Program (MEVP). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  20. Capacity Utilisation of Vehicles for Road Freight Transport

    DEFF Research Database (Denmark)

    Kveiborg, Ole; Abate, Megersa Abera

    to their analytical approach and origin of research. Findings The first approach looks at utilisation based on economic theories such as the firms’ objective to maximise profitability and considers how various firm and haul (market) characteristics influence utilisation. The second approach stems from the transport...... modelling literature and its main aim is analysing vehicle movement and usage in transport demand modelling context. A strand of this second group of contributions is the modelling of trip-chain and its implication on the level of capacity utilisation. Research limitations The review is not a comprehensive...... by combining different strands of this literature....