WorldWideScience

Sample records for electric power storage

  1. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  2. Customized electric power storage device for inclusion in a microgrid

    Science.gov (United States)

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  3. Customized electric power storage device for inclusion in a collective microgrid

    Science.gov (United States)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    2016-02-16

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specified load parameters in the at least two connected microgrids.

  4. Considerations on the need for electricity storage requirements: Power versus energy

    International Nuclear Information System (INIS)

    Belderbos, Andreas; Virag, Ana; D’haeseleer, William; Delarue, Erik

    2017-01-01

    Highlights: • General storage principles are analyzed. • Storage units have different limitations (power versus energy). • Storage power and energy are required, dependent on residual profile. • Relationship between residual profile and optimal storage portfolio is derived. • Broadly applicable rules regarding optimal storage investments are presented. - Abstract: Different storage technologies enable an increasing share of variable renewable generation in the electricity system by reducing the temporal mismatch between generation and demand. Two storage ratings are essential to time-shift delivery of electricity to loads: electric power, or instantaneous electricity flow [W], and electric energy, or power integrated over time [Wh]. An optimal storage portfolio is likely composed of multiple technologies, each having specific power and energy ratings. This paper derives and explains the link between the shape of the time-varying demand and generation profiles and the amount of desirably installed storage capacity, both energy and power. An analysis is performed for individual storage technologies first, showing a link between the necessary power and energy capacity and the demand and generation profile. Then combinations of storage technologies are analyzed to reveal their mutual interaction in a storage portfolio. Results show an increase in desirability for storage technologies with low cost power ratings when the mismatch between generation and demand occurs in daily to weekly cycles. Storage technologies with low cost energy ratings are preferred when this mismatch occurs in monthly to seasonal cycles. The findings of this work can help energy system planners and policy makers to explain results from generation expansion planning studies and to isolate the storage benefits accountable to temporal arbitrage in broader electricity storage studies.

  5. Electricity storage. A solution for wind power integration? Study on the economic and institutional aspects of the implementation of electricity storage for the integration of wind power

    International Nuclear Information System (INIS)

    Hendriks, R.H.

    2004-06-01

    In today's society a power outage can lead to major financial damage. It is therefore of high importance that the electricity system is reliable and that customers can rely on high security of supply. To prevent power outages, the electricity system has to be in balance continuously: supply and load have to be equal. Currently the majority of the electricity generation is done by conventional power plants of which the operation schedule is fully controllable. This means that these plants can be operated in such a way that electricity demand, which varies during the day, can be met continuously. The integration of a large share of wind power in the electricity supply system however, can lead to problems with respect to the balancing of the electricity system. This is caused by the fact that wind power has an intermittent character. Its production fluctuates and is uncertain: it therefore cannot be used to follow the varying load. Electricity storage could contribute to the integration of wind power in the electricity supply system. Storage systems can decouple the timing of generation and consumption of electricity and can therefore compensate for the fluctuations in wind power production. This investigation aims at identifying what problems the integration of a large share of wind power will cause and how electricity storage can resolve these problems. Subsequently, the implementation costs of storage systems for the identified applications will be investigated. Finally, the current regulatory environment will be discussed to evaluate whether it is geared to the implementation of electricity storage. Therefore, the following research question is formulated: Under which technological and institutional preconditions will it be advantageous to implement electricity storage systems, in combination with wind farms, in the next 20 years? To answer the research question the following subquestions have been formulated: (1) What are the implications of the market design on

  6. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Directory of Open Access Journals (Sweden)

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  7. A Hybrid Multilevel Storage Architecture for Electric Power Dispatching Big Data

    Science.gov (United States)

    Yan, Hu; Huang, Bibin; Hong, Bowen; Hu, Jing

    2017-10-01

    Electric power dispatching is the center of the whole power system. In the long run time, the power dispatching center has accumulated a large amount of data. These data are now stored in different power professional systems and form lots of information isolated islands. Integrating these data and do comprehensive analysis can greatly improve the intelligent level of power dispatching. In this paper, a hybrid multilevel storage architecture for electrical power dispatching big data is proposed. It introduces relational database and NoSQL database to establish a power grid panoramic data center, effectively meet power dispatching big data storage needs, including the unified storage of structured and unstructured data fast access of massive real-time data, data version management and so on. It can be solid foundation for follow-up depth analysis of power dispatching big data.

  8. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  9. Fiscal 1999 report. Development of an electric power storage system using new type batteries, and development of a discrete type electric power storage technology (Survey on trend in developing batteries for electric power storage); 1999 nendo shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu hokokusho. Denryoku chozoyo denchi no kaihatsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Demand is increasing in recent years in Japan on batteries for electric power storage to respond to load variation in electric power supply. If electric power storage batteries are applied for practical use, nighttime excess power can be stored appropriately, which can be discharged during day time when the demand is increased, so that the demand variation can be handled adequately. Secondary batteries, if used, are characterized by having much greater energy density and output density because of storing the electric energy as chemical energy than in pumped-storage power generation which stores the energy as the positional energy of water. Therefore, this paper describes the surveys performed on the trend of developing the power storage batteries inside and outside the country. Section 1 shows the current status of annual load rates in other countries, and the current conception on power storage in these countries. Section 2 states the current status of practical application of power storage batteries having been developed in Germany and the U.S.A. and performed of demonstration tests. Section 3 reports the current status of developing new type power storage batteries. Section 4 describes the current status of developing the power storage batteries for power users. (NEDO)

  10. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  11. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how

    International Nuclear Information System (INIS)

    2003-01-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  12. Pricing and Application of Electric Storage

    Science.gov (United States)

    Zhao, Jialin

    Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.

  13. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    International Nuclear Information System (INIS)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO 2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat storages with heat from heat pumps, electric heat boilers and combined heat and power (CHP) plants. Results show that there is great potential for additional power system flexibility in the production and use of heat. (author)

  14. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system

    Science.gov (United States)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-01

    While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.

  15. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...

  16. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  17. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.

    2011-06-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy and is difficult to predict, we explore the extent to which co-located energy storage can be used to improve expected profit and mitigate the the financial risk associated with shorting on the offered contracts. Using a simple stochastic model for wind power production and a model for the electricity market, we show that the problem of determining optimal contract offerings for a WPP with co-located energy storage can be solved using convex programming.

  18. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  19. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  20. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  2. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  3. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  4. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  5. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  6. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  7. Driving with electrical power

    International Nuclear Information System (INIS)

    Ursin, M.; Hoeckel, M.

    2008-01-01

    This article takes a look at the chances offered to the electricity supply industry by the increasing use of battery-driven vehicles - and the advantages thus offered to the environment. The use of the vehicles' batteries to form a distributed electricity storage scheme is discussed. The authors comment that, although electrically-driven vehicles consume more power, the total primary energy consumption and pollutant emissions will be reduced. The actual electricity consumption of electric vehicles and the source of this power are examined. Power saved by the reduced use of electrical heating systems and boilers could, according to the authors, be used to charge the batteries of electric vehicles. The use of these batteries as a storage system to help regulate electricity supplies is discussed and the steps to be taken for the implementation of such a system are listed

  8. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  9. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  10. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  11. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  12. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  13. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  14. Potential of osmosis for power generation and storage of electricity; Potentiale der Osmose zur Erzeugung und Speicherung von Elektrizitaet

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, Peter

    2012-07-01

    sites which offer suitable conditions for an operation of osmotic power plants with alternative solutions is limited. It is also possible to use osmotic power plants as an energy storage system. Energy is stored as salinity gradient energy and is available for conversion into electricity on demand (operation comparable to pump-storage water power plants). Main obstacles to realise a power storage system based on osmotic power are the complex process configuration and the very high energy demand for the operation of the plant in regeneration or storage mode. The overall efficiency of such a storage system is approx. 30% with at the same time very high costs for generating electricity. (orig.)

  15. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  16. Electric cars as mobile power storage systems

    International Nuclear Information System (INIS)

    Herzog, B.

    2010-01-01

    This article discusses the use of electric cars as a means of optimising the use of renewable energy sources. Charging the cars' batteries during periods when cheap electricity prices prevail and then using excess capacity to supply the mains with electricity during periods of peak demand is discussed. The possible use of wind for power generation is discussed and a system proposed by a leading supplier of electrical apparatus and systems is examined. Two examples of electric cars and associated power chains are looked at and tests in everyday practice are described

  17. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  18. Heuristic Storage System Sizing for Optimal Operation of Electric Vehicles Powered by Photovoltaic Charging Station

    Directory of Open Access Journals (Sweden)

    Erik Blasius

    2016-01-01

    Full Text Available This paper discusses the utilisation of PV systems for electric vehicles charging for transportation requirements of smart cities. The gap between PV power output and vehicles charging demand is highly variable. Therefore, there is a need for additional support from a public distribution grid or a storage device in order to handle the residual power. Long term measurement data retrieved from a charging station for 15 vehicles equipped with a PV system were used in the research. Low and high irradiation seasons influenced the PV output. The charging demand of electric vehicles varied over the course of a year and was correlated to weather conditions. Therefore, the sizing and performance of a supportive storage device should be evaluated in a statistical manner using long period observations.

  19. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  20. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  1. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  2. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  3. Technical-economic study of electricity storage

    International Nuclear Information System (INIS)

    Harriche, Farah; Souletis, Romain; Carrette, Bertille; Jarry, Gregory; Dereuddre, Antoine

    2013-01-01

    This study first reports an analysis of all services which could be provided by storage to the French electric power system. It proposes an overview of existing technologies, a comparison of their technical characteristics, and a synthesis of technologies which are the most suited to the main services. The author then discusses some regulatory evolutions which are necessary for a good development of the power storage sector in France. An economic scenario is then proposed for the development of storage by 2030. The author indicates expected capacities for each technologies and possible valorisations

  4. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  5. Electric power substations engineering

    CERN Document Server

    McDonald, John D

    2012-01-01

    The use of electric power substations in generation, transmission, and distribution remains one of the most challenging and exciting areas of electric power engineering. Recent technological developments have had a tremendous impact on all aspects of substation design and operation. With 80% of its chapters completely revised and two brand-new chapters on energy storage and Smart Grids, Electric Power Substations Engineering, Third Edition provides an extensive updated overview of substations, serving as a reference and guide for both industry and academia. Contributors have written each chapt

  6. Equivalent electricity storage capacity of domestic thermostatically controlled loads

    International Nuclear Information System (INIS)

    Sossan, Fabrizio

    2017-01-01

    A method to quantify the equivalent storage capacity inherent the operation of thermostatically controlled loads (TCLs) is developed. Equivalent storage capacity is defined as the amount of power and electricity consumption which can be deferred or anticipated in time with respect to the baseline consumption (i.e. when no demand side event occurs) without violating temperature limits. The analysis is carried out for 4 common domestic TCLs: an electric space heating system, freezer, fridge, and electric water heater. They are simulated by applying grey-box thermal models identified from measurements. They describe the heat transfer of the considered TCLs as a function of the electric power consumption and environment conditions. To represent typical TCLs operating conditions, Monte Carlo simulations are developed, where models inputs and parameters are sampled from relevant statistical distributions. The analysis provides a way to compare flexible demand against competitive storage technologies. It is intended as a tool for system planners to assess the TCLs potential to support electrical grid operation. In the paper, a comparison of the storage capacity per unit of capital investment cost is performed considering the selected TCLs and two grid-connected battery storage systems (a 720 kVA/500 kWh lithium-ion unit and 15 kVA/120 kWh Vanadium flow redox) is performed. - Highlights: • The equivalent storage capacity of domestic TCLs is quantified • A comparison with battery-based storage technologies is performed • We derive metrics for system planners to plan storage in power system networks • Rule-of-thumb cost indicators for flexible demand and battery-based storage

  7. Posibilities of electric power storage from renewable sources

    Directory of Open Access Journals (Sweden)

    Petr Bača

    2010-07-01

    Full Text Available This paper presents an overview of all currently commercially available options of energy storage in the power distributionnetwork. The paper puts forward arguments for energy storage in the distribution network as well as requirements that must be metby the relevant energy storage systems. The paper describes 7 technologies allowing the solution of energy storage problems, includingtheir basic principles and summarizing benefits and drawbacks of individual solutions.

  8. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  9. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  10. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  11. The economics of energy storage in 14 deregulated power markets

    International Nuclear Information System (INIS)

    Figueiredo, F.C.; Flynn, P.C.; Cabral, E.A.

    2006-01-01

    In regulated power markets, electricity is stored to better utilize existing generation and to defer costly investment in generation. The justification is a reduction in the overall regulated price of power compared to the alternative investment in new primary generation. However, any storage of electrical power also involves a capital investment and incurs the cost of inefficiency. In deregulated energy markets, the sale of electricity or ancillary services from pumped storage can be evaluated based on each individual project. The economic basis for power storage is that power is purchased during periods of low price and resold during periods of high price. This study used historical power price data from 14 deregulated markets around the world to evaluate the economic incentive to use pumped storage for electrical energy. Each market was shown to have a unique average diurnal power price profile that results in a unique price spread for pumped storage. The diurnal price pattern and efficiency of storage was used to assess the net income potential from energy sales from pumped storage for each market. The markets were ranked in terms of the incentive to invest in pumped energy storage as well as on available revenue, and on potential return on investment. An optimal operating profile was illustrated in detail based on historical price patterns for one of the markets. The net income potential was then combined with the capital and operating cost of pumped storage. The adequacy of return on investment for pumped storage was analyzed by two different methods. The differences between markets stem from different diurnal power price patterns that reflect the generation mix, market design and participant behaviours. 17 refs., 7 tabs., 7 figs., 1 appendix

  12. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Science.gov (United States)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  13. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  14. Thermodynamic analysis of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    White, Alexander; Parks, Geoff; Markides, Christos N.

    2013-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency. It is shown that, for given compression and expansion efficiencies, the cycle performance is controlled chiefly by the ratio between the highest and lowest temperatures in each reservoir rather than by the cycle pressure ratio. The sensitivity of round-trip efficiency to various loss parameters has been analysed and indicates particular susceptibility to compression and expansion irreversibility

  15. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  16. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  17. Opportunities for electricity storage in deregulating markets

    International Nuclear Information System (INIS)

    Graves, F.; Jenkin, T.; Murphy, D.

    1999-01-01

    This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-term differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available

  18. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  19. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    International Nuclear Information System (INIS)

    Troendle, Tobias Wolfgang

    2014-01-01

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  20. Electricity storage. The problematic of alternative energies

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre

    2013-01-01

    After having evoked the increasing share of renewable energies in electricity production in Europe and the associated investments, the author outlines the main problems associated with renewable energy: their intermittency, and the fact that they are submitted to quick and important variations which must be managed by the grid. He also evokes economic and financial problems (high taxes in Germany and in France, mandatory purchase mechanisms leading to absurd situations and having consequences on the electricity market). The author discusses the issue of energy storage: storage is expensive and its cost will increase that of the produced energy. However, storage can be interesting if its cost is covered by the income generated by the provided services. Some solutions already exist: pumped-storage power station (PSPS), remotely controlled electric-storage water heaters. The author presents and comments the services which storage can provide: smoothing, spare energy supply, and supply quality. He outlines the importance of a technical-economic analysis for the choice of the best storage solution, but also the need to change the business model

  1. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  2. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  3. Economics of Energy Storage. An analysis of the administrative consequences of electricity storage

    International Nuclear Information System (INIS)

    Wals, A.F.; Hendriks, R.H.

    2004-03-01

    This report discusses the administrative aspects connected to the introduction of electricity storage in the energy system. First, the macro-economic aspects of utilizing storage facilities are discussed, and the possible benefits of storage in the electricity system are summarized. Next, the discussion focuses on the administrative aspects. In particular, the regulation system of the Dutch electricity market is reviewed, paying particular attention to the market design in connection with Distribution Network Operators. A number of relevant aspects are discussed, such as the incentives for the Operators to optimize network performance, as well as the means available to the Operators to stimulate third parties to do so. Finally, the perspectives for storage operators to enter directly on the different power markets are treated. Generally, one can conclude that the administrative aspects for storage facilities leave room for improvement

  4. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  5. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Storage Technology and Systems; Huff, Georgianne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Storage Technology and Systems; Currier, Aileen B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Storage Technology and Systems; Hernandez, Jacquelynne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Storage Technology and Systems; Bender, Donald Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kaun, Benjamin C. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Rastler, Dan M. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Chen, Stella Bingqing [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Cotter, Andrew L. [National Rural Electric Cooperative Association, Arlington, VA (United States); Bradshaw, Dale T. [National Rural Electric Cooperative Association, Arlington, VA (United States); Gauntlett, William D. [AECOM Technical Services, Inc., Albuquerque, NM (United States); Eyer, James [Clean Energy States Alliance, Montpelier, VT (United States); Olinsky-Paul, Todd [Clean Energy States Alliance, Montpelier, VT (United States); Ellison, Michelle [E& I Consulting, Oakland, CA (United States); Schoenung, Susan [Longitude 122 West, Inc., Menlo Park, CA (United States)

    2016-09-01

    The Electricity Storage Handbook (Handbook) is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective. This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess.

  6. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  7. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  8. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Huff, Georgianne [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Currier, Aileen B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kaun, Benjamin C [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rastler, Dan M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chen, Stella Bingqing [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cotter, Andrew L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bradshaw, Dale T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gauntlett, William D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.

  9. Assessment of the Electrical Power Requirements for Continued Safe Storage and Waste Feed Delivery Phase One

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the electrical distribution system to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the electrical system. The ability to assure adequate Waste Feed Delivery (WFD) to the Privatization Contractor's vitrification facility is a key element in the overall Hanford cleanup schedule. An important aspect of this WFD is the availability of sufficient and appropriate electrical power in the single- and double-shell tank farms. The methodology for performing this review and the results are described

  10. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  11. Optimal bidding in Turkey day ahead electricity market for wind energy and pumped storage hydro power plant

    Directory of Open Access Journals (Sweden)

    Ceyhun Yıldız

    2016-10-01

    Full Text Available In electrical grid; when the demand power increases energy prices increase, when the demand decreases energy prices decrease. For this reason; to increase the total daily income, it is required to shift generations to the hours that high demand power values occurred. Wind Power Plants (WPP have unstable and uncontrollable generation characteristic. For this reason, energy storage systems are needed to shift the generations of WPPs in time scale. In this study, four wind power plants (WPP which are tied to the Turkish interconnected grid and a pumped hydro storage power plant (PSPP that meets the energy storage requirement of these power plants are investigated in Turkey day ahead energy market. An optimization algorithm is developed using linear programming technique to maximize the day ahead market bids of these plants which are going to generate power together. When incomes and generations of the plants that are operated with optimization strategy is analyzed, it is seen that annual income increased by 2.737% compared with WPPs ‘s alone operation and generations are substantially shifted to the high demand power occurred hours.

  12. Magnetic bearing flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    A magnetic bearing flywheel was designed. In order to have a simple, reliable system, magnetic suspension with a single servoloop for one degree of freedom of the rotor was used, four other degrees of freedom being controlled passively and the sixth one, corresponding to the rotation axis. The motor that transfers electric energy to the rotor is of the ironless brushless dc type with electronic commutation. It is operated alternatively for accelerating the wheel and then as a generator for delivering the stored energy. The use of high stress composite materials in the rotor greatly increases the operational limits of this equipment. Key characteristics of kinetic energy storage are mentioned along with a wide range of applications. Besides energy storage for satellites, these include power smoothing for solar and wind energy systems as well as backup power supplies, e.g., for electric vehicles.

  13. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  14. Method of electric powertrain matching for battery-powered electric cars

    Science.gov (United States)

    Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping

    2013-05-01

    The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.

  15. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  16. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    International Nuclear Information System (INIS)

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  17. Storage requirement in the electrical grid; Speicherbedarf im Stromnetz

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Philipp [Technische Univ. Muenchen (DE). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik (IfE)

    2011-07-01

    In its energy strategy, the German Government formulates an ambitious goal: the portion of power production from renewable energy sources by 2050 is 80 % of the gross electricity consumption. The necessary expansion of renewable energies increasingly will lead to a supply of renewable energies that exceeds the current demand. The quantification of the economically sensible potential of energy storages for the next few decades depends not only on the expansion of renewable energies but also on the development of frameworks in the area of conventional power generation and the electricity market. The contribution under consideration reports on the potential for large-scale storage in Germany for different paths of development in the electricity industry.

  18. Vehicle to grid: electric vehicles as an energy storage solution

    Science.gov (United States)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  19. Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province

    Directory of Open Access Journals (Sweden)

    Dunguo Mou

    2018-01-01

    Full Text Available This paper, based on the Fujian provincial 500 kV grid and part of the 220 kV grid and the key power plants, including hydro, coal, nuclear, gas, wind and pumping and storage hydro powers (PSHP connected to the grid, constructs an independent electricity market model. Using data that are very close to reality about coal fired power production costs, along with data about power plants’ technical constraints, this paper studies the effect of wind power on Fujian’s provincial electricity market. Firstly, the paper analyzes the relationship between wind speed and wind power output and the effects of short-term power output fluctuation on frequency modulation and voltage regulation. Secondly, under supposition of the production costs following quadratic functions, the paper analyzes the effects of changes in wind power output on the electricity supply costs under optimal power flow. Thirdly, using the bidding model in the Australian Electricity Market Operator for reference and supposing that, in a competitive market, coal fired power plants can bid 6 price bands according to their capacity, the paper analyzes effects of wind power on electricity prices under optimal power flow, the stabilizing effects of PSHP and the minimum PSHP capacity needed to stabilize the electricity market. Finally, using a daily load curve, this paper simulates the electricity prices’ fluctuation under optimal power flow and PSHP’s stabilizing effect. The results show that, although PSHP has a large external social welfare effect, it can hardly make a profit. In the end, this paper puts forward some policy suggestions for Fujian province’s wind and nuclear power development, PSHP construction and electricity market development.

  20. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    Science.gov (United States)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  1. Valuation framework for large scale electricity storage in a case with wind curtailment

    International Nuclear Information System (INIS)

    Loisel, Rodica; Mercier, Arnaud; Gatzen, Christoph; Elms, Nick; Petric, Hrvoje

    2010-01-01

    This paper investigates the value of large scale applications of electricity storage in selected European power systems in the context of wind generation confronted with a grid bottleneck. It analyzes the market value to 2030 of two storage technologies, assuming the market situation projected for Germany and France. The analysis assesses the evolution of storage economics based on the net present value of cash flows. Sensitivities to market and regulatory drivers of value are assessed, e.g. electricity price spreads, ancillary services revenues, wind curtailment and the level of carbon prices. The paper concludes by suggesting possible ways to improve the competitiveness of electricity storage, such as research and development and deployment programmes, and changes to the design of power markets and regulatory arrangements to enable storage owners to better capture the benefits of storage. Such changes would allow electricity storage, where economically viable, to play a critical role in establishing a future sustainable European power system. - Research highlights: →CAES and PHS are not cost-effective for current market design in France and Germany → Market reforms are run to reward bottleneck avoiding and ancillary reserves → Storage is profitable when all potential socio-economic benefits are aggregated → R and D and D programs for storage improvement are economically and socially justified.

  2. Lyapunov based control of hybrid energy storage system in electric vehicles

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...

  3. Frequency Transient Suppression in Hybrid Electric Ship Power Systems: A Model Predictive Control Strategy for Converter Control with Energy Storage

    Directory of Open Access Journals (Sweden)

    Viknash Shagar

    2018-03-01

    Full Text Available This paper aims to understand how the common phenomenon of fluctuations in propulsion and service load demand contribute to frequency transients in hybrid electric ship power systems. These fluctuations arise mainly due to changes in sea conditions resulting in significant variations in the propulsion load demand of ships. This leads to poor power quality for the power system that can potentially cause hazardous conditions such as blackout on board the ship. Effects of these fluctuations are analysed using a hybrid electric ship power system model and a proposed Model Predictive Control (MPC strategy to prevent propagation of transients from the propellers into the shipboard power system. A battery energy storage system, which is directly connected to the DC-link of the frequency converter, is used as the smoothing element. Case studies that involve propulsion and service load changes have been carried out to investigate the efficacy of the proposed solution. Simulation results show that the proposed solution with energy storage and MPC is able to contain frequency transients in the shipboard power system within the permissible levels stipulated by the relevant power quality standards. These findings will help ship builders and operators to consider using battery energy storage systems controlled by advanced control techniques such as MPC to improve the power quality on board ships.

  4. Surplus from and storage of electricity generated by intermittent sources

    Science.gov (United States)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  5. Distributed energy storage systems on the basis of electric-vehicle fleets

    Science.gov (United States)

    Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.

    2015-01-01

    Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).

  6. Electrical power technology for robotic planetary rovers

    Science.gov (United States)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  7. Using energy storage for strategic advantage in competitive electricity markets

    International Nuclear Information System (INIS)

    Hurwitch, J.W.; Symons, P.

    1998-01-01

    Energy storage products are emerging for use in power quality, electric transmission and distribution, and renewable energy applications. Despite this emergence into high-value markets, widespread market penetration will only occur when the value of the services that energy storage products can deliver are clearly delineated. The emergence of competitive electricity markets will more clearly define the flexible benefits of energy storage devices. This paper presents a summary of the ESA's position of the status of energy storage technologies, the market barriers, and steps the ESA is undertaking to reduce these barriers. (author)

  8. Regulation of the wind power production. Contribution of the electric vehicles and other energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal)

    2012-07-01

    The increase in penetration of variable renewable energy sources (RES) introduced additional difficulties regarding the management of the Portuguese Power System. This is mainly due to the high temporal variability and low controllability, characteristics of these kinds of sources. There is a real need to reduce the impact of non-dispatchable RES sources; maximizing their penetration and minimizing curtailment. This is especially true for wind power and run-of-the-river hydro (ROR); as it appears beneficial to combine their variable production with added capacity of energy storage and demand side management; thereby increasing the flexibility of the power system as a whole. This paper aims to assess the excess wind generation (and other non-dispatchable sources); this for periods of production's excess in a 2020 timeframe, and assuming different weather scenarios. The adjustment of wind power generation (WPG) profile to the load profile is also addressed; the result is computed in the form of the value of the energy temporally deferred, using Pumped Hydro Storage (PHS) power plants as well as electric Vehicles (EVs). (orig.)

  9. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  10. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  11. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    DEFF Research Database (Denmark)

    Budischak, Cory; Sewell, DeAnna; Thomson, Heather

    2013-01-01

    intermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that are not intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating true cost of electricity without subsidies and with inclusion of external costs. Our model evaluated over...... renewable generation and the excess capacity together meet electric load with less storage, lowering total system cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that the electric system can be powered 90%–99.9% of hours entirely on renewable electricity, at costs...

  12. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    International Nuclear Information System (INIS)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard

    2007-01-01

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks

  13. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Centre National de la Recherche Scientifique (Unite Mixte de Recherche 7037), 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2007-07-15

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks. (author)

  14. Energy managment strategies for vehicular electric power systems

    NARCIS (Netherlands)

    Koot, M.W.T.; Kessels, J.T.B.A.; Jager, de A.G.; Heemels, W.P.M.H.; Bosch, van den P.P.J.; Steinbuch, M.

    2005-01-01

    In the near future, a significant increase in electric power consumption in vehicles is expected. To limit the associated increase in fuel consumption and exhaust emissions, smart strategies for the generation, storage/retrieval, distribution, and consumption of electric power will be used. Inspired

  15. Electric Machine Topologies in Energy Storage Systems

    OpenAIRE

    Santiago, Juan De; Oliveira, Janaina Goncalves de

    2010-01-01

    Energy storage development is essential if intermittent renewable energy generation is to increase. Pumped hydro, CAES and flywheels are environmentally friendly and economical storage alternatives that required electric motor/generators. The popularization of power electronics is relatively new and therefore the technology is still under development. There is not a clear winner when comparing technologies and therefore the optimal alternative depends on the specific requirements of the appli...

  16. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  17. Market power and storage in electricity markets

    International Nuclear Information System (INIS)

    Skaar, Jostein

    2004-05-01

    Market power in liberalised electricity markets dominated by hydropower is analyzed in four chapters. The existing literature on competition in hydropower markets is briefly presented and examined. Chapter 1 discusses the effects of market power in the context of acquisitions in a situation where transmission capacity is constrained. Chapter 2 and 3 elaborate on the issue of competition and market power when water inflow is uncertain, and finally Chapter 4 focuses on the supply function equilibrium model in the context of a hydropower market

  18. Optimizing the Operation of Windfarms, Energy Storage and Flexible Loads in Modern Power Systems and Deregulated Electricity Markets

    Science.gov (United States)

    Dar, Zamiyad

    most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze

  19. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  20. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electricity storage is needed on an unprecedented scale to sustain the ongoing transition of electricity generation from fossil fuels to intermittent renewable energy sources like wind and solar power. Today pumped hydro is the only commercially viable large-scale electricity storage technology......-scale electricity storage with a round-trip efficiency exceeding 70% and an estimated storage cost around 3 b kW-1 h-1, i.e., comparable to pumped hydro and much better than previously proposed technologies...

  1. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  2. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  3. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  4. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  5. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Directory of Open Access Journals (Sweden)

    Markku Järvelä

    2017-07-01

    Full Text Available There is no natural inertia in a photovoltaic (PV generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive feed-in tariffs that ensure a certain price for the energy. On the other hand, electricity markets operate on a supply-demand principle and a typical imbalance settlement period is one hour. This paper presents the energy, power and corresponding requirements for an energy storage system in a solar PV power plant to feed the power to the grid meeting the electricity spot markets practices. An ideal PV energy production forecast is assumed to be available to define reference powers of the system for the studied imbalance settlement periods. The analysis is done for three different PV system sizes using the existing irradiance measurements of the Tampere University of Technology solar PV power station research plant.

  6. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  7. Electricity Storage and Renewables for Island Power. A Guide for Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Komor, P; Glassmire, J [University of Colorado, Boulder, CO (United States)

    2012-05-15

    Energy is a key issue for sustainable development. In island and remote communities, where grid extension is difficult and fuel transportation and logistics are challenging and costly, renewable energy is emerging as the energy supply solution for the 21st century, ensuring reliable and secure energy supply in such communities. The deployment of renewable energy technologies is increasing globally, supported by rapidly declining prices and government policies and strategies in many countries, resulting in renewable energy solutions being the most cost-effective option in many markets today. For example, in 2011 the Special Report of the IPCC (Intergovernmental Panel on Climate Change) on Renewable Energy Sources and Climate Change Mitigation showed that approximately 50% of new electricity generation capacity added globally between 2008 and 2009 came from renewable energy sources. Therefore, the future of renewables as the base energy source for islands and remote communities looks very bright. However, as the share of renewables in power supply increases, the natural variability of some renewable energy sources must be tackled appropriately to ensure continuous availability and efficient use of the energy generated. Successful strategies to manage this variability can encompass a range of measures, such as a balanced supply technology portfolio, geographical spread of supply, better forecasting tools, demand-side management and appropriate storage solutions. Traditionally, large scale electricity storage systems were based on pumped hydropower installations. New solutions are emerging, including affordable and long-lasting batteries. This technology field is developing rapidly and prices are falling. IRENA has developed this report as a practical guide to the available energy storage solutions and their successful applications in the context of islands communities. The report also includes various best practice cases and different scenarios and strategies. It is

  8. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    Science.gov (United States)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  9. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  10. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  11. Determinants of the energy storage capacity of electric vehicles; Determinanten des Energiespeicherpotentials von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, S.; Westermann, D. [Technische Univ. Ilmenau (Germany). FG EEV; Agsten, M. [Fraunhofer IOSB, Ilmenau (Germany). Institutsteil Angewandte Systemtechnik (AST)

    2012-07-01

    Future power systems have to meet the challenge of uncontrollable, decentralized generation through increasing renewable. Utilize energy storage to harmonize the load with fluctuating generation is an option. On the other hand in today's markets large scale energy storage systems are hard to find. The reason is assumed in the high costs. Electric vehicle utilization with smart charging could be an alternative solution, due to the secondary use of the electric vehicles battery when not used for driving. This paper will describe the electric vehicle storage capability which determinants influence the storage potential Therefore a model based approach will be provided, which is based on the experiences of a field test (''MINI-E-Berlin powered by Vattenfall''). (orig.)

  12. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how; Stocker l'electricite: oui, c'est indispensable, et c'est possible. Pourquoi, ou, comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  13. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  14. Seawater pumping as an electricity storage solution for photovoltaic energy systems

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo

    2014-01-01

    The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications. - Highlights: • A grid-connected seawater pumping system using photovoltaic power is proposed and its performance analyzed. • Year-round simulations are run with different sizes of photovoltaic field and reservoir. • An analysis is run about the profitability of the storage system, examining performance indexes and the cost of plant. • The system proposed appears near to attract the interest of the market

  15. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  16. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  17. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms...... of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates...... electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat...

  18. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  19. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  20. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice......, the proposed method is potentially useful for designing market rules and evaluating different design options. Following works is underway on application and simulation of proposed method using the realistic distribution system of Bornholm Island in Denmark....

  1. Modelling the long-term deployment of electricity storage in the global energy system

    International Nuclear Information System (INIS)

    Despres, Jacques

    2015-01-01

    The current development of wind and solar power sources calls for an improvement of long-term energy models. Indeed, high shares of variable wind and solar productions have short- and long-term impacts on the power system, requiring the development of flexibility options: fast-reacting power plants, demand response, grid enhancement or electricity storage. Our first main contribution is the modelling of electricity storage and grid expansion in the POLES model (Prospective Outlook on Long-term Energy Systems). We set up new investment mechanisms, where storage development is based on several combined economic values. After categorising the long-term energy models and the power sector modelling tools in a common typology, we showed the need for a better integration of both approaches. Therefore, the second major contribution of our work is the yearly coupling of POLES to a short-term optimisation of the power sector operation, with the European Unit Commitment and Dispatch model (EUCAD). The two-way data exchange allows the long-term coherent scenarios of POLES to be directly backed by the short-term technical detail of EUCAD. Our results forecast a strong and rather quick development of the cheapest flexibility options: grid interconnections, pumped hydro storage and demand response programs, including electric vehicle charging optimisation and vehicle-to-grid storage. The more expensive battery storage presumably finds enough system value in the second half of the century. A sensitivity analysis shows that improving the fixed costs of batteries impacts more the investments than improving their efficiency. We also show the explicit dependency between storage and variable renewable energy sources. (author) [fr

  2. Potential reduction of carbon dioxide emissions from the use of electric energy storage on a power generation unit/organic Rankine system

    International Nuclear Information System (INIS)

    Mago, Pedro J.; Luck, Rogelio

    2017-01-01

    Highlights: • A power generation organic Rankine cycle with electric energy storage is evaluated. • The potential carbon dioxide emissions reduction of the system is evaluated. • The system performance is evaluated for a building in different climate zones. • The system emissions and cost are compared with those of conventional systems. • Use of carbon emissions cap and trade programs on the system is evaluated. - Abstract: This paper evaluates the potential carbon dioxide emissions reduction from the implementation of electric energy storage to a combined power generation unit and an organic Rankine cycle relative to a conventional system that uses utility gas for heating and utility electricity for electricity needs. Results indicate that carbon dioxide emission reductions from the operation of the proposed system are directly correlated to the ratio of the carbon dioxide emission conversion factor for electricity to that of the fuel. The location where the system is installed also has a strong influence on the potential of the proposed system to save carbon dioxide emissions. Finally, it is shown that by using carbon emissions cap and trade programs, it is possible to establish a frame of reference to compare/exchange operational cost gains with carbon dioxide emission reductions/gains.

  3. An atoll for the offshore storage of the electricity

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    This project proposes to use for sea the technique of pumped Storage Hydroelectric, implemented in mountain areas. The method stores energy in form of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost off-peak electric power is used to run the pumps. During periods of high electrical demand, the stored water is released through turbines. This new concept in pumped storage is to use wind turbines to drive water pumps directly, providing a more efficient process and usefully smooth out the variabilities of energy captured from the wind. (A.L.B.)

  4. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  5. Optimisation of Storage for Concentrated Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Luigi Cirocco

    2014-12-01

    Full Text Available The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES or Electrical Storage Systems (ESS distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM. Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.

  6. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  7. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  8. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  9. Storage Solutions for Power Quality Problems in Cyprus Electricity Distribution Network

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2014-01-01

    Full Text Available In this work, a prediction of the effects of introducing energy storage systems on the network stability of the distribution network of Cyprus and a comparison in terms of cost with a traditional solution is carried out. In particular, for solving possible overvoltage problems, several scenarios of storage units' installation are used and compared with the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network. For the comparison, a case study of a typical LV distribution feeder in the power system of Cyprus is used. The results indicated that the performance indicator of each solution depends on the type, the size and the position of installation of the storage unit. Also, as more storage units are installed the better the performance indicator and the more attractive is the investment in storage units to solve power quality problems in the distribution network. In the case where the technical requirements in voltage limitations according to distribution regulations are satisfied with one storage unit, the installation of an additional storage unit will only increase the final cost. The best solution, however, still remains the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network, due to the lower investment costs compared to that of the storage units.

  10. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  11. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    Science.gov (United States)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  12. Improved grid operation through power smoothing control strategies utilizing dedicated energy storage at an electric vehicle charging station

    DEFF Research Database (Denmark)

    Martinsen, Thomas; Holjevac, Ninoslav; Bremdal, Bernt A.

    2016-01-01

    project (Flex-ChEV) supported by the ERA-Net Smart Grid FP7 program. The principal asset of the proposed charging station (CS) is a dedicated Energy Storage System (ESS) to compensate for adverse effects on the grid caused by peak charging demand and which could impose severe trials for the local DSO....... Furthermore, CS of this kind could serve multiple business purposes in a smart grid. It can serve as a hub for seamless integration of local renewable and distributed energy resources, it can provide added flexibility for the local grid through different ancillary services and it can act as an efficient......This paper addresses the principal service aspects for electric vehicles (EV), as well as issues related to energy storage design, charging station integration into power system and load management issues. It builds on the research conducted in the Flexible Electric Vehicle Charging Infrastructure...

  13. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  14. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  15. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  16. Efficient electricity storage with a battolyser, an integrated Ni-Fe battery and electrolyser

    NARCIS (Netherlands)

    Mulder, F.M.; Weninger, B.; Middelkoop, J.; Ooms, F.G.B.; Schreuders, H.

    2017-01-01

    Grid scale electricity storage on daily and seasonal time scales is required to accommodate increasing amounts of renewable electricity from wind and solar power. We have developed for the first time an integrated battery-electrolyser ('battolyser') that efficiently stores electricity as a

  17. Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus

    Science.gov (United States)

    Viterna, L. A.

    1997-01-01

    The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.

  18. Development of a new electric battery electric power storage system. Results of the 12-year R and D; Shingata denchi denryoku chozo system kaihatsu. 12 nenkan no kenkyu kaihatsu no seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper described the results of the R and D which have been continued for 12 years on a new electric battery electric power storage system (load leveling function). The electric batteries for study were Na-S, Zn-Cl, Zn-Br, and redox type. Charge/discharge operation of 211 times was conducted of a pilot plant with a Na-S battery 1,000kW and 8-hour capacity. The overall efficiency of system was 71.5-76.0%, and the energy efficiency of battery was 86%. As a whole, the performance was able to be confirmed which can fulfil a developmental target. The system overall efficiency of 65.9% and battery efficiency of 76.1% were obtained. The experiment on battery life was carried out at plant together with the pilot operation. The mean life of Na-S battery was estimated at 800 cycles, and that of Zn-Br battery at 500-800 cycles. The effectiveness of the new electric battery electric power storage system was technically verified. For the future commercialization, studies on the following are needed: enhancement of reliability, easiness in maintenance/inspection, size reduction, cost reduction, etc. (NEDO)

  19. Electric-power economy of Japan

    International Nuclear Information System (INIS)

    Dobrochotov, V.I.; Wolfberg, D.B.

    1975-01-01

    This is a survey on a) development and present capacity of electricity-supply companies in Japan, b) the structural shift in the capacity of power plants which took place from 1966 until 1974, arranged according to thermal, nuclear and hydraulic power stations, c) the structural shift in the use of fossile fuels, also from 1966 until 1974, d) the major thermal and nuclear power stations and pump storage plants under construction and in operation, e) interconnected operation. The survey ends with the development study of the Japanese Government being outlined. (GG/LN) [de

  20. An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets

    Science.gov (United States)

    Bose, Subhonmesh

    Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

  1. Method and device allowing a more rational exploitation of electrical power-stations. [energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Mascarello, J

    1974-04-12

    Description is given of a device permitting a more rational exploitation of electrical power stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, the hydrogen being stored in other tanks. Combustion of the stored hydrogen by the stored air is used for generating electric power during electric power consumption peak-periods.

  2. Coordinated control of wind power and energy storage

    DEFF Research Database (Denmark)

    Zhao, Haoran

    the coordinated control of wind power and ESS. Due to the different technical characteristics, such as power and energy density, ESS can play different roles either in generation-side, grid-side or demand side. This thesis focuses on the following two scenarios:• Scenario 1: As a part of wind farm, the ESS plays......Nowadays, wind power has become one of the fastest growing sources of electricity in the world. Due to the inherent variability and uncertainty, wind power integration into the grid brings challenges for power systems, particularly when the wind power penetration level is high. The challenges exist...... in many aspects, such as reliability, power quality and stability. With the rapid development of energy storage technology, the application of Energy Storage System (ESS) is considered as an effective solution to handle the aforementioned challenges. The main objective of this study is to investigate...

  3. Sizing energy storage systems to make PV tradable in the Iberian electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Beltram, H.; Perez, E.; Aparicio, N.; Vidal, R.; Belenguer, E. [Universitat Jaume I (UJI), Castello de la Plana (Spain). Electrical Engineering Area; Piqueres, T. [Energia Solar Aplicada (ESA), Valencia (Spain). Technical Dept.

    2012-07-01

    The work presented in this paper is intended to provide some reference values for the ratings required by an energy storage system, to be integrated in a large-scale PV power plant placed at any location of the Iberian Peninsula, to operate it according to an energy management strategy (EMS) whic allowed its participation in the Iberian electricity market while minimizing the economic penalties. The proposed EMS produces a constant-by-hours power reference to be tracked by the PV plant with storage and, in that way, mitigate the stochastic nature of the PV production. This operation mode will enable PV power plants to take part reliably in the different electricity markets, profiting the intraday market sessions to continuously refine the power production commitment. Different configurations of the EMS are analysed, introducing on each of them different meteorologically-based adjustments which allow minimizing the energy capacity required by the storage system. The proposals are analysed through one-year long simulations which use real-world data and PV power forecasting models extracted from solar databases. (orig.)

  4. Implementation of heat production and storage technology and devices in power systems

    International Nuclear Information System (INIS)

    Romanovsky, G.; Mutale, J.

    2012-01-01

    Implementation of heat storage devices and technologies at power generation plants is a promising way to provide more efficient use of natural energy resources. Heat storage devices can partly replace conventional heating technologies (such as direct use of fossil fuels) during peak energy demand or in the situations where heat and electricity supply and demand do not coincide and to obtain low cost heat energy which can be further transmitted to industrial, commercial and domestic consumers. This paper presents the innovative Heat Production and Storage Device and its application at conventional, nuclear and renewable power generation plants for optimization and balancing of electricity grids. The Heat Production and Storage Device is a vessel type induction-immersion heat production and storage device which produces pre-heated water under pressure for heat energy conservation. Operation of this device is based on simultaneous and/or sequential action of an inductor and an immersion heater and can be easily connected to the electricity network as a single or a three phase unit. Heat energy accumulated by the Heat Production and Storage Device can be utilized in different industrial technological processes during periods of high energy prices. - Highlights: ► Heat Production and Storage Device for energy conservation within low load hours. ► Simultaneous and/or sequential operation of the inductor and immersion heater. ► Transform the energy of low frequency electrical current (50 Hz) into heat energy. ► Connection to the electricity network either in single or three phase unit. ► Heat Production and Storage Device will enhance the economic value of the system.

  5. Increase in the number of distributed power generation installations in electricity distribution grids - Storage technologies; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Grundlagen der Speicher

    Energy Technology Data Exchange (ETDEWEB)

    Luechinger, P.

    2003-07-01

    This is the fifth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This fourth appendix to the main report describes six ways of storing electricity, including accumulators, super caps, super-conducting magnetic and flywheel energy storage units. The accumulator technologies discussed include lead-acid, nickel-cadmium and sodium-sulphur batteries. Each of these types of power storage technologies is briefly described. The characteristics of these various types of storage are compared.

  6. Cost-effective design of ringwall storage hybrid power plants: A real options analysis

    International Nuclear Information System (INIS)

    Weibel, Sebastian; Madlener, Reinhard

    2015-01-01

    Highlights: • Economic viability, optimal size, and siting of a hybrid ringwall hydro power plant. • Real options analysis for optimal investment timing and stochastic storage volumes. • Stochastic PV and solar power production affects optimal size of the storage device. • Monte Carlo simulation is used for wind/solar power, el. price, and investment cost. • Numerical computations for two different hybrid ringwall storage plant scenarios. - Abstract: We study the economic viability and optimal sizing and siting of a hybrid plant that combines a ringwall hydro storage system with wind and solar power plants (ringwall storage hybrid power plant, RSHPP). A real options model is introduced to analyze the economics of an onshore RSHPP, and in particular of the varying storage volume in light of the stochastic character of wind and solar power, as well as the optimal investment timing under uncertainty. In fact, many uncertainties arise in such a project. Energy production is determined by the stochastic character of wind and solar power, and affects the optimal size of the storage device. Monte Carlo simulation is performed to analyze the following sources of uncertainty: (i) wind intensity and solar irradiation; (ii) future electricity price; and (iii) investment costs. The results yield the optimal size of the storage device; the energy market on which the operator should sell the electricity generated; numerical examples for two different RSHPP scenarios; and a real options model for analyzing the opportunity to defer the project investment and thus to exploit the value of waiting

  7. Let everybody think about energy problems (what to do with energy supply). Electric power storage as a trump to make load flat; Energy mondai wo minnade kangaeyo (energy kyokyu wo dosuruka). Fuka heijunka no kirifuda (denryoku chozo)

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T. [Tokyo Electric Power Co., Inc. (Japan)

    1995-09-20

    Difference of electric power load between day and night has been growing due to increase of need for cooling in summer. In the case of Tokyo Electric Power Co., Ltd., the power maximum in a day exceeds 2-fold of the minimum. As a means of making load flat, power storage is a last resort to improve operation efficiency and suppress generation cost. Various technologies for electric power storage are overviewed and a sodium-sulfur (NaS) cell is introduced, whose practical application in near future is expected as a novel technology for power storage. Pumped storage generation has been put into practical use widely, sharing 10% of the overall capacity for generation facilities in Japan. However, since proper sites for its construction have been limited, compensating technologies, using electric cells, air compression, super-conduction and flywheels are in progress of research and development. There are three types of electric cells being under development; NaS, Zinc-bromine, redox flow cells. The NaS cell uses highly active electrodes of Na(+) and S(-), and {beta} alumina as electrolyte, which is neither electron-conductive nor self-discharging. 2 figs., 2 tabs.

  8. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  9. Storage and the electricity forward premium

    International Nuclear Information System (INIS)

    Douglas, Stratford; Popova, Julia

    2008-01-01

    We develop and test a model describing the influence of natural gas storage inventories on the electricity forward premium. The model is constructed by linking the effect of gas storage constraints on the higher moments of the distribution of electricity prices to an established model of the effect of those moments on the forward premium. The model predicts a sharply negative effect of gas storage inventories on the electricity forward premium when demand for electricity is high and space-heating demand for gas is low. Empirical results, based on PJM data, strongly support the model. (author)

  10. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  11. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  12. Review of power quality applications of energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  13. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  14. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  15. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  16. Nuclear Power Plants in a Competitive Electricity Market

    International Nuclear Information System (INIS)

    Jankauskas, V.

    2002-01-01

    Electricity demand is growing in the world by an average rate of 3% and, according to the International Energy Agency, is going to keep this pace of growth for the 1st quarter of the 21st century. At the same time, the role of the nuclear in the world energy mix is diminishing, and in 2020 only 9% of the world electricity will be produced at the nuclear plants versus 17% in 2000. The main reasons for the nuclear power diminishing share in the world market are not environmental or safety problems, as one may assume, but technical and economical. Long construction time, high capital cost, huge liabilities connected with the spent nuclear fuel and radioactive waste treatment, storage and final disposal are the main factors restricting the further growth of the nuclear power. Nevertheless, in the liberalized markets (U.K., Germany, Scandinavian countries) nuclear power plants are operating rather successfully. In a short run nuclear plants may become very competitive as they have very low short-run marginal costs, but in the long run they may become very in competitive. The Ignalina NPP plays the dominant ro]e in the Lithuanian electricity market, producing more than 75% of the total domestic electricity. It produces the cheapest electricity in Lithuania, mostly due to its higher availability, than the thermal power plants. The price of electricity sold by Ignalina is also lower as it does not cover all costs connected with the future decommissioning of the plant, spent fuel storage and final disposal. If at least part of this cost were included into the selling price, Ignalina might become highly competitive in a liberalised electricity market. As the Lithuanian Electricity law requires to deregulate electricity. generation prices, these prices should be set by the market. (author)

  17. Operation and sizing of energy storage for wind power plants in a market system

    International Nuclear Information System (INIS)

    Korpaas, M.; Holen, A.T.

    2003-01-01

    This paper presents a method for the scheduling and operation of energy storage for wind power plants in electricity markets. A dynamic programming algorithm is employed to determine the optimal energy exchange with the market for a specified scheduling period, taking into account transmission constraints. During operation, the energy storage is used to smooth variations in wind power production in order to follow the scheduling plan. The method is suitable for any type of energy storage and is also useful for other intermittent energy resources than wind. An application of the method to a case study is also presented, where the impact of energy storage sizing and wind forecasting accuracy on system operation and economics are emphasized. Simulation results show that energy storage makes it possible for owners of wind power plants to take advantage of variations in the spot price, by thus increasing the value of wind power in electricity markets. With present price estimates, energy storage devices such as reversible fuel cells are likely to be a more expensive alternative than grid expansions for the siting of wind farms in weak networks. However, for areas where grid expansions lead to unwanted interference with the local environment, energy storage should be considered as a reasonable way to increase the penetration of wind power. (author)

  18. Estimating the value of electricity storage in PJM. Arbitrage and some welfare effects

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Denholm, Paul; Jenkin, Thomas; Weiss, Jurgen

    2009-01-01

    Significant increases in prices and price volatility of natural gas and electricity have raised interest in the potential economic opportunities for electricity storage. In this paper, we analyze the arbitrage value of a price-taking storage device in PJM (power transmission organization in the USA) during the six-year period from 2002 to 2007, to understand the impact of fuel prices, transmission constraints, efficiency, storage capacity, and fuel mix. The impact of load-shifting for larger amounts of storage, where reductions in arbitrage are offset by shifts in consumer and producer surplus as well as increases in social welfare from a variety of sources, is also considered. (author)

  19. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  20. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  1. Role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. Simulation and optimization; Rolle und Bedeutung der Stromspeicher bei hohen Anteilen erneuerbarer Energien in Deutschland. Speichersimulation und Betriebsoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Niklas

    2013-06-13

    The share of renewable electricity generation of gross electricity consumption in Germany increased from 6.8 % to about 20 % during the years of 2000 and 2011. This share will increase even more in the future. The greater part of the renewable electricity generation is characterized by significant fluctuations, which can only be planned to a limited extent. Hence, the electricity system in Germany faces the challenge to integrate an increasing amount of fluctuating renewable electricity generation. Additionally the system stability needs to be ensured, despite a decreasing capacity in conventional power plants. One option to support the integration of large amounts of renewable electricity generation and to enhance system stability is the deployment of storage technologies. The aim of this research was to analyze the role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. To achieve this aim, adiabatic compressed air energy storage, diabatic compressed air energy storage and mobile battery storage systems were simulated and compared with a pumped hydro storage as the reference storage system. Key characteristics of these storage systems were modeled within a fundamental stochastic unit commitment model of the German power markets (Joint-Market-Model) in order to analyze the effect of the implementation of these storage systems on the overall cost of the electricity system. Additionally, the operation of the storages in an electricity system with high shares of renewable energy was evaluated. The results show that the integration of large shares of renewable electricity generation into the grid can only be achieved with a substantial implementation of storage systems. To integrate 50 % of renewable energy, a storage power of 27 GW and storage capacity of 245 GWh is needed. For a renewable energy share of 80 %, a storage power of 78 GW and a storage capacity of 6.3 TWh are necessary. A 100

  2. Operation of Modern Distribution Power Systems in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao

    , DG units, loads and electricity price are studied. Further, the effect of energy storage systems will be considered, and an optimal operation strategy for energy storage devices in a large scale wind power system in the electricity market is proposed. The western Danish power system, which has large...... strategy for trading wind power in the Danish short-term electricity market in order to minimize the imbalance costs for regulation. A load optimization method based on spot price for demand side management in Denmark is proposed in order to save the energy costs for 3 types of typical Danish consumers...... maximum profit of the BESS is proposed. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studied. Optimal operation strategies of PEV in the spot market are then proposed in order to decrease the energy cost for PEV owners. Furthermore...

  3. Integrating wind power in EU electricity systems. Economic and technical issues

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; Beurskens, L.W.M.; Pierik, J.T.G.

    2005-02-01

    In view of the ongoing process of liberalisation of the electricity market and the expected increase of wind power pursuant the RES-E Directive (Renewable Energy Sources - Electricity) and the need to minimise the costs of the RES-E targets, this study discusses the technical and economic impacts of integrating wind power into the electricity system. Furthermore, two options for reducing costs of intermittency are researched: forecasting of wind power output and electricity storage. An increasing penetration of wind power into the electricity system causes additional costs, partly due to the fact that the energy source of wind power is uncontrollable, variable (on the short term as well as on the longer term), and unpredictable (especially on the longer term). Consequently, balancing generation and demand becomes more complicated, creating a need for additional secondary and tertiary control. Although the sources of increasing costs are becoming more clearly understood, as are means to mitigate them, the quantification of costs of operating an electricity system with high wind penetration is very hard. Two possible options to reduce costs of intermittency are discussed in this report: forecasting of wind power output and electricity storage. The need for and benefit of wind energy forecasting have been increasingly recognised in recent years. Forecasting of wind power directs on increasing the predictability of the resource and improved forecasting can help to enhance the balancing of supply and demand. DG (distributed generation) operators can provide better information about their expected power output, energy suppliers can submit better estimates of electricity production to the TSO (Transmission System Operator), and system operators can improve network management through better information about expected power flows. Electricity storage systems can, at the same time, offer different services to a number of actors. Next to benefits that result from price

  4. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  5. Modelling of Hot Water Storage Tank for Electric Grid Integration and Demand Response Control

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    District heating (DH), based on electric boilers, when integrated into electric network has potential of flexible load with direct/indirect storage to increase the dynamic stability of the grid in terms of power production and consumption with wind and solar. The two different models of electric...

  6. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  7. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power

  8. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  9. Real option valuation of a decremental regulation service provided by electricity storage.

    Science.gov (United States)

    Szabó, Dávid Zoltán; Martyr, Randall

    2017-08-13

    This paper is a quantitative study of a reserve contract for real-time balancing of a power system. Under this contract, the owner of a storage device, such as a battery, helps smooth fluctuations in electricity demand and supply by using the device to increase electricity consumption. The battery owner must be able to provide immediate physical cover, and should therefore have sufficient storage available in the battery before entering the contract. Accordingly, the following problem can be formulated for the battery owner: determine the optimal time to enter the contract and, if necessary, the optimal time to discharge electricity before entering the contract. This problem is formulated as one of optimal stopping, and is solved explicitly in terms of the model parameters and instantaneous values of the power system imbalance. The optimal operational strategies thus obtained ensure that the battery owner has positive expected economic profit from the contract. Furthermore, they provide explicit conditions under which the optimal discharge time is consistent with the overall objective of power system balancing. This paper also carries out a preliminary investigation of the 'lifetime value' aggregated from an infinite sequence of these balancing reserve contracts. This lifetime value, which can be viewed as a single project valuation of the battery, is shown to be positive and bounded. Therefore, in the long run such reserve contracts can be beneficial to commercial operators of electricity storage, while reducing some of the financial and operational risks in power system balancing.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  10. Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures

    International Nuclear Information System (INIS)

    Krishnan, Venkat; Das, Trishna

    2015-01-01

    This paper presents a framework for optimally allocating storage technologies in a power system. This decision support tool helps in quantitatively answering the questions on “where to and how much to install” considering the profits from arbitrage opportunities in a co-optimized electricity market. The developed framework is illustrated on a modified IEEE (Institute of Electrical and Electronics Engineers) 24 bus RTS (Reliability Test System), and the framework finds the optimal allocation solution and the revenues storage earns at each of these locations. Bulk energy storage, CAES (compressed air energy storage) is used as the representative storage technology, and the benefits of optimally allocated storage integration onto the grid are compared with transmission expansion solution. The paper also discusses about system-level indicators to identify candidate locations for economical storage ventures, which are derived based on the optimal storage allocation solution; and applies the market price based storage venture indicators on MISO (Mid-continental Independent System Operator) and PJM (Pennsylvania-New Jersey-Maryland Interconnection) electricity markets. - Highlights: • Storage optimal allocation framework based on high-fidelity storage dispatch model. • Storage with transmission addresses energy and ancillary issues under high renewables. • Bulk storage earns higher revenues from co-optimization (∼10× energy only market). • Grid offers distributed opportunities for investing in a strategic mix of storage. • Storage opportunities depend on cross-arbitrage, as seen from MISO (Mid-continental Independent System Operator) and PJM (Pennsylvania-New Jersey-Maryland Interconnection) markets

  11. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    Science.gov (United States)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  12. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  13. Leveraging storage assets to meet winter power demand

    Energy Technology Data Exchange (ETDEWEB)

    Charleson, D. [Enbridge Gas Distribution, Toronto, ON (Canada)

    2004-07-01

    Toronto-based Enbridge Gas Distribution serves 1.7 million customers by distributing 420 billion cubic feet (BCF) of natural gas over more than 31,000 km of pipelines. A map of the franchise area was presented. The utility has one of the lowest operating and maintenance costs in North America. Daily gas requirements were outlined along with the historic role of storage in gas utilities. Storage is used by heat sensitive local distribution companies, marketers, large industrials, and power generators. Storage locations in North America were reviewed with reference to baseload electricity production versus peak load; depleted reservoirs; salt caverns; aquifers; and liquefied natural gas (LNG). Enbridge operates 98 BCF of storage facilities for a maximum deliverability of 1.7 BCF per day. tabs., figs.

  14. Leveraging storage assets to meet winter power demand

    International Nuclear Information System (INIS)

    Charleson, D.

    2004-01-01

    Toronto-based Enbridge Gas Distribution serves 1.7 million customers by distributing 420 billion cubic feet (BCF) of natural gas over more than 31,000 km of pipelines. A map of the franchise area was presented. The utility has one of the lowest operating and maintenance costs in North America. Daily gas requirements were outlined along with the historic role of storage in gas utilities. Storage is used by heat sensitive local distribution companies, marketers, large industrials, and power generators. Storage locations in North America were reviewed with reference to baseload electricity production versus peak load; depleted reservoirs; salt caverns; aquifers; and liquefied natural gas (LNG). Enbridge operates 98 BCF of storage facilities for a maximum deliverability of 1.7 BCF per day. tabs., figs

  15. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  16. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  17. Managing Wind-based Electricity Generation and Storage

    Science.gov (United States)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  18. The future value of electrical energy storage in the UK with generator intermittency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources.

  19. The future value of electrical energy storage in the UK with generator intermittency

    International Nuclear Information System (INIS)

    2004-01-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources

  20. Opportunities for ice storage to provide ancillary services to power grids incorporating wind turbine generation

    Science.gov (United States)

    Finley, Christopher

    Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.

  1. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  2. Electricity storage using a thermal storage scheme

    Energy Technology Data Exchange (ETDEWEB)

    White, Alexander, E-mail: ajw36@cam.ac.uk [Hopkinson Laboratory, Cambridge University Engineering Department, Trumpington Street, Cambridge. CB2 1PZ (United Kingdom)

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  3. Storage of intermittent energies. From self-consumption to huge photovoltaic power plants

    International Nuclear Information System (INIS)

    Perrin, Marion; Martin, Nicolas

    2013-01-01

    Power grids are evolving rapidly due to an increased use of decentralized power units, mostly based on intermittent renewable energy resources and due also to new ways of consuming energy (e.g. electrical vehicles). In the same time, the performance increase of new technologies such as telecommunications and storage systems could provide solutions for optimizing the electrical system. In this context, we are more and more talking about the 'smart-grids concept' because in parallel to the power interconnection, we also create communication networks which allow knowing in real time the status of the power grid, and so that the power flows can be controlled in an optimal way. In this article, we investigate challenges and opportunities for managing intermittent energy sources by using energy storage systems, from the consumer level to the grid operator. First we describe how the feed-in tariff could evolve in order to improve grid integration of large solar plants. We showed that behind the constraints due to the coupling of the power plants with a storage system, we could imagine lots of opportunities to diversify the business model. Then we evaluate the medium size PV with storage installation at the community level. For this purpose, we describe the local problems induced by the PV integration before proposing new ways to manage these systems. Finally, the self-consumption business model is investigated in terms of performance for the consumer and for the grid operator. (authors)

  4. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture [Gothia Power AB, Goeteborg (Sweden)

    2008-12-15

    In this report a survey of different techniques for storage of electrical energy. The following alternatives are described regarding method, characteristics, potential and economy. Batteries; Capacitors; Flywheels; Pump storage hydro power plants; Hydrogen gas generation; Air compression. Regarding evaluation of methods for storage of electrical energy. Battery storage: The development of Lithium-ion batteries are of great interest. In the present situation it is however difficult of classify battery storage as a good alternation in applications with frequent re-charging cycles and re-charging of large energy volumes. The batteries have limited life length compared to other alternatives. Also the power is limited at charging and discharging. Energy storage in capacitors: 'Super-capacitors' having large power capacity is considered to be of interest in applications where fast control of power is necessary. The ongoing development of based on carbon-nanotubes will increase the energy storage capacity compared with the today existing super-capacitors. This can in the future be an alternative to battery storage. Of further interest is also the idea to combine battery and capacitor based storage to achieve longer life-time of the batteries and faster power control. Flywheel energy storage: The energy storage capacity is relatively limited but power control can be fast. This system can be an alternative to capacitor based energy storage. Pump-storage hydro power plant: This type of energy storage is well suited and proven for time frame up to some days. In the Swedish power system there is today not any large demand of energy storage in this time frame as there is a large capacity in conventional hydro power plants with storage capacity. Pump-storage can however be of interest in the southern part of Sweden. In some operation stages the grid is loaded up to its limit due to large power transmission from the north. The pump-storage can reduce this power transfer during

  5. Inventory of future power and heat production technologies. Partial report Energy storage; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Energilagring

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Lars; Lindahl, Sture (Gothia Power AB, Goeteborg (Sweden))

    2008-12-15

    In this report a survey of different techniques for storage of electrical energy. The following alternatives are described regarding method, characteristics, potential and economy. Batteries; Capacitors; Flywheels; Pump storage hydro power plants; Hydrogen gas generation; Air compression. Regarding evaluation of methods for storage of electrical energy. Battery storage: The development of Lithium-ion batteries are of great interest. In the present situation it is however difficult of classify battery storage as a good alternation in applications with frequent re-charging cycles and re-charging of large energy volumes. The batteries have limited life length compared to other alternatives. Also the power is limited at charging and discharging. Energy storage in capacitors: 'Super-capacitors' having large power capacity is considered to be of interest in applications where fast control of power is necessary. The ongoing development of based on carbon-nanotubes will increase the energy storage capacity compared with the today existing super-capacitors. This can in the future be an alternative to battery storage. Of further interest is also the idea to combine battery and capacitor based storage to achieve longer life-time of the batteries and faster power control. Flywheel energy storage: The energy storage capacity is relatively limited but power control can be fast. This system can be an alternative to capacitor based energy storage. Pump-storage hydro power plant: This type of energy storage is well suited and proven for time frame up to some days. In the Swedish power system there is today not any large demand of energy storage in this time frame as there is a large capacity in conventional hydro power plants with storage capacity. Pump-storage can however be of interest in the southern part of Sweden. In some operation stages the grid is loaded up to its limit due to large power transmission from the north. The pump-storage can reduce this power transfer

  6. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  7. The value of electricity storage in energy-only electricity markets

    Science.gov (United States)

    McConnell, D.; Forcey, T.; Sandiford, M.

    2015-12-01

    Price volatility and the prospect of increasing renewable energy generation have raised interest in the potential opportunities for storage technologies in energy-only electricity markets. In this paper we explore the value of a price-taking storage device in such a market, the National Electricity Market (NEM) in Australia. Our analysis suggests that under optimal operation, there is little value in having more than six hours of storage in this market. However, the inability to perfectly forecast wholesale prices, particularly extreme price spikes, may warrant some additional storage. We found that storage devices effectively provide a similar service as peak generators (such as Open Cycle Gas Turbines) and are similarly dependent on and exposed to extreme price events, with revenue for a merchant generator highly skewed to a few days of the year. In contrast to previous studies, this results in the round trip efficiency of the storage being relatively insignificant. Financing using hedging strategies similar to a peak generator effectively reduces the variability of revenue and exposure of storage to extreme prices. Our case study demonstrates that storage may have a competitive advantage over other peaking generators on the NEM, due to its ability to earn revenue outside of extreme peak events. As a consequence the outlook for storage options on the NEM is dependent on volatility, in turn dependent on capacity requirements. Further to this, increased integration of renewable energy may both depend on storage and improve the outlook for storage in technologies in electricity markets.

  8. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  9. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  10. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  11. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  12. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  13. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    Science.gov (United States)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  14. Electric power from near-term fusion reactors

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Deis, G.A.; Miller, L.G.

    1981-01-01

    This paper examines requirements and possbilities of electric power production on near-term fusion reactors using low temperature cycle technology similar to that used in some geothermal power systems. Requirements include the need for a working fluid with suitable thermodynamics properties and which is free of oxygen and hydrogen to facilitate tritium management. Thermal storage will also be required due to the short system thermal time constants on near-time reactors. It is possbile to use the FED shield in a binary power cycle, and results are presented of thermodynamic analyses of this system

  15. Coordination Between Wind Power, Hydro Storage Facility and Conventional Generating Units According to the Annual Growth Load

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeean

    2013-04-01

    Full Text Available Considering the growing trend of the consumption of the electric power and the global tendency to substitute new renewable sources of energy, this paper proposes a Monte Carlo based method to determine an optimal level of this change. Considering the limitation of the wind farms in continuous supply of electric power, hydrostatic power storage facilities are used beside wind farms so that the electric power could be stored and fed in a continuous flow into power systems. Due to the gradual exclusion of conventional generators and 5 percent annual load increments, LOLE index was used in order to calculate the amount of the wind power and the capacity of the necessary power storage facility. To this end, LOLE index was calculated for the first year as the reference index for the estimation of the amount of wind power and the capacity of the storage facility in consequent years. For the upcoming years, calculations have been made to account for the gradual exclusion of conventional generators in proportion to load increments. The proposed method has been implemented and simulated on IEEE-RTS test system.

  16. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  17. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  18. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  19. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.

  20. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  1. Winter electricity supply and seasonal storage deficit in the Swiss Alps

    Science.gov (United States)

    Manso, Pedro; Monay, Blaise; Dujardin, Jérôme; Schaefli, Bettina; Schleiss, Anton

    2017-04-01

    Switzerland electricity production depends at 60% on hydropower, most of the remainder coming from nuclear power plants. The ongoing energy transition foresees an increase in renewable electricity production of solar photovoltaic, wind and geothermal origin to replace part of nuclear production; hydropower, in its several forms, will continue to provide the backbone and the guarantee of the instantaneous and permanent stability of the electric system. One of the key elements of any future portfolio of electricity mix with higher shares of intermittent energy sources like wind and solar are fast energy storage and energy deployment solutions. Hydropower schemes with pumping capabilities are eligible for storage at different time scales, whereas high-head storage hydropower schemes have already a cornerstone role in today's grid operation. These hydropower storage schemes have also been doing what can be labelled as "seasonal energy storage" in different extents, storing abundant flows in the wet season (summer) to produce electricity in the dry (winter) alpine season. Some of the existing reservoirs are however under sized with regards to the available water inflows and either spill over or operate as "run-of-the-river" which is economically suboptimal. Their role in seasonal energy transfer could increase through storage capacity increase (by dam heightening, by new storage dams in the same catchment). Inversely, other reservoirs that already store most of the wet season inflow might not fill up in the future in case inflows decrease due to climate changes; these reservoirs might then have extra storage capacity available to store energy from sources like solar and wind, if water pumping capacity is added or increased. The present work presents a comprehensive methodology for the identification of the seasonal storage deficit per catchment considering todays and future hydrological conditions with climate change, applied to several landmark case studies in

  2. Evaluating the benefits of an electrical energy storage system in a future smart grid

    International Nuclear Information System (INIS)

    Wade, N.S.; Taylor, P.C.; Lang, P.D.; Jones, P.R.

    2010-01-01

    Interest in electrical energy storage systems is increasing as the opportunities for their application become more compelling in an industry with a back-drop of ageing assets, increasing distributed generation and a desire to transform networks into Smart Grids. A field trial of an energy storage system designed and built by ABB is taking place on a section of 11 kV distribution network operated by EDF Energy Networks in Great Britain. This paper reports on the findings from simulation software developed at Durham University that evaluates the benefits brought by operating an energy storage system in response to multiple events on multiple networks. The tool manages the allocation of a finite energy resource to achieve the most beneficial shared operation across two adjacent areas of distribution network. Simulations account for the key energy storage system parameters of capacity and power rating. Results for events requiring voltage control and power flow management show how the choice of operating strategy influences the benefits achieved. The wider implications of these results are discussed to provide an assessment of the role of electrical energy storage systems in future Smart Grids.

  3. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  4. Electricity storages - optimised operation based on spot market prices; Stromspeicher. Optimierte Fahrweise auf Basis der Spotmarktpreise

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Dominik; Roon, Serafin von [FfE Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2010-06-15

    With its integrated energy and climate package the last federal government set itself ambitious goals for the improvement of energy efficiency and growth of renewable energy production. These goals were confirmed by the new government in its coalition agreement. However, they can only be realised if the supply of electricity from fluctuating renewable sources can be made to coincide with electricity demand. Electricity storages are therefore an indispensable component of the future energy supply system. This article studies the optimised operation of an electricity storage based on spot market prices and the influence of wind power production up to the year 2020.

  5. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  6. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  7. Energy storage and grid for electricity, gas, fuel and heat. A system-wide approach

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, Wolfgang A. [STEAG Energy Services GmbH, Essen (Germany); Kakaras, Emmanouil [Mitsubishi Hitachi Power Systems Europe GmbH, Duisburg (Germany)

    2016-07-01

    Renewable energies are asked for more and more worldwide. Even though they cannot generate electricity 8760 h/a year. This can be accomplished by flexible conventional power stations as well as storage systems. Especially the storage systems have to be developed technical wise and especially economic wise. An example of an integrated approach is the methanol production with a coal fired power plant. An overview showing the technical features as well as the strategic opportunities of such kind of approach is given.

  8. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  9. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  10. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally

  11. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  12. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  13. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  14. Impacts of Demand-Side Management on Electrical Power Systems: A Review

    Directory of Open Access Journals (Sweden)

    Hussein Jumma Jabir

    2018-04-01

    Full Text Available Electricity demand has grown over the past few years and will continue to grow in the future. The increase in electricity demand is mainly due to industrialization and the shift from a conventional to a smart-grid paradigm. The number of microgrids, renewable energy sources, plug-in electric vehicles and energy storage systems have also risen in recent years. As a result, future electricity grids have to be revamped and adapt to increasing load levels. Thus, new complications associated with future electrical power systems and technologies must be considered. Demand-side management (DSM programs offer promising solutions to these issues and can considerably improve the reliability and financial performances of electrical power systems. This paper presents a review of various initiatives, techniques, impacts and recent developments of the DSM of electrical power systems. The potential benefits derived by implementing DSM in electrical power networks are presented. An extensive literature survey on the impacts of DSM on the reliability of electrical power systems is also provided for the first time. The research gaps within the broad field of DSM are also identified to provide directions for future work.

  15. MRI device – alternative for electrical energy storage

    Directory of Open Access Journals (Sweden)

    Molokáč, Š.

    2008-01-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically difficult process. Such a process is marked by the energy losses, as the conversion of electrical energy into another form, is most frequently for example mechanical, and then back to the primary electrical form. Though, the superconducting magnetic energy storage (SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. Magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the application of superconducting magnet. After its rejection from operation, there is possibility of using such devices for energy storage purposes. Additionally, such a technology of storage is also ecological.

  16. Dual technology energy storage system applied to two complementary electricity markets using a weekly differentiated approach

    NARCIS (Netherlands)

    Ferreira, H.L.; Staňková, K.; Peças Lopes, J.; Slootweg, J.G.; Kling, W.L.

    2017-01-01

    This paper deals with integration of energy storage systems into electricity markets. We explain why the energy storage systems increase flexibility of both power systems and energy markets and why such flexibility is desirable, particularly when variable renewable energy sources are being used in

  17. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  18. Study of the valorisation of thermal storage and of power-to-heat. Study report + Study synthesis

    International Nuclear Information System (INIS)

    Canal, Patrick; Gerbaud, Manon; Mouret, Sylvain; Chammas, Maxime; Attard, Pierre; Bucy, Jacques de; Lochmann, Hugo; Le Gars, Loic; Payen, Luc; Lesueur, Herve

    2016-11-01

    This study aimed at assessing the potential of thermal storage and of power-to-heat in France, and at identifying relevant technological sectors by 2030. In order to do so, the study aimed at quantifying the value of these sectors for applications considered as relevant, this value lying in the valorisation of heat or electric power excesses, in the power arbitration, and in investment savings. Analyses have have been performed on case studies through an assessment of storage value and of P2H (Power-to-Heat) for the collectivity, a joint optimisation of fleet sizing and management, a modelling of power system fundamentals, an analysis of the profitability of storage and P2H projects, and an assessment of the technical source and of the impact on jobs. Thus, after an overview of thermal storage and power-to-heat technologies, and a presentation of the adopted methodology (definition of case studies, case study methodology, modelling hypotheses related to production and consumption, and modelling of the power system), the authors report the study of the sizing of biomass boilers in an urban heat network (determination of the storage value for the community), the study of development of an urban heat network (storage value for the community and for the operator, technological perspective by 2030), the study of the use of power-to-heat and storage for an urban heat network (value for the community, profitability and business model, perspective by 2030), the study of unavoidable heat recovery on an industrial site (value, profitability and business model, perspective by 2030), the study of co-generation and thermal storage on an industrial site (value, impact on income), the study of domestic thermal storage and of the flexibility of the French electric power system (impact of thermal water heaters on the flexibility), and the study of the impact on employment (jobs related to the domestic market and to the development of an exporting sector). Appendices propose sheets

  19. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  20. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  1. Approach to load leveling in Kansai Electric Power Co. Inc.; Kansai Denryoku no fuka heijunka eno torikumi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This paper presents an electric hot-water heater and ice storage air conditioning system as systems to be recommended for load leveling. Electric hot-water heater is featured by safety, cleanliness, silence and convenience because of no use of fire. Its electricity charge is only 7.15 yen/kWh less than 1/3 of that for ordinary homes because of use of midnight power. Mainly used MPU-control type electric hot-water heater is more economical because of a 15% discount system. Ice storage air conditioning system is operated in the daytime using ice made by midnight power. It is featured by reduction of facility and installation costs due to the small capacity of heat source equipment, use of inexpensive midnight power, and reduction of running cost due to small contract demand. However, since an ice storage air conditioning system is in the initial stage of diffusion, its initial cost is expensive as compared with conventional non-heat storage air conditioning systems, remaining the issue of cost reduction. 3 figs., 1 tab.

  2. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  3. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  4. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation and expanded use are intended by using the heat storage commission system and development of low-cost heat storage tanks (Kansai Electric Power Co. Inc.); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Chikunetsu jutaku seido ya teikakaku chikunetsuso kaihatsu de fukyu kakudai mezasu (Kansai Denryoku)

    Energy Technology Data Exchange (ETDEWEB)

    Fujise, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1998-02-01

    This paper introduces activities performed by Kansai Electric Power Co., Inc. on ice heat storage systems. In the work on ice heat storage proliferation activities, systems for preferential treatment on power charge and a bounty for the system proliferation are available. Utilizing the ice heat storage system allows customers to use low-priced nighttime power as defined in an ice heat adjustment contract. Since this system reduces the power requirement under the contract, the running cost becomes less expensive. Furthermore, power charge discount system has been applied since fiscal 1997 according to a `heat storage peak adjustment contract`. In addition, in order to reduce the initial cost for an ice heat storage device, a system has been established, in which electric power companies pay bounty to device manufacturers for sales for proliferation. Under this system, if two ice heat storage units corresponding to 110 freezing tons are installed in an office building with an area of 10,000 m {sup 2}, a cost reduction of about 2.3 million yen is possible. For the purpose of reducing burden of initial investment on customers, a `lease system` and a `heat storage commission system` have been established to install and maintain air conditioners. 6 figs., 1 tab.

  5. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  6. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  7. Technical-economic analysis of electric energy storage systems

    International Nuclear Information System (INIS)

    Stefanescu, Florian; Curuia, Marian; Brad, Sebastian; Anghel, Mihai; Stefanescu, Ioan

    2009-01-01

    Fluctuations in electric energy consumption and changes that affected last years the electric energy market, as well, entail perturbations in transport and distribution systems due to outrunning of their current physical capacities. Consequently, storing the electric energy in buffer systems appears to be a must owing to its strategic and economical importance. Indeed, it can enhance firmly the capacity of fulfilling the electric energy demands in real time and so, avoiding the blackout events caused by disruptions in power supply . Also, of great importance is the role of energy storing systems as backing ancillaries for promoting variable or uncertain renewable sources (like photovoltaic or wind sources). The Superconducting Magnetic Energy Storage (SMES) is a promising system of direct storing of electricity by means of magnetic energy deposing in a short-circuited superconducting loop. However difficulties related to the use o superconducting systems and cryogenic temperatures (concerning construction and maintenance) hinder at present the application of SMES systems on a scale larger than some particular applications. Actually, owing to the lack of alternative solutions the rather high costs are accepted in such cases

  8. A transeuropean project ICOP-DISS-2140 dealing with the use of energy storage in power systems

    International Nuclear Information System (INIS)

    Feser, K.; Hadjsaid, N.; Herlander, K.; Nazarko, J.; Prochovnik, A.; Stroev, V.; Styczynski, Z.; Vale, A.; Voropai, N.

    1998-01-01

    In the early 90s economic crisis led to the reduction of electric power and energy consumption growth in the West. The political transformation in the East caused significant evolution of the power system structures (e.g. deregulation). Changes of dynamic and static conditions in the electric power systems have been observed. In the last 5-6 years an unexpected low load growth complicated optimal expansion planning for distribution and transmission networks in power systems. Besides intelligent planning, a delay of a necessary network investment (e.g. cable lines) using some distributed small size storage can be obtained. In this way the risk of wrong investments can be minimised. In the East, using energy storage can also provide additional assistance by improving the quality of energy in distribution systems. For two years, the European Community sponsored an international project ''Intelligent Computation and Simulation in Planning and Operation of Power System taking into Account Energy Storage'', in the scope of the INCO-Copernicus program. Eight partners from six countries (Germany - coordination, Russia, Ukraine, Poland, France and Portugal) took as a goal to use ''synergy effects'' by developing a common base for a future battery storage demonstration facility. (author)

  9. Electric vehicles in imperfect electricity markets: The case of Germany

    International Nuclear Information System (INIS)

    Schill, Wolf-Peter

    2011-01-01

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future. - Highlights: → We study the effect of electric vehicles on an imperfectly competitive electricity market. → We apply a game-theoretic model to the German market. → There is a market power-mitigating effect of vehicle loading on oligopolistic generating firms. → Consumers benefit from electric vehicles if excess battery capacity can be used for grid storage. → Electric vehicles are unlikely to be a source of market power in Germany in the near future.

  10. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  11. Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; BAI Xiaomin; XU Jing

    2012-01-01

    Large-scale integration of wind power and solar photovoltaic (PV) power in an electric grid can result in a high operating risk due to their randomness and intermi- ttency. Energy storage (ES) can be used to coordinate with them to reduce this risk by improving supply continuity. It is therefore important to evaluate the reliability benefits of systems consist of wind power, solar photovoltaic power and energy storage. The objective of this paper is to evaluate how the parameters such as the capacity and characteristics of ES and the configuration of a hybrid generation system (HGS) affect the system adequacy based on the sequential Monte Carlo approach.

  12. `Power storage system` dealing with leveling of electric power use; Denryoku riyo no heijunka ni kotaeru `denryoku chozo system`

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, M. [Meidensha Corp., Tokyo (Japan)

    1996-06-28

    An overview is given on the development situation of a Zn-Br battery as a power storage system. The system is aimed at storing excess power at night and supplying the on-load demand during daytime. The power storage technology requires a large output and capacity of MWh level, long term stability and durability, and cost as low as pumped storage power generation. Four kinds of batteries have been examined to cope with the conditions, in which development of Zn-Br batteries along with Na-S batteries is in progress towards practicability. As a power conversion method for this system, GTO has been employed for a large capacity unit and IGBT for a medium/small capacity unit. The reliability of the Zn-Br batteries against leakage was improved by laminating each cell by hot plate welding. The service life was improved by using a material with a high bromine resistance in place of the conventional electrode constituent material. Although the battery efficiency was influenced by each resistance of electrode, film and electrolytic solution, distance between electrodes, temperature, etc., these correlations were clarified so as to establish the simulation technology. At present, the system realizes 50kW and 40kWh/m{sup 3}. 1 ref., 8 figs.

  13. Storage and balancing synergies in a fully or highly renewable pan-European power system

    International Nuclear Information System (INIS)

    Rasmussen, Morten Grud; Andresen, Gorm Bruun; Greiner, Martin

    2012-01-01

    Through a parametric time-series analysis of 8 years of hourly data, we quantify the storage size and balancing energy needs for highly and fully renewable European power systems for different levels and mixes of wind and solar energy. By applying a dispatch strategy that minimizes the balancing energy needs for a given storage size, the interplay between storage and balancing is quantified, providing a hard upper limit on their synergy. An efficient but relatively small storage reduces balancing energy needs significantly due to its influence on intra-day mismatches. Furthermore, we show that combined with a low-efficiency hydrogen storage and a level of balancing equal to what is today provided by storage lakes, it is sufficient to meet the European electricity demand in a fully renewable power system where the average power generation from combined wind and solar exceeds the demand by only a few percent. - Highlights: ► We model a wind and solar based European power system with storage and balancing. ► We find that storage needs peaks when average renewable generation matches load. ► We find strong synergetic effects when combining storage and balancing. ► We study the effects of a storage capable of storing 6 h average use. ► We find a realisable fully renewable scenario based on wind, solar and hydro power.

  14. Technical Research on the Electric Power Big Data Platform of Smart Grid

    OpenAIRE

    Ruiguang MA; Haiyan Wang; Quanming Zhang; Yuan Liang

    2017-01-01

    Through elaborating on the associated relationship among electric power big data, cloud computing and smart grid, this paper put forward general framework of electric power big data platform based on the smart grid. The general framework of the platform is divided into five layers, namely data source layer, data integration and storage layer, data processing and scheduling layer, data analysis layer and application layer. This paper makes in-depth exploration and studies the integrated manage...

  15. Participation of nuclear power plants in variable operation regimes under conditions of combined electric power and heat generation

    International Nuclear Information System (INIS)

    Rydzi, S.

    1988-01-01

    The incorporation of nuclear power units in the control of the output of an electric power system is affected by technical and economic factors as well as by the manner of heat take-off from the nuclear power unit for heating purposes. The effect was therefore studied of the technological solution of converting the heat output of WWER-440 units to operating parameters of turbines in nonrated regimes of operation. Some results of the study are graphically represented. An analysis was also made of limitations preventing WWER-440 units from supplying heat with regard to their incorporation in the electric power transmission system. The results show that using nuclear power units for district heating will in the future strictly determine the seasonal shut-down of nuclear units for fuel exchange and overhauls. This could interfere with the considered concept of the 1.5 year duty time of WWER-440 reactors. With regard to the economy of operation of the nuclear power system and reduced demands on weekend unloading it will be necessary to incorporate in the power system pumped-storage power plants with one-week pumped-storage systems. (Z.M.). 5 figs., 2 tabs., 6 refs

  16. Energy management systems on board of electric vehicles, based on power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guidi, Giuseppe

    2009-03-15

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion. The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently the most suitable device for electrical energy storage, have serious limitations in terms of energy and/or power density, cost and safety. All those characteristics reflect in pure electric vehicles being outperformed by standard internal combustion engine (ICE) based vehicles in terms of driving range, time needed to refuel and purchase cost. Electric vehicles do have their distinctive advantages, being intrinsically much more efficient, operating at zero emissions at the pipe, and offering a higher degree of controllability that can potentially enhance driving safety. No wonder then, that electric energy storage technology has attracted considerable R&D investments, resulting in new traction battery packs that are getting closer and closer to the industrial targets. In this scenario of EV technology gaining momentum, power electronics engineers have to come up with newer solutions allowing for more efficient and more reliable utilization of the precious on-board energy that comes in a form that cannot be directly utilized by the motor. At present, most of the research in the area of power electronics for automotive is focused in volume and cost reduction techniques. The increase in power density is pursued by developing components that can be operated at higher temperature, thus relieving the requirements on cooling. In this thesis, the focus is on the development of alternative topologies for the power electronics converters that make use of some peculiarities of the energy

  17. The impact of carbon capture and storage on a decarbonized German power market

    International Nuclear Information System (INIS)

    Spiecker, S.; Eickholt, V.; Weber, C.

    2014-01-01

    The European energy policy is substantially driven by the target to reduce the CO 2 -emissions significantly and to mitigate climate change. Nevertheless European power generation is still widely based on fossil fuels. The carbon capture and storage technology (CCS) could be part of an approach to achieve ambitious CO 2 reduction targets without large scale transformations of the existing energy system. In this context the paper investigates on how far the CCS-technology could play a role in the European and most notably in the German electricity generation sector. To account for all the interdependencies with the European neighboring countries, the embedding of the German electricity system is modeled using a stochastic European electricity market model (E2M2s). After modeling the European side constraints, the German electricity system is considered in detail with the stochastic German Electricity market model (GEM2s). The focus is thereby on the location of CCS plant sites, the structure of the CO 2 -pipeline network and the regional distribution of storage sites. Results for three different European energy market scenarios are presented up to the year 2050. Additionally, the use of CCS with use of onshore and offshore sites is investigated. - Highlights: • We present a model framework for the evaluation of carbon capture and storage (CCS). • Different scenarios to analyze regional differences within Germany. • Interdependencies between CO 2 bound and demand are the main influencing factors. • A comprehensive investment in CCS power plants is not likely in the next decades. • Storage sites are no restricting factor but public acceptance is a crucial point

  18. Energy storage devices for future hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Fricke, Birger [Ford Research and Advanced Engineering Europe, Suesterfeldstr. 200, D-52072 Aachen (Germany); Miller, Ted; Snyder, Kent [Ford Sustainable Mobility Technologies, 15050 Commerce Drive North, Dearborn, MI 48120 (United States)

    2007-05-25

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential ''battery pack'' system suppliers are discussed. (author)

  19. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  20. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  1. Present situation of the electric power storage technology and its future outlook. IV. ; Compressed air energy storage. Denryoku Chozo gijutsu no genjo to shorai tenbo ni tsuibe. IV. ; Asshuku kuki chozo

    Energy Technology Data Exchange (ETDEWEB)

    Kadoyu, M. (Central Research Institute of Electric Power Industry, Tokyo (Japan))

    1991-03-20

    The compressed air energy storage gas turbine power generation system is paid attetion to as a load levelling power source in view of the recent increase in electric power demand. The paper describes features, cavern construction technology, economy and future expansion of the system. In this system compressed air made by use of cheap night-time electric power is stored in underground spaces or underwater facilities. Burning the fuel together with this compressed air in the daytime, the gas turbine power generation is conducted. Several examples overseas of this system are reported including a 290,000KW class in Germany. A key technology of the system is how safely and cheaply a large amount of hih-pressure air can be stored. In Europe and America, caverns of hundreds of thousand m {sub 3} are constructed in the rock salt cavern which can be excavated by a water jet. In consideration of storing it in rock beds in Japan where there are no rock salt caverns, NEDO started 1990 a 9-year construction plan of a 35,000 KW class pilot plant at Kamisunagawa, Hokkaido. 2 refs., 5 figs., 1 tab.

  2. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  3. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  4. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  5. The electric power engineering handbook electric power transformer engineering

    CERN Document Server

    Harlow, James H

    2012-01-01

    Electric Power Transformer Engineering, Third Edition expounds the latest information and developments to engineers who are familiar with basic principles and applications, perhaps including a hands-on working knowledge of power transformers. Targeting all from the merely curious to seasoned professionals and acknowledged experts, its content is structured to enable readers to easily access essential material in order to appreciate the many facets of an electric power transformer.Topically structured in three parts, the book: * Illustrates for electrical engineers the relevant theories and pri

  6. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage

    NARCIS (Netherlands)

    Blanco, Herib; Faaij, André

    2018-01-01

    A review of more than 60 studies (plus more than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these, for power systems with up to 95% renewables, the electricity storage size is found to be below 1.5% of the annual demand (in energy terms).

  7. Characterisation of electrical energy storage technologies

    NARCIS (Netherlands)

    Lopes Ferreira, H.M.; Garde, R.; Fulli, G.; Kling, W.L.; Pecas Lopes, J.

    2013-01-01

    In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of

  8. Integration of electric vehicles with optimum sized storage for grid connected photo-voltaic system

    Directory of Open Access Journals (Sweden)

    Sulabh Sachan

    2017-12-01

    Full Text Available The necessity of energy storage by means of battery/EV is exceedingly expected in event of energy blackouts. Different advantages incorporate sparing the cash in purchasing top time power and support the grid when grid power is deficit against the load demand. In this paper, ideal size of energy storage in a grid associated photovoltaic (PV framework is proposed. The methodology of energy flow choice is produced with the appraisal on accessibility of PV yield control and the load demand. The energy flow decision is changed by peak and off peak hours to shorten the functional cost of the grid associated PV framework with storage. Naturally, the quantities of electric vehicles that can be associated are resolved.

  9. Bidding strategy for pumped-storage plant in pool-based electricity market

    International Nuclear Information System (INIS)

    Kanakasabapathy, P.; Shanti Swarup, K.

    2010-01-01

    This paper develops optimal bidding strategies for a pumped-storage plant in a pool-based electricity market. In the competitive regime, when compared to simple hydroelectric generator, profit of the pumped-storage plant is maximized by operating it as a generator when market clearing price is high and as a pump when the price is low. Based on forecasted hourly market clearing price, a multistage looping algorithm to maximize the profit of a pumped-storage plant is developed, considering both the spinning and non-spinning reserve bids and meeting the technical operating constraints of the plant. The proposed model is adaptive for the nonlinear three-dimensional relationship between the power produced, the energy stored, and the head of the associated reservoir. Different operating cycles for a realistic pumped-storage plant are considered and simulation results are reported and compared. (author)

  10. A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles

    International Nuclear Information System (INIS)

    Trovão, João P.; Antunes, Carlos Henggeler

    2015-01-01

    Highlights: • Two meta-heuristic approaches are evaluated for multi-ESS management in electric vehicles. • An online global energy management strategy with two different layers is studied. • Meta-heuristic techniques are used to define optimized energy sharing mechanisms. • A comparative analysis for ARTEMIS driving cycle is addressed. • The effectiveness of the double-layer management with meta-heuristic is presented. - Abstract: This work is focused on the performance evaluation of two meta-heuristic approaches, simulated annealing and particle swarm optimization, to deal with power management of a dual energy storage system for electric vehicles. The proposed strategy is based on a global energy management system with two layers: long-term (energy) and short-term (power) management. A rule-based system deals with the long-term (strategic) layer and for the short-term (action) layer meta-heuristic techniques are developed to define optimized online energy sharing mechanisms. Simulations have been made for several driving cycles to validate the proposed strategy. A comparative analysis for ARTEMIS driving cycle is presented evaluating three performance indicators (computation time, final value of battery state of charge, and minimum value of supercapacitors state of charge) as a function of input parameters. The results show the effectiveness of an implementation based on a double-layer management system using meta-heuristic methods for online power management supported by a rule set that restricts the search space

  11. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  12. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  13. A long-term analysis of pumped hydro storage to firm wind power

    International Nuclear Information System (INIS)

    Foley, A.M.; Leahy, P.G.; Li, K.; McKeogh, E.J.; Morrison, A.P.

    2015-01-01

    Highlights: • This is a long term generation analysis of a high wind power system. • A high CO 2 and fossil fuel price is closest to Ireland’s EU ETS 2020 target. • New pumped storage to firm wind is limited unless strong market costs exist. • Reserve for wind power show that ancillary services are relevant for balancing. - Abstract: Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind’s inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems

  14. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly but important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.

  15. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  16. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    Power System and Energy Storage Models for Laser Integration on Naval Platforms A.L. Gattozzi, J.D. Herbst, R.E. Hebner Center for... Electromechanics , University of Texas Austin, Texas a.gattozzi@cem.utexas.edu J.A. Blau, K.R. Cohn, W.B. Colson, J.E. Sylvester, M.A. Woehrman Physics...emerging technologies present significant challenges to the electric power distribution and thermal management systems, particularly for

  17. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  18. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  19. Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant

    International Nuclear Information System (INIS)

    Regula, E.

    2005-01-01

    In this paper thirty years history of the Hydro-engineering structure and Liptovska Mara Pumped Storage Power Plant (PSPP) is presented. In 1975 year the Liptovska Mara PSPP was commissioned. There are 2 Kaplan turbines and 2 Derezias reversible turbines with a total installed power 198 MW. The average annual output is 134.5 GWh. As a part of this hydro-engineering structure is Besenova Small-scale power plants with 2 turbines and with installed power 4.64 MW. The average annual output consists 18.3 GWh. There up to end of 2004 year 3,620.172 MWh of electricity was produced. Environmental effects are discussed

  20. DC microgrids providing frequency regulation in electrical power system - imperfect communication issues

    DEFF Research Database (Denmark)

    Bašić, Hrvoje; Dragicevic, Tomislav; Pandžić, Hrvoje

    2017-01-01

    This paper presents a model of multiple DC microgrids with battery energy storage systems and demand response capability, taking part in primary frequency regulation of electrical power system. Although DC microgrids can contribute to stability and efficiency of frequency regulation, these complex...... systems may cause serious stability issues due to the imperfect communication. This work presents possible scenarios of unstable primary frequency regulation in a simplified model of electrical power system with DC microgrids, which are controlled through communication network....

  1. Energy storage. The actual challenge for tomorrow

    International Nuclear Information System (INIS)

    Combe, Matthieu; Danielo, Olivier

    2016-09-01

    As methods of energy production are now diversified and efficient, the challenge is now their integration into the grid, and their storage. Thus, this publication first proposes a set of articles which address perspectives and realisations (or projects) related to energy storage: the challenge of modernisation of Pump Storage Power plants (PSP), the possibilities provided by power-to-gas technology to store electricity, the possibilities provided by coupling of CO 2 storage and geothermal energy. Other aspects concern electric power storage at the back end of the supply chain: the Corri-door project of 200 terminals for fast electric charging (for electric vehicles), the emergence of the domestic battery as storage mean in different counties. More prospective projects are also evoked: the use of hot water in Hawaii to store photovoltaic solar electricity and inspired projects by ENGIE and EDF, the perspective of energy storage on miniaturised chips, and a three-wheel light vehicle (Moe) using solar energy and developed by the Evovelo startup

  2. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  3. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system

    International Nuclear Information System (INIS)

    Guo, Juncheng; Cai, Ling; Chen, Jincan; Zhou, Yinghui

    2016-01-01

    A more realistic thermodynamic model of the pumped thermal electricity storage (PTES) system consisting of a Brayton cycle and a reverse Brayton cycle is proposed, where the internal and external irreversible losses are took into account and several important controlling parameters, e.g., the pressure ratio and heat flows of the two isobaric processes in the Brayton cycle, are introduced. Analytic expressions for the round trip efficiency and power output of the PTES system are derived. The general performance characteristics of the PTES system are revealed. The optimal relationship between the round trip efficiency and the power output is obtained. The influences of some important controlling parameters on the performance characteristics of the PTES system are discussed and the optimally operating regions of these parameters are determined. - Highlights: • A cycle model of the Brayton pumped thermal electricity storage system is proposed. • Internal and external irreversible losses are considered. • Maximum power output and efficiency of the system are calculated. • Optimum performance characteristics of the system are revealed. • Rational ranges of key controlling parameters are determined.

  4. Stand alone solution for generation and storage of hydrogen and electric energy

    International Nuclear Information System (INIS)

    Gany, Alon; Elitzur, Shani; Valery

    2015-01-01

    A novel method enabling safe, simple, and controllable production, storage, and use of hydrogen as well as compact electric energy storage and generation via hydrogen- oxygen fuel cells has been developed. The technology indicates, in our opinion, a significant milestone in the search for practical utilization of hydrogen as an alternative energy source. It consists of an original thermal-chemical treatment / activation of aluminum powders to react spontaneously with water to produce hydrogen at regular conditions according to the reaction Al+3H 2 O=Al (OH) 3 +3/2H 2 . Only about 1-2% of lithium, based activator is applied, and any type of water including tap water, sea water and waste water may be used, making the method attractive for variety of applications. 11% of hydrogen compared to the aluminum mass can be obtained, and our experiments reveal 90% reaction yield and more. The technology has a clear advantage over batteries, providing specific electric energy of over 2 kW h/kg Al, 5-10 times greater than that of commonly used lithium-ion batteries. Combined with a fuel cell it may be particularly beneficial for stand-alone electric power generators, where there is no access to the grid. Such applications include emergency generators (e.g., in hospitals), electricity backup systems, and power generation in remote communication posts. Automotive applications may be considered as well. The technology provides green electric energy and quiet operation as well as additional heat energy resulting mainly from the exothermic aluminum-water reaction. (full text)

  5. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  6. Pumped Storage Hydro Power Plant Cierny Vah

    International Nuclear Information System (INIS)

    Regula, E.

    1998-01-01

    In this leaflet the pump-storage power plant Cierny Vah is presented. A Cierny Vah pumped storage power plant (PSP) has been designed and built for providing the reliable and quality electric energy supply and for covering load changes of an electrification system. (ES). It is mainly the pumped storage hydro power plants plants which in our conditions are the sources operatively covering the sudden changes of the ES load from the ecological, economic but mainly from the operational point of view. The electric energy generation volume is not the primary standpoint but especially their control functions in the ES. During the building of the Cierny Vah PSP the peak operation with the daily accumulation, participation in frequency control and output in ES and the compensation function in ES were to be its main tasks. After putting it into operation by especially after its becoming independent of the Slovak ES in 1994 the static functions (energy generation from pumping, balance output reserves, daily control, ...) gave way to dynamic functions which gained greater importance. After interconnection of the ES with the UCPTE West European Association in which there are besides other things, the strict criteria for observing balance outputs, the main functions of PSPs are as follows: (1) Dynamic services for ES; (2) Dispatching reserve for the fall out of the greatest ES block; (3) Observing the foreign cooperation balance agreed; (4) Compensation of peaks and also of sudden daily load diagram reductions. Technical parameters of the upper and lower reservoir are described. The hydro power plant is a body lower reservoir. In it there are six vertical pumping aggregates in the three machine layout: the motor-generator - the turbine - the pump. Between the turbine and the pump there is a hydraulically controlled claw clutch engaging at rest and disengaging also during the aggregate operation. During pumping air is involved inside the turbine. The Francis turbines have a

  7. The impact of hybrid energy storage on power quality, when high power pulsed DC loads are operated on a microgrid testbed

    Science.gov (United States)

    Kelley, Jay Paul

    As the Navy's demands for high power transient loads evolves, so too does the need for alternative energy sources to back-up the more traditional power generation. Such applications in need of support include electrical grid backup and directed energy weapon systems such as electromagnetic launchers, laser systems, and high power microwave generators, among others. Among the alternative generation sources receiving considerable attention are energy storage devices such as rechargeable electrochemical batteries and capacitors. In such applications as those mentioned above, these energy storage devices offer the ability to serve a dual role as both a power source to the various loads as well high power loads themselves to the continual generation when the high power transient loads are in periods of downtime. With the recent developments in electrochemical energy storage, lithium-ion batteries (LIBs) seem like the obvious choice, but previous research has shown that the elevated rates of charging can be detrimental to both the cycle life and the operational life span of the device. In order to preserve the batteries, their charge rate must be limited. One proposed method to accomplish the dual role task mentioned above, while preserving the life of the batteries, is by combining high energy density LIBs with high power density electric double layer capacitors (EDLCs) or lithium-ion capacitors (LICs) using controllable power electronics to adjust the flow of power to and from each device. Such a configuration is typically referred to as hybrid energy storage module (HESM). While shipboard generators start up, the combined high energy density and high power density of the HESM provides the capability to source critical loads for an extended period of time at the high rates they demand. Once the generator is operationally efficient, the HESM can act as a high energy reservoir to harvest the energy from the generator while the loads are in short periods of inactivity

  8. A novel technology for control of variable speed pumped storage power plant

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar

    2016-01-01

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  9. Distributed Generation Integration in the Electric Grid: Energy Storage System for Frequency Control

    Directory of Open Access Journals (Sweden)

    Maurizio Delfanti

    2014-01-01

    Full Text Available During the last few years generation from renewable energy sources (RESs has grown considerably in European electrical networks. Transmission system operators are greatly concerned about the impact of RESs on the operational security and efficiency of their networks and more in general of the ENTSO-E interconnected system. Grid codes are to be revised in order to harmonise the rules regarding the connection of RES power plants. A main issue concerns frequency control: frequency is greatly affected by RESs intermittency and its deviations must be limited as much as possible in order to guarantee a suitable level of power quality. To improve frequency stability, in the future, Grid codes could extend frequency control requirements also to RES units, whereas today they are applied only to conventional power plants. Energy storage systems can be a possible solution to increase the flexibility and performance of RES power plants: they allow generators to modulate their power injections without wasting renewable energy. In this paper, the authors studied the suitability of extending frequency control to RES units integrating them with energy storage systems. In particular, the paper focuses on the impact of frequency control on the storage lifetime by analysing the power charge/discharge in response to real frequency oscillations.

  10. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  11. Electric power annual, 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. The 1991 edition has been enhanced to include statistics on electric utility demand-side management and nonutility supply. ''The US Electric Power Industry at a Glance'' section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue, and average revenue per kilowatthour sold; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms

  12. Electric power annual 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  13. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  14. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  15. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  16. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  17. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    Science.gov (United States)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  18. A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Yanzi Wang

    2016-01-01

    Full Text Available Over the last few years; issues regarding the use of hybrid energy storage systems (HESSs in hybrid electric vehicles have been highlighted by the industry and in academic fields. This paper proposes a fuzzy-logic power management strategy based on Markov random prediction for an active parallel battery-UC HESS. The proposed power management strategy; the inputs for which are the vehicle speed; the current electric power demand and the predicted electric power demand; is used to distribute the electrical power between the battery bank and the UC bank. In this way; the battery bank power is limited to a certain range; and the peak and average charge/discharge power of the battery bank and overall loss incurred by the whole HESS are also reduced. Simulations and scaled-down experimental platforms are constructed to verify the proposed power management strategy. The simulations and experimental results demonstrate the advantages; feasibility and effectiveness of the fuzzy-logic power management strategy based on Markov random prediction.

  19. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  20. AB Levitator and Electricity Storage

    OpenAIRE

    Bolonkin, Alexander

    2007-01-01

    The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative...

  1. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  2. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  3. The future of stationary electricity storages - niche market or multi-billion Euro business?; Stationaere Stromspeicher - zukuenftiger Nischenmarkt oder Milliardengeschaeft?

    Energy Technology Data Exchange (ETDEWEB)

    Gatzen, Christoph [Frontier Economics Ltd., Koeln (Germany); Riechmann, Christoph [Frontier Economics Ltd, London (United Kingdom)

    2011-03-15

    The transformation process from conventional electricity production to a sustainable power generation system based on renewable energy confronts market protagonists and lawmakers with huge technical and economic challenges. The rapid proliferation of wind power and photovoltaic plants in particular will raise electricity price volatility and require large investments in the expansion of transmission and distribution networks. It will also place high demands on the flexibility of the remaining electricity network, which will have to smoothen both the long and short-term fluctuations in supply from wind and photovoltaic energy. In view of the growing signs of delay in network expansion, the political leadership has taken to welcoming electricity storages as the ultimate solution to numerous challenges, as we read for example in the Energy Concept of the German Federal Government. While there may be reason for optimism, it is equally right to critically question the role that electricity storages might realistically play in the future given the need for reasonable price levels.

  4. Temporary storage facility for spent nuclear fuels at the Atucha I nuclear power station (CNA)

    International Nuclear Information System (INIS)

    Wasinger, K.

    1983-01-01

    According to plans of the Argentine Atomic Energy Commission (CNEA), the spent nuclear fuel elements of the Atucha I Nuclear Power Station are to be stored temporarily pending a decision about the ultimate disposal concept. The holding capacity of the first fuel storage facility built by the German KWU together with the whole power plant had been expanded in 1978 to a level good until mid-1982. In 1977, KWU drafted the concept of another fuel storage facility. Like the first one, it was designed as a wet storage system attached to the power plant installations and had a holding capacity of 6944 fuel elements, which corresponds to some 1100 te of uranium. This extends the storage capacity up until 1996. In 1978, KWU was commissioned by CNEA to plan the whole facility and deliver the mechanical and electrical equipment. CNEA themselves assumed responsibility for the construction work. The second fuel storage facility was commissioned three years after the start of construction. (orig.) [de

  5. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  6. Electric power supply in the 21st century. Proceedings. 2. rev. ed.; Stromversorgung des 21. Jahrhunderts. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The proceedings include contributions to the following topics: The role of energy in the future society; efficiency enhancement by electric power; electromobility and power industry - future prospects of energy suppliers; better place - marketing model for electromobility; electric heating systems - techniques, efficiency and potentials; energy saving by smart metering; development of the electricity demand in Germany until 2050; energy supply concepts in the frame of IEKP; future of fossil duels in electricity generation; future of nuclear power in Europe; power-heat cogeneration for local heat and long-distance heat; micro CHP and virtual power plants; renewable energy - new challenges for transport and storage; possible development of the power generation system until 2050; electricity and electricity industry - how to improve the image? energy and climate policy consulting - experiences and expectations.

  7. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  8. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  9. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... resulted in the demise of electric cars in the 1930s. However, with the advancement of new high density battery technologies and power electronic converters, it is now viable to produce electric cars of higher efficiency and driving range. The performance and durability of the battery technology...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...

  10. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  11. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  12. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    Science.gov (United States)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  13. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give......The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... in three classes. This analysis is extended focusing mainly on the three classes of configurations grid-forming, grid-feeding, and grid-supporting. The paper ends up with an overview and a discussion of the control structures and strategies to control distribution power generation system (DPGS) units...

  14. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  15. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.; Rajagopal, R.; Khargonekar, P.; Poolla, K.

    2011-01-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy

  16. A novel business model for aggregating the values of electricity storage

    International Nuclear Information System (INIS)

    He Xian; Delarue, Erik; D'haeseleer, William; Glachant, Jean-Michel

    2011-01-01

    Electricity storage is considered as a valuable source of flexibility with applications covering the whole electricity value chain. Most of the existing evaluation methods for electricity storage are conceived for one specific use of the storage, which often leads to the conclusion that the investment on storage does not pay off. However, the value of storage cannot be properly estimated without taking into account the possibility of aggregating the services that storage can offer to different actors. This paper proposes a new business model that allows aggregating multiple revenue streams of electricity storage in a systematic way. The model consists in coordinating a series of auctions in which the right to utilize the storage unit is auctioned upon different time horizons. In the mean time, non-conflicting usage of storage by the actors in these different auctions is ensured. The functioning of the model is demonstrated by a case study. The results show that a storage unit can achieve higher return on investment in the manner proposed in the business model. - Research highlights: → Aggregation of the benefits of storage is necessary for the cost recovery of storage facilities. → The use of storage needs to be coordinated among different actors and upon different time horizons. → The aggregation of values of storage can be achieved by implementing an auction chain. → The model proposes a viable way to aggregate both regulated and deregulated values of storage.

  17. Optimal Overcurrent Relay Coordination in Presence of Inverter-based Wind Farms and Electrical Energy Storage Devices

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Esmaeel Nezhad, Ali; Anvari-Moghaddam, Amjad

    2018-01-01

    This paper investigates the coordination problem of overcurrent relays (OCRs) in presence of wind power generation and electrical energy storage (EES) systems. As the injected short-circuit current of inverter-based devices connected to the electrical grid is a function of the power electronic...... mainly matter for the EES system operating in either charging or discharging modes, as well. This paper evaluates different operation strategies considering the variations of the load demand and the presence of large-scale wind farms as well as an EES system, while validating the suggested method...

  18. Parametric studies and optimisation of pumped thermal electricity storage

    International Nuclear Information System (INIS)

    McTigue, Joshua D.; White, Alexander J.; Markides, Christos N.

    2015-01-01

    Highlights: • PTES is modelled by cycle analysis and a Schumann-style model of the thermal stores. • Optimised trade-off surfaces show a flat efficiency vs. energy density profile. • Overall roundtrip efficiencies of around 70% are not inconceivable. - Abstract: Several of the emerging technologies for electricity storage are based on some form of thermal energy storage (TES). Examples include liquid air energy storage, pumped heat energy storage and, at least in part, advanced adiabatic compressed air energy storage. Compared to other large-scale storage methods, TES benefits from relatively high energy densities, which should translate into a low cost per MW h of storage capacity and a small installation footprint. TES is also free from the geographic constraints that apply to hydro storage schemes. TES concepts for electricity storage rely on either a heat pump or refrigeration cycle during the charging phase to create a hot or a cold storage space (the thermal stores), or in some cases both. During discharge, the thermal stores are depleted by reversing the cycle such that it acts as a heat engine. The present paper is concerned with a form of TES that has both hot and cold packed-bed thermal stores, and for which the heat pump and heat engine are based on a reciprocating Joule cycle, with argon as the working fluid. A thermodynamic analysis is presented based on traditional cycle calculations coupled with a Schumann-style model of the packed beds. Particular attention is paid to the various loss-generating mechanisms and their effect on roundtrip efficiency and storage density. A parametric study is first presented that examines the sensitivity of results to assumed values of the various loss factors and demonstrates the rather complex influence of the numerous design variables. Results of an optimisation study are then given in the form of trade-off surfaces for roundtrip efficiency, energy density and power density. The optimised designs show a

  19. Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Broek, Machteld van den; Turkenburg, Wim; Faaij, Andre

    2011-01-01

    We examined the co-evolution of the transportation, and electricity and heat generation sectors in the Netherlands until 2040 using a MARKAL bottom-up cost optimisation model. All scenario variants investigated indicate a switch away from crude oil-based diesel and petrol for transportation. Lowest overall CO 2 abatement cost is achieved by accommodating transportation first and using relatively expensive options for emissions reduction in electricity generation if needed. Biomass and carbon capture and storage (CCS) are used to full potential. Transportation CO 2 emissions are reduced by switching to ethanol or bio-based synthetic fuels combined with CCS, and series hybrid cars if needed. Depending on the availability of biomass and carbon storage capacity, electricity is produced from biomass, coal with CCS, or wind complemented with natural gas. Indirect greenhouse gas emissions rise to 34-54% of national emissions in 2040. The difference in annual investment required between the scenario variants with and without CO 2 emissions reductions of 68% by 2040 is 4-7 billion euro/year, or 0.5-1.2% of projected GDP. Investment costs are mostly determined by the cost of cars and electricity generation capacity. We observe competition for limited biomass supply and CO 2 storage capacity between the transportation and power sectors.

  20. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  1. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Electricity retailer determines selling price to consumers in the smart grids. • Real-time pricing is determined in comparison with fixed and time-of-use pricing. • Hydrogen storage systems and plug-in electric vehicles are used for energy sources. • Optimal charging and discharging power of electrolyser and fuel cell is determined. • Optimal charging and discharging power of plug-in electric vehicles is determined. - Abstract: The plug-in electric vehicles and hydrogen storage systems containing electrolyzer, stored hydrogen tanks and fuel cell as energy storage systems can bring various flexibilities to the energy management problem. In this paper, selling price determination and energy management problem of an electricity retailer in the smart grid under uncertainties have been proposed. Multiple energy procurement sources containing pool market, bilateral contracts, distributed generation units, renewable energy sources (photovoltaic system and wind turbine), plug-in electric vehicles and hydrogen storage systems are considered. The scenario-based stochastic method is used for uncertainty modeling of pool market prices, consumer demand, temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use pricing and real-time pricing. It is shown that the selling price determination based on real-time pricing and flexibilities of plug-in electric vehicles and hydrogen storage systems leads to higher expected profit. The proposed model is formulated as mixed-integer linear programming that can be solved under General Algebraic Modeling System. To validate the proposed model, three types of selling price determination under four case studies are utilized and the results are compared.

  2. Integrated electrification solution for autonomous electrical networks on the basis of RES and energy storage configurations

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2008-01-01

    Most medium and small islands of the Aegean Archipelagos face serious infrastructure problems, strongly related with the limited electrical energy available at extremely high cost. On the other hand, the area is characterized by very high wind speeds and abundant solar energy, thus the exploitation of the available renewable energy sources (RES) may significantly contribute to the fulfillment of the local societies energy demand at minimum environmental and macroeconomic cost. However, the stochastic availability of wind energy and the variable availability of solar energy, the daily and seasonal electricity demand fluctuations, as well as the limited local electrical network capacity result in serious restrictions concerning the maximum renewable power penetration. In this context, the present paper investigates the possibility of creating a combined electricity generation facility based on the exploitation of wind or/and solar potential of an area as well as on the utilization of an appropriate energy storage configuration in order to replace the existing thermal power stations with rational investment requirements. For this purpose, the major parameters of the proposed integrated configuration are firstly calculated and its financial viability is accordingly analyzed. One of the main targets of the proposed solution is to maximize the RES exploitation of the area at a minimum electricity generation cost, while special emphasis is given in order to select the most cost-efficient energy storage device available. According to the results obtained the proposed solution is not only financially attractive but also improves the quality of the electricity offered to the local communities, substituting the expensive and heavily polluting existing thermal power stations

  3. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  4. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  5. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  6. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  7. Integrating decentralized electrically powered thermal supply systems into a Smart Grid

    OpenAIRE

    Hasselmann, Maike; Beier, Carsten

    2015-01-01

    The goal of the project “Smart Region Pellworm” is the establishment and operation of a smart grid with a hybrid energy storage system on the German island of Pellworm. One part of the project is the integration of power-to-heat appliances into the smart grid for demand side management purposes. This paper deals with the prerequisites and lessons learned from the integration of electric night storage heaters into Pellworm's energy management system. Special focus lies on the development of a ...

  8. The equilibrium between the offer and the demand of the electric power in France. The provisional evaluation of the RTE edition 2005

    International Nuclear Information System (INIS)

    2005-01-01

    Because the electric power cannot be storage, the RTE (electric power transport network) manages in real time the equilibrium of the electric power flux on the transport network. Another mission of RTE is the anticipation at middle and long dated, of this equilibrium. This document recalls and details these missions. (A.L.B.)

  9. Distributed generation system with PEM fuel cell for electrical power quality improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D.; Beites, L.F.; Blazquez, F. [Department of Electrical Engineering, ETSII, Escuela de Ingenieros Industriales, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Ballesteros, J.C. [Endesa Generacion, S.A. c/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-08-15

    In this paper, a physical model for a distributed generation (DG) system with power quality improvement capability is presented. The generating system consists of a 5 kW PEM fuel cell, a natural gas reformer, hydrogen storage bottles and a bank of ultra-capacitors. Additional power quality functions are implemented with a vector-controlled electronic converter for regulating the injected power. The capabilities of the system were experimentally tested on a scaled electrical network. It is composed of different lines, built with linear inductances and resistances, and taking into account both linear and non-linear loads. The ability to improve power quality was tested by means of different voltage and frequency perturbations produced on the physical model electrical network. (author)

  10. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  11. Fundamental characteristics of new electric power storage equipment celled `ECS`; Atarashii denryoku chozo sochi `ECS` no kisoteki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, T.; Yamagishi, M.

    1997-01-30

    This paper introduces new electric power storage equipment called an energy capacitor system. A special electrically double-layered capacitor with its energy density raised in sacrifice of internal resistance has the current so adjusted that loss will not increase by using a switching converter (consisting of a charger and a current pump). The capacitor is charged and discharged at high efficiency. Upper limits of the charge voltage for each capacitor are connected with parallel monitor circuits so that maximum charge voltage of each capacitor will be aligned at one level, wherein charge and discharge are performed with that voltage used as the starting point. A drawback in a capacitor is lower energy density than in a secondary battery. Therefore, high voltage withstanding organic electrolyte was used, and electrode activated carbon was given discussions starting from its raw material structures. The efforts resulted in obtaining as high energy density as 43 Wh/kg (about 20 times as much as in conventional materials, and comparable to lead-acid batteries). In order to minimize heat generation due to the increased internal resistance, a switching converter was used to suppress charge/discharge currents to the minimum required levels. Although the capacitor still has insufficient voltage withstanding power and short life, the energy density is increasing beyond the initial estimation. The next problem to be solved is reduction in production cost for its industrialization. 4 refs., 4 figs., 2 tabs.

  12. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  13. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  14. Development of a hybrid energy storage sizing algorithm associated with the evaluation of power management in different driving cycles

    International Nuclear Information System (INIS)

    Masoud, Masih Tehrani; Mohammad Reza, Ha'iri Yazdi; Esfahanian, Vahid; Sagha, Hossein

    2012-01-01

    In this paper, a hybrid energy storage sizing algorithm for electric vehicles is developed to achieve a semi optimum cost effective design. Using the developed algorithm, a driving cycle is divided into its micro-trips and the power and energy demands in each micro trip are determined. The battery size is estimated because the battery fulfills the power demands. Moreover, the ultra capacitor (UC) energy (or the number of UC modules) is assessed because the UC delivers the maximum energy demands of the different micro trips of a driving cycle. Finally, a design factor, which shows the power of the hybrid energy storage control strategy, is utilized to evaluate the newly designed control strategies. Using the developed algorithm, energy saving loss, driver satisfaction criteria, and battery life criteria are calculated using a feed forward dynamic modeling software program and are utilized for comparison among different energy storage candidates. This procedure is applied to the hybrid energy storage sizing of a series hybrid electric city bus in Manhattan and to the Tehran driving cycle. Results show that a higher aggressive driving cycle (Manhattan) requires more expensive energy storage system and more sophisticated energy management strategy

  15. Electric power industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Zisheng Jiang [Ministry of Electric Power, Beijing (China). Bureau of Electric Power Machinery

    1995-07-01

    This document presents the status of the electric power in China, highlighting the following aspects: recent achievement, electricity increased sharing in the total energy consumption, technical economic indexes, nuclear power, renewable energy sources, rural electrification, transmission and power network, transmission lines and substations, present status and development trends for power network, regulation of power system dispatching, power system communication. The document also presents the future developing plan, approaching the outlook and strategy, development targets of the electric power industry and the administrative system reforming of the electric power industry.

  16. A combined modeling approach for wind power feed-in and electricity spot prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Ortlieb, Sebastian; Fichtner, Wolf

    2013-01-01

    Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis. This paper describes a combined modeling approach for the simulation of WPF series and electricity prices considering the impacts of WPF on prices based on an autoregressive approach. Thereby WPF series are firstly simulated for each hour of the year and integrated in the electricity price model to generate an hourly resolved price series for a year. The model results demonstrate that the WPF model delivers satisfying WPF series and that the extended electricity price model considering WPF leads to a significant improvement of the electricity price simulation compared to a model version without WPF effects. As the simulated series of WPF and electricity prices also contain the correlation between both series, market evaluation of wind power technologies can be accurately done based on these series. - Highlights: • Wind power feed-in can be directly simulated with stochastic processes. • Non-linear relationship between wind power feed-in and electricity prices. • Price reduction effect of wind power feed-in depends on the actual load. • Considering wind power feed-in effects improves the electricity price simulation. • Combined modeling of both parameters delivers a data basis for evaluation tools

  17. Scheduled power tracking control of the wind-storage hybrid system based on the reinforcement learning theory

    Science.gov (United States)

    Li, Ze

    2017-09-01

    In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.

  18. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  19. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-01-01

    Full Text Available The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

  20. A comment on 'Storage and the electricity forward premium'

    International Nuclear Information System (INIS)

    Bloys van Treslong, Adriaan; Huisman, Ronald

    2010-01-01

    This paper examines the robustness of the results found by Douglas and Popova (2008). They examine the electricity forward premium in relation to gas storage inventories and find that, although electricity is not directly storable, electricity forward premiums are lower when gas storage inventories are higher, especially on days with high temperatures. Douglas and Popova (2008) derive their results from a forward premium model that is an extension of the Bessembinder and Lemmon (2002) model. We examine whether the gas storage inventory results hold under a different specification of the forward risk premium. Our results support the results found by Douglas and Popova (2008) and show that their results are not influenced by the specification of the forward premium model. (author)

  1. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica......Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation...... of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  2. Electric power annual, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Electric Power Annual presents a summary of electric utility statistics at the national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts and the general public with historical data that may be used in understanding US electricity markets. ''The Industry at a Glance'' section presents a profile of the electric power industry ownership and performance; a review of key statistics for the year; and projections for various aspects of the electric power industry through 2010. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue, and average revenue per kilowatthour sold; financial statistics; environmental statistics; and electric power transactions. In addition, appendices provide supplemental data on major disturbances and unusual occurrences. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter

  3. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  4. Integrating wind power using intelligent electric water heating

    International Nuclear Information System (INIS)

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon

    2012-01-01

    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  5. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  6. Virtual Power Plants as a Model for the Competitiveness of Small Manufacturers and Operators of Virtual Power Plants in Markets of Electricity and Gas

    International Nuclear Information System (INIS)

    Galic, T.; Tomsic, Z.

    2012-01-01

    Production of electricity from renewable energy sources and energy-efficient power sources to be connected to the electricity distribution network is still not competitive with electricity production from conventional sources of electricity. A powerful technological development of distributed energy sources and technologies for electricity storage has reduced their production costs, production costs of electricity from distributed energy sources, the costs of simultaneous production of electricity and thermal energy from cogeneration distributed energy sources and thus has facilitated their increased use in practice. It also allows them to interconnect systems such as virtual power plants in order to achieve full economic feasibility of their use. Current electricity and gas customers, now also in the role of small power producers, interconnected by virtual power plants operators, in addition to buying electricity and gas on retail markets for electricity and gas, will be able to sell electricity and new energy services also on wholesale electricity markets. Development and application of new distributed technologies will enable the production of new quantities of electricity which will increase the competitiveness of electricity producers, competitiveness of electricity suppliers of end-customers and elasticity of supply and demand in the electricity market. These processes will also increase the efficiency of the entire systems of electricity supply and of the gas supply systems.(author)

  7. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  8. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  9. Grid regulation services for energy storage devices based on grid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  10. Grid regulation services for energy storage devices based on grid frequency

    Science.gov (United States)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  11. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  12. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  13. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  14. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  15. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  16. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  17. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  18. ENHANCING THE OPERATIONAL EFFICIENCY OF DIRECT CURRENT DRIVE BASED ON USE OF SUPERCONDENSER POWER STORAGE UNITS

    Directory of Open Access Journals (Sweden)

    А. M. Mukha

    2017-10-01

    Full Text Available Purpose.The scientific work is intended to analyse the expansion of the load range and the implementation of regeneration braking (RB of the direct current drive by using the supercondenser power storage units. Methodology.To solve the problem, we use the methods of the electric drive theory, impulse electronics and the method of calculation of transient electromagnetic processes in linear electric circuits in the presence of super-condensers therein. Findings.The stiffness of the mechanical and electromechanical characteristics of a series motor is significantly increased, which makes it possible to use a DC drive under load, much smaller than 15…20% of the nominal one. Numerical calculations of the operation process of the supercondenser power storage unit were fulfilled with a sharp decrease in the load of a traction electric motor of a direct current electric locomotive. The possibility of RB of the direct current drive with the series motor is substantiated. The equations of the process of charging and discharging of super-condenser storage unit in RB mode are solved. The authors examined the effect of capacitance on the nature of maintaining the excitation current of an electric motor in the mode of small loads.Originality.The paper developed theoretical approaches for the transformation of soft (mechanical and electromechanical characteristics into hard ones of DC series motors. For the first time a new, combined method of the series motor RB is proposed and substantiated. Further development obtained the methods for evaluating the storage unit parameters, taking into account the criteria for reliable parallel operation of super-condensers with an electric motor field. Practical value.The proposed and substantiated transformation of soft characteristics into stiff ones allows us to use general-purpose electric drives with series motors and at low loads, and in traction electric drives - to reduce the intensity of electric stockwheel

  19. Electric power development in the USSR

    International Nuclear Information System (INIS)

    Rudenko, Y.N.

    1993-01-01

    The generation of electric power in the USSR is based on the Unified Electric Power System (UEPS) whose network cover most of the habitable territory of the country. Therefore, the development of the UEPS governs the overall evolution of the electric power generation in the country. At present, eleven out of thirteen joint electric power systems, which supply electricity to most of the USSR, are operating within the UEPS. The total electric power generation in the country reached 1728 billion kWh in 1990, of which the UEPS supplied approximately 90%. About 70% of installed capacity of the UEPS is fossil-fuelled power plants, about 12 % is nuclear power plants, and about 18% is hydroelectric power plants. The system-forming grid of the UEPS is made up of transmission lines of 220, 330, 500 and 750 kV. The on-line supervisory control of the UEPS is achieved by four-level automated system of dispatch control (UEPS, joint electric power systems, regional electric power systems, electric power plants, substations,electric grid regions). The development and extension of the UEPS in the USSR ensure higher reliability and quality of electric power supply to end-users, combined with higher efficiency. The principal problem facing the UEPS are as follows: the need to ensure environmental protection and efficiency of the steam power plants; to improve the safety and efficiency of nuclear power plants. The solution to these problems will define the conditions of the UEPS development, as well as electric power systems of other countries, at least for the coming two decades. This paper characterizes the peculiarities of the UEPS development over the last 20 years, including the installed capacity structure and the system-forming electric power grid. Special attention is paid to the environmental problems related to functioning and development of the UEPS and to the means of their solution. (author)

  20. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  1. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  2. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  3. Use of Local Dynamic Electricity Prices for Indirect Control of DER Power Units

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Isleifsson, Fridrik Rafn

    2013-01-01

    the grid voltage. The algorithms generating the local prices are dynamically adjusted according to the actual realised responses to the dynamic prices. Results are presented from an adapted version of the control principle implemented and tested in DTUs experimental research power system, SYSLAB, including...... wind power, solar power, flexible load and electrical storage. The local power price generation is based on the actual Nord Pool DK2 Spot prices on hourly basis as the quasi-stationary global electricity price, and the local SYSLAB's power exchange with the national grid as basis for the dynamic price...... system. A challenge is to find a cheap, simple and robust way to requests the proper power regulation by the DER power units. The use of broadcasted, dynamic power prices and volunteer responses is one option. The paper presents a proposal for and an illustration of advanced generation of local, dynamic...

  4. Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan

    2016-01-01

    Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...... of the generating units. This optimal planning and operation management strategy becomes increasingly important for off-grid systems that operate independently of the main utility, such as microgrids or power systems on marine vessels. This work extends the principles of optimal planning and economic dispatch...... for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...

  5. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  6. Comparison study of the technical characteristics and financial analysis of electric battery storage systems for residential grid

    Science.gov (United States)

    Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic

    2018-05-01

    One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.

  7. Energy storage reinforces competitive business practices

    International Nuclear Information System (INIS)

    Makansi, J.

    1994-01-01

    This article examines how the ability to ''store'' electricity can pay handsome dividends in a competitive environment. Priorities change when industries are deregulated. Indeed, new priorities are being established for electric generation--low cost, efficiency, product distinction for marketing purposes, etc. are all more critical today. Perhaps not so obvious is the fundamental role of energy storage in a fully competitive marketplace. In fact, rarely do a technology development and a changing business climate play off against each other so nicely. Consider the function of the emerging electricity broker, or power marketer. Imagine the premium that broker could command with access to a large increment of electricity--purchased at a low price--and supplied at a moment's notice for a substantially higher price. Storage of electricity would mean that the investment in excess available generation capacity to supply so-called peak demand could be avoided. It also means that electricity could be brokered like other commodities--that is purchased, stockpiled, and sold to reflect market conditions across a wider geographical region and time spain. Benefits accrue to transmission and distribution, in addition to generation. Energy storage helps to manage the increasing stress placed on the grid as a result of intermittent sources of power and large numbers of cogenerators and small power producers. On the customer side, any ratepayer large or small could, theoretically, play the spot market in electric supply with a reserve to tap in emergencies. For a parallel in other deregulated markets, recall how storage has become an important factor in natural-gas contracting. Quality of electricity also can be improved by applying storage to stabilize the grid, especially along the distribution system at substations. And the opening of vast markets for electricity consumption, such as electric vehicles, depends in large measure on electric storage

  8. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  9. Optimum sizing of PV-attached electricity storage according to power market signals – A case study for Germany and Italy

    International Nuclear Information System (INIS)

    Zucker, Andreas; Hinchliffe, Timothée

    2014-01-01

    Highlights: • PV-attached battery unprofitable from German wholesale aggregator point of view. • PV-attached battery profitability below utility costs of capital in Italy. • Profitability can be reached if energy CAPEX reaches 100–150 EUR/kW h. • Optimum sizing depends on usage. • Maximum 5 h of storage and power rating exceeding 40% of PV power required. - Abstract: This paper investigates the business case of power storage attached to PV generation from the perspective of an aggregator trading power on wholesale markets and possibly supplying household customers. The profitability and an optimum storage configuration are determined for two European regions: Baden-Wuerttemberg in Germany and Puglia in Italy based on wholesale price data and solar irradiation data for the years 2007–2011. During this period of time and under the assumptions made, adding storage to a portfolio of PV generators would not have constituted a business case for Baden-Wuerttemberg while profitability could have been reached for Puglia. However, the return of PV-attached storage that could have been achieved in Puglia during the years 2007–2011 is below levels typically required by companies operating on wholesale markets (deregulated power generators or traders) as those market participants’ capital costs are usually significantly higher than borrowing costs of the state. Storage proved to be financially more attractive in cases where severe grid constraints lead to significant levels of curtailment provided that the associated losses would not be financially compensated. This could pose a risk to any investor as grid upgrades would eventually erode the revenues. Restricting the storage to PV energy only (i.e. without the possibility to do arbitrage on markets) depresses the business case and is generally unprofitable, except but for situations of severe grid bottlenecks. The picture does not change significantly if a consumption portfolio is added. In order to reach

  10. Design and analysis of electrical energy storage demonstration projects on UK distribution networks

    International Nuclear Information System (INIS)

    Lyons, P.F.; Wade, N.S.; Jiang, T.; Taylor, P.C.; Hashiesh, F.; Michel, M.; Miller, D.

    2015-01-01

    Highlights: • Results of an EES system demonstration project carried out in the UK. • Approaches to the design of trials for EES and observation on their application. • A formalised methodology for analysis of smart grids trials. • Validated models of energy storage. • Capability of EES to connect larger quantities of heat pumps and PV is evaluated. - Abstract: The UK government’s CO 2 emissions targets will require electrification of much of the country’s infrastructure with low carbon technologies such as photovoltaic panels, electric vehicles and heat pumps. The large scale proliferation of these technologies will necessitate major changes to the planning and operation of distribution networks. Distribution network operators are trialling electrical energy storage (EES) across their networks to increase their understanding of the contribution that it can make to enable the expected paradigm shift in generation and consumption of electricity. In order to evaluate a range of applications for EES, including voltage control and power flow management, installations have taken place at various distribution network locations and voltage levels. This article reports on trial design approaches and their application to a UK trial of an EES system to ensure broad applicability of the results. Results from these trials of an EES system, low carbon technologies and trial distribution networks are used to develop validated power system models. These models are used to evaluate, using a formalised methodology, the impact that EES could have on the design and operation of future distribution networks

  11. Kinetic energy storage of off-peak electricity

    International Nuclear Information System (INIS)

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  12. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  13. Swiss electrical power association

    International Nuclear Information System (INIS)

    1983-01-01

    Milestones of electrical power development in Switzerland during 1982 are quoted. An energy balance is shown for the utilisation of 864,630 terajoules of primary energy. This is related to global data on per capita power consumption. In the electricity generation section, annual load factors are given for the four nuclear stations. A brief review is made of hydro potential and monthly export/import figures for power to other countries (mostly export, especially in summer). Total electrical power output grew about 1.3% in the last year. Recent transmission line developments are noted, mostly 2x380kV, and including a link with Austria. In the financial section, consumer price indices are quoted for liquid and solid fuel, gas and electricity since 1966. Under administration, details are listed of the main and about 18 supporting Committees and working groups with special functions (e.g. tariffs, electrical vehicles). Public relations have included nuclear power press conferences, a mobile video unit, information leaflets for the media and a teaching seminar. (G.C.)

  14. Economics of superconductive energy storage inductor-converter units in power systems

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1975-01-01

    Since the original proposal by Boom and Peterson in 1972, there has been growing interest in superconductive energy storage inductor converter units (IC units) for use in large power systems for peak shaving and load leveling. Different aspects of it are being studied at the University of Wisconsin and elsewhere. An economic study of such IC units shows that large IC units, bigger than about 1000 MWh, are economically competitive with other peaking alternatives, larger units being more economical. External electrical circuit losses in IC units have negligible effect on their storage and power capacities. There are three credits which could be of significant economic value to IC units. These are: (1) transmission credit which varied from about $4 to $60/kW peak power, with a typical value of about $35/kW; (2) pollution credit which varied from about $5 to $160/kW with a typical value of $80/kW; and Spinning Reserve Credit which varied from about $20 to $370/kW with a typical value of $90/kW

  15. The value of energy storage in South Korea’s electricity market: A Hotelling approach

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia; Kleit, Andrew; Cho, Joohyun

    2014-01-01

    Highlights: • We evaluate lifetime economic potential for energy arbitrage in South Korea. • We simulate lifetime energy flows and profits for small price-taking NaS and Li-ion batteries. • We devise optimal battery operating strategy using Hotelling’s depletion rule. • Cumulative profits depend on intraday price differences and social discount rate. • At current electricity prices, neither battery generates enough arbitrage revenue to offset capital costs. - Abstract: In this study we evaluate the economic potential for energy arbitrage by simulating operation and resulting profits of a small price-taking storage device in South Korea’s electricity market. As demand for electricity continues to grow, maintaining a balanced power system at all times has become more challenging in Korea and other developed nations. Along with demand response programs and increased renewable energy utilization, energy storage devices may provide a viable way to contribute to diurnal peak demand shaving. In some parts of the U.S. storage arbitrage has proven to be profitable. Treating a battery’s ability to charge and discharge as a scarce resource, we apply the Hotelling (1931) rule to determine a strategy for maximizing the value of the battery. Results show that present market conditions in South Korea do not provide sufficient economic incentives for energy arbitrage using sodium–sulfur (NaS) or lithium-ion (Li-ion) batteries, with the capital cost of the storage devices exceeding potential revenues

  16. Nanostructures for Electrical Energy Storage (NEES) EFRC

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanostructures for Electrical Energy Storage (NEES) EFRC is a multi-institutional research center, one of 46 Energy Frontier Research Centers established by the...

  17. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  18. Electric power in Canada 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Electric power in Canada is given a comprehensive review by the Electricity Branch of the Department of Natural Resources Canada. The Electric Power Industry is scrutinized for electricity consumption, generation, trade and pricing across all of Canada. 98 tabs. 26 figs.

  19. Electric power in Canada 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Electric power in Canada is given a comprehensive review by the Electricity Branch of the Department of Natural Resources Canada. The Electric Power Industry is scrutinized for electricity consumption, generation, trade and pricing across all of Canada. 98 tabs. 26 figs

  20. Optimal Power Flow in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Levron, Yoash; Guerrero, Josep M.; Beck, Yuval

    2013-01-01

    Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...

  1. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  2. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Science.gov (United States)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  3. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    Science.gov (United States)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  4. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  5. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done on...

  6. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  7. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  8. Financing the electric power utilities, especially the nuclear power in Japan

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-04-01

    Electric power demands in Japan have shown a remarkable growth at an annual rate of 12% since 1965. Nine electric power companies have invested large amounts of money so far, amounting to over 1 trillion yen every year since 1972. A survey of the electric power supply system and an estimation of the electric power demands in 1980 and in 1985 are given. It is expected that the main portion of electric power in the future will gradually be generated by nuclear plants. Financial features of the electrical power utilities, the credit risk of the electric power utilities, and the raising of funds by electric power utilities are discussed. It is concluded that it will be necessary (1) to expand the capital market, (2) to enable the electric power companies to issue a sufficient amount of bonds, (3) to make the Government financing institutions, such as the Japan Development Bank, provide the electric power companies with larger funds on a long-term and low-interest rate basis, and (4) even to take such drastic steps as subsidizing interest on private loans to the electric power companies. (B.P.)

  9. Fiscal 2000 survey report. Development of novel battery power storage system (Development of distributed power storage technology - Marketability of lithium storage battery); 2000 nendo gyomu hokokusho. Shingata denchi denryoku chozo system kaihatsu - Bunsangata denryoku chozo gijutsu kaihatu (Ritium niji denchi no shijosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey is conducted of the current status of storage batteries and the marketability of the lithium ion battery. In the study of future marketability of storage batteries for electric vehicles, the small vehicle Hypermini currently loaded with a lithium ion battery is taken up and it is assumed that each carries a 10 kWh battery, and then it is estimated that there will be an approximately 2200 times 10{sup 3} kWh market in Japan in 2020. As for hybrid vehicles each loaded with a 1 kWh battery, it is estimated that 3997 times 10{sup 3} kWh will be on the market in 2020. For the fuel cell powered vehicle, similarly, there will be approximately 2,500 times 10{sup 3} kWh on the market in 2020. As for power storage facilities for power load shaving, the demand for cells in 2020 is estimated at 1,032-3,924 times 10{sup 3} kWh on the assumption that they operate 4 hours in the daytime. As for the uninterruptible power supply, it is estimated that 800 times 10{sup 3} kWh will be required by those installed at data centers in 2020. It is also estimated that 252 times 10{sup 3} kWh will be necessary in the form of storage batteries for motored wheelchairs in 2020. As for distributed power source systems such as those dealing with wind power or photovoltaic power, there are a number of technical problems that have to be settled. (NEDO)

  10. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  11. Power system and market integration of renewable electricity

    Science.gov (United States)

    Erdmann, Georg

    2017-07-01

    This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  12. Project management for the Virginia power spent fuel storage project

    International Nuclear Information System (INIS)

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  13. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  14. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  15. Electric power annual 1997. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  16. An analysis of the performance benefits of short-term energy storage in wind-diesel hybrid power systems

    International Nuclear Information System (INIS)

    Shirazi, M.; Drouilhet, S.

    1996-01-01

    A variety of prototype high penetration wind-diesel hybrid power systems have been implemented with different amounts of energy storage. They range from systems with no energy storage to those with many hours worth of energy storage. There has been little consensus among wind-diesel system developers as to the appropriate role and amount of energy storage in such systems. Some researchers advocate providing only enough storage capacity to supply power during the time it takes the diesel genset to start. Others install large battery banks to allow the diesel(s) to operate at full load and/or to time-shift the availability of wind-generated electricity to match the demand. Prior studies indicate that for high penetration wind-diesel systems, short-term energy storage provides the largest operational and economic benefit. This study uses data collected in Deering, Alaska, a small diesel-powered village, and the hybrid systems modeling software Hybrid2 to determine the optimum amount of short-term storage for a particular high penetration wind-diesel system. These findings were then generalized by determining how wind penetration, turbulence intensity, and load variability affect the value of short term energy storage as measured in terms of fuel savings, total diesel run time, and the number of diesel starts

  17. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  18. Soft energy/seawater pumped-storage power plant in Okinawa; Sofuto energy/Okinawa kaisui yosui hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, S. [Univ. of Ryukyus, Okinawa (Japan). Faculty of Engineering

    1995-11-15

    A demonstration seawater pumped-storage power plant which is the first one in the world is under construction in the northern area of Okinawa. The pumped-storage power generation is an electricity recycling system in which the surplus electricity during the night is utilized to pump up water to an upper reservoir to discharge water for power generation during the daytime when demand for electricity increases. It is scheduled that main civil engineering structures are constructed during the year of 1995 to be subjected to trial operation in the following year. Countermeasures to be taken for natural environmental protection during the plant construction are introduced. Countermeasures are devised for environment assessment, muddy water treatment, and prevention of seawater at the upper reservoir. Salinity in the atmosphere is to be measured during the construction work and the demonstration test to evaluate the effects of scattering of salt from the upper reservoir into the atmosphere on the vegetation in the peripheral area and the salt-resistance of vegetation. Sufficient consideration is given to the protection of the existing vegetation and coral, and to the protection of small living creatures. Participants in the construction work are requested to report, for the purpose of taking proper steps, sites, peripheral conditions, and others when precious animals are found. 9 figs., 1 tab.

  19. Estimating the maximum potential revenue for grid connected electricity storage :

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  20. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  1. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...... signal from the day ahead market the economical incentives for an EDV-owner will be small. If the EDV's can participate in the regulation of the grid through ancillary services the incentives will be increased to an attractive level....

  2. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  3. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  4. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  5. Economic study on compressed energy storage cogeneration system in urban areas

    International Nuclear Information System (INIS)

    Uchiyama, Youji

    1991-01-01

    Due to the concentration of functions into cities and the spread of room cooling facilities, the energy demand in cities increased rapidly especially in summer season. The improvement of load factor of electric power has become an important subject for electric power companies, and as the technology for positively improving it, there is electric power storage. As for compressed air energy storage (CAES) system, its introduction, has been investigated as the electric power storage technology for the future in electric power business, but since it is also gas turbine technology, it becomes a cogeneration system. If the waste heat of gas turbines and compressors can be utilized effectively, not only the load factor of electric power is improved, but also it contributes to the improvement of overall energy efficiency and the improvement of environmental problems. This research is to study on the feasibility of compressed air energy storage centering around its economical efficiency when it is installed in customer side as the cogeneration system in cities. The features of CAES, the tendency of the development in Japan and foreign countries, the introduction of CAES in new town districts and the economy are described. (K.I.)

  6. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  7. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  8. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  9. Electric power annual 1995. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  10. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  11. Compressed Air Energy Storage in Denmark

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    is analysed with regard to the Danish energy system. In Denmark, wind power supplies 20% of the electricity demand and 50% is produced by combined heat and power (CHP). The operation of CAES requires high electricity price volatility. However, in the Nordic region, large hydro capacities have so far kept......Compressed air energy storage system (CAES) is a technology which can be used for integrating more fluctuating renewable energy sources into the electricity supply system. On a utility scale, CAES has a high feasibility potential compared to other storage technologies. Here, the technology...

  12. Electric power. Avoiding a new accident as on the Drac river; Electricite. Pour eviter un nouvel accient du Drac

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A new inter-ministerial decree has been prescribed in France, in order to avoid any repetition of an accident where school children were drowned on a riverside, following a water release from an upstream hydraulic plant: risk analysis on every plant of this type, regulation on site access and utilization, regulation on hydraulic plant operation conditions. Other news concern power transmission de-concentration, domestic equipment regulations, EDF international strategy, rural electric power management, researches on electric power storage

  13. Electric power. Avoiding a new accident as on the Drac river; Electricite. Pour eviter un nouvel accient du Drac

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A new inter-ministerial decree has been prescribed in France, in order to avoid any repetition of an accident where school children were drowned on a riverside, following a water release from an upstream hydraulic plant: risk analysis on every plant of this type, regulation on site access and utilization, regulation on hydraulic plant operation conditions. Other news concern power transmission de-concentration, domestic equipment regulations, EDF international strategy, rural electric power management, researches on electric power storage

  14. Current status of and problems in ice heat storage systems contributing to improving load rate. Positive development of proliferation and expanded use measures as support of demand side management (DSM) activity (Tokyo Electric Power Co. Inc.); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. DSM katsudo no hashira to shite fukyu kakudaisaku wo sekkyoku tenkai (Tokyo Denryoku)

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, H. [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1998-02-01

    This paper introduces activities performed by Tokyo Electric Power Co., Inc. on ice heat storage systems. In the summer power peak in the Tokyo Electric Power area during fiscal 1996, the peak time, in which power was consumed in excess of 57 million kW, was only nine hours out of the annual supply time of 8760 hours. In other words, power generated by two large power plants is necessary for the nine hours, reducing the operation rate (load rate) of the power supply facilities. Therefore, Tokyo Electric Power has positioned the heat storage type air conditioning system as the center of the DSM activity, and is working on its proliferation and expanded use. An ice heat storage multi-air conditioner and a package air conditioner which can be installed in small buildings, and can deal with needs of individual discrete air conditioning were developed jointly with other electric power companies and device manufacturers. As a result, a commercial product called `Eco-Ice` made a debut. Since June 1997, the facilities subjected to commission in the `heat storage commission system` have been expanded to the heat source side facilities at customers to reduce initial capital investment. 5 figs., 1 tab.

  15. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  16. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  17. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  18. An Economic Evalution of Demand-side Energy Storage Systems by using a Multi-agent based Electricity Market

    Science.gov (United States)

    Furusawa, Ken; Sugihara, Hideharu; Tsuji, Kiichiro

    Opened wholesale electric power market in April 2005, deregulation of electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (: IPP), Power Producer and Supplier (: PPS), Load Service Entity (: LSE) and electric utility can trade electric energy through both bilateral contracts and single-price auction at the electricity market. In general, the market clearing price (: MCP) is largely changed by amount of total load demand in the market. The influence may cause price spike, and consequently the volatility of MCP will make LSEs and their customers to face a risk of revenue and cost. DSM is attracted as a means of load leveling, and has effect on decreasing MCP at peak load period. Introducing Energy Storage systems (: ES) is one of DSM in order to change demand profile at customer-side. In case that customers decrease their own demand at jumped MCP, a bidding strategy of generating companies may be changed their strategy. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi-agent. It is considered that customer-side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer-side ES corresponding to variation of MCP.

  19. On-site storage of spent nuclear fuel assemblies in German nuclear power plants

    International Nuclear Information System (INIS)

    Banck, J.

    1999-01-01

    The selection of back-end strategies for spent fuel assemblies is influenced by a number of different factors depending on the given situation in any specific country. In Germany, the back-end strategy implemented in the past was almost exclusively reprocessing. This strategy was required by the German Atomic Energy Act. Since 1994, when the Atomic Energy Act was amended, the option of direct final disposal has been granted the equivalent status by law to that afforded to reprocessing (and reuse of valuable materials). As a result, German utilities may now choose between these two alternatives. Another important condition for optimizing the back-end policy is the fact that fuel cycle costs in Germany are directly dependent on spent fuel volumes (in contrast to the US, for example, such costs are related to the amount of power generated). Another boundary condition for German utilities with respect to spent fuel management is posed by the problems with militant opponents of nuclear energy during transportation of spent fuel to interim storage sites. These facts have given rise to a reconsideration of the fuel cycle back-end, which has resulted in a change in strategy by most German utilities in favour of the following: Preference for long-term storage and maximized use of on-site storage capacity; Reduction in the amount of spent fuel by increasing burnup as much as possible. These decisions have also been driven by the deregulation of energy markets in Europe, where utilities are now permitted to sell electric power to consumers beyond their original supply network and must therefore offer electric power on a very cost competitive basis. (author)

  20. Electric power annual 1995. Volume I

    International Nuclear Information System (INIS)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions

  1. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  2. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  3. Efforts to improve safety and reliability of nuclear power plants in Kyushu Electric Power

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi

    2014-01-01

    After the Fukushima accident, Kyushu Electric Power Co. took emergency safety measures requested by government to ensure power supply, coolant supply pumps and cooling water so as to keep cooling fuels in the reactor and spent fuel storage pool in case of losses of ordinary cooling capability caused by earthquake and tsunami. In order to improve safety and reliability of nuclear power plants, further efforts based on lessons learned from the Fukushima accident had been made to diversify corresponding equipment of safety measures in terms of prevention of core damage, prevention of containment failure, mitigation of radioactive materials release, cooling of spent fuel pit and ensurance of power supply, and to enhance emergency response capability so as to make operational management more complete. Additional safety measures applicable to new regulatory requirements against severe accidents were in progress. This article introduced details of such activities. (T. Tanaka)

  4. Restructured electric power systems analysis of electricity markets with equilibrium models

    CERN Document Server

    2010-01-01

    Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets.

  5. Energy storage for load leveling; Fuka heijunka ni kakasenai denryoku chozo

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, S. [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1996-09-20

    This paper introduces features and state of development of electric power storage technologies. Pumped storage power generation is a technology to store electric power by utilizing energy of position. However, because the plant locations are limited to mountainous areas far away from power demand areas, development of power storage technologies is being progressed from a new viewpoint of installing plants in the vicinity of demand areas. Superconduction power storage continues flowing current into a superconductor coil to store the power as electromagnetic energy, which is drawn out as electric power on request. Research and development is in progress in Japan on superconductor coils, permanent current switches, and control and protection systems. A flywheel system stores energy by rotating a disk at high speeds. Element technologies are being developed on long-period storage technologies such as superconductor magnetic bearings and high-speed rotating flywheels. For new load leveling batteries, development efforts are being given on sodium-sulfur batteries, zinc-bromine batteries, redox flow batteries, and lithium batteries. 3 refs., 1 fig., 2 tabs.

  6. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  7. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  8. Thermal energy storage in rock chambers - a complement to nuclear power

    International Nuclear Information System (INIS)

    Margen, P.H.

    1971-01-01

    Within about a decade from now, the nuclear capacity on several generation systems will have become larger than the night load, thus increasing the incentive to exploit cheap night energy for daily storage schemes. In Sweden, energy storage schemes using rock cavities have been studied for a number of years. These include pumped storage schemes with lower magazines well below ground surface and gas turbine schemes with compressed air magazines. Recently preliminary studies have been made of a third form - that of storing hot high pressure water in rock cavities with a simple thermal insulation. One method of utilizing this water is as feed water for a nuclear power station, the water in the store being heated from about 73 ° C to 21 7°C at night, and the stored hot water being fed directly to the Nuclear Steam Supply System (NSSS) during the day. An increase in turbine output by about 25% can then be achieved at peak periods due to the elimination of the h.p. steam bleeding for unchanged reactor power. About 35 kWh of electricity can be recovered per m 3 of storage volume, i.e. 30 times as much as if one m 3 of cold water had been allowed to descend 450 m under gravity to the lower magazine of a pumped storage plant. This illustrates how much more effective hot water storage utilizes the space of a rock cavity than does cold water storage for a pumped storage plant even at very great depths. The paper describes the circuit proposed and the design of the accumulator to meet the requirements concerning thermal insulation (to avoid exposing the rock walls to daily temperature cycles), avoidance of risk of leakage of slightly active feed water to the surrounding ground water even under severe accident conditions such as pipe and tank ruptures, and water chemistry to avoid water containing impurities or dissolved gases from reaching the feed water circuit. A preliminary cost analysis is given which shows that the proposal allows the generation of additional blocks of

  9. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  10. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  11. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  12. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  13. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  14. Electric power: Past, present, and future

    International Nuclear Information System (INIS)

    Schnetzer, H.

    1994-01-01

    When, at the turn of the century, public electric power supply facilities were created and in 1908, the electric power stations of the Swiss canton of Zurich (EKZ) were built, only a third of the communities in the Zurich area could boast about being the consumers of this new energy. But what did the first electrically powered devices and machines look like? This, and more, is presented in the ''electric power house'' in Burenwisen Glattfelden in the canton of Zurich. Besides a Kaplan turbine and a sample of the most interesting devices from the past and the present, the focus of the exhibition is on the presentation of the new and old sources of light. The EKZ are pleased to be able to present their ''electric power house'' to the public, providing a broad range of information on energy-related questions and the development of electric power supply. (orig.) [de

  15. Conference on the flexibilization of the electric power system

    International Nuclear Information System (INIS)

    Laure Kaelble; Lantrain, Aurore; Pienisch, Kerstin; Behrens, Uwe; Renaud, Arnaud; Bena, Michel; Levacher, Ralf; Broves, Antoine de; Langrock, Thomas; Bureau, Cedric

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the flexibilization of the electric power system in France and in Germany. In the framework of this French-German exchange of experience, about 100 participants discussed the different existing flexibility offers and shared information about the regulatory and economical context in both countries. This document brings together the available presentations (slides) made during this event: 1 - Flexibility in Germany: Status Quo and Perspectives (Laure Kaelble); 2 - Flexibility and French regulation (Aurore Lantrain); 3 - Virtual Power Plants: Contributions to flexibility? (Kerstin Pienisch); 4 - Wind power as player in the market for flexibility (Uwe Behrens); 5 - Energy storage potential in France - PEPS study for 2030 (Arnaud Renaud); 6 - More Flexibilities for TSOs to operate the electric System (Michel Bena); 7 - 'PolyenergyNet' project: how to flexibilize the low voltage grid by making it more autonomous (Ralf Levacher, in German); 8 - Promotion of industrial Demand Response through aggregation (Antoine de Broves); 9 - Using urban load: an economical model for companies? (Thomas Langrock); 10 - How to Involve All Consumers? ENGIe's Demand Side Management Offers (Cedric Bureau)

  16. The Central Research Institute of Electric Power Industry and nuclear energy. Real images and views for compatibility of specialty and sociality

    International Nuclear Information System (INIS)

    Sato, Motohide

    2004-01-01

    The Central Research Institute of Electric Power Industry (CRIEPI) has been a motive power supporting electric energy and rich society in Japan as a center of electric power field in Japan under always challenging technologies advancing at a step since beginning of business as a special research institute on electrical power technology in Japan. And, on today receiving whole of liberalization on electric business, CRIEPI plans to carry out new development closer to society and nationals under a flag of 'contribution to society' by making its specialty and sociality compatible. Therefore, when social discussion on nuclear energy constructing basis of electric energy in Japan is noisy, here were summarized efforts, actual results, and topics for individual researching subjects shown as follows under showing basic attitude of CRIEPI to the nuclear energy: maintenance and administration techniques to rationally secure soundness of the light water reactor apparatuses; intermediate storage technique on spent fuels (concrete cask storage); survey, design and safety evaluation techniques supporting landfill disposal business of high level radioactive wastes; dry recycle technique and metal fuel fast reactors applicable to spent fuel processing at light water reactors; and small size fast reactors (4S reactors) usable for diverse applications. (G.K.)

  17. Electric power statistics from independence to establishment

    International Nuclear Information System (INIS)

    1997-02-01

    This paper reports power statistics from independence to establishment pf KEPIC. It has the lists of electricity industry, electric equipment on the whole country power equipment at the independence and development of power facility, power generation about merit of power plants, demand according to types and use, power loss, charge for electric power distribution, power generation and generating cost, financial lists on income measurement and financing, meteorological phenomena and amount of rainfall electric power development, international statistics on major countries power generation and compare power rates with general price.

  18. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  19. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  20. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    Energy Technology Data Exchange (ETDEWEB)

    Nourai, Ali (American Electric Power Company, Columbus, OH)

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  1. Design and development of solar power-assisted manual/electric wheelchair.

    Science.gov (United States)

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  2. Stabilization and control of tie-line power flow of microgrid including wind generation by distributed energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M.G.; Mercado, P.E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    High penetration of wind generation in electrical microgrids causes fluctuations of tie-line power flow and significantly affects the power system operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With proper control, a distribution static synchronous compensator (DSTATCOM) integrated with superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the power system. This paper proposes the use of a SMES system in combination with a DSTATCOM as effective distributed energy storage (DES) for stabilization and control of the tie-line power flow of microgrids incorporating wind generation. A new detailed model of the integrated DSTATCOM-SMES device is derived and a novel three-level control scheme is designed. The dynamic performance of the proposed control schemes is fully validated using MATLAB/Simulink. (author)

  3. Electric power annual 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  4. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.; Hardin, Corey L.; Glatzmaier, Greg C.; Siegel, Nathan P.; Parilla, Philip A.; Ginley, David S.; Toberer, Eric S.

    2018-05-01

    In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combine performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.

  5. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  6. Simulation of electric vehicles with hybrid power systems

    Science.gov (United States)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  7. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  8. Power system and market integration of renewable electricity

    Directory of Open Access Journals (Sweden)

    Erdmann Georg

    2017-01-01

    Full Text Available This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the “Merit order effect of renewables”. According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  9. A multi-tank storage facility to effect power control in the PBMR power cycle

    International Nuclear Information System (INIS)

    Matimba, T.A.D.; Krueger, D.L.W.; Mathews, E.H.

    2007-01-01

    This article presents the concept of a storage facility used to effect power control in South Africa's PBMR power cycle. The concept features a multiple number of storage vessels whose purpose is to contain the working medium, helium, as it is withdrawn from the PBMR's closed loop power cycle, at low energy demand. This helium is appropriately replenished to the power cycle as the energy demand increases. Helium mass transfer between the power cycle and the storage facility, henceforth known as the inventory control system (ICS), is carried out by way of the pressure differential that exists between these two systems. In presenting the ICS concept, emphasis is placed on storage effectiveness; hence the discussion in this paper is centred on those features which accentuate storage effectiveness, namely:- Storage vessel multiplicity; - Unique initial pressures for each vessel arranged in a cascaded manner; and - A heat sink placed in each vessel to provide thermal inertia. Having presented the concept, the objective is to qualitatively justify the presence of each of the above-mentioned features using thermodynamics as a basis

  10. Electric Power Monthly, March 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and state level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data are presented on generation, fuel consumption, stockpiles, costs, sales, and unusual occurrences. Fuels considered are: coal, petroleum, natural gas, nuclear power, and hydroelectric power. 4 figs., 48 tabs

  11. Advanced techniques for storage and disposal of spent fuel from commercial nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Sowa, W.

    1999-01-01

    Electricity generation using fossil fuel at comparatively low costs forces nuclear energy to explore all economic potentials. The cost advantage of direct disposal of spent nuclear fuel compared to reprocessing gives reason enough to follow that path more and more. The present paper describes components and facilities for long-term storage as well as packaging strategies, developed and implemented under the responsibility of the German utilities operating nuclear power plants. A proposal is made to complement or even to replace the POLLUX cask concept by a system using BSK 3 fuel rod containers together with LB 21 storage casks. (author)

  12. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  13. A good long-term electricity storage. Biomethanisation by Power-to-Gas; Ein guter Langzeitstromspeicher. Biomethanisierung durch Power-to-Gas

    Energy Technology Data Exchange (ETDEWEB)

    Finck, Christian

    2013-10-15

    With the Power-to-Gas process, the Centre for Solar Energy and Hydrogen Research Baden-Wuerttemberg (ZSW) developed in cooperation with the Fraunhofer IWES, in 2009, a technique that would enable to store electricity from renewable energy plants (EEA) for a long term. The underlying Sabatier process is old, the inclusion of renewable energy to biomethanisation is new. The Power-to-Gas process uses electricity produced from wind turbines for the electrolysis of water to produce hydrogen and oxygen. In a subsequent synthesis with the emitted CO{sub 2} from the biogas plants biomethane is produced with an energy efficiency of >65% kWh{sub SNG}/kWh{sub el}. [German] Mit dem Power-to-Gas-Verfahren entwickelte das Zentrum fuer Sonnenenergie und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), in Zusammenarbeit mit der Fraunhofer IWES, im Jahr 2009 eine Technik, die es ermoeglichen wuerde, Strom aus Erneuerbaren Energieanlagen (EEA) langfristig zu speichern. Der zugrunde liegende Sabatierprozess ist alt, die Einbeziehung der EE zur Biomethanisierung ist neu. Das Power-to-Gas-Verfahren nutzt den produzierten Strom aus Windenergieanlagen, um das Wasser elektrolytisch in Wasserstoff und Sauerstoff zu spalten. In einer anschliessenden Synthese mit dem emittierten CO{sub 2} aus den Biogasanlagen wird Biomethan, mit einem energetischen Wirkungsgrad >65% kWh{sub SNG}/kWh{sub el}, produziert.

  14. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  15. 'Powering up' a green Saskatchewan: exploring possible sustainable solutions for Saskatchewan's electricity market

    International Nuclear Information System (INIS)

    Blanco, R.; Faubert, I.; Steele, K.; Wohrizek, J.; Donev, J.

    2013-01-01

    The electrical market in Saskatchewan is embarking on an exciting journey to both increase its generating capacity and reduce greenhouse gas (GHG) emissions to promote a more sustainable future. SaskPower is the centralized generation and transmission crown corporation for the province and has the ability to implement the necessary actions to create a sustainable electrical system. There are many paths that Saskatchewan can take for a more sustainable future. Currently, the future of Saskatchewan's electrical market depends on results from the Boundary Dam Carbon Capture and Storage (CCS) Demonstration Plant. This project proposes electrical capacity models for SaskPower in the event their current CCS project is not a feasible option. (author)

  16. Electric power conservation in Brazil

    International Nuclear Information System (INIS)

    Hollanda, J.B. de

    1989-01-01

    The Brazilian Electric Power Conservation Program (PROCEL) is discussed. The main objective of this program is the optimization of electric power use, including consideration about prices, technology development and legislation. (M.V.M.)

  17. Electric power distribution handbook

    CERN Document Server

    Short, Thomas Allen

    2014-01-01

    Of the ""big three"" components of electrical infrastructure, distribution typically gets the least attention. In fact, a thorough, up-to-date treatment of the subject hasn't been published in years, yet deregulation and technical changes have increased the need for better information. Filling this void, the Electric Power Distribution Handbook delivers comprehensive, cutting-edge coverage of the electrical aspects of power distribution systems. The first few chapters of this pragmatic guidebook focus on equipment-oriented information and applications such as choosing transformer connections,

  18. Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Huisman, R. [Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2010-07-15

    Electricity is not storable. As a consequence, electricity demand and supply need to be in balance at any moment in time as a shortage in production volume cannot be compensated with supply from inventories. However, if the installed power supply capacity is very flexible, variation in demand can be counterbalanced with flexible adjustment of production volumes. Therefore, supply flexibility can replace the role of inventory. In this paper, we question whether power production flexibility is a substitute for storability. To do so, we examine power futures prices from countries that differ in their power supply and test whether power futures prices contain information about expected future spot prices and risk premiums and examine whether futures prices from a market in which power supply is more flexible would lead to futures prices that are more in line with the theory of storage. We find the opposite; futures prices from markets with flexible power supply behave according to the expectations theory. The implicit view from futures prices is that flexibility is not a substitute for storability.

  19. Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices

    International Nuclear Information System (INIS)

    Kilic, M.; Huisman, R.

    2010-07-01

    Electricity is not storable. As a consequence, electricity demand and supply need to be in balance at any moment in time as a shortage in production volume cannot be compensated with supply from inventories. However, if the installed power supply capacity is very flexible, variation in demand can be counterbalanced with flexible adjustment of production volumes. Therefore, supply flexibility can replace the role of inventory. In this paper, we question whether power production flexibility is a substitute for storability. To do so, we examine power futures prices from countries that differ in their power supply and test whether power futures prices contain information about expected future spot prices and risk premiums and examine whether futures prices from a market in which power supply is more flexible would lead to futures prices that are more in line with the theory of storage. We find the opposite; futures prices from markets with flexible power supply behave according to the expectations theory. The implicit view from futures prices is that flexibility is not a substitute for storability.

  20. Electric Power annual 1996: Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  1. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  2. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    Energy Technology Data Exchange (ETDEWEB)

    Bitterlin, Ian F [Emerson Network Power Ltd., Globe Park, Marlow, SL7 1YG (United Kingdom)

    2006-11-22

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the 'anti-wind' lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called '3G' technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its '2G' counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  3. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  4. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  5. Feasibility study for the partial conversion of a hydropower plant into a pumped-storage power plant: a case study of hydroelectric power plant La Barca (Asturias, Spain

    Directory of Open Access Journals (Sweden)

    E. Antuña Yudego

    2017-01-01

    Full Text Available Renewable energy sources have reported an unprecedented increase of global installed renewable power capacity. Against the advantages provided by this renewable power generation technology it should be taken into account an important issue: these intermittent energy sources supply a fluctuating output which is difficult to manage. Pumped-storage hydro power plants reappear in these circumstances as an efficient form of energy storage which allows to use reserves when necessary, enabling power generation output to cover continuously this energy demand. The present paper shows a simplified feasibility study of the partial conversion of hydropower plant La Barca, in Asturias, into a reversible storage through the development of an algorithm to simulate its operation according to electricity market prices. For this purpose, the operation in the deviation management market is considered and the technical modifications required for the conversion are shown. The estimation of costs and incomes present a feasible scenario.

  6. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    International Nuclear Information System (INIS)

    Molina, Marcelo G.; Mercado, Pedro E.; Watanabe, Edson H.

    2007-01-01

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB T M , and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on

  7. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  8. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    Science.gov (United States)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  9. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  10. Highlights of Electric Power Industry in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Reform and Development of Electric Power Management Before 1978, China's electric power industry,managed by the Central Government, was a vertically monopoly sector. Along with China's reformation of economy structure started in 1978, electric power industry has step on its road of restructuring and deregulation. Up to now administration of China's electric power industry underwent following reciprocative changes:

  11. Smart use of storage potentials of electric vehicles for renewable energy generation in the built environment : A design scenario

    NARCIS (Netherlands)

    Van Timmeren, A.; Bauer, T.C.; Silvester, S.

    2011-01-01

    In this paper, results are reported of a technology assessment of use of electrical vehicles for energy storage (of renewable sources), their integration in the built environment and attached required power and charging systems for the Netherlands. This was done as part of the DIEMIGO project on

  12. Electric power: the liberalization effects

    International Nuclear Information System (INIS)

    Carpentier, J.

    1999-01-01

    Nine months after the beginning of the deregulation of electric power markets in Europe, the first effects are being felt: fall of prices, amalgamation of electric power companies, development of new technologies and unemployment. (O.M.)

  13. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  14. A centennial book of Korea electric power corporation

    International Nuclear Information System (INIS)

    1989-12-01

    This book gives description of KEPC with power and life such as lighting, electric power, electric heat and communication, introduction of electric civilization, establishment and manage of Hansung electric company on opening of electric train, regulation of the train, opening of lamp business, construction of Yongsan generator, the Japanese invasion with trouble of supplying electricity, control over power business and development of water power generation, division of Korea and Korea war on damage out of Korea war and rebuild, development and growth on establishment of Korea electric power, establishment of Korea electric power by private and water power development project, stability and development, and challenge for future.

  15. Experience of electric power conservation in COELBA (Bahia Electric Company)

    International Nuclear Information System (INIS)

    Bastos, A.C.F.

    1990-01-01

    The electric power crisis of Brazilian north-east in 1987 imposes the Bahia Electric Company-COELBA to management a electric power conservation. The institutional, organizational and operational aspects are presented, including the tariff system, the market, the consumption and the relation with public. (author)

  16. The Role of Energy Storages in Energy Independent Croatia

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2009-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped Hydro and Heat Pumps in combination with Heat Storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro- plant may facilitate more than 10% wind power in the electricity system. In future research more precise...

  17. Impact Study on Power Factor of Electrical Load in Power Distribution System

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawardi Hasim; Ahmad Asraf, A.S.

    2014-01-01

    Low Power Factor of electrical loads cause high current is drawn from power supply. The impact of this circumstance is influenced by impedance of electrical load. Therefore, the key consideration of this study is how impedance of electrical loads influence power factor of electrical loads, and then power distribution as the whole. This study is important to evaluate the right action to mitigate low power factor effectively for electrical energy efficiency purpose. (author)

  18. Communications and control for electric power systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, H.

    1998-04-01

    This report is a summary of some of the work done on the Communications and Control project, with particular emphasis on the achievements during the years 1986--1996. During those years, the project moved away from concern with dispersed storage and generation and its impact on power system operation (the team was responsible for studies in this area, and for making a power system simulator that included DSG), and became involved in more concrete work aimed at applying high-tech solutions to problems of power system communications and control. This report covers work done at JPL on the following topics: (1) the measurement of electric and magnetic fields, both ac and dc; (2) the use of optical power to supply low-power electronics; (3) the design of a fault-tolerant communication system designed for distribution automation; and (4) a digital phase locked loop that allows the use of low-power transmitting electronics to recreate a good-quality signal at the receiver. In a report of this kind, only the results and highlights of the work are described.

  19. Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife

    Directory of Open Access Journals (Sweden)

    Alfredo Ramírez Díaz

    2015-11-01

    Full Text Available Isolated regions are highly dependent on fossil fuels. The use of endogenous sources and the improvement in energy efficiency in all of the consumption activities are the two main ways to reduce the dependence of petroleum-derived fuels. Tenerife offers an excellent renewable resource (hours of sun and wind. However, the massive development of these technologies could cause important operational problems within the electric power grids, because of the small size of the system. In this paper, we explore the option of coupling an electric vehicle fleet as a distributed energy storage system to increase the participation of renewables in an isolated power system, i.e., Tenerife Island. A model simulator has been used to evaluate five key outputs, that is the renewable share, the energy spilled, the CO2 emissions, the levelized cost of generating electricity and fuel dependence, under alternative scenarios. Comparing to the current situation, combining a gradual renewable installed capacity and the introduction of an electric vehicle fleet using alternative charging strategies, a total of 30 different scenarios have been evaluated. Results shows that the impact of 50,000 electric vehicles would increase the renewable share in the electricity mix of the island up to 30%, reduce CO2 emissions by 27%, the total cost of electric generation by 6% and the oil internal market by 16%.

  20. 33 CFR 127.107 - Electrical power systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one...

  1. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  2. Super capacitors for embarked systems as a storage energy device solution

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Rael, S.; Pierfederici, S.; Davat, B. [Institut National Polytechnique, GREEN-INPL-CNRS (UMR 7037), 54 - Vandoeuvre les Nancy (France)

    2004-07-01

    The management of embarked electrical energy needs a storage system with high dynamic performances, in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of super-capacitors for this storage system is quite suitable, because of appropriate electrical characteristics (huge capacitance, weak serial resistance, high specific energy, high specific power), of direct storage (energy ready for use), and of easy control by power electronic conversion. This paper deals with the conception and the achievement of two hybrid power sources using super-capacitors as auxiliary storage device. We present the structures, the control principles, and some experimental results. (authors)

  3. Hierarchical Control Design for Shipboard Power System with DC Distribution and Energy Storage aboard Future More-Electric Ships

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Guerrero, Josep M.

    2018-01-01

    power system (SPS) with DC distribution and energy storage system (ESS) is picked as study case. To meet the requirement of control and management of such a large-scale mobile power system, a hierarchical control design is proposed in this paper. In order to fully exploit the benefit of ESS, as well...

  4. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, Fritz; Donadei, Sabine [KBB Underground Technologies GmbH, Hannover (Germany)

    2009-07-01

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, peak shaving, seasonal balancing, etc. Today the electric power industry benefits from the extreme high energy density of fossil fuels. This is one important reason why the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% related to natural gas. Along with the changeover to renewable wind based electricity production this ''outsourcing'' of storage services to fossil fuels will decline. One important way out will be grid scale energy storage. The present discussion for balancing short term wind and solar power fluctuations focuses primarily on the installation of Compressed Air Energy Storages (CAES) in addition to existing pumped hydro plants. Because of their small energy density, these storage options are, however, generally not suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power or even seasonal fluctuations. Underground hydrogen storages, however, provide a much higher energy density because of chemical energy bond - standard practice since many years. The first part of the article describes the present status and performance of grid scale energy storages in geological formations, mainly salt caverns. It is followed by a compilation of generally suitable locations in Europe and particularly Germany. The second part deals with first results of preliminary investigations in possibilities and limits of offshore CAES power stations. (orig.)

  5. Accelerator magnet power supply using storage generator

    International Nuclear Information System (INIS)

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  6. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  7. Two energy storage alternatives for a solar-powered sustainable single floor desert home

    KAUST Repository

    Serag-Eldin, M. A.

    2010-09-30

    This paper is concerned with the thermodynamic analysis of a totally solarpowered desert home. The home is air-conditioned and provides all modern comforts and facilities. It features closely spaced, roof mounted photovoltaic modules, which collect the solar energy driving the whole energy system. During the day time, the modules form an elevated horizontal surface above the roof, shielding it from direct solar radiation. After sunset, the photovoltaic modules are flipped vertically upwards to expose the roof to the sky, thus enhancing night-time cooling. Two methods of energy storage are proposed and compared, one using solely battery storage of electrical output, and the other employing a combination of cold water storage and battery storage. The analysis is based on detailed dynamic heat transfer calculations for the entire building envelope, coupled with a solar radiation model, and followed by energy balances. The results reveal that indeed it is feasible to employ solar energy as the only source of energy to power the home, and that each storage system has its own merits and shortcomings. © 2010 WIT Press.

  8. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  9. Electric Power Regulation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Landa, J V [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico)

    1994-12-31

    The history of the electrical power sector in Mexico, the prominent role that government plays in the generation, transformation, distribution and supply of electrical power, and the implications of the North American Free Trade Agreement (NAFTA) for this sector were summarized. The slow pace of the Mexican electricity sector in achieving cost efficiency through pricing policy was criticized, and the issue of regulation versus deregulation of the electricity sector was examined in the context of NAFTA, emphasizing the contradiction between the idea of international trade and a highly regulated industry. Revisions of the original constitutional article to exclude electrical power generation from governmental control and to allow market mechanisms and competition to lower costs and increase efficiency was recommended.It was considered a pre-condition to a stable balance between competition and energy efficient environmentally friendly practices.

  10. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  11. Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff

    Directory of Open Access Journals (Sweden)

    Hyeongig Kim

    2017-01-01

    Full Text Available Customer-owned battery energy storage systems (BESS have been used to reduce electricity costs of energy storage owners (ESOs under a time-of-use (TOU tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban railway loads can negative impact power system operation. This is due to the high BESS degradation costs and lack of incentive of differential rates in TOU tariff that can effectively induce proper demand response.

  12. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  13. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Mansung

    2014-01-01

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  14. The characteristics of electricity storage, renewables and markets

    International Nuclear Information System (INIS)

    Waterson, Michael

    2017-01-01

    This paper accepts the widespread view that as electricity generation systems transition towards a greater proportion of renewables provision, there will be an increasing need for storage facilities. However, it differs from most such studies in contrasting the private incentives of a storage operator with the public desirability of bulk storage. A key factor in the context of a market such as Britain, where renewable energy largely means wind generation, is the nature of wind generation itself. The problem of wind's high variance and intermittent nature is explored. It is argued that not only is there a missing money and a missing market issue in providing secure energy supplies, there is also a missing informational issue. A key opportunity for new storage is participation in a capacity market, if the setting is right. - Highlights: • Considers both the public and private incentives for developing energy storage. • Consideration of the intermittency of wind as a factor influencing storage. • Arbitrage analysed alongside other earning streams. • Impact of market design on extent of storage.

  15. Aseismatic design of electrical equipments and instruments for nuclear power stations

    International Nuclear Information System (INIS)

    Suzuki, Yasuharu; Nishizawa, Kazuo; Miyazaki, Yoshio; Miura, Takumi

    1977-01-01

    The aseismatic design of electrical instruments is carried out according to IEEE Standard 344-1971 in the USA. In Japan also, the method of aseismatic design of electrical instruments has been investigated by the representatives of electric power companies and electric machine makers since 1972. In Hitachi Ltd., the statical method of confirming aseismatic property was established on the basis of the rigid design for electrical instruments. It is convenient to examine the aseismatic property of electrical equipments by classifying them into control and switch boards, electrical appliances, equipments and circuits. It is possible to use the static method treating earthquake force as static load by avoiding resonance with the electrical equipments which have the higher natural frequency than that of buildings. The purposes of the vibration test are to prove the validity of the theoretical analysis, to clarify the vibration characteristics, and to confirm the maintenance of functions and the strength of the equipments. The vibration tests of control boards, the switch boards of enclosed type, motor control centers, the racks for instrumentation, storage batteries and electrical appliances are explained. Moreover, the vibration analysis with a computer according to finite element method is described. (Kako, I.)

  16. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  17. Development on power distribution technologies of four electric power companies in Japan. The Kansai Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Since dependency upon electric power has been rising yearly with the development of industry and the progress of information-oriented society, various kinds of technical development are needed to supply electricity. Furthermore, amenity of people's living has been highly intended, and life style has varied. Consequently, customers' needs for energy including related services have varied remarkably, and each customer has selected energy more subjectively from the wide range of viewpoint such as reliability, handiness, cleanliness, safety, and economic efficiency. In such situation, the power distribution section of Kansai Electric Power settled four themes for major technical development and has been promoting them. Four themes are as follows; to develop a total automation system for power distribution, to promote 20kV/400V-class power distribution, to develop techniques to form facilities harmonizing with local amenity, and to make business management efficient with the advanced NC system. 3 figs., 4 tabs.

  18. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  19. Conference on storage in the service of energy transition

    International Nuclear Information System (INIS)

    Leuthold, Matthias; Marchal, David; Sitte, Ralf; Kairies, Kai-Philipp; Guerrier, Pierre; Netzel, Niklas; Radvanyi, Etienne; Lenck, Thorsten

    2016-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on energy storage supporting the energy transition in France and in Germany. In the framework of this French-German exchange of experience, about 140 participants met together to debate about the answer of future storage technologies to the electric power system needs and to the optimum integration of renewable energies at different levels of the power transmission and distribution grid. This document brings together the available presentations (slides) made during this event: 1 - Storage Technologies, Status and Perspectives (Matthias Leuthold); 2 - Which electricity storage needs for 2030, 2050 in France? (David Marchal); 3 - Storage in context of the German 'Energiewende' (Ralf Sitte); 4 - Battery Storage for residential PV Systems: Grid relieving effects (Kai-Philipp Kairies); 5 - Battery Storage for residential PV Systems: Technologies and Market Trends (Kai-Philipp Kairies); 6 - Pumped hydro-stations to ensure a decentralized and flexible storage to integrate the best way RES in the electric system (Pierre Guerrier); 7 - RRKW Feldheim - Primary Frequency Control in a wind feed-in grid (Niklas Netzel); 8 - Smoothing an intermittent generation: interest of generation forecast and storage global management (Etienne Radvanyi); 9 - Power-to-gas after 2030 - A cost-benefit analysis (Thorsten Lenck)

  20. DC microgrids with energy storage systems and demand response for providing support to frequency regulation of electrical power systems

    DEFF Research Database (Denmark)

    Basic, Hrvoje; Dragicevic, Tomislav; Pandzic, Hrvoje

    2017-01-01

    Frequency regulation of electric power systems efficiency depends on response time and on power reserves for frequency regulation. As integration of non-dispatchable renewable generation in the power system results with increased need for power reserves from fast responding power units, the idea ...

  1. General conditions for electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP) [de

  2. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  3. ANALYSIS OF GROSS REGIONAL PRODUCT FLUCTUATIONS AND ELECTRIC POWER CONSUMPTION IN 2005- 2014. RESERVES FOR DECREASING ELECTRIC POWER PRICES

    Directory of Open Access Journals (Sweden)

    Suslov N. I.

    2016-09-01

    Full Text Available In this work we considered the trajectories of change in indicators characterizing the status of economics and power industry: gross regional product, electric power consumption, industrial production, energy prices and costs of delivering electric power to consumers in Russian regions for the last 10 years. Low global commodity prices and sanctions led to a sharp decrease of equipment import, which resulted in an acute problem of import substitution. The level of tariffs of natural monopolies is of great importance for industrial development. The goal of this work was to analyze possibilities for reducing electric power prices by changing the institutional and economic conditions of management. We analyzed not only the official information from Rosstat, but also government regulations, figures given in the official government publication «The Rossiyskaya Gazeta» as well as articles and interviews on economic problems of the electric power industry over the recent years published in «The Kommersant» newspaper. High tariffs of network marketing companies for electric energy transmission, state regulation of heating prices, financing the construction of new capacities by charging the payment in power provision contracts, high price of electric power of nuclear power plants lead to an annual increase in electric power prices for end users. In this work we considered possible solutions to limit the growth of electric power prices.

  4. Inquiry relating to modifications of reactor installation in Ikata No. 1 and 2 nuclear power plants of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Ikata No. 1 and 2 nuclear power plants of the Shikoku Electric Power Company, Inc., on February 13, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the Atomic Energy Safety Commission (AESC) on June 15, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for No. 1 plant and the modification of driving mechanism from the roller nut type to the magnetic jack type for the control rod cluster for adjusting power distribution in the No. 2 plant. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. Relating to the driving mechanism for the control rod cluster adjusting power distribution, the driving speed is not modified and the reliability is kept by carrying out the continuous operation test and the electric power black out test as the demonstration test. The magnetic jack type mechanism has the locking device to prevent reactor tripping at the time of electric power black out, and the cluster is held at the location where the cluster existed at the time of black out. (Nakai, Y.)

  5. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    International Nuclear Information System (INIS)

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  6. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  7. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues...... and fuel that can also fulfill a storage function....

  8. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  9. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  10. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  11. Performance assessment of the PNM Prosperity electricity storage project

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, Dakota [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellison, James F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bhatnagar, Dhruv [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  12. Development of energy storage system for DC electric rolling stock applying electric double layer capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Sekijima, Y.; Kudo, Y.; Inui, M. [Central Japan Railway Co., Aichi (Japan); Monden, Y.; Toda, S.; Aoyama, I. [Toshiba Corp., Tokyo (Japan)

    2006-07-01

    This paper provided details of an energy storage system designed for use with DC electric rolling stock through the application of an electric double layer capacitor (EDLC). The EDLC was selected due to its long life-span and its low operational costs. Testing was conducted to assess the system's basic control function, acceleration using stored energy, and behaviour during regenerative brake failure. A control circuit chip was used in the DC electric rolling stock on an inverter of the energy storage system. Tests confirmed that the control method was effective for actual rolling stocks. A full-scale energy storage system for installation on series 313 locomotives was then constructed. Braking energy was generated only from a regenerative brake. In case of brake failure, braking energy was generated from an air brake was well as an electric brake. Data from a field test conducted at the Tokaido and Chuo railway lines showed a capacity of 0.6 kWh. The EDLC was used to reduce peak air brake energy. It was concluded that storing 0.28 kW of brake energy in the EDLC can reduce peaks of air brake energy in high speed ranges. Experimental equipment was used to confirm use of the system with 0.56 kWh of EDLC, the average energy of air brake used in regenerative energy failure. 1 tab., 10 figs.

  13. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  14. Electric power distribution. Elektrische Energieverteilung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, H; Frohne, H; Vaske, P

    1982-01-01

    The first chapter on electric power supply networks discusses transmitting media, their characteristic values, and the dimensioning of electric lines and networks; cables are given particular attention. High-voltage d.c. transmission and reactive power compensation are discussed. The next chapter describes the calculation of short-circuits and earth leakages for various neutral circuits on the basis of symmetric components. The newly introduced mesh current method for complex calculation of electric networks makes use of the potential of pocket computers. Chapter 3 discusses protective devices, i.e. earth systems and electronic protection. The next two chapters describe switch gear and power plants, including recent technical changes. The final chapter, which discusses the electric power industry, has been rewritten and extended. Methods of calculation, e.g. annual cost and cash value, are applied to transmitting media and plants. There is an extensive appendix with characteristic values of cables and overhead lines, graphical symbols, distinguishing signs of wiring diagrams, a bibliography of books, DIN standards, VDE specifications, and formulas.

  15. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  16. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  17. Power Electronics and Electric Machines Publications | Transportation

    Science.gov (United States)

    Research | NREL and Electric Machines Publications Power Electronics and Electric Machines Publications NREL and its partners have produced many papers and presentations related to power electronics and from power electronics and electric machines research are available to the public. Photo by Pat Corkery

  18. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  19. Fuel cell electric vehicle as a power plant : Fully renewable integrated transport and energy system design and analysis for smart city areas

    NARCIS (Netherlands)

    Oldenbroek, V.D.W.M.; Verhoef, L.A.; van Wijk, A.J.M.

    2017-01-01

    Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators

  20. Determination of Optimum Performance Strategy of Energy Storage in Power System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Ranjbari

    2016-06-01

    Full Text Available Determination of optimal capacity for today energy storages has been specially noticed. The delay in increasing storage production capacity is one of the applications for energy storage supplies in which utilization from energy storage supplies along with improvement in the power status at peak hours of consumption may postpone the demand for installation of a new power plant module. In this essay, the optimal capacity of energy storage is determined in order to reduce exploitation costs by second-order non linear programming. This method expresses this problem with a target quadratic function based on the produced power of units and capacity of energy storage supply. The requirements have been modeled as linear equality and inequality equations. The related constraints for produced power and incremental and decremental power ratio in generators have been considered as well.