WorldWideScience

Sample records for electric plant unit

  1. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  2. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  3. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  4. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  5. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  6. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  7. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  8. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  9. Model-based investigation of the electricity market. Unit commitment and power plant investments

    International Nuclear Information System (INIS)

    Sun, Ninghong

    2013-01-01

    The German Federal Government published its energy concept in September 2010 with a description of the road into the era of renewable energies. Therefore, the future renewable energy installed in Germany is expected to consist mostly of wind and solar, which are subject to intermittency of supply and significant fluctuations. The growing portion of energy generation by fluctuating sources is turning to a big challenge for the power plant unit commitment and the investment decisions as well. In this thesis, a fundamental electricity market model with combined modeling of these two aspects is developed. This model is subsequently applied to the German electricity market to investigate what kind of power plant investments are indispensable, considering the steadily increasing portion of energy generation from fluctuating sources, to ensure a reliable energy supply in a cost-effective way in the future. In addition, current energy policy in Germany regarding the use of renewable energy and nuclear energy is analyzed.

  10. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  11. 76 FR 388 - Southern Nuclear Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice...

    Science.gov (United States)

    2011-01-04

    ... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance... Web site http://www.regulations.gov . Because your comments will not be edited to remove any... will not edit their comments to remove any identifying or contact information, and therefore, they...

  12. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  13. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Science.gov (United States)

    2011-05-24

    ... Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice of Consideration of Issuance..., http://www.regulations.gov . Because your comments will not be edited to remove any identifying or... received from other persons for submission to the NRC inform those persons that the NRC will not edit their...

  14. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  15. A CALCULATION METHOD OF TRANSIENT MODES OF ELECTRIC SHIPS’ PROPELLING ELECTRIC PLANTS

    Directory of Open Access Journals (Sweden)

    V. A. Yarovenko

    2017-12-01

    Full Text Available The purpose of the work is to develop the method for calculating the transient modes of electric ships’ propelling electric plants during maneuver. This will allow us to evaluate and improve the maneuverability of vessels with electric motion. Methodology. The solution to the problems is proposed to be carried out on the basis of mathematical modeling of maneuvering modes. The duration of transient modes in an electric power plant at electric ships’ maneuvers is commensurable with the transient operation modes of the vessel itself. Therefore, the analysis of the electric power plants’ maneuvering modes should be made in unity with all the components of the ship’s propulsion complex. Results. A specified mathematical model of transient regimes of electric ship’s propulsion complex, including thermal motors, synchronous generators, electric power converters, propulsion motors, propellers, rudder, ship’s hull is developed. The model is universal. It covers the vast majority of modern and promising electric ships with a traditional type of propulsors. It allows calculating the current values of the basic mode indicators and assessing the quality indicators of maneuvering. The model is made in relative units. Dimensionless parameters of the complex are obtained. These parameters influence the main indicators of the quality of maneuvering. The adequacy of the suggested specified mathematical model and the developed computation method based on it were confirmed. To do this, the results of mathematical modeling for a real electric ship were compared with the data obtained in the course of field experiments conducted by other researchers. Originality. The mathematical description of a generator unit, as an integral part of an indivisible ship’s propulsion complex, makes it possible to calculate the dynamic operation modes of electric power sources during electric vessels’ maneuvering. There is an opportunity to design the electric ships

  16. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  17. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  18. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  19. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  20. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    1983-11-01

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  1. Inventory of Power Plants in the United States, October 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  2. Industrial Electricity. In-Plant Distribution. Vocational Trade and Industrial Education.

    Science.gov (United States)

    Teague, Cash; Pewewardy, Garner

    This curriculum guide, part of a series of industrial electricity curriculum guides, consists of materials for use in teaching a course on the in-plant distribution of electricity. Discussed in the introductory lessons are the National Electrical Code, power equipment, and blueprint reading. The next section, a series of units on branch-circuit…

  3. Inventory of power plants in the United States, 1993

    International Nuclear Information System (INIS)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended

  4. Inventory of power plants in the United States, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  5. Inventory of power plants in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  6. New nuclear power plant unit in Finland accepted by the Finnish Parliament

    International Nuclear Information System (INIS)

    Kaetkae, M.

    2002-01-01

    The nuclear option has been included in Finland's energy strategy since late 1990's. Based on TVO's application the Finnish Parliament accepted in May 2002 the decision in principle to build a new nuclear power plant unit. The main arguments were the growth of electricity demand, reduction of CO 2 emissions, security of energy supply and reasonable as well as predictable electricity price. TVO's intention is to get the new power plant unit into commercial operation at the end of this decade.(author)

  7. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  8. Influence of Egyptian electrical grid and nuclear power plants under disturbances based on PSS/E

    International Nuclear Information System (INIS)

    Shaat, M. K.; Kotb, S. A.; Mahmoud, H. M.

    2012-12-01

    The capacity of the electrical power system in Egypt will increase rapidly in the coming twenty years. In year 2018, power generation will be connecting to the Egyptian electrical grid. Consequently, the interaction of nuclear power plants and other systems become a very important issue, and a detailed nuclear power model for the medium-term and long-term power system stability should be developed. However, there is no nuclear unit model that can describe the detailed characteristics of the nuclear unit in the available commercial power system simulation software. In this paper, a detailed pressurized water reactor (PWR) nuclear unit model for medium-term and long-term power system transient stability is proposed. The model is implemented by a user defined program in PSS/E through PSS/E Mat lab Seamanlike interface. Also this paper proposes a design of power plant rector controller for the nuclear power plant. This model can be used to analyze the difference influences between the Egyptian electrical grid and nuclear power plants for examples transient fault on electrical grid and outage of nuclear power plant. The simulation results show that the proposed model is valid. (Author)

  9. Inventory of power plants in the United States: December 1979

    International Nuclear Information System (INIS)

    Gilliam, L.R.

    1980-01-01

    This 1979 inventory of power plants provides a comprehensive list of existing, standby, out-of-service, retired and projected electric generating plants in the U.S. Arranged under the broad sections of existing, jointly owned and projected units, tabulated data on individual plants in each state are presented. These data include unit name, location, type, MW rating, primary fuel, alternative fuel, status, year built, and whether or not it is jointly owned. Jointly owned plants are separately identified as to the percent of ownership belonging to named owners. Projected plants have data on plant characteristics, current status and scheduled completion date. Summaries of the total number of each type of power plant in each state are also provided

  10. Preparing for electrical-system startup at a nuclear power plant

    International Nuclear Information System (INIS)

    Boissy, G.J.

    1977-01-01

    Experience at St Lucie Unit No. 1 nuclear power plant regarding organization for electrical startup is related and analyzed. Problems of staffing, organization procedures, test standard development, and implementation of the program are considered

  11. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  12. Added value by rule IEC61850. Modernizing the electrical protection of Gundremmingen nuclear power plant

    International Nuclear Information System (INIS)

    Hoetzel, A.; Willems, D.; Maier, K.L.; Herrmann, H.J.; Einsiedler, G.

    2006-01-01

    After many years in operation the large power plant generating units B and C at Gundremmingen nuclear power plant are due for inspection and maintenance, which also requires modernizing the electrical protection. Unlike the construction of new power plants, additional constraints apply to modernization in existing plants. The new solution has to fit as seamlessly as possible into the existing units, such as signaling systems with their multitude of signaling contacts and printers, or the connection to the power plant automation system. Apart from purely technical requirements, economic factors such as short standstill times, limited budgets or phased conversions also influence the choice of a suitable solution. Planning, construction and commissioning of the electrical generating unit protection was implemented by the Secondary Systems Technology Center, a technical department of RWE-Rhein-Ruhr Netzservice GmbH, in coordination with the operator. (orig.)

  13. Final Environmental Statement related to the operation of Perry Nuclear Power Plant, Units 1 and 2 Docket Nos. 50-440 and 50-441, Cleveland Electric Illuminating Company

    International Nuclear Information System (INIS)

    1982-08-01

    The information in this Final Environmental Statement is the second assessment of the environmental impact associated with the construction and operation of the Perry Nuclear Power Plant, Units 1 and 2, located on Lake Erie in Lake County, about 11 km (7 mi) northeast of Painesville, Ohio. The first assessment was the Final Environmental Statement related to the construction of the plant issued in April 1974, prior to issuance of the construction permits (CPRR-148 and CPPR-149). Plant construction for Unit 1 is currently about 83% complete, and Unit 2 about 43% complete. Fuel loading for Units 1 and 2 currently estimated by the licensee (Cleveland Electric Illuminating Company) for November 1983, with Unit 2 fuel load scheduled for May 1987. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the plant

  14. Needs for Constructing and Possibilities of Nuclear Power Plants Interconnection to the Croatian Electricity Grid

    International Nuclear Information System (INIS)

    Zeljko, M.; Bajs, D.

    1998-01-01

    Due to development of electric power system and considering an increase of electrical energy consumption, needs for larger units in new power plants are obvious. Connection of large nuclear power plants to the grid, depending on their power and location, usually requires significant investments in transmission network development and construction. Considering the capacity of the 400 kV transmission network in Croatia, this problem is evident. This paper deals with the possibilities of nuclear power plants construction, as one possible option in electric power system development, and their interconnection to the electricity grid. (author)

  15. Unit commitment and investment valuation of flexible biogas plants in German power markets

    Energy Technology Data Exchange (ETDEWEB)

    Hochloff, Patrick

    2017-07-01

    Biogas plants contribute a significant share of renewable energy sources (RES) to the electricity system. Most of them are designed to supply constant power generation. In the future biogas plants will most likely become more flexible, scheduling their power generation with respect to market prices. For this purpose power units need extended electrical capacity to convert the continuously produced gas as well as the gas held in storage. When constructing extended capacity at biogas plants, the flexibility premium is the main focus for about 8000 plants which were constructed before August 2014. Additional incomes as a result of selling at higher market prices have been considered, too. However, their relationship to the electrical capacity and storage size of biogas plants was unknown as was the impact on investment valuation. This work has shown how biogas plants with extended capacity can be analyzed when they are operated in power markets, in particular the power spot market and the control reserve markets. Models on the basis of unit commitment have been developed in order to obtain optimized schedules and financial parameters, such as gross income and net present value (NPV), when biogas plants with extended capacity capitalize on prices in each market. The models developed consider several use cases that describe possible ways of participating in German power markets, switching between static and variable gas supply, providing secondary and tertiary control reserve, and claiming the market and flexibility premium. Mixed integer linear programs (MILP) have been developed for the unit commitment of each use case. The model for the unit commitment of providing control reserve with biogas plants made significant progress compared to the state of the art and has been published in (Hochloff, Braun 2014). There are two ways to make use of this model. First of all, the model could be applied to plan daily schedules for the operation of gas plants located at a gas

  16. Unit commitment and investment valuation of flexible biogas plants in German power markets

    International Nuclear Information System (INIS)

    Hochloff, Patrick

    2017-01-01

    Biogas plants contribute a significant share of renewable energy sources (RES) to the electricity system. Most of them are designed to supply constant power generation. In the future biogas plants will most likely become more flexible, scheduling their power generation with respect to market prices. For this purpose power units need extended electrical capacity to convert the continuously produced gas as well as the gas held in storage. When constructing extended capacity at biogas plants, the flexibility premium is the main focus for about 8000 plants which were constructed before August 2014. Additional incomes as a result of selling at higher market prices have been considered, too. However, their relationship to the electrical capacity and storage size of biogas plants was unknown as was the impact on investment valuation. This work has shown how biogas plants with extended capacity can be analyzed when they are operated in power markets, in particular the power spot market and the control reserve markets. Models on the basis of unit commitment have been developed in order to obtain optimized schedules and financial parameters, such as gross income and net present value (NPV), when biogas plants with extended capacity capitalize on prices in each market. The models developed consider several use cases that describe possible ways of participating in German power markets, switching between static and variable gas supply, providing secondary and tertiary control reserve, and claiming the market and flexibility premium. Mixed integer linear programs (MILP) have been developed for the unit commitment of each use case. The model for the unit commitment of providing control reserve with biogas plants made significant progress compared to the state of the art and has been published in (Hochloff, Braun 2014). There are two ways to make use of this model. First of all, the model could be applied to plan daily schedules for the operation of gas plants located at a gas

  17. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1988-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This seventh supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 6, and documents completion of several Unit 1 license conditions

  18. Model-based investigation of the electricity market. Unit commitment and power plant investments; Modellgestuetzte Untersuchung des Elektrizitaetsmarktes. Kraftwerkseinsatzplanung und -investitionen

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ninghong

    2013-08-08

    The German Federal Government published its energy concept in September 2010 with a description of the road into the era of renewable energies. Therefore, the future renewable energy installed in Germany is expected to consist mostly of wind and solar, which are subject to intermittency of supply and significant fluctuations. The growing portion of energy generation by fluctuating sources is turning to a big challenge for the power plant unit commitment and the investment decisions as well. In this thesis, a fundamental electricity market model with combined modeling of these two aspects is developed. This model is subsequently applied to the German electricity market to investigate what kind of power plant investments are indispensable, considering the steadily increasing portion of energy generation from fluctuating sources, to ensure a reliable energy supply in a cost-effective way in the future. In addition, current energy policy in Germany regarding the use of renewable energy and nuclear energy is analyzed.

  19. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  20. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  1. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). This sixth supplement of NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. These areas are performance testing, reactor cooling hydraulics, loose parts monitoring, and electric power systems

  2. The trip status and the reduction countermeasure in Kori nuclear power plant unit 1 and 2

    International Nuclear Information System (INIS)

    Kim, Jung-Soo

    1991-01-01

    Nuclear power account for 36% of Korea's total electric capacity and provided over 50% of the net electric power supply by June 1991. These plants supply US with the cheapest and most stable electric supply available. However each units capacity is very large and a plant trip due to failure of a component or a human error has a great influence on the nations electric power supply and drastically decreases the reserve margin. This report will analyze the trip causes and measure the trip frequency from the first commercial operation of Kori unit 1 and 2 to the end of June 1991, reflect to the plant operation, management and facility modification, etc. This will minimize the number of trips or urgent power reductions and thus contribute to an increase in plant capacity factor and safety, and stabilize the electric power demand and supply. The safety and the economy of nuclear power plant have to be secured and raised respectably by increasing the capacity factor. Since the prevention of trips plays an important role in the plant safety and economy, we have to do our best to prevent the unexpected trip

  3. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    Ortega C, R.F.; Martin del Campo M, C.

    2004-01-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  4. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 30,399 MWH with the generator on line 334.5 hrs. Unit 2 generated 2,481,014 MWH with the generator on line 4,915.53 hrs. Information is presented concerning operations, shutdowns and power reductions, maintenance, power generation, modifications, changes to operational procedures, radiation exposures, and leak rate testing

  5. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  6. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  7. Inventory of power plants in the United States as of January 1, 1996

    International Nuclear Information System (INIS)

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended

  8. Inventory of power plants in the United States as of January 1, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  9. Designing a nuclear power plant with 1000 MW WWER-type units

    Energy Technology Data Exchange (ETDEWEB)

    Berkovich, V; Kaloshin, J; Tatarnikov, V; Shenderovich, A

    1977-06-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof.

  10. Emissions implications of downscaled electricity generation scenarios for the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory; Milford, Jana B.

    2017-10-01

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees. Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.

  11. Designing a nuclear power plant with 1000 MW WWER-type units

    International Nuclear Information System (INIS)

    Berkovich, V.; Kaloshin, J.; Tatarnikov, V.; Shenderovich, A.

    1977-01-01

    A brief description is presented of a WWER-1000 nuclear power plant also considering its environmental impact and the problem of core poisoning. The following indicators are graphically shown in relation to the reactor output: turbogenerator unit outputs, efficiency, specific capital costs and own costs of electric power generated by the Voronezh nuclear power plant. Also listed are the specific consumption of metal and concrete, specific equipment weight and the specific volume of the buildings of the main generating unit as well as the cross section thereof. (J.B.)

  12. Inventory of power plants in the United States as of January 1, 1997

    International Nuclear Information System (INIS)

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended

  13. Inventory of power plants in the United States as of January 1, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  14. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  15. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  16. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  17. Safstor decommissioning of the Humboldt Bay Power Plant Unit No. 3

    International Nuclear Information System (INIS)

    Nelson, R.T.

    1985-01-01

    The Humboldt Bay Power Plant is located near Eureka, California, about 265 miles north of San Francisco. The plant consists of two fossil fueled units, two mobil gas turbine peaking units, and a nuclear unit - Unit No. 3. Unit No. 3, which utilized a boiling water reactor, was constructed between 1960 and 1963. The unit began commercial operation in August 1963 and operated until July 2, 1976 when it was shutdown for refueling, seismic modifications, and additional seismic and geologic studies. During the years Unit 3 operated it had one of the best operating records of any nuclear power plant in the United States. For its operating lifetime Unit 3 had an overall capacity factor of 63.0% and an availability factor of 85.9%. The unit included certain design features which made it unique among nuclear power plants of its era. Some of these unique features included natural circulation recirculation flow which eliminated the need for costly recirculation pumps, utilization of a pressure suppression containment system which had been developed jointly by PG and E and the General Electric Company, and the fact that the reactor vessel and the containment system were constructed in a caisson below ground level. These design features reduced the overall construction cost of the unit and improved its inherent safety

  18. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  19. Inventory of power plants in the United States as of January 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  20. Draft environmental statement related to steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2, (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1983-09-01

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the H.B. Robinson Steam Electric Plant Unit No. 2 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighted by its benefits

  1. Revitalization of Tuzla Thermal Power Plant's Unit 3 (100 MW)

    International Nuclear Information System (INIS)

    Sakovic, A.; Praso, N.

    1998-01-01

    Power Plant Revitalization is a highly ranged concept essentially aimed at continued operations of the generating unit at, or near, rated capacities for the rest of the economic life of the plant or even for an extended life. In essence, the need to rehabilitate may arise due to reasons such as low availability factor, low efficiency, increasing operating and maintenance costs, loss of reliability, drop in safety of plant and personnel, poor maintainability or environmental requirements. The term revitalization is therefore normally used in the context to cover the range of activities including repairing components, replacing equipment, modifying systems, adding new system and equipment and perhaps restoration to rated capacities. This exercise on already complex power generation process will naturally require the application of various technologies in order to ensure a safe and efficient installation of electricity supply. In normal conditions of producing and consumption of electricity (load demands) in order to answer the question of what kind of revitalization to undertake it is necessary to state at the very beginning: - whether it is necessary, from the point of equipment wear-out, to revitalize all equipment at once (one-phase revitalization), or - whether it is possible to postpone the revitalization of a part of equipment for the next period (phased revitalization). Both concepts have some specific advantages and disadvantages. In essence the decision-making process between these two approaches, three basic conditions should be considered: technical-technological adequacy, energy-economy adequacy and financial adequacy. This paper covers general considerations, approach and methodology implemented during the revitalization the Tuzla Thermal Power Plant's Unit 3 (100MW) which was imposed by urgent demands of the Power System, the war conditions and financial possibilities including: - General data on TPP Tuzla and Unit 3 - Scope of work and economic effects

  2. Economic impacts of electricity liberalization on the status of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Hattori, Toru

    2015-01-01

    This paper discusses the economic impact of electricity liberalization on the status of nuclear power generation in the United States. Nuclear power plants have been treated equally with other types of power plants in the liberalized electricity market. The existing nuclear power plants were thought to be competitive in liberalized wholesale electricity market. Competitive pressure from the market also facilitated efficiency improvement among the existing nuclear power plants. Although it was difficult to build new reactor, the U.S. nuclear power generators expanded capacity through up rates. In recent years, however, nuclear power plants suffer from the decline in wholesale power prices and some of them are forced to retire early. Although there are some market design issues that could be improved to maintain the efficient nuclear power plants in competitive environment, it is now argued that some additional arrangements to mitigate the investment risks of the nuclear power plants are necessary. (author)

  3. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  4. Start up and commercial operation of Laguna Verde nuclear power plant. Unit 1

    International Nuclear Information System (INIS)

    Torres Ramirez, J.F.

    1991-01-01

    Prior to start up of Laguna Verde nuclear power plant preoperational tests and start tests were performed and they are described in its more eminent aspects. In relation to commercial operation of nuclear station a series of indicator were set to which allow the measurement of performance in unit 1, in areas of plant efficiency and personal safety. Antecedents. Laguna Verde station is located in Alto Lucero municipality in Veracruz state, 70 kilometers north-northeast from port of Veracruz and a 290 kilometers east-northeast from Mexico city. The station consist of two units manufactured by General Electric, with a nuclear system of vapor supply also called boiling water (BWR/5), and with a system turbine-generator manufactured by Mitsubishi. Each unit has a nominal power of 1931 MWt and a level design power of 675 Mwe and a net power of 654 Electric Megawatts

  5. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Moir, R. [Lawrence Livermore National Lab., CA (United States); Hoffman, M. [Univ. of California, Davis, CA (United States)

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  6. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1985-06-01

    The Safety Evaluation Report for the application filed by Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, as applicants and owners, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Burke County, Georgia, approximately 41.5 km (26 mi) south-southeast of Augusta, and on the Savannah River. Subject to favorable resolution of the items discussed in this report, the staff concludes that the applicant can operate the facility without endangering the health and safety of the public

  7. Final environmental statement related to the operation of H.B. Robinson Nuclear Steam-Electric Plant, Unit 2: (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the continuation of Facility Operating License DPR-23 to Carolina Power and Light Company for H.B. Robinson Unit 2. Unit 2, located adjacent to Lake Robinson in Darlington County, near Hartsville, South Carolina, employs a pressurized water reactor to produce up to 2200 megawatts thermal (MWt). A steam turbine-generator uses this heat to provide 700 megawatts electric (MWe) of net electrical power capacity. A design power level of 2300 MWt (730 MWe) has been requested and is considered in the assessments contained in this statement. The exhaust steam is cooled by a flow of water obtained from the discharged to a 2250-acre cooling lake, Lake Robinson. Land areas disturbed during construction of the plant, but not used, have been seeded to native grasses, trees, and shrubs. Construction of a cooling water discharge canal extension resulted in alteration of about 100 acres of wildlife habitat. Subsequently, the canal banks were seeded with pines and legumes. Some erosion has taken place in the pine-seeded areas. Some small fish are killed by impingement on the water intake screens. Organisms passing through the screens very likely do not survive their passage through the circulating water system. Operation of the plant will cause an increase in the temperature of Black Creek below Lake Robinson. A small impact exists due to production and, after processing, disposal or release of sanitary and chemical wastes. Unit 2 may discharge up to 500 pounds/day of chemicals (primarily sulfates). Under conditions of low flow into and out of the lake, this increases the sulfate concentration in the lake by less than 1 ppM over the normal 7.7 ppM

  8. Draft Environmental Statement related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1984-10-01

    This Draft Environmental Statement contains an assessment of the environmental impact associated with the operation of the Vogtle Electric Generating Plant, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, part 51 (10 CFR 51), as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environmental impacts, environmental consequences and mitigating actions, and environmental and economic benefits and costs associated with station operation

  9. Development of management systems for nuclear power plant of Hokuriku Electric Power Company

    International Nuclear Information System (INIS)

    Nakamura, Tatsuaki; Hasunuma, Junichi; Suzuki, Shintaro

    2009-01-01

    Hokuriku Electric Power Company has been operating the Shika Nuclear Power Station that it constructed in Shika city, Ishikawa prefecture, for over 15 years since bringing Unit 1 of this plant online in July 1993. In addition to electricity generation, maintenance and inspection tasks constitute a big part of operating a large-scale nuclear power plant, and in recent years, problems at power stations in the nuclear power industry have led to several revisions of nationally regulated maintenance and inspection systems. This paper describes the background, objectives, development method, and features of the Maintenance Management System and Maintenance History Management System that make effective use of information technology to promote safer and more efficient maintenance work at large-scale nuclear power plants. (author)

  10. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  11. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    Science.gov (United States)

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  12. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  13. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  14. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  15. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  16. De-regulated electric power markets and operating nuclear power plants: the case of British energy

    International Nuclear Information System (INIS)

    Hewlett, James G.

    2005-01-01

    One issue addressed in almost all electric power restructuring/de-regulation plans in both the United States (US) and the United Kingdom (UK) was the recovery of operating nuclear power plant's spent fuel disposal costs and the expenditures to decommission the units when they are retired. Prior to restructuring, in theory at least, in both countries, electricity consumers were paying for the back end costs from operating nuclear power plants. Moreover, in virtually all cases in the US, states included special provisions to insure that consumers would continue to do so after power markets were de-regulated. When power markets in the UK were initially restructured/de-regulated and nuclear power privatized, the shareholders of British Energy (BE) were initially responsible for these costs. However, after electricity prices fell and BE collapsed, the British government shifted many of the costs to future taxpayers, as much as a century forward. If this was not done, the book value of BE's equity would have been about -3.5 billion pounds. That is, BE's liabilities would have been about -3.5 billion pounds greater than their assets. It is difficult to see how BE could remain viable under such circumstances

  17. Electricity-market price and nuclear power plant shutdown: Evidence from California

    International Nuclear Information System (INIS)

    Woo, C.K.; Ho, T.; Zarnikau, J.; Olson, A.; Jones, R.; Chait, M.; Horowitz, I.; Wang, J.

    2014-01-01

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market price data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010–December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation. - Highlights: • Japan's disaster led to calls for shutting down existing nuclear plants. • We perform a regression analysis of California's real-time electricity-market prices. • We estimate that the San Onofre plant shutdown has raised the market prices by $6/MWH to $9/MWH. • The price increases could be offset by demand reduction and renewable generation increase

  18. Inventory of power plants in the United States. [By state within standard Federal Regions, using county codes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The purpose of this inventory of power plants is to provide a ready reference for planners whose focus is on the state, standard Federal region, and/or national level. Thus the inventory is compiled alphabetically by state within standard Federal regions. The units are listed alphabetically within electric utility systems which in turn are listed alphabetically within states. The locations are identified to county level according to the Federal Information Processing Standards Publication Counties and County Equivalents of the States of the United States. Data compiled include existing and projected electrical generation units, jointly owned units, and projected construction units.

  19. Ultimate Electrical Means for Severe Accident and Multi Unit Event Management

    International Nuclear Information System (INIS)

    Guisez, Xavier

    2015-01-01

    Following the Multi Unit Severe Accident that occurred at Fukushima as a result of the tsunami on 11 March 2011, the European Council decided to submit its Nuclear Power Plants to a Stress Test. In Belgium, this Stress Test, named BEST (Belgian Stress Test), was successfully concluded at the end of 2011. Nevertheless, Electrabel decided, in agreement with the Authorities, to start a beyond design basis action plan, with the goal to mitigate the consequences of a Beyond Design Basis Accident and a Multi Unit Event. Consequently, this has led to an improvement of the robustness of its Nuclear Power Plants. Considering the importance of electrical power supply to a nuclear power plant, a significant part of this action plan consisted of setting up a mobile, 'plug and play' method for the electrical power supply to some major safety systems. In order to install this ultimate power supply, three factors were retained as essential. First, important reactor monitoring instrumentation is preserved. Second, core cooling is provided at all times. Finally, systems are easily made operational within a very short delay of time. During normal operation and Design Basis Events, core cooling is provided by High Voltage equipment. However, during high stress circumstances, it is too complex to realize connections on this equipment. Therefore, analysis was performed to realize core cooling with, easier to handle, Low Voltage equipment. These systems are powered by several GenSets, especially designed and manufactured for this application. The outcome of this project are easy to use, ultimate means, that supply electric power to important safety systems in order to drastically reduce the risk of core damage, during a beyond design basis event. Additionally, for all ultimate means, procedures and training modules were developed for the operators. (authors)

  20. Technical Specifications: Vogtle Electric Generating Plant, Unit Nos. 1 and 2 (Docket Nos. 50-424 and 50-425): Appendix ''A'' to License Nos. NPF-68 and NPF-79

    International Nuclear Information System (INIS)

    1989-02-01

    The Vogtle Electric Generating Plant, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  1. Technical Specifications, Vogtle Electric Generating Plant, Unit Nos. 1 and 2 (Docket Nos. 50-424 and 50-425): Appendix ''A'' to License Nos. NPF-68 and NPF-81

    International Nuclear Information System (INIS)

    1989-03-01

    The Vogtle Electric Generating Plant, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  2. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  3. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  4. Technical evaluation of the electrical, instrumentation, and control design aspects of the proposed license amendment Revision 1 for single-loop operation of Browns Ferry Nuclear Plants (Docket No. 50-259, Unit 1; Docket No. 50-260, Unit 2; Docket No. 50-296, Unit 3)

    International Nuclear Information System (INIS)

    Donich, T.R.

    1983-01-01

    This report documents the technical evaluation of the proposed changes to the plant reactor protection system by the licensee of Browns Ferry Nuclear Power Station, Units 1, 2, and 3, to account for single-loop plant operation. This evaluation is restricted to only the electrical, instrumentation and control design aspects of proposed changes to the plant technical specifications for single-loop operation beyond 24 hours. Conclusion is that the license amendment for single-loop operation has met the review criteria provided sufficient administrative controls are in effect, and any anomalous control room indicators are corrected or warning-tagged for the duration of single-loop operation

  5. Probabilistic Analysis of Electrical Energy Costs: Comparing Production Costs for Gas, Coal and Nuclear Power Plants. Annex III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The increase in electricity demand is linked to the development of the economy and living standards in each country. This is especially true in those developing countries in which electricity consumption is far below the average of industrialized countries. To satisfy the increased demand for electricity, it is necessary to build new electrical power plants that could, in an optimum way, meet the imposed acceptability criteria. The main criteria are the potential to supply the required energy and to supply it with minimum or, at least, acceptable costs and environmental impacts, to satisfy the licensing requirements and be acceptable to the public. The main competitors for electricity production in the next few decades are fossil fuel power plants (coal and gas) and nuclear power plants. Power plants making use of renewables (solar, wind, biomass) are also important, but due to limited energy supply potential and high costs, can only be a supplement to the main generating units. Large hydropower plants would be competitive under the condition that suitable sites for the construction of such plants exist. Unfortunately, both in Croatia and in the rest of central Europe, such sites are scarce.

  6. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2000-01-01

    Cernavoda NPP Unit 1, the first nuclear power unit in Romania, has a long and tormented history. It represents a rather unique case in Eastern Europe. The project started well before 1989 (the construction phase lasted 17 years and generations were involved in its completion), but it is effectively based on western technology (Candu). Meanwhile, the national nuclear program underwent many changes, affecting the lives and careers of Romanian nuclear professionals. Finally, on December 2 nd 1996, the unit began its c ommercial operation , being operated at its nominal power rating of 706 MW e . It now provides a reliable source of electricity for Romanian economy, supplying to the national grid about 10% of the country's average annual demand. The paper reflects some aspects related to the shift of generations during the project's development, including the present stage. The operational performances achieved 'in service' by Cernavoda NPP Unit 1 up to the end of 1999 , are also presented. Reference to the electrical energy production, performance indicators, production costs, nuclear safety, radiation protection, radioactive wastes, nuclear fuel consumption and nuclear fuel performances are included. Comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. (authors)

  7. Identifying future electricity-water tradeoffs in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Sovacool, Kelly E.

    2009-01-01

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs.

  8. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-01-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  9. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  10. Marginal cost pricing for coal fired electricity in coastal cities of China: the case of Mawan Electricity Plant in Shenzhen City, China.

    Science.gov (United States)

    Zhang, Shi-Qiu; Duan, Yan-Xin

    2003-05-01

    By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO2, NO(x), and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate,NO(x), and SO2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well an emission trading arrangements.

  11. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Science.gov (United States)

    2013-11-19

    ... of Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the... financing from RUS to facilitate the restart of Unit 2 and for improvements to the Healy Plant, which... DOE and AIDEA. The decision documented in RUS's ROD is that RUS agrees to consider, subject to...

  12. Nuclear plants in the expansion of the Mexican electrical system

    International Nuclear Information System (INIS)

    Estrada S, G. J.; Martin del Campo M, C.

    2009-10-01

    In this work the results of four studies appear that were realized to analyze plans of long term expansion of Mexican electrical system of generation for the study period 2005-2025. The objective is to identify between the two third generation reactors with greater maturity at present which is it is that it can be integrated better in the expansion of the Mexican electrical system of generation. It was analyzed which of the four cases represents the best expansion plan in terms of two only parameters that are: 1) total cost of generation and, 2) the diversity of generated energy in all the period. In all studies candidates three different units of combined cycle were considered (802, 583 and 291 MW), a turbo gas unit of 267 MW, units of 700 MW with coal base and integrated de sulphur, geo thermo electrical units of 26.95 MW and two different types of nuclear units. In both first studies the Advanced Boiling Water Reactor (A BWR) for the nuclear units is considered, considering that is technology with more maturity of all the third generation reactors. In the following two studies were considered the European Pressurized Reactor (EPR), also of third generation, that uses in essence technology more spread to world-wide level. For this task was used the uni nodal planning model WASP-IV, developed by the IAEA to find the expansion configuration with less generation cost for each study. Considering the present situation of the generation system, the capacity additions begin starting from the year 2012 for the four studies. It is not considered the installation of nuclear plants before 2016 considering that its planning period takes 3 years, and the construction period requires at least of 5 years. In order to evaluate the diversity of each study it was used the Stirling Index or of Shannon-Weiner. In order to classify the studies in cost terms and diversity it was used like decision tool the Savage criterion, called also of minimal repentance. With this data, taking

  13. Optimal short-term operation schedule of a hydropower plant in a competitive electricity market

    International Nuclear Information System (INIS)

    Perez-Diaz, Juan I.; Wilhelmi, Jose R.; Arevalo, Luis A.

    2010-01-01

    This paper presents a dynamic programming model to solve the short-term scheduling problem of a hydropower plant that sells energy in a pool-based electricity market with the objective of maximizing the revenue. This is a nonlinear and non-concave problem subject to strong technical and strategic constraints, and in which discrete and continuous variables take part. The model described in this paper determines, in each hour of the planning horizon (typically from one day to one week), both the optimal number of units in operation (unit commitment) and the power to be generated by the committed units (generation dispatch). The power generated by each unit is considered as a nonlinear function of the actual water discharge and volume of the associated reservoir. The dependence of the units' efficiency and operating limits with the available gross head is also accounted for in this model. The application of this model to a real hydropower plant demonstrates its capabilities in providing the operation schedule that maximizes the revenue of the hydro plant while satisfying several constraints of different classes. In addition, the use of this model as a supporting tool to estimate the economic feasibility of a hydropower plant development project is also analyzed in the paper. (author)

  14. An assessment of the cyber security legislation and its impact on the United States electrical sector

    Science.gov (United States)

    Born, Joshua

    The purpose of this research was to examine the cyber-security posture for the United States' electrical grid, which comprises a major component of critical infrastructure for the country. The United States electrical sector is so vast, that the Department of Homeland Security (DHS) estimates, it contains more than 6,413 power plants (this includes 3,273 traditional electric utilities and 1,738 nonutility power producers) with approximately 1,075 gigawatts of energy produced on a daily basis. A targeted cyber-security attack against the electric grid would likely have catastrophic results and could even serve as a precursor to a physical attack against the United States. A recent report by the consulting firm Black and Veatch found that one of the top five greatest concerns for United States electric utilities is the risk that cybersecurity poses to their industry and yet, only one-third state they are currently prepared to meet the increasingly likely threat. The report goes on to state, "only 32% of electric utilities surveyed had integrated security systems with the proper segmentation, monitoring and redundancies needed for cyber threat protection. Another 48 % said they did not" Recent estimates indicate that a large-scale cyber-attack against this sector could cost the United States economy as much as a trillion dollars within a weeks' time. Legislative efforts in the past have primarily been focused on creating mandates that encourage public and private partnership, which have been not been adopted as quickly as desired. With 85 % of all electric utilities being privately owned, it is key that the public and private sector partner in order to mitigate risks and respond as a cohesive unit in the event of a major attack. Keywords: Cybersecurity, Professor Riddell, cyber security, energy, intelligence, outlook, electrical, compliance, legislation, partnerships, critical infrastructure.

  15. Comparative costs of coal and nuclear-generated electricity in the united states

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1987-01-01

    This paper compares the future first-year operating costs and lifetime levelized costs of producing baseload coal- and nuclear-generated electricity under schedules shorter than those recently experienced at U.S. plants. Nuclear appears to have a clear economic advantage. Coal is favorable only when it is assumed that the units will operate at very low capacity factors and/or when the capital cost differential between nuclear and coal is increased far above the recent historical level. Nuclear is therefore a cost-competitive electric energy option for utilities and should be considered as an alternative to coal when large baseload capacity is required. (author)

  16. Nuclear Power Plants in a Competitive Electricity Market

    International Nuclear Information System (INIS)

    Jankauskas, V.

    2002-01-01

    Electricity demand is growing in the world by an average rate of 3% and, according to the International Energy Agency, is going to keep this pace of growth for the 1st quarter of the 21st century. At the same time, the role of the nuclear in the world energy mix is diminishing, and in 2020 only 9% of the world electricity will be produced at the nuclear plants versus 17% in 2000. The main reasons for the nuclear power diminishing share in the world market are not environmental or safety problems, as one may assume, but technical and economical. Long construction time, high capital cost, huge liabilities connected with the spent nuclear fuel and radioactive waste treatment, storage and final disposal are the main factors restricting the further growth of the nuclear power. Nevertheless, in the liberalized markets (U.K., Germany, Scandinavian countries) nuclear power plants are operating rather successfully. In a short run nuclear plants may become very competitive as they have very low short-run marginal costs, but in the long run they may become very in competitive. The Ignalina NPP plays the dominant ro]e in the Lithuanian electricity market, producing more than 75% of the total domestic electricity. It produces the cheapest electricity in Lithuania, mostly due to its higher availability, than the thermal power plants. The price of electricity sold by Ignalina is also lower as it does not cover all costs connected with the future decommissioning of the plant, spent fuel storage and final disposal. If at least part of this cost were included into the selling price, Ignalina might become highly competitive in a liberalised electricity market. As the Lithuanian Electricity law requires to deregulate electricity. generation prices, these prices should be set by the market. (author)

  17. Energy prices and substitution in United States manufacturing plants

    Science.gov (United States)

    Grim, Cheryl

    Persistent regional disparities in electricity prices, growth in wholesale power markets, and recent deregulation attempts have intensified interest in the performance of the U.S. electric power industry, while skyrocketing fuel prices have brought renewed interest in the effect of changes in prices of all energy types on the U.S. economy. This dissertation examines energy prices and substitution between energy types in U.S. manufacturing. I use a newly constructed database that includes information on purchased electricity and electricity expenditures for more than 48,000 plants per year and additional data on the utilities that supply electricity to study the distribution of electricity prices paid by U.S. manufacturing plants from 1963 to 2000. I find a large compression in the dispersion of electricity prices from 1963 to 1978 due primarily to a decrease in quantity discounts for large electricity purchasers. I also find that spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s. In addition, I examine energy type consumption patterns, prices, and substitution in U.S. manufacturing plants. I develop a plant-level dataset for 1998 with data on consumption and expenditures on energy and non-energy production inputs, output, and other plant characteristics. I find energy type consumption patterns vary widely across manufacturing plants. Further, I find a large amount of dispersion across plants in the prices paid for electricity, oil, natural gas, and coal. These high levels of dispersion are accounted for by the plant's location, industry, and purchase quantity. Finally, I present estimates of own- and cross-price elasticities of demand for both the energy and non-energy production inputs.

  18. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  19. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  20. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  1. Identifying future electricity-water tradeoffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Sovacool, Kelly E. [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2009-07-15

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs. (author)

  2. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  3. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1986-12-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-0737 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, and Supplement 3 was issued in August 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fourth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new items

  4. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, and Supplement 4 was issued in December 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fifth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued

  5. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  6. Green electricity policies in the United States: case study

    International Nuclear Information System (INIS)

    Menz, Fredric C.

    2005-01-01

    While there has been interest in promoting the use of renewable energy in electricity production for a number of years in the United States, the market share of non-hydro renewable energy sources in electricity production has remained at about 2 percent over the past decade. The paper reviews the principal energy resources used for electricity production, considers the changing regulatory environment for the electricity industry, and describes government policies that have been used to promote green electricity in the United States, with an emphasis on measures adopted by state governments. Factors influencing the development of green power markets are also discussed, including underlying economic issues, public policy measures, the regulatory environment, external costs, and subsidies. Without significant increases in fossil fuel prices, much more stringent environmental regulations, or significant changes in electricity customer preferences, green electricity markets are likely to develop slowly in the United States

  7. Inventory of power plants in the United States 1990. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. The Summary Statistics chapter contains aggregate capacity statistics at the national and various regional levels for operable electric generating units and planned electric generating unit additions. Aggregate capacity data at the national level are presented by energy source and by prime mover. Aggregate capacity data at the various regional levels are presented by prime energy source. Planned capacity additions in new units are summarized by year, 1991 through 2000. Additionally, this chapter contains a summary of electric generating unit retirements, by energy source and year, from 1991 through 2000. The chapter on Operable Electric Generating Units contains data about each operable electric generating unit and each electric generating unit that was retired from service during the year. Additionally, it contains a summary by energy source of electric generating unit capacity additions and retirements during 1990. Finally, the chapter on Projected Electric Generating Unit Additions contains data about each electric generating unit scheduled by electric utilities to start operation between 1991 and 2000. 11 figs., 22 tabs.

  8. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2001-01-01

    The paper reflects some key aspects related to the shift of generations during the project's development, including the present stage. Further, the place of Cernavoda NPP Unit 1 in the Romanian power sector and among other nuclear stations in the world is presented. The operational performances achieved 'in service' up to the end of 1999, with reference to the performance indicators for electrical energy production, nuclear safety, radiation protection, radioactive wastes and nuclear fuel are illustrated. For all of these items, comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. Finally, some comments about Cernavoda NPP Unit 2 project status and need to completion and commissioning it are included. (authors)

  9. The steam generator repair project of the Donald C. Cook Nuclear Plant, Unit 2

    International Nuclear Information System (INIS)

    White, J.D.

    1993-01-01

    Donald C. Cook Nuclear Plant Unit 2 is part of a two unit nuclear complex located in southwestern Michigan and owned and operated by the Indiana Michigan Power Company. The Cook Nuclear Plant is a pressurized water reactor (PWR) plant with four Westinghouse Series 51 steam generators housed in an ice condenser containment. This paper describes the program undertaken by Indiana Michigan Power and the American Electric Power Service Corporation (AEPSC) to repair the Unit 2 steam generators. (Both Indiana Michigan Power and AEPSC arc subsidiaries of American Electric Power Company, Incorporated (AEP). AEPSC provides management and technical support services to Indiana Michigan Power and the other AEP operating companies.) Eddy current examinations, in a series of refueling and forced outages between November 1983 and July 1986 resulted in 763 (5.6%) plugged tubes. In order to maintain adequate reactor core cooling, a limit of 10% is placed on the allowable percentage of steam generator tubes that can be removed from service by plugging. Additionally, sections of tubes were removed for metallurgical analysis and confirmed that the degradation was due to intergranular stress corrosion cracking. In developing the decision on how to repair the steam generators, four alternative actions were considered for addressing these problems: retubing in place, sleeving, operating at 80% reactor power to lower temperature and thus reduce the rate of corrosion, replacing steam generator lower assemblies

  10. Turkey Point Plant, Units 3 and 4. Semiannual operating report No. 6, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated by Unit 3 was 2,676,523 MWH(e) with the plant on line 4,148.8 hrs. Unit 4 generated 1,429,108 MWH(e) and was on line 2,232.0 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental radiation monitoring. (FS)

  11. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-10-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This first supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued and provides the Advisory Committee on Reactor Safeguards letter dated August 13, 1985

  12. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  13. Completion of high-efficiency BWR turbine plant 'Hamaoka unit No. 4'

    International Nuclear Information System (INIS)

    Tsuji, Kunio; Hamaura, Norikazu; Shibashita, Naoaki; Kazama, Seiichi

    1995-01-01

    Accompanying the increase of capacity of nuclear power plants in Japan, the plants having heightened economical efficiency, which are supported by the improvement of thermal efficiency and the reduction of dose, are demanded. Hitachi Ltd. has completed No. 4 turbine unit of 1137 MW output in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is the largest capacity machine in Japanese BWR plants. In this unit, the moisture separator heater, the steam turbine with high efficiency, and the hollow thread film condensate filter which treats the total flow rate of condensate are used as the reheating type BWR plant for the first time in Japan, and the plan of heightened economy and operation was adopted. It was confirmed by the trial for about 10 months that the planned performance was sufficiently satisfied, and the commercial operation was started in September, 1993. The features of the 1137 MW turbine unit are explained. The turbine is of tandem six-flow exhaust condensation type. Diffuser type low pressure turbine exhaust chambers, butterfly type combination intermediate valve are adopted. The stages with the blades having moisture-separating grooves were corrected. The reliability of the shaft system was improved. The adoption of the moisture separator heater and the application of the hollow thread film type condensate filter are explained. (K.I.)

  14. Nuclear Electricity in the United States : Providing Energy For The Nation's Security and Well-Being

    International Nuclear Information System (INIS)

    Finger, Harold B.

    1988-01-01

    Nuclear energy in the United States has made major contributions since the small Shippingport prototype power plant began operating in 1957. Recent legislative and regulatory actions, as well as research an development, are indicating that additional nuclear capacity can be available in the years ahead. These actions reflect the public's recognition of the importance of nuclear energy. In addition, recent regulatory actions are reaffirming the health and safety of our current nuclear plants, as well as of those being completed. The performance of our current plants is being improved through the conscious dedication of the entire industry to excellence. There is increasing discussion in the United States of the importance of advanced reactor concepts development. The next generation of nuclear plants is already being ordered outside of the United States for example, here in Korea, in Japan, in the United Kingdom and those plants all use light water reactors. We are pleased that U. S. companies are working with you on these new plants. That continues to mean that we never let up on our drive for excellence. Excellence in operations must continue to be the conscious target of all operators. Excellence in communications to the public of the need for electrical capacity, of the benefits of nuclear energy, and of the excellence being achieved in operations is also essential. And excellence in communication to decision makers at all levels of government is also required to assure that sound legalisation and regulation is established and implemented

  15. Miksova hydro-electric power plant is awaiting the fortieths

    International Nuclear Information System (INIS)

    Regula, E.

    2004-01-01

    In this paper the history of cascade of the Miksova hydro-electric power plants (HEPP, in the Slovak Republic) is described. This cascade of power plants consists of the following hydro-electric power plant: Hricov HEPP, Miksova HEPP, Povazska Bystrica HEPP and Nosice HEPP. In the Miksova HEPP are installed three turbo-sets with Kaplan turbine from the CKD Blansko and with synchronous hydro-alternator. Synchronous hydroelectric alternators have maximal output by 31.2 MW. Their installed output is together 93.6 MW and projected production of electric energy is 207 GWh annually. To the end 2003 Miksova HEPP during 40 years has produced together 7,161,342 MWh of electric energy

  16. 78 FR 38411 - Vogtle Electric Generating Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria

    Science.gov (United States)

    2013-06-26

    ... Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests...

  17. Electric trade in the United States 1990

    International Nuclear Information System (INIS)

    1992-01-01

    Electric Trade in the United States 1990 (ELECTRA) is the third in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data. The second report contained data for 1988. This report provides information on the industry during 1990

  18. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  19. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  20. Revenue opportunities for gas plants arising from electricity deregulation

    International Nuclear Information System (INIS)

    Bachmann, G.C.

    1999-01-01

    A brief overview of deregulation in the electric power industry and an explanation of how these changes can be used to increase revenues of gas processing plants is provided. Deregulation in the electric power industry provides the potential to significantly reduce energy costs for the gas plant and allows technology to be applied to make a better use of a valuable commodity. Owners and operators of gas processing plants increase their operating income by taking advantage of co-generation systems which provide heat and electrical energy to the gas plant. Such an application has three revenue streams, the main one being the power sales to the gas plant, the second one heat sales, and the third increased revenues from the gas plant through a reduction of overall costs, not to mention significantly reduced downtime. Further savings are possible through diversion of excess energy produced to other facilities owned by the gas plant owner

  1. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  2. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1989-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, Supplement 7 was issued in January 1988, and Supplement 8 was issued in February 1989. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This ninth supplement to NUREG-1137 provides recent information regarding resolution of conditional items following issuance of Supplement 8

  3. Coal conversion process by the United Power Plants of Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    1974-08-01

    The coal conversion process used by the United Power Plants of Westphalia and its possible applications are described. In this process, the crushed and predried coal is degassed and partly gasified in a gas generator, during which time the sulfur present in the coal is converted into hydrogen sulfide, which together with the carbon dioxide is subsequently washed out and possibly utilized or marketed. The residual coke together with the ashes and tar is then sent to the melting chamber of the steam generator where the ashes are removed. After desulfurization, the purified gas is fed into an external circuit and/or to a gas turbine for electricity generation. The raw gas from the gas generator can be directly used as fuel in a conventional power plant. The calorific value of the purified gas varies from 3200 to 3500 kcal/cu m. The purified gas can be used as reducing agent, heating gas, as raw material for various chemical processes, or be conveyed via pipelines to remote areas for electricity generation. The conversion process has the advantages of increased economy of electricity generation with desulfurization, of additional gas generation, and, in long-term prospects, of the use of the waste heat from high-temperature nuclear reactors for this process.

  4. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    Science.gov (United States)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  5. Simulaton of the Avedøreværket Unit 1 Cogeneration Plant with DNA

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2003-01-01

    The simulator contest proposed for the ECOS 2003 conference has been solved using the DNA energy system simulator. The contest concerns the steam process of the Avedøreværket Unit 1 (AVV1) power plant. The plant is a 250 MWCHP plant with a maximum district heat production of 330 MJ/s. The plant has...... a net electric efficiency of 42% and a maximum energy utilization of 92%. In this paper it is demonstrated, that the DNA model of AVV1 can calculate the whole flow sheet balance at any load point, i.e., any possible combination of power production and district heat production. The paper also contains...

  6. Competitive Electricity Market Regulation in the United States: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Grid, Warwick (United Kingdom)

    2016-12-01

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  7. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  8. Technical evaluation report on the adequacy of station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. (Docket Nos. 50-266, 50-301)

    International Nuclear Information System (INIS)

    White, R.L.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. For the worst case conditions study submitted by the licensee, it was shown that the station electric distribution system voltages would be adequate to start and operate 4160-volt and 480-volt Class 1E loads and their associated low voltage controls

  9. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-05-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This second supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open and confirmatory items

  10. Inventory of power plants in the United States, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Operable capacity at US electric power plants totaled 693,016 megawatts, as of year-end 1991. Coal-fired capacity accounted for 43 percent (299,849 megawatts) of the total US generating capacity, the share it has essentially maintained for the past decade. Gas-fired capacity accounted for 18 percent (125,683 megawatts); nuclear, 14 percent (99,589 megawatts); water, 13 percent (92,031 megawatts); petroleum, 10 percent (72,357 megawatts); other, one percent (3,507 megawatts). The 693,016 megawatts of operable capacity includes 3,627 megawatts of new capacity that came on line during 1991 (Table 2). This new capacity is 42 percent less than capacity in new units reported for 1990. Gas-fired capacity accounted for the greatest share of this new capacity. It represents 38 percent of the new capacity that started operation in 1991. The surge in new gas-fired capacity is the beginning of a trend that is expected to exist over the next 10 years. That is, gas-fired capacity will dominate new capacity additions. Gas-fired capacity additions during the next 10 years will primarily be in simple cycle gas turbines and gas turbines operating as combined cycle units. These planned gas turbine and combined cycle units, whose capacity totals over 21,000 megawatts, are expected to serve peak and intermediate loads of electric utilities

  11. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  12. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  13. Insuring unit failures in electricity markets

    International Nuclear Information System (INIS)

    Pineda, S.; Conejo, A.J.; Carrion, M.

    2010-01-01

    An electric energy producer participates in futures markets in the hope of hedging the risk of trading in the pool. However, this producer is required to supply the energy associated with all its signed forward contracts even if some of its units are forced out due to unexpected failures. In this case, the producer must purchase some of the energy needed to meet its futures market commitments in the pool, which may result in high losses if the pool prices happen to be higher than the forward contract prices. To mitigate these losses, the producer can take out insurance against the forced outages of its units. Using a stochastic programming model, this paper analyzes the convenience of signing an insurance against unit failure by an electric energy producer and its impact on forward contracting decisions. Results from a realistic case study are provided and analyzed.

  14. Estimation of the Levelised Electricity Generation Cost for a PWR-Power Plant and Preliminary Evaluation of National Participation

    International Nuclear Information System (INIS)

    Saba, G; Hainoun, A

    2008-01-01

    This work deals with the detailed economic evaluation of the Levelised discounted electricity generation costs (LDEGC) for a nuclear power plant with pressurized water reactor (PWR). The total generation costs are splited in base construction costs, supplementary costs, owner's costs, financial costs, fuel cycle costs and operation and maintenance costs. The evaluation covers also the sensitivity of the estimated energy unit cost to various factors (real annual discount rate, escalation rate, interest rate, load factor, ..) including the role of national participation, that depends upon the development of national infrastructure. For performing this study the IAEA's program package for economic bid evaluation (Bideval-3) has been employed. The program is designed to assist the user in the economic evaluation of bids for nuclear power plant (NPP). It follows the recommended method of determining the present worth value of all costs components for generated electricity unit. The performed study aims at developing national expertise in the field of bid evaluation for electric power plants with main emphasis on NPP. Additional goal is to convoying the technical and economic development of NPP technology that can help in supporting the decision maker with adequate information related to the future development of energy supply system and measures required for ensuring national energy supply security. (author)

  15. Electric trade in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  16. Electric trade in the United States 1994

    International Nuclear Information System (INIS)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994

  17. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  18. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  19. Strategy of investment in electricity sources--Market value of a power plant and the electricity market

    Science.gov (United States)

    Bartnik, R.; Hnydiuk-Stefan, A.; Buryn, Z.

    2017-11-01

    This paper reports the results of the investment strategy analysis in different electricity sources. New methodology and theory of calculating the market value of the power plant and value of the electricity market supplied by it are presented. The financial gain forms the most important criteria in the assessment of an investment by an investor. An investment strategy has to involve a careful analysis of each considered project in order that the right decision and selection will be made while various components of the projects will be considered. The latter primarily includes the aspects of risk and uncertainty. Profitability of an investment in the electricity sources (as well as others) is offered by the measures applicable for the assessment of the economic effectiveness of an investment based on calculations e.g. power plant market value and the value of the electricity that is supplied by a power plant. The values of such measures decide on an investment strategy in the energy sources. This paper contains analysis of exemplary calculations results of power plant market value and the electricity market value supplied by it.

  20. Instrumentation and electrical program at the Three Mile Island Unit 2, Technical Integration Office

    International Nuclear Information System (INIS)

    Hecker, L.A.

    1982-01-01

    The Three Mile Island Unit 2 accident of March 28, 1979 presents unique research opportunities that can provide valuable information on nuclear power plant safety philosophy and safety systems performance. The Technical Integration Office at Three Mile Island was established by the Department of Energy to manage a broad-based research and development program. One significant part of this effort is the Instrumentation and Electrical Program, which operates: (1) to identify instruments and electrical components that failed during or since the accident; (2) to test and analyze them in order to identify the causes of failure; and (3) to assess the survivability of those that did not fail. The basis for selection of equipment is discussed, and the testing methodology is described. Also, some results of Instrumentation and Electrical Program work to date are presented

  1. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-08-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, and Supplement 2 was issued in May 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This third supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open items

  2. An Introduction to Retail Electricity Choice in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Retail electricity choice in the United States allows end-use customers (including industrial, commercial, and residential customers) to buy electricity from competitive retail suppliers. This brochure offers an overview of retail electricity choice in the United States, and its impact on prices and renewable energy procurement. It concludes with three lessons learned from the U.S. retail market experience that may serve as a reference for other countries and regions taking steps towards retail electricity market liberalization.

  3. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  4. Alberta electric industry annual statistics for 1998

    International Nuclear Information System (INIS)

    1999-06-01

    Tables containing data on electric energy generation and capacity for Alberta are provided for the following aspects: capacity and generation of power plants for 1998; capacity of power plants by type, unit, and energy resource for 1998; generating units approved for construction for 1998; generating units completed in 1998; transmission additions approved for construction and completed for 1998; net annual generating capacity and generation for 1988-1998; net monthly generation by plant for 1998; net annual generation by energy resource and type for 1988-1998; net monthly generation by energy resource and type for 1998; generation capacity reserve; relative capacity and generation by type of energy resource for 1998; capacity, generation and fuel consumption of isolated plants for 1998; other industrial on-site plant capacity and generation for 1998. Also listed are: energy resource consumption and energy conversion efficiency of thermal power plants for 1998; stack emissions from thermal generating plants for 1998; non-utility electric generators, wind and hydro for 1998; and hydroelectric energy utilization and conversion efficiency for 1998. Tables contain information on electric energy generation and capacity for hydroelectric energy stored in reservoirs in 1998; details of non-coincident net peak generation and load by utility operators for the Alberta electric system for 1998; and Alberta electric system generation and load at peak load hour for 1998. Further tables cover electric energy distribution for interchange and distribution for 1998 and 1981-1998; annual energy distribution to ultimate customers for 1988-1998 and to ultimate customers for 1998; and the number of electric utility customers in 1998. Final tables cover the transmission and distribution systems with data on: circuit km of such lines for 1988-1998; total circuit km of such lines by major electric utility for 1998 and number of rural electric utility customers for 1998

  5. Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States

    Science.gov (United States)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.

    2015-12-01

    The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.

  6. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  7. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  8. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  9. Electrical Systems at Laguna Verde Nuclear Power Plant (LVNPP) after the Fukushima accident

    International Nuclear Information System (INIS)

    Lopez Jimenez, Jose Francisco

    2015-01-01

    During the accident occurred in Fukushima Daiichi Nuclear Power Station in Japan, the onsite and offsite electrical systems were affected and lost for a long time with irreversible consequences, therefore, the Mexican Regulatory Body known as the National Commission for Nuclear Safety and Safeguards (CNSNS: for its acronym in Spanish) has taken several actions to review the current capacity of the electrical systems installed at Laguna Verde NPP to cope with an event beyond of the design basis. The first action was to require to Laguna Verde NPP the compliance with Information Notice 2011-05 'Tohoku-Taiheiyou-Oki earthquake effects on Japanese Nuclear Power Plants' and with 10 CFR 50.54 'Conditions of licenses' section 'hh', both documents were issued by the United States Nuclear Regulatory Commission (USNRC). Additionally, CNSNS has taken into account the response actions emitted by other countries after the Fukushima accident. This involved the review of documents generated by Germany, Canada, United Arab Emirates, Finland, France, the United Kingdom and the Western European Nuclear Regulator's Association (WENRA). CNSNS made special inspections to verify the current capacity of the electrical systems of AC and DC. As a result of these inspections, CNSNS issued requirements that must be addressed by Laguna Verde NPP to demonstrate that it has the capacity to cope with events beyond the design basis. Parallel to the above, Mexico has participated in the Ibero-american Forum to address matters related to the 'Resistance Tests', the evaluations of the Forum have reached similar conclusions to those required by European Nuclear Safety Regulators Group (ENSREG), under the format proposed by WENRA. The actions carried out here are closely linked to the requirements established by the USNRC. It is also important to mention that: 1) the Extended Power Up-rate project was implemented in both Units of the Laguna Verde NPP before

  10. Comparison between Japan and the United States in the frequency of events in equipment and components at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2007-01-01

    The Institute of Nuclear Safety System, Incorporated (INSS) conducted trend analyses until 2005 to compare the frequency of events in certain electrical components and instrumentation components at nuclear power plants between Japan and the United States. The results revealed that events have occurred approximately an order of magnitude less often in Japan than in the United States. This paper compared Japan and the United States in more detail in terms of how often events - events reported under the reporting standards of the Nuclear Information Archive (NUCIA) or the Institute of Nuclear Power Operations (INPO) - occurred in electrical components, instrumentation components and mechanical components at nuclear power plants. The results were as follows: (1) In regard to electrical components and instrumentation components, events have occurred one-eighth less frequently in Japan than in the United States, suggesting that the previous results were correct. (2) Events have occurred more often in mechanical components than electrical components and instrumentation components in both Japan and the United States, and there was a smaller difference in the frequency of events in mechanical components between the two countries. (3) Regarding mechanical components, it was found that events in the pipes for critical systems and equipment, such as reactor coolant systems, emergency core cooling systems, instrument and control systems, ventilating and air-conditioning systems, and turbine equipment, have occurred more often in Japan than in the United States. (4) The above observations suggest that there is little scope for reducing the frequency of events in electrical components and instrumentation components, but that mechanical components such as pipes for main systems like emergency core cooling systems and turbine equipment in the case of PWRs, could be improved by re-examining inspection methods and intervals. (author)

  11. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  12. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  13. Demands on project management of comprehensive modernization projects in the electrical systems area. Example of modernization of electrical systems of Kozloduy NPP Unit 5 and 6

    International Nuclear Information System (INIS)

    Stinshoff, Helmut; Weber, Patrick

    2006-01-01

    In nuclear power plants, station supply with electric energy must be guaranteed any time. This applies in particular also during the implementation of complex electrical systems modernization projects. Highest demands on the project management, extensive experience and system knowledge are required. In the frame of the Modernization Program for the nuclear power plant Kozloduy unit 5 and 6 in Bulgaria Framatome ANP has approved its ability to implement a large scope of modernization measures during the refueling outages of the years 2003 to 2005. The Contract of the Modernization Program for the European Consortium Kozloduy (Framatome ANP, Atomenergoexport) was signed in July 1999 and became effective in June 2001. The project will be finished by May 2006, with the approval of the Updated Final Safety Analysis Report. The scope of hardware work has been implemented within 6 plant outages during the years 2002 to 2005. The focus of the Modernization Program is mainly oriented to nuclear safety aspects, with the aim of upgrading of the Units to a high safety level in compliance with international practice. A further section of the project is dedicated to upgrading of operational equipment. Framatome ANP personnel have shown that besides the technical challenges which had to be faced, also the intercultural and language barriers were successfully overcome. The good teamwork between the partners of the Consortium ECK, its Bulgarian subcontractors and with Kozloduy plant personnel has been an important success factor. (authors)

  14. Modernization of electrical systems in NPP Kozloduy unit 5 and 6. Feedback of experience

    International Nuclear Information System (INIS)

    Stinshoff, H.

    2005-01-01

    In the frame of the modernization program for the nuclear power plant Kozloduy unit 5 and 6 Framatome ANP has implemented measures to increase the safety and availability of the electrical systems. The hardware installation is scheduled in the refueling outages of the years 2003 to 2005. In this paper the following items are presented: 1) an overview of the modernization measures; 2) some important technical features of the new equipment and diagnostic measures; 3) feedback of experience

  15. Present state of electric power business in United States and Europe

    International Nuclear Information System (INIS)

    Onishi, Kenichi

    2011-01-01

    This article reported present state of nuclear power and electric power business in United States and Europe after Fukushima Daiichi Accident. As for the trend of demand and supply of electric power and policy, the accident forced Germany possibly to proceed with phase-out of nuclear power, but France and United States to sustain nuclear power with no great change of energy policy at this moment. As for the trend of electric power market, there was not state in United States with liberalized retail market of electric power after rolling blackouts occurred in California State in the early 2000s. In Germany proceeding with renewable energy introduction, renewable electricity fed into the grid was paid for by the network operators at fixed tariffs and the costs passed on to electricity consumers were increasing. Renewable Portfolio Standards (RPS) in United States forced the state to introduction of renewable energy to some ratio, and Feed-in Tariff (FIT) introduced in EU in 1990s lead to introduction of a large amount of renewable electricity targeted in 2020. Huge amount of wind power introduction brought about several problems to solve such that excess electric power above domestic demand had bad effects on grids in neighboring region. Enforcement of power transmission lines was also needed with increase of maximum electric power as well as introduction of a large amount of renewable electricity. (T. Tanaka)

  16. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity

    International Nuclear Information System (INIS)

    Czarnowska, Lucyna; Frangopoulos, Christos A.

    2012-01-01

    Energy conversion systems generate pollution that causes damages to the environment and the society. The objective of this work is to study the dispersion of pollutants and assess the environmental and social cost due to pollution from such a system. For this purpose, a pulverized coal power plant is selected. Using thermodynamic principles combined with empirical techniques, the quantities of pollutants emitted by the plant are estimated. Then, using the EcoSenseWeb software, which is based on the results of the ExternE project, the external environmental cost (externalities) of pollution is assessed. The plant is considered as located in four different cities in Poland and the externalities are calculated for each city separately. It is shown that the external environmental cost has a strong influence on the unit cost of electricity. In addition, the dispersion of pollutants is presented for the plant located in Olsztyn city. Furthermore, the plant is considered as located near the capitals of European countries and the environmental externalities are calculated for each city. The neighboring countries that are strongly affected by the plant in each particular city are identified. The sensitivity of the unit cost of electricity to certain important parameters is investigated. -- Highlights: ► The external cost of pollution has a significant impact on the cost of electricity. ► The results depend on the particular plant, location and level (local-global). ► Externalities make the installation of abatement equipment economical. ► The source location of emissions has a significant effect on the external cost. ► The transboundary pollution has a strong effect on the environmental cost.

  17. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  18. Rejecting renewables. The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. (author)

  19. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  20. Assessment of electrical equipment aging for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  1. Assessment of electrical equipment aging for nuclear power plant

    International Nuclear Information System (INIS)

    2013-01-01

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  2. 1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available [approx. 233 MW(e)] could be used for alumina electrolysis

  3. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  4. Electrical systems at the nuclear power plant of Laguna Verde after the event in Fukushima

    International Nuclear Information System (INIS)

    Lopez J, J. F.

    2016-09-01

    During the event at the nuclear power plant of Fukushima Daichii (Japan), the electrical systems were affected both Onsite and Offsite, which were lost for a long time with irreversible consequences. Therefore, the Mexican Regulatory Body known as the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has taken various actions to review the current capacity of the electrical systems at the nuclear power plant of Laguna Verde (NPP-LV) before an event beyond the design bases. The CNSNS made special inspections to the NPP-LV to verify the current capacity of the electrical systems of Ac and Dc; as a result of the inspections, requirements were generated that must be met to demonstrate that has the capacity to deal with events beyond the design bases. In addition, CNSNS has participated in the Ibero-American Forum to deal with resistance testing. Is important to note that prior to the event at the nuclear power plant of Fukushima, the NPP-LV had implemented 1) the project Extended Power Increase in both Units of the NPP-LV, and 2) the Generic Charter 2006-02, both issues are considered contributions in the robustness of electrical systems. But it is also important to mention that the US Nuclear Regulatory Commission will soon issue mitigation strategies for a Station Blackout event, which could involve new actions at nuclear power plants. Based on the aforementioned, the CNSNS concludes that all the actions being taken contribute to the strengthening of the NPP-LV electrical systems, in order to increase their reliability, safety and operation when these are required to deal with events beyond the design bases as the event occurred in Fukushima Daichii and avoid as far as possible, damage in the reactor cores of the NPP-LV. (Author)

  5. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  6. Corrosion of packaged cadmium plated electrical control units from paint vapors

    International Nuclear Information System (INIS)

    Brough, L.A.

    1987-01-01

    One of the most widely used methods of controlling the degradation of steel is the application of paint. It is relatively easy to accomplish and very economical. Painted steel is used successfully for many applications, including industrial equipment with electrical enclosures. Unless the proper paint and application procedures are selected, corrosion problems may develop directly from the paint, as the following incident will illustrate. A few years ago, a large electrical control enclosure [30 x 72 x 18 in. (76 x 183 x 46 cm)] was supplied to a customer with the control wiring and hardware mounted inside, which included a number of cadmium plated components. The enclosure had been painted inside with a fast drying, vinyl alkyd white enamel shortly before assembly. Since it was known that the completed unit would probably be stored at the customer's plant site for some time before installation, elaborate procedures were followed to retard or prevent degradation of any part of the system

  7. Inventory of power plants in the United States 1989. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  8. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  9. Systems studies of dual purpose electric/synthetic fuels fusion plants

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1975-02-01

    A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes

  10. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  11. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  12. Electric power plant international. 1976--1977 edition

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ''Electric Power Plant International'' is intended to provide a comprehensive commercial and technical information source for use by suppliers, operators, and potential purchasers of power plant, and also by suppliers of materials and services to such organizations. It contains information that will help those considering the purchase of power plant to gain a reasonable understanding of the factors that should be taken into account when making a purchasing decision. Consideration is given to the operation, maintenance, and modification of power systems that will be of relevance to those currently operating plant. The publication is designed to act as an interface between suppliers and users of power plant. As part of this function, reference sections contain listings of all the companies that have been located throughout the world, supplying prime movers, generators, generator sets, and fixed-frequency inverter systems. Details of products currently available from these companies are included wherever possible and this is being continuously up-dated and extended to give increased coverage in future editions. The Electrical Research Association Ltd. does not manufacture or supply power plant (apart from some special-purpose static inverter systems), but would be pleased to receive requirement details from any company wishing to inquire about plant purchase. These will be forwarded to appropriate suppliers throughout the world who will be able to submit tenders for suitable products. Inquiry forms are included in Chapter 6 for this purpose.

  13. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  14. Economical analyses of build-operate-transfer model in establishing alternative power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yumurtaci, Zehra [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)]. E-mail: zyumur@yildiz.edu.tr; Erdem, Hasan Hueseyin [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)

    2007-01-15

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model.

  15. Economical analyses of build-operate-transfer model in establishing alternative power plants

    International Nuclear Information System (INIS)

    Yumurtaci, Zehra; Erdem, Hasan Hueseyin

    2007-01-01

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model

  16. Technical specifications, Vogtle Electric Generating Plant, Unit No. 1 (Docket No. 50-424): Appendix ''A'' to license No. NPF-61

    International Nuclear Information System (INIS)

    1987-01-01

    This technical specifications report presents information concerning the Vogtle Electric Generating Plant in the following areas: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  17. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  18. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  19. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  20. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    V.V. Shevchenko

    2013-06-01

    Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

  1. Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Grgic, D.

    2008-01-01

    Renewal of nuclear power programs in countries with modest electricity consumptions and weak electrical grid interconnections has raised the question of optimal nuclear power plants sizes for such countries. The same question would be also valid for isolated or weakly connected regions within a large country. Building large size nuclear power plant could be prevented by technical or financial limits. Research programs have been initiated in the International Atomic Energy Agency and in the USA (within the framework of the Global Nuclear Energy Partnership (GNEP) program) with the aim to inspect under which circumstances small and medium reactors could be the preferred option compared to large nuclear plants. The economy of scale is a clear advantage of large plants. This paper compares, by using probabilistic methods, the net cash flow of large and medium size plants, taking as example a large nuclear plant (around 1200 MW) and four sequentially built smaller plants (300 MW). Potential advantages and disadvantageous of both options have been considered. Main advantages of the sequential construction of several identical small units could be the reduced investor risk and reduced investment costs due to the learning effect. This analysis is a part of studies for the Croatian power generating system development. (orig.)

  2. What about improving the productivity of electric power plants

    International Nuclear Information System (INIS)

    Lawroski, H.; Knecht, P.D.; Prideaux, D.L.; Zahner, R.R.

    1976-01-01

    The FEA in April of 1974 established an Interagency Task Group on Power Plant Reliability, which was charged with the broad objective of improving the productivity of existing and planned large fossil-fueled and nuclear power plants. It took approximately 11 months for the task force to publish a report, ''Report on Improving the Productivity of Electrical Power Plants'' (FEA-263-G), a detailed analysis and comparison of successful and below-average-performance power plants. The Nuclear Service Corp. portion of this study examined four large central-station power plants: two fossil (coal) and two nuclear plants. Only plants with electrical generation capacities greater than 400 MWe were considered. The study included the following: staff technical skill, engineering support, QA program, plant/corporate coordination, operation philosophy, maintenance programs, federal/state regulations, network control, and equipment problems. Personnel were interviewed, and checklists providing input from some 21 or more plant and corporate personnel of each utility were utilized. Reports and other documentation were also reviewed. It was recognized early that productivity is closely allied to technical skills and positive motivation. For this reason, considerable attention was given to people in this study

  3. 1-MWp electrical photovoltaic plant (EPHOP - project)

    International Nuclear Information System (INIS)

    Vitanov, P.; Toneva, A.; Petkanchin, L.; Ivancheva, J.; Neshev, S.

    2000-01-01

    The presented project concerns the realization of a grid connected 1-MW p pilot photovoltaic plant on the territory of Bulgaria.The purpose of the project is to demonstrate and prove solar energy advantages. A special attention will be paid to the possibility the generated electricity to join the national electric network. The site selection according to the meteorological conditions as well as general aspects of the project are discussed

  4. A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas

    International Nuclear Information System (INIS)

    Lafrancois, Becky A.

    2012-01-01

    As the leading contributor of greenhouse gas emissions, the electricity sector stands to be impacted by policies seeking to curtail emissions. Instead of increasing electricity from renewable resources or nuclear power facilities, an alternative approach to reducing emissions in the electric power sector is changing the dispatch order of fossil fuels. Important differences between fossil fuels, and in the technologies used to burn them, make it possible to substantially reduce emissions from the sector. On average, each gigawatt-year of electricity generation switched from coal to natural gas reduces CO 2 emissions by 59 percent. As a result of significant investments in natural gas fired power plants in the United States between 1998 and 2005, there is an opportunity for electricity producers to take advantage of underutilized capacity. This is the first study to closely examine the new capital additions and analyze the technical potential for reductions in emissions. The analysis finds that 188 GW of capacity may be available to replace coal-fired baseload electricity generation. Utilizing this excess gas-fired capacity will reduce the sector's CO 2 emissions by 23 to 42 percent and reduce overall U.S. CO 2 emissions between 9 percent and 17 percent. - Highlights: ► Utilizing recently built natural gas fired power plants can significantly reduce CO 2 emissions in the United States. ► CO 2 emissions from electricity production can be reduced by 23–42 percent. ► U.S. overall CO 2 emissions reduced by 9–17 percent.

  5. Simulation of power plant construction in competitive Korean electricity market

    International Nuclear Information System (INIS)

    Ahn, Nam Sung; Huh, Sung Chul

    2001-01-01

    This paper describes the forecast of power plant construction in competitive Korean electricity market. In Korea, KEPCO (Korean Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company. Fossil power companies are schedule to be sold to private companies including foreign investors. Nuclear power company is owned by government. The competition in generation market will start from 2003. ISO (Independence System Operator) will purchase the electricity from the power exchange market. The market price is determined by the SMP (System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies. Large nuclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT (Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investor's behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investor's behavior can be applied to the new investments for the

  6. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  7. New maintenance strategy of Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant for effective ageing management and safe long-term operation

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Yamashita, Norimichi

    2009-01-01

    Fukushima Dai-ichi Nuclear Power Plant is the oldest among three nuclear power plants owned and operated by Tokyo Electric Power Company, which consists of six boiling water reactor units. The commercial operation of Unit 1 was commenced in 1971 (37 years old) and Unit 6 in 1978 (29 years old). Currently ageing degradations of systems, structures and components are managed through maintenance programs, component replacement/refurbishment programs and long-term maintenance plans. The long-term maintenance plans are established through ageing management component replacement/refurbishment programs reviews performed before the 30th year of operation and they are for safe and reliable operation after 30 years (long-term operation). However the past maintenance actions and past component replacement/refurbishment programs were not always proactive and past operational experience and maintenance practices suggest that effective/proactive ageing management programs be introduced in earlier stage of the plant operation. In this circumstance, Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant are setting up a new maintenance strategy that includes 1) improving the normal maintenance programs by using ageing degradation data, 2) effective use of information on internal/external operational experience and maintenance practices related to ageing, and 3) proactive component/equipment refurbishment programs during a refreshment outage for safe and reliable long-term operation. To accomplish the goal of this strategy, strengthening engineering capability of plant staff members is a crucial required for the plant. The objective of this paper is to briefly explain main results ageing management reviews, past and current significant ageing issues and management programs against them, and the new maintenance strategy established by Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant. (author)

  8. Wind power development in the United States: Effects of policies and electricity transmission congestion

    Science.gov (United States)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  9. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  10. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  11. Integrated Level 3 risk assessment for the LaSalle Unit 2 nuclear power plant

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Brown, T.D.; Miller, L.A.

    1991-01-01

    An integrated Level 3 probabilistic risk assessment (PRA) was performed on the LaSalle County Station nuclear power plant using state-of-the-art PRA analysis techniques. The objective of this study was to provide an estimate of the risk to the offsite population during full power operation of the plant and to include a characterization of the uncertainties in the calculated risk values. Uncertainties were included in the accident frequency analysis, accident progression analysis, and the source term analysis. Only weather uncertainties were included in the consequence analysis. In this paper selected results from the accident frequency, accident progression, source term, consequence, and integrated risk analyses are discussed and the methods used to perform a fully integrated Level 3 PRA are examined. LaSalle County Station is a two-unit nuclear power plant located 55 miles southwest of Chicago, Illinois. Each unit utilizes a Mark 2 containment to house a General Electric 3323 MWt BWR-5 reactor. This PRA, which was performed on Unit 2, included internal as well as external events. External events that were propagated through the risk analysis included earthquakes, fires, and floods. The internal event accident scenarios included transients, transient-induced LOCAs (inadvertently stuck open relief valves), anticipated transients without scram, and loss of coolant accidents

  12. Generic Virtual Power Plants: Management of Distributed Energy Resources under Liberalized Electricity Market

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    The emergence of Virtual Power Plant (VPP) can be attributed to the major boost of distributed energy resources (DER), which satisfies the changing needs of modern society on energy industry. Based on this concept, DER units disregarding the differences in each individualtechnology are loosely...... aggregated with a unique interface to the external grid and energy market. This paper gives a broad overview of state-of-the-art VPP concepts and proposes a detailed generic VPP (GVPP) model running in liberalized electricity market environment. An attempt is made to provide an outline of the main functions...

  13. Electric trade in the United States, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  14. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  15. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  16. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  17. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  18. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  19. Aging assessment of large electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry's large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs

  20. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  1. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    Science.gov (United States)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from 1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  2. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz

    2015-01-01

    Highlights: • Mathematical model of an integrated oxy-combustion power plant. • Comparison of a hybrid membrane–cryogenic oxygen generation plant with a cryogenic plant. • Thermodynamic analysis of the modeled cases of the plant. • Comparative economic analysis of the power plant with cryogenic and hybrid ASU. • Comparative risk analysis using a Monte Carlo method and sensitivity analysis. - Abstract: This paper presents a comparison of two types of oxy-combustion power plant that differ from each other in terms of the method of oxygen separation. For the purpose of the analysis, detailed thermodynamic models of oxy-fuel power plants with gross power of approximately 460 MW were built. In the first variant (Case 1), the plant is integrated with a cryogenic air separation unit (ASU). In the second variant (Case 2), the plant is integrated with a hybrid membrane–cryogenic installation. The models were built and optimized using the GateCycle, Aspen Plus and Aspen Custom Modeller software packages and with the use of our own computational codes. The results of the thermodynamic evaluation of the systems, which primarily uses indicators such as the auxiliary power and efficiencies of the whole system and of the individual components that constitute the unit, are presented. Better plant performance is observed for Case 2, which has a net efficiency of electricity generation that is 1.1 percentage points greater than that of Case 1. For the selected structure of the system, an economic analysis of the solutions was made. This analysis accounts for different scenarios of the functioning of the Emission Trading Scheme and includes detailed estimates of the investment costs in both cases. As an indicator of profitability, the break-even price of electricity was used primarily. The results of the analysis for the assumptions made are presented in this paper. A system with a hybrid air separation unit has slightly better economic performance. The break-even price

  3. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Adams, Charles M.; Wood, David G.; Feehan, Daniel J.; Veal, Howard F.; Skeen, John H. III; Koenigs, Melvin J.; Lichtenfeld, David I.; Seretakis, Pauline J.

    1990-09-01

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  4. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  5. Validation of a methodology for the study of generation cost of electric power for nuclear power plants; Validacion de una metodologia para el estudio de costos de generacion de electricidad de plantas nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F.; Martin del Campo M, C. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550, Jiutepec, Morelos (Mexico)]. E-mail: rfortega@mexis.com

    2004-07-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  6. Outdoor unit construction for an electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  7. Participation of nuclear power plants in variable operation regimes under conditions of combined electric power and heat generation

    International Nuclear Information System (INIS)

    Rydzi, S.

    1988-01-01

    The incorporation of nuclear power units in the control of the output of an electric power system is affected by technical and economic factors as well as by the manner of heat take-off from the nuclear power unit for heating purposes. The effect was therefore studied of the technological solution of converting the heat output of WWER-440 units to operating parameters of turbines in nonrated regimes of operation. Some results of the study are graphically represented. An analysis was also made of limitations preventing WWER-440 units from supplying heat with regard to their incorporation in the electric power transmission system. The results show that using nuclear power units for district heating will in the future strictly determine the seasonal shut-down of nuclear units for fuel exchange and overhauls. This could interfere with the considered concept of the 1.5 year duty time of WWER-440 reactors. With regard to the economy of operation of the nuclear power system and reduced demands on weekend unloading it will be necessary to incorporate in the power system pumped-storage power plants with one-week pumped-storage systems. (Z.M.). 5 figs., 2 tabs., 6 refs

  8. Method for controlling a nuclear fueled electric power generating unit and interfacing the same with a load dispatching system

    International Nuclear Information System (INIS)

    Mueller, N.P.; Meyer, C.E.

    1984-01-01

    A pressurized water reactor (PWR) nuclear fueled, electric power generating unit is controlled through the use of on-line calculations of the rapid, step and ramp, power change capabilities of the unit made from measured values of power level, axial offset, coolant temperature and rod position taking into account operator generated, safety and control, and balance of plant limits. The power change capabilities so generated may be fed to an automatic dispatch system which provides closed loop control of a power grid system. (author)

  9. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  10. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  11. Electric Power Monthly, June 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants ; and the Form EIA-826, M onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent

  12. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  13. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-12-01

    Full Text Available The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  14. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    Science.gov (United States)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  15. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  16. Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2

    Science.gov (United States)

    Kusuma, Yuriadi; Permana, Dadang S.

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.

  17. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    ) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  18. Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant

    OpenAIRE

    Buhagiar, Daniel; Sant, Tonio

    2014-01-01

    A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categoris...

  19. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  20. Availability analysis of United States BWR IV electrical generation plants

    International Nuclear Information System (INIS)

    Renick, D.H.; Li, F.; Todreas, N.E.

    1998-01-01

    Availability, as quantified by power output levels, from all active U.S. BWR IV plants were analyzed over a seven and a half year period to determine the operational characteristics of these plants throughout an operating cycle. The operational data were examined for infant mortality, end of cycle decreased availability, and seasonal availability variations. Scheduled outages were also examined to determine the industry's current approach to planning maintenance outages. The results of this study show that nuclear power plants do suffer significant infant mortality following a refueling outage. And while they do not suffer an end of cycle decrease in availability, a mid-cycle period of decreased availability is evident. This period of decreased availability is due to a combination of increased forced unavailability and seasonally scheduled maintenance and refueling outages. These findings form the start of a rational approach to increasing plant availability. (author)

  1. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  2. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  3. The Issue of Unit Constraints and the Non-Confiscatory Electricity Market

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Rahmati, Iman; Bak, Claus Leth

    2017-01-01

    Security constraint unit commitment is devised to drive the generation unit schedule in a deregulated environment. Generation bids, transmission system constraints and generation unit constraints are thoroughly considered in this optimization problem. It is acceptable that the transmission system...... normal condition constraints may affect the economic opportunities of the generation companies in the electricity market. Transmission system limitations are the inherent limits of the market environment but this is not true for the generation unit constraints. It means that the generation unit...... constraint of a certain player should not affect the economic opportunities of the rivals. If this happen, generation units can claim to the electricity market regulatory board. In this paper the effect of generation unit constraint on the market outcome is discussed. A fair mechanism is introduced in which...

  4. The economics of new nuclear power plants in liberalized electricity markets

    International Nuclear Information System (INIS)

    Linares, Pedro; Conchado, Adela

    2013-01-01

    Even after Fukushima, the nuclear debate is strong in many countries, with the discussion of its economics being a significant part of it. However, most of the estimates are based on a levelized-cost methodology, which presents several shortcomings, particularly when applied to liberalized electricity markets. Our paper provides results based on a different methodology, by which we determine the break-even investment cost for nuclear power plants to be competitive with other electricity generation technologies. Our results show that the cost competitiveness of nuclear power plants is questionable, and that public support of some sort would be needed if new nuclear power plants are to be built in liberalized markets. - Highlights: • We propose an alternative more realistic than LEC for the evaluation of the economics of nuclear electricity. • Our results show that the cost competitiveness of nuclear power plants is questionable. • Building nuclear power plants will require public support, particularly regarding risk management. • These results are less optimistic than previous, LEC-based, estimates

  5. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.

  6. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  7. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  8. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  9. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects

  10. AIR POLLUTION: Emissions from Older Electricity Generating Units

    National Research Council Canada - National Science Library

    2002-01-01

    .... While fossil fuels-coal, natural gas, and oil-account for more than two thirds of our electricity, generating units that burn these fuels are major sources of airborne emissions that pose human...

  11. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  12. Report of the international fire safety mission to Temelin, unit 1 nuclear power plant Czech Republic 4 to 14 February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an IAEA Fire Safety Mission conducted within the scope of Technical Co-operation Project CZR/9/005 to assess the licensing process, design, analysis and operational management of the Temelin Nuclear Power Plant with regards to fire safety of the plant. The Temelin Nuclear Power Plant currently has two units under construction. Each unit is equipped with a pressurized water reactor of the WWER design with a net electrical output of about MWe. The plant has already made significant upgrading in fire protection from the original design. The Team's evaluation is based on the IAEA Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and other fire protection guidelines currently produced by the IAEA. The evaluation, conclusions and recommendations presented in this report reflect the views of the Fire Safety Mission experts. The recommendations are provided for consideration by the responsible authorities in the Czech Republic towards enhancing fire safety at the Temelin plant

  13. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  14. Gas supply and Yorkshire Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-04-01

    Yorkshire Electricity, among other independent suppliers of gas, now competes for a share of the United Kingdom gas market, previously monopolised by British Gas. The experience of this successful electric utility company, expanding into the industrial and domestic gas supply market is described in the article. The company`s involvement stems partly from the fact that significant volumes of gas are landed at three terminals within its franchise area. The company will also seek to use subsidaries to generate electric power from gas turbine power plants and explore the possibilities of developing combined heat and power (CHP) plants where appropriate. (UK)

  15. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  16. Guinea_WADC00321_ADBG_Guinea_Power_Plants

    Data.gov (United States)

    United Nations Cartographic Section — Data for power plants with total installed generating capacity > 10 mw from the Platts World Electric Power Plants Database (WEPP 2006). Plants were georeferenced...

  17. Safety evaluation report: related to the operation of Perry Nuclear Power Plant, Units 1 and 2, Docket Nos. 50-440 and 50-441, Cleveland Electric Illuminating Company

    International Nuclear Information System (INIS)

    1982-08-01

    Supplement No. 1 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group, CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 441). The facility is located near Lake Erie in Lake County, Ohio. This supplement has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  18. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  19. Cutting the electric power consumption of biogas plants. The impact of new technologies; Eigenstromverbrauch an Biogasanlagen senken. Der Einfluss neuer Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Julian; Gruessing, Fabian; Naegele, Hans-Joachim; Oechsner, Hans [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Agrartechnik und Bioenergie Baden-Wuerttemberg

    2013-03-01

    Due to permanently rising energy costs, the assessment of electric energy consumption for particular aggregates of a biogas plant proves to be a significant factor for the economic and technical efficiency calculation of biogas plants. At the University of Hohenheim, students of the Biobased Products and Bioenergy course have analyzed the energy consumption of biogas plants (BGP) in a project work at the State Institute of Agricultural Engineering and Bioenergy (Landesanstalt fuer Agrartechnik und Bioenergie). Detailed measurements at two operational plants show the effects of different facilities on the energy consumption. Furthermore, saving potentials and a possible efficient energy use via an exhaust gas power generator (ORC unit) are identified. (orig.)

  20. Integration of wind energy in the Dutch electricity system in the context of the Northwestern European market for electricity. Final report

    International Nuclear Information System (INIS)

    Benz, E.; Hewicker, C.; Moldovan, N.; Stienstra, G.; Van der Veen, W.

    2010-04-01

    A study was conducted of the integration of large volumes of wind energy in the Dutch electricity system in the context of a Northwest European electricity market for the year 2020. This study contributes to answering the questions that are at the centre of the project 'Fuel mix'. The following aspects are addressed: the capacity to combine large volumes of wind energy in the Dutch electricity system with the use of CHP; the impact of electricity costs; the influence on CO2 emissions and fuel use; the correlation between the electricity production of CHP units; wind parks and coal-fired plants. In this study the Dutch electricity system is simulated in connection with the framework of the regional electricity market in Northwest Europe for the year 2020. The conducted simulations are based on perfect competition with the marginal cost price of the production units as offer price in the electricity market. To this end the chronological production simulation model (PLEXOS) was used, which takes into account the dynamic operational management and limitations of the electricity plants and the transmission grid. [nl

  1. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Yuri Yu. Yankin

    2014-11-01

    Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

  2. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    All electric and active mechanical equipment important to safety for nuclear power plants must be seismically qualified by testing, analysis, or combined analysis and testing. The general requirements for seismic qualification of electric and active mechanical equipment in nuclear power plants are delineated in Appendix S, 'Earthquake Engineering Criteria for Nuclear Power Plants,' to Title 10, Part 50, 'Domestic Licensing of Production and Utilization Facilities,' of the Code of Federal Regulations (10 CFR Part 50), item 52.47(20) of 10 CFR 52.47, 'Contents of Applications; Technical Information,' and Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' The United States Nuclear Regulatory Commission (NRC) issued Revision 2 of Regulatory Guide (RG) 1.100, 'Seismic Qualification of Electric and Mechanical for Nuclear Power Plants' in 1988, which endorsed, with restrictions, exceptions, and clarifications, Institute of Electrical and Electronics Engineers (IEEE) Standard 344-1987 'IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations,' for use in seismic qualification of both electric and mechanical equipment. In 2008, the staff at the NRC drafted Revision 3 of RG 1.100 to endorse, with restrictions, exceptions, and clarifications, the IEEE Std 344-2004 and the American Society of Mechanical Engineers (ASME) QME-1-2007 'Qualification of Active Mechanical Equipment Used in Nuclear Power Plants.' IEEE Std 344-2004 was an update of Std 344-1987 and ASME QME-1-2007 was an update of QME-1-2002. The major changes in IEEE Std 344-2004 and ASME QME-1-2007 include the update and expansion of criteria and procedures describing the use of experience data as a method for seismic qualification of Class 1E electric equipment (including I and C components) as well as active mechanical equipment. In this paper, the staff will compare the draft Revision 3 to

  3. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  4. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  5. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  6. LIFE Cost of Electricity, Capital and Operating Costs

    International Nuclear Information System (INIS)

    Anklam, T.

    2011-01-01

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  7. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    Directory of Open Access Journals (Sweden)

    Sara Samimi Loghmani

    2014-05-01

    Full Text Available Phosphorus (P is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa and duck weed (lemna minor with four treatments and three replications. Data were analyzed in a factorial completely randomized design. Treatments included effluent with and without the plants, and effluent diluted (dilution grade 1/2 with and without the plants. Total dissolved P, electrical conductivity (EC and pH value were measured after 8, 16 and 24 days in effluent samples. The results showed that pH value decreased up to 0.2 units during of 24 days of the experiment, but there was found no significant difference (p≤0.05 in pH values among the treatments. Both plants decreased EC about 7 % relative to the control (without plant after 24 days. The plants were also effective in reducing total dissolved phosphorus, so that duck weed and elodea decreased total dissolved P in the effluent about 49 and 7%, respectively. It is concluded that duck weed is more effective in the P removal from the effluent than the other plant.

  8. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  9. Slovak Electric, Plc., 1997

    International Nuclear Information System (INIS)

    1997-06-01

    Slovenske elektrarne, a.s. (Slovak Electric, Plc.) was established on November 1, 1994 as one entity among new entities created as successors to the former Slovensky energeticky podnik. The subject activity is the generation of electric power, operation of transmission 220 kV and 400 kV systems, transit, import, export, and sales of electric power. Besides these activities the company deals with generation, distribution, and sales of heat. The company operates one nuclear power station, three thermal power plants, and thirty hydro power plants. One nuclear Power plant is under construction (state up tu June 1997). On this CD ROM next chapters are presented: (1) The structure of the company; (2) The production Units; (3) The economic power of the company; (4) The operation culture of the company; (5) The strategic plans of the company

  10. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  11. Comparison study on models for calculation of NPP’s levelized unit electricity cost

    International Nuclear Information System (INIS)

    Nuryanti; Mochamad Nasrullah; Suparman

    2014-01-01

    Economic analysis that is generally done through the calculation of Levelized Unit Electricity Cost (LUEC) is crucial to be done prior to any investment decision on the nuclear power plant (NPP) project. There are several models that can be used to calculate LUEC, which are: R&D PT. PLN (Persero) Model, Mini G4ECONS model and Levelized Cost model. This study aimed to perform a comparison between the three models. Comparison technique was done by tracking the similarity used for each model and then given a case of LUEC calculation for SMR NPP 2 x 100 MW using these models. The result showed that the R&D PT. PLN (Persero) Model have a common principle with Mini G4ECONS model, which use Capital Recovery Factor (CRF) to discount the investment cost which eventually become annuity value along the life of plant. LUEC on both models is calculated by dividing the sum of the annual investment cost and the cost for operating NPP with an annual electricity production.While Levelized Cost model based on the annual cash flow. Total of annual costs and annual electricity production were discounted to the first year of construction in order to obtain the total discounted annual cost and the total discounted energy generation. LUEC was obtained by dividing both of the discounted values. LUEC calculations on the three models produce LUEC value, which are: 14.5942 cents US$/kWh for R&D PT. PLN (Persero) Model, 15.056 cents US$/kWh for Mini G4ECONs model and 14.240 cents US$/kWh for Levelized Cost model. (author)

  12. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  13. Industrial DSM in a deregulated European electricity market - a case study of 11 plants in Sweden

    International Nuclear Information System (INIS)

    Trygg, Louise; Karlsson, B.G.

    2005-01-01

    In 2004 Sweden will become part of a common European electricity market. This implies that the price of electricity in Swedish will adapt to a higher European electricity price due to the increase in cross-border trading. Swedish plant is characterized as more electricity-intensive than plant on the European continent, and this, in combination with a higher European electricity price will lead to a precarious scenario. This paper studies the energy use of 11 plants in the municipality of Oskarshamn in Sweden. The aim is to show how these plants can reduce their electricity use to adapt to a European level. We have found that the plants could reduce their use of electricity by 48% and their use of energy by 40%. In a European perspective, where coal-condensing power is assumed to be the marginal production that alters as the electricity demand changes, the decrease in the use of electricity in this study leads to a reduction in global emissions of carbon dioxide of 69,000 tonne a year. Electricity generated in Sweden emits very low emissions of carbon dioxide and have thus consequently very low external cost. The freed capacity in Sweden could therefore replace electricity generated with higher external cost and as a result lower the total external cost in Europe. The emissions from the saved electricity could also be valuable within the EU emissions trading scheme, if the emissions calculation is done assuming the marginal electricity is fossil fuel based

  14. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  15. Integration of a nuclear power plant in electrical systems, alternative programs, optimization

    International Nuclear Information System (INIS)

    Souza, J.A.M. de.

    1991-01-01

    The problem of integration of a nuclear power plants in a electrical power system, to support the power demand of the system, and mainly also support the power demand at the critical period, I.E., peak demands, is analysed. The factors considered in this analysis are: the demand structure of the region, the availability of others power plants in the electrical net and the capacity factor. (author)

  16. More Electricity. Methodical survey of existing plants; Mer El. Metodisk genomgaang av befintliga anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Baafaelt, Martin [Carl Bro Energikonsult AB, Malmoe (Sweden); Ifwer, Karin; Svensson, Niclas; Oehrstroem, Anna [AaF-Process AB, Stockholm (Sweden); Johansson, Inge [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2006-11-15

    The interest in production of electricity has increased the last years as a consequence of the increased price. A high production of electricity is of interest for all kinds of CHP-plants. For large biofuel fired CHP-plants typical electrical efficiency is 35 %, for incineration plants the electrical efficiency is about 28 %. A number of reasons why it is not higher, for example corrosion, fouling, erosion, limited and varying need for heat, flue gas condensation etc, exist. A number of these reasons have earlier been studied in different Vaermeforsk reports. The results from these studies give to some extent solutions and understanding for how the production of electricity can be increased. There is however no report that has the overall picture of what actions are realistic, most cost effective, what areas need more research and gives the most benefit of allocated funds. The aim of this report is to identify the technical limitations and propose measures for increased electricity production at CHP-plants using biofuel and waste. A method for identification of the most suitable actions for each plant is also presented. The idea is to take every conceivable factor that affects electricity production into consideration and to be able to make a relevant comparison of the factors. This report doesn't take new solutions/measures and means of control into consideration. The method used is called 'Weighted Sum Method'. Every action is assessed in the means of different criteria as for example how it affects the environment, if it is profitable, if it means more maintenance etc. An extensive checklist for different conceivable measures for increased electricity production has been created. The checklist includes measures from the fuel storage to the chimney and makes a good guidance when making a review of a biofuel or incineration CHP-plant. Some of the measures can be eliminated immediately at review since they not are applicable or have already been done

  17. Introduction of Electrical System Simulation and Analysis Used in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Sang Hak; Jeong, Woo Sung

    2015-01-01

    The purpose of this paper is to introduce the simulation methods and tools to analyse and predict the performance of the electric power distribution system for nuclear power plants (NPPs) in Korea. Electrical System design engineers are to evaluate the load flow, bus voltage profiles, short circuit levels, motor starting, and fast bus transfer under various plant operating conditions and to verify the adequacy of power distribution System for a reliable power supply to plant loads under various disturbances which could jeopardize a safe and reliable operation of nuclear power plants. (authors)

  18. On-site electric power source facility for Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Oohara, T.

    1986-01-01

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  19. On-site electric power source facility for Japanese nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, T. [Incident/Failure Analysis and Evaluation Office, Nuclear Power Safety Information Research Centre, Nuclear Power Engineering Test Centre, 2nd Floor, Shuwa-Kamiyacho Bldg., 3-13, 4-Chome, Toranomon Minato-ku, Tokyo 105 (Japan)

    1986-02-15

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  20. Callaway Plant Units 1 and 2: Final environmental statement (Docket Nos. STN 50-483 and STN 50-486)

    International Nuclear Information System (INIS)

    1975-03-01

    The proposed action is the issuance of a construction permit to the Union Electric company for the construction of the Callaway Plant Units 1 and 2. The Callaway Plant, located 5 m north of the Missouri River in Callaway County, Missouri, will employ a pressurized water reactor to produce up to 3425 megawatts thermal (MWt) from each unit. A steam turbine-generator will use the heat to provide 1120 MWe (net) of electrical power capacity. A stretch power level of 3579 MWt (1160 MWe) is anticipated at a future date and is considered in the assessments contained in this statement. The exhaust steam will be cooled in a closed cycle mode, with water from the Missouri River. Constructing the plant and adjacent facilities will disturb an area of about 600 acres, of which less than 300 acres will be occupied by the operating plant and road and rail access to it. The land presently consists of cropland, pasture and forest. About 1140 acres will be required for the transmission line routes. The land presently consists of forest, pasture and cropland. No unique land usage is involved. Siltation and erosion during construction generally will have minor adverse effects, based upon the extent of protection measures the applicant plans to impose. The effect on Logan Creek is expected to be minor, but further assessment is needed, including possible additional precautions. About 14% of the benthic invertebrate population will be lost in the rectangular area defined by the river width and the length of the area to be dredged for shoreline structures. 28 figs., 53 tabs

  1. Near-term implications of a ban on new coal-fired power plants in the United States.

    Science.gov (United States)

    Newcomer, Adam; Apt, Jay

    2009-06-01

    Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.

  2. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  3. The Concept of the Use of the Marine Reactor Plant in Small Electric Grids

    International Nuclear Information System (INIS)

    Khlopkin, N.; Makarov, V.; Pologikh, B.

    2002-01-01

    In report some aspects of the using marine nuclear reactor are considered for provision of need small non-interconnected power systems, as well as separate settlements and the mining enterprises disposed in regions with a undeveloped infrastructure. Recently for these purposes it is offered to use the nuclear small modular power plants. The required plant power for small electric grids lies within from 1 to several tens of MWe. Module can be collected and tested on machine-building plant, and then delivered in ready type to the working place on some transport, for instance, a barge. Through determined time it's possible to transport a module to the repair shop and also to the point of storage after the end of operation. Marine nuclear reactors on their powers, compactness, mass and size are ideal prototypes for creation of such modules. For instance, building at present floating power unit, intended for functioning in region of the Russian North, based on using reactor plants of nuclear icebreakers. Reliability and safety of the ship reactor are confirmed by their trouble-free operation during approximately 180 reactors-years. Unlike big stationary nuclear plant, working in base mode, power unit with marine reactor wholly capable to work in mode of the loading following. In contrast with reactor of nuclear icebreaker, advisable to increase the core lifetime and to reduce the enrichment of the uranium. This requires more uranium capacity fuel compositions and design of the core. In particular, possible transition from traditional for ship reactor of the channel core to cassette design. Other directions of evolution of the ship reactors, not touching the basic constructive decisions verified by practice, but promoting development of properties of self-security of plant are possible. Among such directions is reduction volumetric power density of a core. (author)

  4. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  5. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  6. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  7. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  8. Model project for reduction of electric power consumption in cement plant. Report for fiscal 1999 on achievements of commissioned operation; Cement shosei plant denryoku shohi sakugen model jigyo 1999 nendo itaku gyomu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With objectives of utilizing energies efficiently and serving for environmental improvements, a model project was implemented for reduction of electric power consumption in cement plant in Vietnam. This paper reports the achievements in fiscal 1999. This project is intended to install waste heat boilers in waste gas lines in the preheating process in the cement plant, whose waste heat is recovered by steam to generate electric power by using steam turbines. The current fiscal year has executed the following activities: design of turbines, condensers, and oil units; discussions on the arrangement drawings thereof obtained from the Vietnam side; design of piping and provision of the detailed drawings thereof to the Vietnam side; planning of the electric cable routes; planning of instrumentation wiring routes; and grounding and interlocks. Results of the discussions on the proposed plant operation methods were reflected to the system design of the monitoring devices. Furthermore, the turbines were fabricated, and the associated facilities, valves, and piping materials were procured based on the detailed design. The piping materials were given pre-shipment inspections before having been transported to the site. (NEDO)

  9. Analysis of future nuclear power plants competitiveness with stochastic methods

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.

    2004-01-01

    To satisfy the increased demand it is necessary to build new electrical power plants, which could in an optimal way meet, the imposed acceptability criteria. The main criteria are potential to supply the required energy, to supply this energy with minimal (or at least acceptable) costs, to satisfy licensing requirements and be acceptable to public. The main competitors for unlimited electricity production in next few decades are fossil power plants (coal and gas) and nuclear power plants. New renewable power plants (solar, wind, biomass) are also important but due to limited energy supply potential and high costs can be only supplement to the main generating units. Large hydropower plans would be competitive under condition of existence of suitable sites for construction of such plants. The paper describes the application of a stochastic method for comparing economic parameters of future electrical power generating systems including conventional and nuclear power plants. The method is applied to establish competitive specific investment costs of future nuclear power plants when compared with combined cycle gas fired units combined with wind electricity generators using best estimated and optimistic input data. The bases for economic comparison of potential options are plant life time levelized electricity generating costs. The purpose is to assess the uncertainty of several key performance and cost of electricity produced in coal fired power plant, gas fired power plant and nuclear power plant developing probability distribution of levelized price of electricity from different Power Plants, cumulative probability of levelized price of electricity for each technology and probability distribution of cost difference between the technologies. The key parameters evaluated include: levelized electrical energy cost USD/kWh,, discount rate, interest rate for credit repayment, rate of expected increase of fuel cost, plant investment cost , fuel cost , constant annual

  10. Wood pellets, what else? : Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    NARCIS (Netherlands)

    Hanssen, Steef V.; Duden, Anna S.; Junginger, Martin; Dale, Virginia H.; van der Hilst, Floortje

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are

  11. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  12. Electricity - a great asset for Canada

    International Nuclear Information System (INIS)

    Chretien, Jean.

    1983-06-01

    Canada has a great national asset in its ability to generate electricity economically from its abundant hydro, coal, and uranium resources. Its nuclear industry has an excellent product. Despite lack of orders for now, the CANDU will be a competitive force when the reactor market recovers. Canada has a proven record of reliability for electricity trade with the United States. There appear to be some opportunities for plants in Canada dedicated to the export of electric power. The federal government is prepared to work closely with the provinces to develop projects which will be attractive to customers in the United States

  13. Competition Between Different Sources of Electricity

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    To persons interested in nuclear energy questions, and especially administrators in the private or public sector, one of the most important questions is the competitive status of nuclear electricity in relation to electricity supplied from other sources. In this connection ''to compete'' means to produce at an equivalent or lower cost. Nuclear plants will be particularly attractive, and even preferable, when they can supply power at costs lower than conventional sources, e.g. water and fossil fuels. In many European countries and in the United States, the competitiveness of nuclear power is generally considered purely in comparison with thermal plants operating on coal or mineral oil, since such plants are predominant in those countries. This is not the case in Brazil and other countries where the bulk of the electricity produced comes from hydroelectric plants

  14. Electric utility fuel choice behavior in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Joskow, P.L.; Mishkin, F.S.

    1977-10-01

    Electric utility fuel choice behavior is analyzed by a conditional logit model to determine the effects of changing oil prices of five plants. Three of the plants faced favorable expected coal prices and, like many areas of the country, were insensitive to changing oil prices. This was not the case at the New England plant, however, where relatively small price increases would decrease the likelihood of choosing oil as an alternative fuel for new plants. The modeling of utility behavior in fuel decisions is felt to be applicable to other industries where a continuum of decision possibilities does not reasonably characterize choice alternatives. New behavior models are urged in order to obtain better predictions of the effects of a changing economic environment. 10 references.

  15. Heat recovery from a cement plant with a Marnoch Heat Engine

    International Nuclear Information System (INIS)

    Saneipoor, P.; Naterer, G.F.; Dincer, I.

    2011-01-01

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO 2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  16. Scheduling the maintenance of gaseous diffusion and electric power distribution plants

    International Nuclear Information System (INIS)

    Chauvet, D.

    1990-01-01

    A computer aided scheduling applied to the maintenance of a uranium enrichment plant is presented. The plant exploits gaseous diffusion and electric power distribution plants, for which the operating conditions must be satisfied. The management and the execution of the maintenance actions are computer aided. Concerning the techniques, the cost, the safety and the scheduling actions were optimized [fr

  17. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Garcia V, M.A.; Hernandez M, I.A.; Martin del Campo M, C.

    2004-01-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  18. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  19. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425): Supplement 8

    International Nuclear Information System (INIS)

    1989-02-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the Staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, and Supplement 7 was issued in January 1988. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This eighth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 7. 5 figs., 3 tabs

  20. Prophylactic and thermovision measurements of electric machines and equipment

    International Nuclear Information System (INIS)

    Jedlicka, R.; Brestovansky, L.

    1996-01-01

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. Measurements enumarated in paragraph 1 are made on disconnected electric

  1. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  2. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  3. Impacts from new 50 MW wind power plant - Bogdnaci on the price of electrical energy in Macedonia

    International Nuclear Information System (INIS)

    Minovski, D.; Sarac, V.; Causevski, A.

    2012-01-01

    The paper presents the impact from the new planned wind power plant Bogdnaci on the price for the end users of electrical energy in Republic of Macedonia. In the next years, 50 MW wind power will be installed in the Macedonian electric power system. Production of electricity from wind power plants is unpredictable and of stochastic nature i.e. depends on the weather or the wind speed at the appropriate locations. Output of wind power plants is changing every minute, thus changing in the hourly level can be from 0 - 100%, even several times depending on the occurrence of winds. Changes in output of wind power plants, leads to increased demand for operational reserve in a power system. Preferential price of electrical energy from the wind power plants and increased operational reserve in the electric power system will have big impact on the final price of electrical energy in Republic of Macedonia. (Authors)

  4. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  5. 15 years of production of electric energy of the Laguna Verde power plant, its plans and future

    International Nuclear Information System (INIS)

    Rivera C, A.

    2005-01-01

    In the year 2005 Laguna Verde power plant reaches 15 years of producing electric power in Mexico arriving to but of 100 million Megawatts-hour from their beginning of commercial activities. The Unit 1 that entered at July 29, 1990 and the Unit 2 at April 10, 1995, obtaining the Disposability Factors from their origin is: 84.63% in Unit 1 and 83.67% in Unit 2. The march of the X XI century gives big challenges of competition to the Laguna Verde Central, with the possible opening of the electric market to private investment, for their Goals and Objectives of a world class company, taking the evaluation system and qualification of the World Association of Nuclear Operators (WANO) that promotes the Excellence in the operation of the nuclear power stations in all their partners. This Association supports the development of programs that allow the monitoring of the behavior in Safety Culture, Human fulfilment, Equipment reliability, Industrial Safety, Planning, Programming and Control, Personalized Systematic Training, and the use of the Operational experience in the daily tasks. The present work tries to explain the system of evaluation/qualification of WANO, the definition of Goals and Objectives to reach the excellence and of the programs, it will present the Program of the Reliability of Equipment with its main actions the productivity. (Author)

  6. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  7. Unit: Plants, Inspection Pack, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    This is a National Trial Print of a unit on plants produced as a part of the Australian Science Education Project. The unit consists of an information booklet for students, a booklet for recording student data, and a teacher's guide. The material, designed for use with students in the upper elementary grades, takes from 15 to 20 forty-minute…

  8. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  9. Land-Use Requirements for Solar Power Plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  10. Feed-in tariff and market electricity price comparison. The case of cogeneration units in Croatia

    International Nuclear Information System (INIS)

    Uran, Vedran; Krajcar, Slavko

    2009-01-01

    In August 2007, the Government of the Republic of Croatia instituted a feed-in tariff system, requiring the Croatian Electricity Market Operator (HROTE) to off-take the electricity produced from renewable energy sources or cogeneration units fueled by natural gas. Analysis of the off-take electricity price range, which depends on the net electrical output and electricity market trends, indicates that it is more cost effective for cogeneration units greater than 1 MW to sell their electricity on the exchange market. This was confirmed by developing a mathematical model to calculate the cost-effectiveness ratio of a cogeneration unit. This ratio represents the relation between the profit spread, i.e. the difference between the profit generated from selling the electricity on the exchange market and the profit made from dispatching the electricity to HROTE, as well as the total investment costs. The model can be applied for changes in certain parameters, such as the net electrical output, volatility and spot electricity price. The Monte Carlo method is used to obtain the most probable cost-effectiveness ratio and average future electricity price. Together with these two economic parameters and market price analysis, it is possible to calculate and calibrate an acceptable off-take electricity price. (author)

  11. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  12. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  13. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  14. Nuclear electric power plants. [Journal, in Russian]. Atomnye elektricheskie stantsii

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, L M [ed.

    1980-01-01

    Separate articles are concerned with experience gained in the planning, exploitation, and adjustment of nuclear power plants with channel reactors. An examination is made of measures to be taken for assuring equipment reliability for nuclear power plants during the planning stage. Also examined is the experience gained in the operation of the pilot plants of the Kursk and Chernobyl' nuclear power plants, and the Bilibin nuclear thermal electric power plant. Considerable attention is given to the reprocessing and disposal of radioactive waste, the quality control of metal ducts in nuclear power plants, and the development of methods and means of controlling technological processes and equipment. The journal is intended for engineering-technical personnel of power plants, power supply administrations, adjustment, repair, and planning organizations.

  15. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  16. Sulfur gained from flue gas, a demonstration unit of the Wellman-Lord process annexed to a black coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H

    1977-12-16

    Details of reducing air pollution by desulfurization of flue gases are presented. The demonstration unit is annexed to a 115 MW block at the Gary power plant in Indiana, USA. A second unit is being installed at the larger coal power plant in San Juan, New Mexico. The Wellman-Lord technology achieves a higher than 90% desulfurization of industrial waste gases. The technology is based on washing the gases with sodium sulfide. The resulting concentrated sulfur dioxide gas is used for pure sulfur and sulfuric acid production. Sodium sulfate is another commercial by-product obtained from the sodium sulfide regeneration cycle. Chemical details and the technological flow sheet are discussed. Electricity production costs in the power plants due to desulfurization of waste gases will increase by an estimated 15%. Advantages, in addition to reducing air pollution and marketing sulfur products, are also seen in the absence of sulfur containing wastes for disposal. (In German)

  17. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    Science.gov (United States)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  18. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  19. Mobile power plant units

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R

    1979-10-05

    Diesel engines of the MaK line 282 AK/332 with a cylinder power up to 160 kW are used, either as 6-cylinder or 8-cylinder in-line engine or as 12-cylinder V engine. Fuel consumption is between 207 and 212 g/kW. The engine is mounted on a frame, together with a generator. The fuel reserve in the tank will last for 8 hours. The lubricating system, the cooling water and starting air system, the switchboard system, and the frame are described. The switchboard plant is mounted either on a skid undercarriage or on the undercarriage. The plant can be operated independently or parallel to the network. The unit can be remote-controlled via push buttons or control knobs. A picture is presented of a mobile diesel aggregate which is in service in Libya.

  20. Preoperation of Hamaoka Nuclear Power Station Unit No. 4

    International Nuclear Information System (INIS)

    Fukuyo, Tadashi; Kurata, Satoshi

    1994-01-01

    Chubu Electric Power Co. finished preoperation of Hamaoka Nuclear Power Station Unit No. 4 in September, 1993. Although unit 4 has the same reactor design as unit 3, its rated electrical output (1,137MW) is 37MW more than that of unit 3. This increase was achieved mainly by adopting a Moisture Separater Heater in the turbine system. We started preoperation of unit 4 in November 1992 and performed various tests at electrical outputs of 20%, 50%, 75%, and 100%. We finished preoperation without any scram or other major problems and obtained satisfactory results for the functions and performance of the plant. This paper describes the major results of unit 4 preoperation. (author)

  1. Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Macknick, J; Newmark, R; Rogers, J; Madden, N; Fisher, J

    2013-01-01

    Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges. (letter)

  2. Outline of construction and facility features of Onagawa nuclear power station Unit No. 2

    International Nuclear Information System (INIS)

    Umimura, Yoshiharu; Tsunoda, Ryohei; Watanabe, Kazunori

    1996-01-01

    Tohoku Electric Power Company promotes development of various power sources to provide a stable supply of electricity in the future, and nuclear power takes a leading part. In August 1989, construction of Onagawa nuclear power plant Unit No. 2 (825MW) was started, following Unit No. 1 (524MW) which went on line in 1984 as Tohoku Electric's first nuclear power plant unit. Unit No. 2 began commercial operation in July 1995 through satisfactory construction work such as RPV hydraulic test in March 1994, fuel loading in October 1994, and various startup tests in each power stage. The design and construction of Unit No. 2 reflect construction and operation experience gained from Unit No. 1, and the latest technology, including that of the LWR Improvement and Standardization Program, was adopted to enhance facility reliability, improve operation and maintenance performance, and reduce worker dosage. Features of the facility, construction techniques, and a description of preoperation of Onagawa nuclear power plant Unit No. 2 are described in this paper. (author)

  3. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  4. United States experience in environmental cost-benefit analysis for nuclear power plants with implications for developing countries

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1980-08-01

    Environmental cost-benefit analysis in the United States involves a comparison of diverse societal impacts of the proposed developments and its alternatives. Regarding nuclear power plant licensing actions, such analyses include the need for base-load electrical generating capacity versus the no-action alternative; alternative sources of energy; alternative sites for the proposed nuclear plants; and alternative technologies for mitigating environmental impacts. Many U.S. experiences and environmental assessment practices and comparative resource requirements presented in this report will not provide a wholly reliable reflection of the precise situation of each country. Nevertheless, the procedural and substantive issues encountered by the United States in nuclear power plant licensing may exhibit a number of important, if rough, parallelisms for other countries. Procedural issues dealt with include: the scoping of alternatives and impact issues; the problem of balancing incommensurable impacts; and treating uncertainty in measuring or forecasting certain kinds of environmental impacts. Although substantive environmental impact issues will vary appreciably among nations, it is to be expected that many of the substantive impact issues such as impacts on biota, community-related effects, and aesthetic impacts will also have some measure of universal interest to other countries

  5. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  6. Electric power plants and networks. Elektrische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Happoldt, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. Centralen; Oeding, D [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Zentralbereich Forschung und Entwicklung

    1978-01-01

    This book is itended for enginers working in the planning, construction and operation of plants to generate and distribute electric power; it is also a valuable aid for students of power engineering. This new edition places more emphasis on the presentation and calculation of three-phase current networks with the aid of symmetric components. The equations used for calculation are adapted to VDE regulations as far as possible.

  7. Measures to increase the availability of electronic control units, illustrated by examples from power plant engineering

    International Nuclear Information System (INIS)

    Schmidt, R.

    1976-01-01

    The availibility of electric control units in the power plant engineering is increased by a decentralized construction, redundant current supply. miniaturized electronic modules, short-circuit-safe outputs, efficient protection of the wiring against over-voltage and intensive control of the afferent cables against wire break and short circuits. To reduce disturbing and damaging influences on the control multiple earthings should be avoided, the inductive coupling of distrubances should be reduced by parallel earth wires, and cable shields handled according to the prescriptions should reduce influences on the capacity. (orig.) [de

  8. Development of second-generation PFB combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1995-12-31

    Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

  9. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  10. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  11. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-12-01

    During the second quarter of 1990 the Finnish nuclear plant units Loviisa 1 and 2 and TVO and II were in commercial operation for most of the time. The feedwater pipe rupture at Loviisa 1 and the resulting inspections and repairs at both Loviisa plant units brought about an outage the overall duration of which was 32 days. The annual maintenance outages of the TVO plant units were arranged during the report period and their combined duration was 31.5 days. Nuclear electricity accounted for 35.3% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 83.0%. Three events occurred during the report period which are classified as Level 1 on the International Nuclear Event Scale: feedwater pipe rupture at Loviisa 1, control rod withdrawal at TVO I in a test during an outage when the hydraulic scram system was rendered inoperable and erroneous fuel bundle transfers during control rod drives maintenance at TVO II. Other events during this quarter are classified as Level Zero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. Only small amounts of nuclides originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  12. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  13. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  14. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  15. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  16. Nuclear plants in the expansion of the Mexican electrical system;Plantas nucleares en la expansion del sistema electrico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Estrada S, G. J.; Martin del Campo M, C., E-mail: gestradas@yahoo.co [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    In this work the results of four studies appear that were realized to analyze plans of long term expansion of Mexican electrical system of generation for the study period 2005-2025. The objective is to identify between the two third generation reactors with greater maturity at present which is it is that it can be integrated better in the expansion of the Mexican electrical system of generation. It was analyzed which of the four cases represents the best expansion plan in terms of two only parameters that are: 1) total cost of generation and, 2) the diversity of generated energy in all the period. In all studies candidates three different units of combined cycle were considered (802, 583 and 291 MW), a turbo gas unit of 267 MW, units of 700 MW with coal base and integrated de sulphur, geo thermo electrical units of 26.95 MW and two different types of nuclear units. In both first studies the Advanced Boiling Water Reactor (A BWR) for the nuclear units is considered, considering that is technology with more maturity of all the third generation reactors. In the following two studies were considered the European Pressurized Reactor (EPR), also of third generation, that uses in essence technology more spread to world-wide level. For this task was used the uni nodal planning model WASP-IV, developed by the IAEA to find the expansion configuration with less generation cost for each study. Considering the present situation of the generation system, the capacity additions begin starting from the year 2012 for the four studies. It is not considered the installation of nuclear plants before 2016 considering that its planning period takes 3 years, and the construction period requires at least of 5 years. In order to evaluate the diversity of each study it was used the Stirling Index or of Shannon-Weiner. In order to classify the studies in cost terms and diversity it was used like decision tool the Savage criterion, called also of minimal repentance. With this data, taking

  17. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  18. Slovak Electric, Plc., 1998

    International Nuclear Information System (INIS)

    1997-06-01

    Slovenske elektrarne, a.s. (Slovak Electric, Plc., abbrevation 'SE, a.s.') is the Slovak electricity generating utility, incorporated on November 1, 1994 as one of new companies formed from substantially all of the assets and a legal successor of Slovensky energeticky podnik, s.p., founded on January 1, 1969 in the form of SEP group. From its predecessor, Slovak Electric, Plc., took over generation of power, operation of 220 kV and 400 kV power system, transit, import, export, and sale of electricity. It is also involved in generation, distribution, and sale of heat. At present, SE's share of electriciry sales in the Slovak Republic is 88.47%. Electricity is delivered to three regional distribution companies and directly to several major industrial enterprises. SE, a.s. operates one nuclear power station, three thermal power plants, and 30 hydro power plants. The second nuclear power plant is under construction (state up tu June 1997) and SE is participating in the construction of two hydro power plants and one combined cycle power plant. The efforts of SE, s.a. focus on the generation of power and heat with minimal environmental impacts. Ecology is given priority in the SE, a.s. development programmes. SE's mission is to permanently satisfy customers' needs, for an acceptable price and with minimal environmental impact. On this CD ROM next chapters are presented: (1) The structure of the Company; (2) Production units; (3) The economic power of the Company; (4) The operation culture; (5) The strategic plans of the Company

  19. Economics of nuclear electricity

    International Nuclear Information System (INIS)

    Frederick, G.

    1997-01-01

    On the sites of Tihange and Doel in Belgium, a total of seven nuclear generating units with an aggregate installed power of 5807 MWe are operated. Construction of another unit at Doel was postponed indefinitely in 1988 after the Chernobyl accident. Electrabel holds a 25% interest in the Chooz B-1 and B-2 nuclear generating units under construction in France near the Belgian border. In terms of gross installed nuclear generating capacity worldwide, Belgium holds twelfth place; when ranked according to the contribution to public electricity supply, the country holds third place with a 57% share. Before decisions are taken about future nuclear power plants, above all the fuel costs of gas-fired cogeneration plants and the capital costs of nuclear power plants must be weighed. Current evaluation of all costs shows the use of nuclear power for electricity generation to be ten percent more expensive than that of natural gas. However, those responsible in the power supply industry feel that this short-term competitive situation is only one factor out of many others, such as safety issues, diversification in sourcing and deliveries, climatic influences, and employment. The development and construction of advanced reactors will result in the desired cost reduction and lead to a new era of nuclear power, also in Europe. (orig.) [de

  20. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  1. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  2. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  3. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE MATERIALS AND EQUIPMENT FROM UNITS 1 AND 2 AT THE HUMBOLDT BAY POWER PLANT, EUREKA, CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    W.C. Adams

    2011-04-01

    The Pacific Gas & Electric Company (PG&E) operated the Humboldt Bay Power Plant (HBPP) Unit 3 nuclear reactor near Eureka, California under Atomic Energy Commission (AEC) provisional license number DPR-7. HBPP Unit 3 achieved initial criticality in February 1963 and began commercial operations in August 1963. Unit 3 was a natural circulation boiling water reactor with a direct-cycle design. This design eliminated the need for heat transfer loops and large containment structures. Also, the pressure suppression containment design permitted below-ground construction. Stainless steel fuel claddings were used from startup until cladding failures resulted in plant system contamination—zircaloy-clad fuel was used exclusively starting in 1965 eliminating cladding-related contamination. A number of spills and gaseous releases were reported during operations resulting in a range of mitigative activities (see ESI 2008 for details).

  4. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a

  5. Nuclear power plants electrical retrofitting for cost effectiveness, reliability and operating efficiency

    International Nuclear Information System (INIS)

    Ciufu, L.; Popescu, M. O.

    2016-01-01

    In the context of continuous fast growing of the energy demand the current power plants retrofitting concept may represent an important step in the emission reduction, being able to offer in the same time a maximum operating efficiency. This desideratum can be obtained by implementing a rigorous energy management plan, based on an increased energy production capacity of non-pollutant electrical power plants and future-oriented frame on extending their lifetime operation. This management is focused on using state-of-art electronic, electrical and industrial control equipments, which can represent a real key factor. Thus, in this paper an analysis of the electrical system retrofitting is presented. As a part of this research the authors propose and simulate ambitious ways to upgrade actual control and command of the electrical operating systems, by promoting variable speed for large pumps and also computer software, as SCADA, for an intelligent control and monitoring of these studied processes. (authors)

  6. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 27 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for a license to operate Diablo Canyon Nuclear Power Plant, Unit 1 (Docket No. 50-275), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses the revisions to the license conditions and to the Technical Specifications as they relate to Amendment 10 to Diablo Canyon, Unit 1 Facility Operating License, DPR-76

  7. Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2

    Science.gov (United States)

    Indah, Nur; Kusuma, Yuriadi; Mardani

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of

  8. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  9. Potential of plug-in hybrid electric vehicle for reduction of CO2 emission and role of non-fossil power plant

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Yamamoto, H.

    2009-01-01

    A method to analyze the demand of electricity and the reduction of CO 2 emission and oil consumption by PHEV is established. Using the performance of PHEV optimized by EPRI and an estimation on the pattern of driving and charging in Japan, the following results are obtained. The electric demand for PHEV60(which has 60mile EV range) and PHEV20(which has 20mile EV range) is evaluated at 79.3 billion kWh and 41.2 billion kWh, respectively, in case that all vehicles in Japan (80 million cars) would be replaced by PHEV. The load leveling effect on the Japanese grid, which is hypothetically considered as one electric grid system, is evaluated at about 30 million kW, in case that all vehicles in Japan are replaced by PHEV60 and charged in the midnight. However, when the charge of PHEVs starts in the evening, that effect is not obtained. The reduction of CO 2 emission results in 64 million ton by the averaged CO 2 emissions intensity (emissions per unit of user end electricity) in Japan, and 98 million ton by electricity from the non-fossil power plant such as nuclear energy or renewable one. Those values are equivalent to 25% and 38% of CO 2 emission from the transport sector in Japan in 2003. Hence, non-fossil power plant enhances the reduction of CO 2 emission by the PHEV introduction. (author)

  10. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  11. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  12. Regulatory Guide 1.131: Qualification tests of electric cables, field splices, and connections for light-water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Criterion III, ''Design Control,'' of Appendix B, ''Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plant,'' to 10 CFR Part 50, ''Licensing of Production and Utilization Facilities,'' requires that, where a test program is used to verify the adequacy of a specific design feature, it include suitable qualification testing of a prototype unit under the most adverse design conditions. This regulatory guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to qualification testing of electric cables, field splices, and connections for service in light-water-cooled nuclear power plants to ensure that the cables, field splices, and connections can perform their safety-related functions. The fire test provisions of this guide do not apply to qualification for an installed configuration

  13. Status of electricity trading in the United States

    International Nuclear Information System (INIS)

    McMillan, P.H.

    1999-01-01

    The evolution of the energy marketplace in the United States is presented in a series of overhead viewgraphs. The influencing factors of energy trading are described as being supply concentration, rate cross subsidization, price volatility, physics, stranded investment, market structure and value drivers. A map depicting trading hubs and market structures is included, along with an outline of the key characteristics of a successful market hub. Gas-electric interface issues are also discussed. It was stated that contrary to conventional wisdom that as gas and electricity markets converge, traders will routinely cross-hedge gas and power, the practical reality is that volatility of the gas to electricity basis spread actually limits hedging opportunities. A winning strategy should include thorough fundamental and technical analysis; every trade or position should have a well thought-out exit strategy; get closer to physical assets; and be careful across regional hubs and commodities. 2 tabs., 7 figs

  14. System-Level Value of a Gas Engine Power Plant in Electricity and Reserve Production

    Directory of Open Access Journals (Sweden)

    Antti Alahäivälä

    2017-07-01

    Full Text Available Power systems require a certain amount of flexibility to meet varying demand and to be able to cope with unexpected events, and this requirement is expected to increase with the emergence of variable power generation. In this paper, we focus on gas engine power plant technology and the beneficial influence its flexible operation can have on a power system. The study introduces the concept of a combined-cycle gas engine power plant (CCGE, which comprises a combination of several gas-fired combustion engines and a steam turbine. The operation of CCGE is then comprehensively analyzed in electricity and reserve production in the South African power system and compared with combined-cycle gas turbine (CCGT technology. Even though CCGE is a form of technology that has already been commercialized, it is rarely considered as a source of flexibility in the academic research. That is the notion providing the motivation for this study. Our core contribution is to show that the flexibility of CCGE can be valuable in power systems. The methodology is based on the unit-level model of the studied system and the solving of a day-ahead unit commitment problem for each day of the simulated 11-year period. The simulation studies reveal how a CCGE is able to offer system flexibility to follow hourly load variations and capacity to provide reserve power effectively.

  15. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  16. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  17. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  18. Maritime Electric Co. Ltd. annual report, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Maritime Electric Company is a Canadian investor-owned electric utility based in Prince Edward Island. Established in 1918, the Company owns and operates a fully integrated system providing for the generation, transmission, and distribution of electricity throughout the Island. Maritime Electric operates generating plants in Charlottetown and Borden, and has an equity interest in NB Power's unit in Dalhousie, New Brunswick. Its 4,400 km distribution system and 560 km transmission system are linked to the mainland power grid by two submarine cables between the Island and the province of New Brunswick. This report describes the Company's operations, power production and sales for the year, with relevant statistical information. Financial statements are also included. In 1992 the Victoria Cross distribution substation was rebuilt. Earnings per share in 1992 were $1.85 compared with $1.79 in 1991. Demand side management initiatives were further enhanced and the plant life extension program continued at the Charlottetown Generating Plant. A ten year summary is included. 7 figs

  19. Indian Point Nuclear Generating Plant Unit No. 3 (Docket No. 50-286): Final environmental statement: Volume 2

    International Nuclear Information System (INIS)

    1975-02-01

    This document contains nine appendices to Volume I, The Final Environmental Impact Statement for the Indian Point Nuclear Generating Plant Unit Number Three. Topics covered include thermal discharges to the Hudson River; supplemental information relating to biological models; radiation effects on aquatic biota; conditions, assumptions, and parameters used in calculating radioactive releases; meteorology for radiological dispersion calculations; life history information of important fish species in the Hudson River near Indian Point; additional information on cooling towers considered as alternatives; data and calculations for assessment of predicted electrical demand; and comments on draft environmental statement

  20. Life Cycle Assessment of Producing Electricity in Thailand: A Case Study of Natural Gas Power Plant

    Directory of Open Access Journals (Sweden)

    Usapein Parnuwat

    2017-01-01

    Full Text Available Environmental impacts from natural gas power plant in Thailand was investigated in this study. The objective was to identify the hotspot of environmental impact from electricity production and the allocation of emissions from power plant was studied. All stressors to environment were collected for annual natural gas power plant operation. The allocation of environmental load between electricity and steam was done by WRI/WBCSD method. Based on the annual power plant operation, the highest of environmental impact was fuel combustion, followed by natural gas extraction, and chemical reagent. After allocation, the result found that 1 kWh of electricity generated 0.425 kgCO2eq and 1 ton of steam generated 225 kgCO2eq. When compared based on 1GJ of energy product, the result showed that the environmental impact of electricity is higher than steam product. To improve the environmental performance, it should be focused on the fuel combustion, for example, increasing the efficiency of gas turbine, and using low sulphur content of natural gas. This result can be used as guideline for stakeholder who engage with the environmental impact from power plant; furthermore, it can be useful for policy maker to understand the allocation method between electricity and steam products.

  1. The nuclear power electricity an opportunity for Mexico. Final report

    International Nuclear Information System (INIS)

    Fernandez de la Garza, R.; Garcia, C. F.; Trejo R, S.; Zazueta R, T.; Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.

    2009-01-01

    Inside this document the outstanding information is presented included in the report that develops the technical, financial, environmental and social aspects to consider for the incorporation from a new power plant to the national interconnected system, which was elaborated and presented to the nuclear power plant of Laguna Verde in August of 2009. The treated topics are: the nuclear power electricity, the experience of Laguna Verde, advanced reactors to consider for a new nuclear power plant, environmental aspects, costs of a new nuclear power plant, financing, socioeconomic impact. This work was prepared to evaluate the feasibility of building a new unit of nuclear power plant in Mexico before the evident resurgence at world level of use of nuclear energy to generate electricity. It is important that Mexico maintains inside its development programs and construction, to the nuclear power electricity like a viable and sure alternative of generating electricity, being able to take advantage of experience won with the operation of Laguna Verde, allowing that the country has diverse technologies for electricity generation and have technical capacity to manage the tip technology. (Author)

  2. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-03-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such incidents and observations are described relating to nuclear and radiation safety which the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, considers safety-related. During the third quarter of 1989 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. Nuclear electricity accounted for 39.0% of the total Finnish electricity production in this quarter. The load factor average of the nuclear power plant units was 78.9%. At Loviisa 1, two holes were found in the feedwater distributor of one steam generator. Corresponding wall thinning corrosion was also detected in the walls of two other distributors. The holes were found on the feedwater distributor upper surface in the joint of the secondary circuit feedwater pipe. One hole was about 20 mm x 50 mm in size and the other was a pit hole ca 5 mm in diameter. Metal power had entered the primary circuit at TVO I. This was observed during a post-scram plant start-up. Several control rod drive units had become jammed so tight that control rod withdrawal failed. Metal powder did not hamper reactor scram under the prevailing circumstances because the drive units are prone to jamming only after a control rod is almost fully inserted and because the forces which insert a control rod by various means (electrical, hydraulic) are 6-8 fold compared with the withdrawing force

  3. Commercialization of an electric propulsion unit for ecological ice resurfacers

    Energy Technology Data Exchange (ETDEWEB)

    Giroux, M. [MG Service, L' Assomption, PQ (Canada); Sylvestre, P. [Environment Canada, Montreal, PQ (Canada)

    2000-03-01

    Community health departments (CHD) and the general public are greatly concerned about the air quality at indoor skating rinks. A solution now exists whereby municipalities can convert their internal combustion resurfacers to electricity, using a system proposed by MG Service. This electric propulsion unit was developed and designed by MG Service, in conjunction with the Centre d'experimentation des vehicules electriques du Quebec (CEVEQ) and TPR Inc., an engineering firm. The main advantage of this technology is the ease of integration into the chassis of conventional resurfacers currently in use throughout the various municipalities. The propulsion unit is battery-powered and designed to replace the internal combustion engine. As a result, it eliminates carbon monoxide and nitrogen dioxide emissions, and more than meets the requirements set by health boards with regard to air quality at indoor skating rinks. Recyclable, maintenance-free and manufactured according to the standards set by the Underwriters Laboratories of Canada (ULC), the gel-sealed batteries display great advantages. The cost effectiveness of the electric propulsion unit is more impressive when considering that electricity is clean and costs five times less than conventional fuels currently in use. Regular verifications and calibrations are not required and the maintenance is minimal. The ventilation requirements are also reduced, leading to savings in energy costs required for the aeration of the indoor skating rink. Finally, the elimination of tank rental and fuel costs represent an added benefit. A detailed description of the components is provided. Following a series of trials, the operators were impressed by the surface gripability, traction and manoeuvrability. The resurfacers also gave an impression of greater raw power and were very quiet and easy to use, resulting in better overall operation when compared to conventional resurfacers. 1 fig.

  4. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  5. Nuclear power plants 1995 - a world survey

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The atw Statistics Report compiled by atw lists 428 nuclear power plants with 363 397 gross MWe in operation in 30 countries in late 1995. Another 62 units with 55 180 gross MWe were under construction in 18 countries. This adds up to a total of 490 units with an aggregate 418 577 MWe. In the course of 1995 four units in four countries started commercial operation. In the survey of electricity generation in 1995 for which no information was made available from China and Kasachstan, a total of 417 nuclear power plants were covered. In the year under review they generated an aggregate 2 282 614 GWH, which is 3.4% more than in the previous year. The highest nuclear generation again was recorded in the USA with 705 771 GWh, followed by France with 377 021 GWh. The Grohnde power station in Germany attained the maximum annual production figure of 11 359 GWh. The survey includes nine tables indicating the generating performance of each nuclear power plant, the development of electricity generation in nuclear plants, and status of nuclear power plants at the end of 1995 arranged by countries, types of reactors, and reactor manufacturers. (orig.) [de

  6. Evaluation of environmental qualification period for Conax electrical penetration assemblies. Final report

    International Nuclear Information System (INIS)

    Doroshuk, B.; Hager, M.; Brown, R.

    1995-05-01

    This report evaluates the environmental qualification period of Conax electrical penetration assemblies (EPAs) for extension from forty (40) years to sixty (60) years. The evaluation was performed based on a review of Conax EPAs supplied to Baltimore Gas ampersand Electric's (BGE) Calvert Cliffs Nuclear Power Plant Units 1 and 2. The report has been prepared so that it may be of use to any utility involved in the extension of the environmental qualification period for Conax EPAs installed in their plant(s). The report includes a section on the strategy which was developed for the effort to extend the qualified lives of the Conax EPAs. A review of documentation and plant conditions specific to BGE is included in the report to demonstrate the methodology. The documentation included qualification testing performed by Conax of the materials of construction of the EPA models. The plant conditions reviewed included both normal and accident environments, both of which are specific to Calvert Cliffs Nuclear Power Plant Units 1 and 2. This report can be used as a guide in the evaluation of similar installations of Conax electrical penetration assemblies in other nuclear power plants by applying the methodologies used herein in conjunction with the plant specific test reports, materials, and conditions

  7. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  8. Ageing of polymers in electrical equipment used in nuclear power plants

    International Nuclear Information System (INIS)

    Clavreul, R.

    1999-01-01

    Ageing of polymers in electrical equipment used in nuclear power plants has been studied in (Electricite de France) EDF for several years. The objective of such studies is to predict the polymers lifetime in normal and accidental conditions. The prediction of polymers behaviour in normal conditions requires accelerated tests in order to get rapidly experimental results. Experimental conditions must carefully be chosen and representative of real ageing. Accelerated ageing is usually done by applying higher temperature, (dose) or dose rate. When such experiments are done, the effects of temperature, (dose) or dose rate are first determined. In a second step, experimental results are extrapolated to real conditions. To predict lifetime of polymers, the following recommendations have to be checked: in order to assume that accelerated tests are representative of normal ageing, the observed mechanisms in experiments must be the same as those in real conditions. For accidental conditions, the same tests as those described in standards can be applied to polymers. The simulation of any accident occurring just after the installation of electrical equipment in nuclear power plants is easy to manage: only the accidental test can be carried out on the electrical equipment. To determine whether polymers in electrical equipment would have a good behaviour or not when an accident would occur after a period of several years or decades in normal conditions in a nuclear power plant, the accidental test must be done on aged materials; their physical, mechanical and electrical characteristics must be relevant to aged polymers in normal conditions. In order to detect any evolution of properties during ageing, the electrical, mechanical or chemical tests have to be proceeded on polymers samples. The characterisation tests which are applied on non-aged and aged samples depend on the nature of the polymers, their application in electrical equipment and their environment. The IEC 544

  9. Economic evaluation of Kori and Wolsong Unit 1 plant life extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jeong, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Wolsong Unit 1 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by the utility company. In this paper, the methodologies and results of plant lifetime management economic evaluations of both units have been presented in comparison with Korean standard nuclear power plant 10, 20 and 30 year life extension cases respectively. In addition to that, sensitivity analysis and break even point analysis results are presented with the variables of capacity factor, operation and maintenance cost, and discount rate

  10. B Plant treatment, storage, and disposal (TSD) units inspection plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1996-01-01

    This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ''Dangerous Waste Regulations'' (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements

  11. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  12. Inspection maintenance and planning of shutdown in thermal electric generating plants

    International Nuclear Information System (INIS)

    Dezordi, W.L.; Correa, D.A.; Kina, M.

    1984-01-01

    The schedule shutdown of an industrial plant and, more specifically, of an electrical generating station, is becoming increasingly important. The major parameters to be taken into account for the planning of such a shutdown are basically of economic-financial nature such as costs of the related services (materials, equipment, manpower, etc), loss of revenue caused by the station's shutdown as well as by the station availability, and other requirements expected from it by the Load Dispatch and consumers. Improving the equipment's performances and the station's availability are the fundamental objectives to be strived for. The authors present in this paper, in an abridged form, the planning tools used for thermal electric generating plants shutdowns for inspections, maintenance and design changes implementation. (Author) [pt

  13. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  14. World-class outage performance of the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Paavola, M.

    1998-01-01

    The production of the Olkiluoto power plant units covered 17% of the electricity consumption in Finland in 1997; the total share of nuclear energy was 27% of the electricity consumed in the country. Based on Finnish experience, nuclear energy is a safe, environmentally friendly and economic way to produce electricity provided that the plants and their personnel are well taken care of. TVO's policy is to keep the plant units in good condition and technically modern. This requires continuous investments in the plant. In maintenance, attention is paid to monitoring the condition of the plant and to preventive maintenance aiming at avoiding disturbances in production. TVO has chosen continuous development as the operational line develops the plant by annual investments and performs the necessary modifications during planned annual outages trying to avoid long production interruptions. The load factors of the Olkiluoto nuclear power plant have been high. The average load factor during the last decade was over 93%. The most significant single factor in the production deficits is the amount or electricity, which has not been produced because of the annual outages. Due to this, special attention has been paid to the performance of the annual outages. TVO aims at continuous development of the annual outage procedure. A centralized task management system makes it possible to perform simultaneously more tasks than before. The company has also invested in equipment and systems, which ease and speed up servicing. Normal outage length varies between 10 and 16 days. By keeping the plant units as modern as possible and in good condition we facilitate reaching TVO's target, which is also stated in TVO's slogan 'always 40 years lifetime'. (author)

  15. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baek, Young Sun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a number of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.

  16. Intellectual Drive With Electric Engines On a Stock Car

    Directory of Open Access Journals (Sweden)

    Bazhynov O.V.

    2016-04-01

    Full Text Available The concept of installing smart electric drive, battery unit and control system of a stock car is presented. This work is devoted to AEM control law consisting of auto power plant, providing minimum current consumption for a given traction and speed mode. The practicability of AEM static model usage in the process of synthesis of optimal control of auto power plant with traction electric drives and also choice and substantiation of its basic parameters and characteristics is demonstrated.

  17. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  18. Ageing management of electrical and C/I-systems in power plants of RWE Power

    International Nuclear Information System (INIS)

    Hentschel, Reinhard; Kochs, Wolfgang; Zander, Ralf-Michael

    2010-01-01

    Maintenance and enhancement of the availability and safety of fossil-fired and nuclear power plants currently in operation are increasing in importance with plants' age. The paper deals with issues related to e.g. the operation of C and I-systems at the end of production and with the challenges involved in their replacement during plant operation and describes the various measures taken for monitoring electrical equipment. Taking the improvement of the existing protection systems against internal arcs in electrical bus bars as an example, practical approaches for ageing management are described. In addition, the strategic approaches will be explained that were developed within a VGB working group due to the introduction of a new regulation on ageing management in nuclear power plants. (orig.)

  19. Electrical Dynamic Simulation Activities in Forsmark NPP

    International Nuclear Information System (INIS)

    Lamell, Per

    2015-01-01

    The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and

  20. Defence in depth for electric power supplies in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Gupta, S.K.; Srivasista, K.; Solanki, R.B.

    2009-01-01

    The purpose of electric power supply system in a nuclear power plant is to supply and distribute reliable electric power to safety related systems and systems important to safety in various forms, arrangements and combinations of redundancy and diversity in order to perform safety functions required during operational states and design basis events (DBE) such as shutting down the reactor, maintaining the reactor in safe shutdown state, containment isolation and reactor core cooling preventing significant release of radioactive material to the environment. Hence the design basis of electric power supply systems includes identification of DBE that require power supplies, adequacy of redundancy and diversity, environmental conditions to which electric equipment are qualified, identification of loads requiring interrupted and uninterrupted power supplies, time sequence in which emergency loads are to be supplied in case of interruption, provisions for maintaining and testing, consideration for minimum duration capability of emergency power supplies during station blackout etc. Based on operation experience, results of probability safety assessment and certain weaknesses noticed in defence in depth of electric power supply systems, several continuous design improvements have been made in Indian nuclear power plants during operating phase and life extension. Instituting various tests during initial commissioning, subsequent operation and life extension has ensured high standards of performance of electric power supplies. Some of these aspects are highlighted in this paper

  1. Investments into plant replacements in a deregulated electricity market

    International Nuclear Information System (INIS)

    Elsaesser, R.F.

    2004-01-01

    The amendment to the Power Energy Act in April 1998 marked the complete deregulation of the electricity market in Germany. The debate is now beginning about ways and means to ensure new capital investments safeguarding the continuity of supply. The present power plant park has been characterized by a broad mix of primary energy sources and, admittedly, by some overcapacity as well. However, any further reduction of generating capacity will be at the expense of the continuity of supply. Although electricity prices in Germany are on the rise again after a clear drop, they have not yet reached a level sufficient for new investments. Only subsidized power plants are recovering their full costs. The question is for how long our economy is going to sustain this state of affairs. The balance among the energy policy goals of continuity of supply, environmental performance, and economic efficiency has been upset. In the period up until 2020, Germany alone will require approx. 37,000 MW of new generating capacity. Renewable and decentralized technologies alone do not constitute a sufficient and reliable alternative. However, there is the matter also of the practical feasibility of building the new power plants required. No experience is as yet available with re-investment cycles in the deregulated electricity market. Options are needed for a diversified structure of primary energy sources. There must be neither political definition of generating technologies nor exaggerated goals of environmental protection and climate protection. We advocate the free system of market prices and free access to the market. Major players able to guarantee sufficient security of investments are needed to cope with the challenges ahead. New investments with a life of thirty to forty years require a modicum of stability and realism in political framework conditions. (orig.)

  2. Electric current precedes emergence of a lateral root in higher plants.

    Science.gov (United States)

    Hamada, S; Ezaki, S; Hayashi, K; Toko, K; Yamafuji, K

    1992-10-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 muA.cm(-2) at the surface.

  3. Nuclear power plant life extension in the United Kingdom

    International Nuclear Information System (INIS)

    Goodison, D.; Seddon, J.W.; Pape, E.M.

    1991-01-01

    The safety cases for the United Kingdom's older nuclear power plant have been reviewed by their utilities in order to justify continued operation of the reactors up to an age of at least 30 year. These 'long term safety reviews' have identified worthwhile plant modifications and aspects where further studies or plant inspections are required. As the plants approach the age of 30 years, 'life extension reviews' are now being undertaken, concentrating on management of ageing, to support operation to at least 40 years. (author)

  4. Electric utility power plant construction costs, 1st Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    New UDI report combines historical construction costs for more than 1,000 coal, oil, gas, nuclear and geothermal units that have entered commercial operation since 1966 and projected power plant construction costs for about 400 utility-owned generating units scheduled to enter commercial operation during the next 20 years. Key design characteristics and equipment suppliers, A/E, constructor and original installed cost data. Direct construction costs without AFUDC are provided where known. Historical construction cost data are also provided for about 130 utility-owned hydroelectric, gas turbine, combined-cycle and diesel units (these data are generally for units entering service after 1980)

  5. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  6. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  7. Prophylactic and thermovision measurements of electric machines and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jedlicka, R; Brestovansky, L [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. (Abstract Truncated)

  8. Acceptability analysis of technical-scale plants for electricity generation; Ansatz zur Akzeptabilitaetsanalyse grosstechnischer Anlagen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Katharina; Koch, Marco K. [Bochum Univ. (Germany). AG Reaktorsimulation und -sicherheit

    2013-03-15

    Public acceptance of technical-scale plants for electricity generation is an indispensable prerequisite for the long-term continuity of supply of electricity. Even though nuclear power in Germany continues to meet with particularly grave objections, this is no longer an exception. Problems associated with the rapidly declining willingness of the public to accept specific disadvantages connected with electricity generation are confronting not only nuclear, but also large fossil-fired and renewable-resource power plants. To investigate to what extent these objections based on subjective heuristics are justified, a model is developed for analyzing the objective acceptability of electricity-producing large power plants, which allows the assessment of their acceptability to be measured on the basis of quantitative analysis of the discrepancies between acceptability and acceptance and may serve as a tool for promoting public acceptance. (orig.)

  9. Virtual Power Plants as a Model for the Competitiveness of Small Manufacturers and Operators of Virtual Power Plants in Markets of Electricity and Gas

    International Nuclear Information System (INIS)

    Galic, T.; Tomsic, Z.

    2012-01-01

    Production of electricity from renewable energy sources and energy-efficient power sources to be connected to the electricity distribution network is still not competitive with electricity production from conventional sources of electricity. A powerful technological development of distributed energy sources and technologies for electricity storage has reduced their production costs, production costs of electricity from distributed energy sources, the costs of simultaneous production of electricity and thermal energy from cogeneration distributed energy sources and thus has facilitated their increased use in practice. It also allows them to interconnect systems such as virtual power plants in order to achieve full economic feasibility of their use. Current electricity and gas customers, now also in the role of small power producers, interconnected by virtual power plants operators, in addition to buying electricity and gas on retail markets for electricity and gas, will be able to sell electricity and new energy services also on wholesale electricity markets. Development and application of new distributed technologies will enable the production of new quantities of electricity which will increase the competitiveness of electricity producers, competitiveness of electricity suppliers of end-customers and elasticity of supply and demand in the electricity market. These processes will also increase the efficiency of the entire systems of electricity supply and of the gas supply systems.(author)

  10. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  11. Report on assessment of electrical equipment aging for nuclear power plant (AEA), FY2011

    International Nuclear Information System (INIS)

    Minakawa, T.

    2012-11-01

    Electrical components with safety function used in nuclear power plants, such as cables, medium voltage motors, low voltage motors, electrical penetration of reactor containment vessel, motor operated valve, pressure transmitter, temperature detector, etc, are required to be operational under the environment of design basis event (DBE) to shut down a reactor safely and to prevent radioactive materials from being leaked to outside. Polymer materials used as parts of these equipments are gradually degraded by thermal and radiation environment in the normal operation. In addition, the degradation is thought to progress rapidly when they are exposed to the DBE environment and a decrease in performance of the equipment may be caused. From these reason, electrical components with safety function are tested for long-term integrity in accordance with IEEE standard. However, conventional method of accelerated aging which assumes thermal and radiation aging during normal operation is said to have uncertainty in simulating the degradation given in actual operating environment. To address this issue, the project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) was carried out and 'Guide for Cable Environmental Qualification Test for Nuclear Power Plant' was developed. The need for developing an aging evaluation method for other electrical and I and C components was pointed out in the 'Strategy maps 2007', prepared by the cooperation among government, industry and academia. Under the circumstance, the project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008. In this study, parts of electrical and I and C component with safety function used in nuclear power plant whose aging needs to be considered are employed as specimens, and their aging characteristics under the thermal environment and the combined radiation and thermal environment are obtained (herein after referred to as 'critical part test

  12. Steelmaking plants: towards lower energy consumption and lower CO2 production using more electricity

    International Nuclear Information System (INIS)

    Nicolle, R.

    2010-01-01

    Production processes of integrated steel plants, mostly based on coal as an energy source, produce about 2 tons of CO 2 per ton of steel. As specific CO 2 production has to be decreased by 20% in the mid-term (2020), immediate action is required to further decrease the specific energy consumption. The integrated plant is not energy self-sufficient as extra electricity must be bought from outside, but on the other hand, produces an excess of process gas that has to be used within the plant. Optimisation of the use of the internally produced gases is a key issue as either they are burned at the power plant with a conversion yield to electricity of about 40% and often much lower, or might be valued in the plant internal heat exchangers with a much higher efficiency such as ∼90% in the hot stoves or ∼65% or more in the present reheating furnaces. This paper shows that using the high-value coke oven gas as a chemical reactant (for DRI production) leads to significant extra metal production. From a global viewpoint, this extra metal production is almost carbon-free, as it requires only electricity for its manufacture. (author)

  13. Guide to federal regulation of sales of imported electricity in Canada, Mexico and the United States

    International Nuclear Information System (INIS)

    2005-01-01

    This Guide to Federal Regulation of Sales of Imported Electricity in Canada, Mexico, and the United States promotes cross-border electricity trade. It provides information on federal regulation of cross-border electricity trade and is intended to be used together with a companion guide called the North American Regulation of International Electricity Trade which outlines regulations for the construction and operation of cross-border power lines and the permitting requirements for electricity exports and imports between Canada, Mexico and the United States. The guide outlines the basic elements of the general federal regulatory process that applies to a given North American cross-border electricity trade. It offers an improved understanding of the applicable country's federal regulatory regime. Different federal government agencies within each country may regulate different aspects of a particular cross-border electricity trade. This guide does not examine the requirements that may apply at the state or provincial government levels. Rather, it is a collaborative effort of the 3 national energy departments and energy regulators that support the Experts Group on Electricity Regulatory Issues, a specialized unit assembled by the North American Energy Working Group (NAEWG). It was noted that the energy policies and regulations of each nation can change periodically

  14. An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Omrani, H.; Eivazy, H.

    2009-01-01

    This paper presents an integrated data envelopment analysis (DEA)-corrected ordinary least squares (COLS)-stochastic frontier analysis (SFA)-principal component analysis (PCA)-numerical taxonomy (NT) algorithm for performance assessment, optimization and policy making of electricity distribution units. Previous studies have generally used input-output DEA models for benchmarking and evaluation of electricity distribution units. However, this study proposes an integrated flexible approach to measure the rank and choose the best version of the DEA method for optimization and policy making purposes. It covers both static and dynamic aspects of information environment due to involvement of SFA which is finally compared with the best DEA model through the Spearman correlation technique. The integrated approach would yield in improved ranking and optimization of electricity distribution systems. To illustrate the usability and reliability of the proposed algorithm, 38 electricity distribution units in Iran have been considered, ranked and optimized by the proposed algorithm of this study.

  15. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    Science.gov (United States)

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  17. Electric heating of a unit for uranium trioxide production

    International Nuclear Information System (INIS)

    Faron, R.; Striff, A.

    1985-01-01

    Ammonium diuranate U 2 O 7 (NH 4 ) 2 containing about 50% of water is dried and transformed by calcination in uranium trioxide UO 3 . Drying and calcination was obtained by air heated by two burners using domestic fuel. In 1984 the plant was transformed for utilization of electric heating improving maintenance cost, decreasing heat losses and by energy saving the payback period on investment is of 2.6 years [fr

  18. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  19. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  20. CNSS plant concept, capital cost, and multi-unit station economics

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system.

  1. CNSS plant concept, capital cost, and multi-unit station economics

    International Nuclear Information System (INIS)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system

  2. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  3. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  4. Lessons Learned after Nuclear Power Plants and Hydropower Plants Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, A., E-mail: gce@gce.ru [GCE Group, Saint Petersburg (Russian Federation)

    2014-10-15

    Full text: The World is becoming more open and free for communication. However, the experience (positive or negative) is still badly cross over sectorial borders. I would like to illustrate the point with the examples, even with several unexpected ones. I would like to start with a few words regarding the Sayano – Shushenskaya Hydro Power Plant accident and the factors that caused it. Sayano – Shushenskaya Hydro Power Plant is a unique Hydro Power Plant with efficiency factor of 96 %. Nevertheless, the efficiency factor, in particular, caused a series of restrictions: hydro-electric units vibration amplitude must not exceed 4 micron!!! (Slide 1: Vibration amplitude dependence on output capacity) As it is clearly seen, there is a so called “prohibited area”, which the hydro-electric unit must pass over. Operations in the area are prohibited in accordance with the regulatory documents. However, due to the changes that occurred in Russian power supply industry, the hydro-electric unit passed through the prohibited area more than 12 times, if we take into account only the day of the accident. The bolts keeping the turbine cover, keeping water apart from the machinery hall, were too much released. The mentioned above reasons led to the hydro-electric unit disruption and the machinery hall flooding. Water inflow was possible to stop by putting down the regulating valves. However, the regulating valves control console was in the flooded machinery hall. There was standby emergency control console, but it was in the machinery hall, as well. The machinery hall was flooded, consequently, main and standby systems were destroyed. Moreover, the machinery hall, where all the units were disposed, was a huge hall without dividing walls, etc. (Photo) Take a look at the next slide. (Photo – Chernobyl Nuclear Power Plant machinery hall). Take note of Fukushima–1 Nuclear Power Plant: standby power supply source was situated in the same place and destroyed by water. All the

  5. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  6. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  7. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-20

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cable variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each material

  8. Hazardous Waste Cleanup: General Electric - Auburn Plant in Auburn, New York

    Science.gov (United States)

    GE purchased the property at Genesee Street in 1951 and constructed a manufacturing plant that produced a variety of electrical components including radar equipment, printed circuit boards and high voltage semiconductors. In January 1986, Powerex, Inc.,

  9. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  10. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  11. Analysis of near optimum design for small and medium size nuclear power plants

    International Nuclear Information System (INIS)

    Ahmed, A.A.

    1977-01-01

    Market surveys in recent years have shown that a significant market would exist among the developing nations of the world for nuclear power plants that would be classified as small to medium sized, provided that these small plants could produce electricity at a unit price comparable to that of equivalent sized fossil fired plants. Nuclear plants in the range of 100 MWe to 500 MWe would fit more effectively into the relatively smaller grids of most developing nations than would the 900 MWe to 1300 MWe units now being constructed in the large industrial nations. Worldwide re-evaluation of the worth of fossil fuels has prompted a re-examination of the competitive position of small to medium sized nuclear generating units compared to comparable fossil fired units, especially in the context of units specifically optimized for the size range of interest, rather than of designs that are simply scaled down versions of the currently available larger units. Since the absolute cost of electricity is more sensitive to external factors such as cost of money, national inflation rate and time required for licensing and construction than to details of design or perhaps even to choice of fuels, and since the cost of electricity generated in small to medium sized fossil fired units is periodically compared to that of scaled down versions of conventional large nuclear units, the point of view taken here is one of comparing the relative generating costs of smaller nuclear units of optimum design with the corresponding costs of scaled down versions of current large nuclear generating units

  12. Evaluation Of Electricity Production Cost Of Commercial Nuclear Power Plant Models

    OpenAIRE

    DÖNER, Nimeti

    2017-01-01

    The level of the development of countries is being measured by thecountry’s quantity of production and consumption energy. Concerning Turkey,according to an energy report of The World Energy Council Turkish NationalCommittee in order to meet the electricity needs of the country in 2010, there should befounded a 2000 MW(e) capacity nuclear power plant. For the nuclear electric powerplant considered to be founded in Turkey, three types of commercial reactor models,that are Pressiued Water React...

  13. Functional Analysis of Kori Unit 1

    International Nuclear Information System (INIS)

    Choi, Seong Soo; Han, Jeong Hyun; Heo, Tae Young

    2009-07-01

    Function Analysis of Kori Unit 1 has been performed as a part of independent human factors review tasks for control room renovation of the plant. The top level goal defined for the scope of function analysis is 'Generate Electricity'. Through this function analysis of Kori Unit 1, the detailed sub-functions extracted from the existing design documents and procedures, functional relationships among the high level functions, functional classification of each hierarchical level, and tree diagrams of the hierarchical function structures of the plant were developed and identified as the result of the project. In addition, we investigated and compiled the specifications of MMIS devices used in Ulchin Nuclear Power Plant Unit 5,6 in accordance with the request from KAERI. The results of those researches will be used as basis data for independent review of the control room MMIS design of the Kori Unit 1

  14. The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria

    International Nuclear Information System (INIS)

    Brand, Bernhard; Boudghene Stambouli, Amine; Zejli, Driss

    2012-01-01

    This paper examines the effects of an increased integration of concentrated solar power (CSP) into the conventional electricity systems of Morocco and Algeria. A cost-minimizing linear optimization tool was used to calculate the best CSP plant configuration for Morocco's coal-dominated power system as well as for Algeria, where flexible gas-fired power plants prevail. The results demonstrate that in both North African countries, storage-based CSP plants offer significant economic advantages over non-storage, low-dispatchable CSP configurations. However, in a generalized renewable integration scenario, where CSP has to compete with other renewable generation technologies, like wind or photovoltaic (PV) power, it was found that the cost advantages of dispatchability only justify CSP investments when a relatively high renewable penetration is targeted in the electricity mix. - Highlights: ► Market model to optimize CSP plant configuration in North African power systems. ► Value of storage-based CSP plants compared to non-dispatchable configurations: 28–55 €/MWh. ► Assessment of Morocco's and Algeria's renewable electricity targets until 2030. ► CSP becomes more competitive with intermittent technologies when high RES-E quota are targeted.

  15. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.

    2011-01-01

    Full Text Available This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia. Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown that fixed PV solar plant power of 1 MW, solar modules of monocrystalline silicon yield 1130000 kWh power output, one-axis tracking PV solar plant yields 1420000 kWh, and dual-axis tracking PV solar plant yields 1450000 kWh of electricity. Electricity generated by the fixed PV solar plant could satisfy 86% of the annual needs for the electricity of the „Zdravljak“ hotel and the special „Novi stacionar“ hospital in Soko banja.

  16. VGB congress 'power plants 2003'. Generation gap - risk and challenge for the electricity market

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The VGB Congress 'Power Plants 2003' took place in Copenhagen from 15th to 17th September 2003. The motto of this year's Congress was 'Generation Gap - Risk and Challenge for the Electricity Market'. More than 800 participants took the opportunity for discussion and information in the plenary and technical lectures 'Market and Competition' and 'Technology, Operation and Environment'. Apart from the special features of the Scandinavian and Baltic electricity market, the main focus was on papers reflecting the situation of nuclear power (Finland), operating experience with new power plants, new materials for power plant construction, application of renewables and issues of climate protection. The Congress was again rounded off by technical visits and a side programme. (orig.) [de

  17. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  18. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  19. Plant breeding and rural development in the United States.

    Science.gov (United States)

    KE Woeste; SB Blanche; KA Moldenhauer; CD Nelson

    2010-01-01

    Plant breeders contributed enormously to the agricultural and economic development of the United States. By improving the profitability of farming, plant breeders improved the economic condition of farmers and contributed to the growth and structure of rural communities. In the years since World War II, agriculture and the quality of rural life have been driven by...

  20. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  1. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  2. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  3. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  4. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  5. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant; Modernizacion de los sistemas electricos de potencia de la Central Nuclear de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-07-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  6. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  7. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  8. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  9. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  10. Laws and ordinances on electric arc protection. Electric arc protection of electric plants; Gesetze und Verordnungen zur Stoerlichtbogensicherheit. Stoerlichtbogensicherheit von elektrischen Betriebsstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, Stefan; Buenger, Stefan; Grote, Martin [Fritz Driescher KG - Spezialfabrik fuer Elektrizitaetswerksbedarf GmbH und Co., Wegberg (Germany); Boettcher, Lutz-Michael [Ingenieurbuero Boettcher-Consult, Schulzendorf (Germany); Weck, Karl-Heinz [Forschungsgemeinschaft fuer Elektrische Anlagen und Stromwirtschaft (FGH e.V.), Mannheim (Germany)

    2011-02-28

    With the publication of the new standards IEC 62271-200/VDE 0671 part 200-2003: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV, and IEC 62271-202/VDE 0671 part 202-2007: High voltage/low voltage prefabricated substations and their revision, the fundamentals of arc protection qualification of plants and stations were redefined with a view to personnel protection. In the case of new transformer stations, the application of these standards is state of the art. The publications and the application of the new standards for staff protection, plant protection and object protection via electric arc qualification has raised questions concerning the safety of older plants and stations, modernization, reconstruction, enhancement, maintenance, and the re-use of used stations and plants.

  11. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  12. Evaluation of Watts Bar Nuclear Plant Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Watts Bar Nuclear Plant Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumption of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Watts Bar T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Watts Bar Nuclear Plant Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  13. Mochovce power plant units 3 and 4

    International Nuclear Information System (INIS)

    Cuba, J.

    2003-01-01

    The report gives the basic technical data and history of the construction of the units 3 and 4 of the Mochovce NPP.The current status of the units completion according to the original plan is: civil part - 70%; mechanical part - 30%; electric and IC equipment - 1%. Strategic plan for the preservation of the units 3 and 4 has been developed in accordance with TECDOC-1110. In implementation of the plan preservation activities are performed for the components located and built-in on the site and in storehouses. Preservation with dryers and protective coatings is applied. The factors of possible component degradation are determined. Ventilation components are used for improving the climate conditions in the primary part of the reactor building. Temperature and humidity measurements are done and temperature control is set. Special pre-service inspections beyond the basic scope of preservation and protection works are conducted of steam generator and reactor pressure vessel. The implementation of the design data protection and enhancement is discussed. The feasibility study of units 3 and 4 completion funding has been developed in 2002

  14. Electric boilers for nuclear power plant in Liebstadt

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feed water is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors. (JIW)

  15. Electric boilers for nuclear power plant in Liebstadt

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-29

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feedwater is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors.

  16. Changing Perceptions of Nuclear Power in The United States

    International Nuclear Information System (INIS)

    Taylor, John

    1989-01-01

    Although many new nuclear power plants have been brought on line in that time, resulting in a capacity of 110 plants with operating permits and another twelve in the last stages of completion, all of these plants were authorized before 1978. The fundamental reason for this moratorium in new orders was the precipitous reduction in electricity demand, arising from the OPEC embargo and Iran revolution, which created excess electric capacity throughout the United States. In fact, many nuclear and coal plants were cancelled to minimize the over capacity problem and no large base load generating units have been ordered of any kind in the past decade. So the 'moratorium' is not really unique to nuclear power. Progress, coupled with increased awareness that nuclear power is one of the keys to solving atmospheric environmental problems, will swing political and public acceptance back to being favorable. Successful progress in these matters will be of benefit to public acceptance around the world and, conversely, serious technical difficulties, particularly entailing any major incident with a nuclear power plants anywhere in the world, will adversely affect the improvement in political and public acceptance in the United States. It is vitally important, therefore, that we continue to further enhance international cooperation in nuclear power. We are pleased the Korea Electric power Corporation and the Korea Advanced Energy Research Institute are participating in EPRI development programs, and hope that cooperation will increase in the future. We're most encouraged by the formation of the World Association of Nuclear Operators, which will be initiated in Moscow next month. The nuclear electric utilities and their governments around the world, the International Atomic Energy Agency, and the Nuclear Energy Agency of OECD should be commended for their initiative in international cooperation

  17. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  18. Assessing the full costs of electricity

    International Nuclear Information System (INIS)

    Keppler, Jan Horst

    2016-01-01

    For decades, economists, energy specialists and policy-makers have been satisfied with assessing the comparative costs of electricity generation on the basis of discounted average costs over the lifetime and the total output of a generating plant. As a standardised form of cost-benefit accounting (CBA), these levelised costs of electricity (LCOE) indicate the required expenditures in terms of capital, fuel, and operations and management (O and M), adjusted for their incidence in time or the different technology options per unit of output (i.e. a MWh of electricity). This straightforward, transparent and comparatively simple metric worked well in a context of regulated markets where generators were centrally dispatched according to system requirements, tariffs were set by regulators and load factors could be predicted with confidence. In order to satisfy a given demand for electricity, the technology with the lowest LCOE was usually chosen, thus minimising the costs of the electricity system. Nuclear energy thus competed with hydro, where available, and coal and gas on the basis of their respective capital, labour and fuel costs at the level of the individual plant. (author)

  19. Participation of the Nuclear Power Plants in the New Brazilian Electric Energy Market

    International Nuclear Information System (INIS)

    Mathias, S.G.

    2004-01-01

    A new regulation framework has been established for the Brazilian electric energy market by a law put into effect on March 15,2004. The main overall goals of this new regulation are: to allow the lowest possible tariffs for end users, while providing the necessary economic incentives for the operation of present installations (generating plants, transmission lines, distribution networks) and the expansion of the system; long-term planning of the extension of the installations required to meet the demand growth; separation of the generation, transmission and distribution activities by allocating them into different companies; new contracts between generating and distribution companies must result from bidding processes based on lowest-tariff criteria; and energy from new generating units required to meet the demand growth must be contracted by all distributing companies integrated to the National Interconnected Grid, in individual amounts proportional to their respective markets

  20. Thermic solar plants for the production of electricity in Mexico: present and future

    International Nuclear Information System (INIS)

    Almanza, R.

    1990-01-01

    During the last decade, there are have been some important achievements in generating electricity using solar concentrators. The Instituto de Ingenieria, of the Universidad Nacional Autonoma de Mexico (UNAM), has started the design and construction of solar thermic plants for generating electricity , capable of reaching 1 Kw and 10 Kw. The Instituto continues developing the research and testing of new materials, because this way of generating electricity has become economically feasible: besides, it constitutes a non polluting alternative. (Author)

  1. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David Wenzhong [Alternative Power Innovations, LLC; Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wang, Weisheng [China Electric Power Research Inst. (China)

    2016-09-01

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.

  2. Technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Ibarra, J.G.

    1979-09-01

    This report documents the technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1. The review criteria are inferred from the NRC Reactor Safety Study (WASH-1400) and the Safety Evaluation Report for Davis-Besse. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  3. Analysis of existing structure and emissions of wood combustion plants for the production of heat and electricity in Bavaria

    International Nuclear Information System (INIS)

    Joa, Bettina

    2014-01-01

    This work deals with the detailed analysis of the existing structure of all Bavarian wood burning plants for the generation of heat and electricity as well as the determination of the resulting emission emissions in 2013. The number of wood burning plants in the single-chamber fireplaces, wood central heating and wood-fired heating plants which are in operation in the year 2013 were determined, and how many plants are existing in the various areas like pellet stoves, traditional ovens, wood-burning fireplace, pellet central heating systems, wood chips central heating systems, fire-wood central heating systems, wood combined heat and power plant (electricity and heat) and wood power plants (heat). In addition, the regional distribution of the wood burning plants in the Bavarian governmental districts is investigated as well as the type and amount of energy produced by them (heat, electricity). [de

  4. The effect of plant reliability improvement in the cost of generating electricity

    International Nuclear Information System (INIS)

    Nejat, S.; Sanders, R.C.; Tsoulfanidis, N.

    1982-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant, as a result of improving the availability of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel series system having components with failure and repair rates distributed exponentially in time. The method has been applied to different subsystems, systems, and the secondary loop of a plant as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal allocation of spare parts to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utility will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously

  5. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  6. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  7. Pre-feasibility study for an electric power plant based on rice straw. [Mali

    Energy Technology Data Exchange (ETDEWEB)

    Fock, F. [Ea Energy Analysis, Copenhagen (Denmark); Nygaard, I. [Technical Univ. of Denmark. DTU Management Engineering, UNEP Risoe Centre on Energy, Climate and Sustainable Development, Roskilde (Denmark); Maiga, A.; Kone, B.; Kamissoko, F.; Coulibaly, N.; Ouattara, O.

    2012-11-15

    The main objective is to make a first evaluation regarding if it's technically possible, economically viable, sustainable and recommendable to build a rice straw/hulls fired power plant in Niono in Mali. Based on the available resource of rice straw and the possibilities for connecting to the grid it has been chosen to analyse a 5 MW power plant in the project. For technical reasons the rice straw should be the main fuel, but rice hulls can be used for co-firing. Up to around 20% of the fuel in the plant can be rice hulls instead of rice straw. A number of different biomass power production technologies have been evaluated in the project. This includes: 1) Grate fired boiler. 2) Bubbling fluidised bed. 3) Circulating fluidised bed. 4) Dust fired boiler. 5) Gasification. 6) Stirling engine. 7) Organic Rankine Cycle. Grate firing is the most relevant technology in this case, due to the fuel, the size of the power plant, the demand for electricity only and not heat, the demand for a robust and well proven technology. For a grate fired plant a calculation of the thermodynamic process of the power plant has been carried out in order to determine the electrical efficiency of the plant. The case consists of a 5 MW grate fired power plant with steam turbines and air cooled condenser resulting in an efficiency of 24.6% at full load (20% as yearly average). Investment costs and costs for O and M have been assumed based on experience from Danish power plants but adjusted for local conditions in Mali. The costs for collecting and transporting the rice straw and for the ash disposal have been specifically estimated in this project. The average cost of capital has been estimated based on assumptions on equity, international loans and local loans/bank finance. Based on the investment, the cost of O and M, fuel, ash disposal and the financial assumptions, a cash flow analysis is made in order to calculate the power price resulting in a Net Present Value (NPV) of the

  8. Electric strength of metal-ceramic brazed units of thermionic energy converters in cesium vapours

    International Nuclear Information System (INIS)

    Belousenko, A.P.; Vasilchenko, A.V.; Nikolaev, Y.V.

    1989-01-01

    The investigation of electric strength characteristics of the hollow metal-ceramic brazed units of thermionic energy converters with the insulator 1 = 10-50 mm from polycrystal aluminum oxide at the temperature T = 450-750 degrees and the cesium vapour pressure P Cs = 10 - 1 -10 3 Pa has been carried out. The experimental dependencies of the break-down voltage of the brazed units on the temperature, parameter P Cs · 1 and the value of surface electric resistance of the insulators are given as well as the empiric equations obtained with the help of experimental data for calculating the break-down voltage. A mechanism of ceramic insulator influence on electric strength characteristics of the cesium gap is investigated. A breakdown model explaining this influence is proposed

  9. Overview on advanced nuclear reactors: research and deployment in the United States

    International Nuclear Information System (INIS)

    Sandell, L.; Rohrer, S.

    2004-01-01

    For the United States of America, the electricity requirement is expected to continue to rise at rates of approximately 1.8% over the next few years. This means that some 300,000 MW of additional generating capacity need to be made available by 2025. The Energy Policy Act of 2003 is to minimize this expected future growth of electricity consumption and promote research in favor of a diversified energy mix. As a consequence, the U.S. Senate and the House of Representatives passed legislation on electricity generation, on the promotion of, and research into, specific energy sources, and on energy conservation. Currently, coal-fired power plants contribute the largest share to the overall generating capacity. Considerable additions to the generating capacity have been made in the past ten years in gas-fired plants. In the light of the high present gas prices and market volatilities, the construction of new coal-fired power plants is currently under discussion. 103 out of the 436 nuclear power plants at present in operation worldwide are located in the United States. They represent by far the largest share of emission-free generating capacity in the United States. Considerable capacities have been added over the past few years by, up to now, 99 power increases by 0.4 to 17.8%. The Nuclear Power 2010 Program is a joint initiative by the government and industry seeking to further develop advanced nuclear power plant technologies and elaborate a new licensing procedure for nuclear power plants. The proposed licensing procedure and the Westinghouse AP1000, General Electric ESBWR, and AECL ACR-700 advanced reactor lines are presented. (orig.)

  10. Development of electrical capacitance sensor for tomography

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Jaafar Abdullah; Ismail Mustapha; Sazrol Azizee Ariff; Susan Maria Sipaun; Lojius Lombigit

    2004-01-01

    Electrical capacitance tomography (ECT) is one of the successful methods for imaging 2-phase liquid/gas mixture in oil pipelines and solids/gas mixture in fluidized bed and pneumatic conveying system for improvement of process plants. This paper presents the design development of an electrical capacitance sensor for use with an ECT system. This project is aimed at developing a demonstration ECT unit to be used in the oil pipe line. (Author)

  11. Plutonium Finishing Plant (PFP) Treatment and Storage Unit Waste Analysis Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  12. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  13. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  14. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  15. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  16. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  17. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  18. Standard Technical Specifications, General Electric plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. This document Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  19. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  20. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  1. Evaluation of Perry Nuclear Power Plant Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-11-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Perry Nuclear Power Plant Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Perry T/S. Several discrepancies were identified and subsequently resolved through telephone conversations with the staff reviewer and the utility representative. Pending completion of the resolutions noted in Parts 3 and 4 of this report, the Perry Nuclear Power Plant Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  2. Investigation of practical use situation and performance for electric transient analysis programs in the U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2010-01-01

    The purposes of the present study are firstly to investigate the status of practical use of electric transient analysis programs used in U.S. nuclear power plants, which has been extracted as good examples from the information analysis of overseas troubles, and secondly to select a program to be recommended for use in implementing electric transient analysis in domestic nuclear power plants. In addition, to promote its practical use, a selected electric transient analysis program was tested by simulating the transient response during a load sequence test of an emergency diesel generator (EDG) in a domestic representative nuclear plant to evaluate its simulation accuracy by comparing its result with the measured plant data. The results obtained are as follows: (1) In U.S. nuclear power plants, simulations using electric transient analysis programs, such as ETAP, EMPT, etc., are widely performed, which contributed to improve the plant safety. (2) A selected transient analysis program EMTP was verified in its accuracy in terms of transient response of active power, current, voltage and frequency of the EDG during the load sequence test in a domestic representative nuclear power plant. (author)

  3. Comparative energy and exergy performance assessments of a microcogenerator unit in different electricity mix scenarios

    International Nuclear Information System (INIS)

    Gonçalves, Pedro; Angrisani, Giovanni; Roselli, Carlo; Gaspar, Adélio R.; Gameiro da Silva, Manuel

    2013-01-01

    Highlights: • Experimental and energy–exergy modelling of a 6 kW micro-combined heat and power unit. • Evaluation of energy and exergy efficiencies for performance assessment. • Use of exergy and energy indicators for comparison with a reference system. • Use of different renewables supply options into the electric and heat reference system. • The electric grid mix of Portugal and Italy is used and discussed. - Abstract: The Directive 2004/8/EC on the promotion of cogeneration proposes a comparative indicator based on primary energy savings, neglecting some important thermodynamic aspects, such as exergy. This study aims to compare and discuss the usefulness of a set of complementary indicators for performance assessments of cogeneration systems, concerning thermodynamic principles based on first and second law (the exergy approach). As case study, a 6 kW electric output micro-combined heat and power unit was experimentally tested and a model of the unit was developed in TRNSYS. Considering as reference a set of different heat and electricity scenarios, including the actual electric mixes of Portugal and Italy, the indicators case incon (PES) and Primary and Total Irreversibilities Savings (PIS and TIS), as well as energy and exergy renewability ratios were assessed and discussed. The results show that the use of MCHP has higher advantages for the Italian electric grid, than an equivalent scenario considering the Portuguese electric network as reference. As result, for a particular scenario analysed, PES and PIS have 3% and 6% for Portugal, and 10% and 18% for Italy, respectively. Furthermore, for one particular scenario evaluated, the indicators energetic and exergetic renewability ratios have 23% and 14%, respectively for the Portuguese electric grid, and 19% and 10% for the Italian electric system

  4. Preventive Maintenance Scheduling for Multicogeneration Plants with Production Constraints Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Khaled Alhamad

    2015-01-01

    Full Text Available This paper describes a method developed to schedule the preventive maintenance tasks of the generation and desalination units in separate and linked cogeneration plants provided that all the necessary maintenance and production constraints are satisfied. The proposed methodology is used to generate two preventing maintenance schedules, one for electricity and the other for distiller. Two types of crossover operators were adopted, 2-point and 4-point. The objective function of the model is to maximize the available number of operational units in each plant. The results obtained were satisfying the problem parameters. However, 4-point slightly produce better solution than 2-point ones for both electricity and water distiller. The performance as well as the effectiveness of the genetic algorithm in solving preventive maintenance scheduling is applied and tested on a real system of 21 units for electricity and 21 units for water. The results presented here show a great potential for utility applications for effective energy management over a time horizon of 52 weeks. The model presented is an effective decision tool that optimizes the solution of the maintenance scheduling problem for cogeneration plants under maintenance and production constraints.

  5. Bidding strategy for pumped-storage plant in pool-based electricity market

    International Nuclear Information System (INIS)

    Kanakasabapathy, P.; Shanti Swarup, K.

    2010-01-01

    This paper develops optimal bidding strategies for a pumped-storage plant in a pool-based electricity market. In the competitive regime, when compared to simple hydroelectric generator, profit of the pumped-storage plant is maximized by operating it as a generator when market clearing price is high and as a pump when the price is low. Based on forecasted hourly market clearing price, a multistage looping algorithm to maximize the profit of a pumped-storage plant is developed, considering both the spinning and non-spinning reserve bids and meeting the technical operating constraints of the plant. The proposed model is adaptive for the nonlinear three-dimensional relationship between the power produced, the energy stored, and the head of the associated reservoir. Different operating cycles for a realistic pumped-storage plant are considered and simulation results are reported and compared. (author)

  6. U.S. National and regional impacts nuclear plant life extension

    International Nuclear Information System (INIS)

    Makovick, L.; Fletcher, T.; Harrison, D.L.

    1987-01-01

    The purpose of this study was to evaluate the economic impacts of nuclear plant life extension on a national and regional level. Nuclear generating capacity is expected to reach 104 Gigawatts (119 units) in the 1994-1995 period. Nuclear units of the 1970 to 1980 vintage are expected to account for 96% of nuclear capacity. As operating licenses expire, a precipitous decline in nuclear capacity results, with an average of 5 gigawatts of capacity lost each year from 2010 to 2030. Without life extension, 95% of all nuclear capacity is retired between the years 2010 and 2030. Even with historically slow growth in electric demand and extensive fossil plant life extension, the need for new generating capacity in the 2010-2030 time period is eight times greater than installed nuclear capacity. Nuclear plant life extension costs and benefits were quantified under numerous scenarios using the DRI Electricity Market Model. Under a wide range of economic assumptions and investment requirements, nuclear plant life extension resulted in a net benefit to electricity consumers. The major source of net benefits from nuclear plant life extension results from the displacement of fossil-fired generating sources. In the most likely case, nuclear plant life extension provides a dollar 200 billion net savings through the year 2030. Regions with a large nuclear capacity share, newer nuclear units and relatively higher costs of alternative fuels benefit the most from life extension. This paper also discusses the importance of regulatory policies on nuclear plant life extension

  7. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  8. The role of nuclear power plants in the wholesale electricity market

    International Nuclear Information System (INIS)

    Alonso, J. c.; Alonso, J.; Gonzalez, A.; Gonzalez, R.

    2009-01-01

    The Spanish electricity market has been running foe eleven years and its rules and procedures have proven compatible with a safe and stable operation of the nuclear power plants, helped by a wide portfolio of technologies in the Spanish system. In the near future, two issues emerge as a potential threat: the increase in renewable (mainly wind) production and its volatility and the development of new network infrastructure around the plants owned by third parties. Stricter rules on network development and operation and greater respect to the plants operational needs have to be pushed forward by the industry to succeed in life extension programs. (Author)

  9. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  10. Reliability centered maintenance as an optimization tool for electrical power plants

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Bryla, P.; Martin-Mattei, C.; Meuwisse, C.

    1997-08-01

    Seven years ago, Electricite de France launched a Reliability Centered Maintenance (RCM) pilot project to optimize preventive maintenance for its nuclear power plants. After a feasibility study, a RCM method was standardized. It is now applied on a large scale to the 50 EDF nuclear units. A RCM workstation based on this standardized method has been developed and is now used in each plant. In the next step, it is considered whether a Risk based Approach can be included in this RCM process in order to analyze critical passive components such as pipes and supports. Considering the potential advantages of these optimization techniques, a dedicated process has been also developed for maintenance of future plants, gas turbines, or nuclear units. A survey of these different developments of methods and tools is presented. (author)

  11. Summary of operating experience in Swiss nuclear power plants 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In 1993 the Swiss nuclear power plants produced their third highest combined annual output. The contribution to the total electricity generation in the country was close to 37%. Replacement of the steam generators in Beznau Unit 1 resulted in a longer than usual annual outage. For the other four units the availability figures were close to, or exceeded, those of previous years. The energy utilization was, however, lowered due to load reduction in autumn resulting from unusually high production by the hydro-electric power plants. The steam generator replacement at Beznau enabled an increase in electrical power of about 2% without increase in reactor power. With the approval of the Swiss government in December 1992, the output of the Muehleberg power plant was increased in two stages by a total of 10%. The application for an unlimited operating license for Beznau Unit 2, and for a power uprate at the Leibstadt power plant, are still pending. The average number of scrams at the Swiss plants remained stable, at less than one scram per reactor year. As a result of experience in the Swedish nuclear power plant at Barsebaeck, the suction strainers of the emergency core cooling systems of the boiling water reactors at Muehleberg and Leibstadt were replaced by strainers with larger surface areas. The re-inspection of crack indications previously detected in the core shroud of the Muehleberg reactor and the penetration tubes in the reactor pressure vessel closure head of Beznau revealed no growth during the intervening operating periods. Following the completion of installation activities during the annual outages at Beznau Unit 1, Goesgen and Leibstadt, all Swiss nuclear power plants are now equipped with filtered containment venting systems. (author) figs., tabs

  12. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  13. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    The re-emergence of nuclear power as a leading contender for new base-load electrical generation is not an occurrence of happenstance. The nuclear industry, in general, and Westinghouse, specifically, have worked diligently with the U.S. power companies and other nuclear industry participants around the world to develop future plant designs and project implementation models that address prior problem areas that led to reduced support for nuclear power. In no particular order, the issues that Westinghouse, as an engineering and equipment supply company, focused on were: safety, plant capital costs, construction schedule reductions, plant availability, and electric generation costs. An examination of the above criteria quickly led to the conclusion that as long as safety is not compromised, simplifying plant designs can lead to positive progress of the desired endpoints for the next and later generations of nuclear units. The distinction between next and later generations relates to the readiness of the plant design for construction implementation. In setting requirement priorities, one axiom is inviolate: There is no exception, nor will there be, to the Golden Rule of business. In the electric power generation industry, once safety goals are met, low generation cost is the requirement that rules, without exception. The emphasis in this paper on distinguishing between next and later generation reactors is based on the recognition that many designs have been purposed for future application, but few have been able to attain the design pedigree required to successfully meet the requirements for next generation nuclear units. One fact is evident: Another generation of noncompetitive nuclear plants will cripple the potential for nuclear to take its place as a major contributor to new electrical generation. Only two plant designs effectively meet the economic tests and demonstrate both unparalleled safety and design credibility due to extensive progress toward engineering

  14. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  15. Electric motor drive unit, especially adjustment drive for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Litterst, P

    1980-05-29

    An electric motor drive unit, particularly an adjustment drive for vehicles with at least two parallel drive shafts is described, which is compact and saves space, and whose manufacturing costs are low compared with those of well-known drive units of this type. The drive unit contains a suitable number of magnet systems, preferably permanent magnet systems, whose pole axes are spaced and run parallel. The two pole magnet systems have diametrically opposite shell-shaped segments, to which the poles are fixed. In at least one magnet system the two segments are connected by diametrically opposite flat walls parallel to the pole axes to form a single magnetic circuit pole housing. The segments of at least one other magnet system are arranged on this pole housing so that one of these flat walls is a magnetically conducting, connecting component of the magnetic circuit of the other magnet system.

  16. Non-native plant invasions of United States National parks

    Science.gov (United States)

    Allen, J.A.; Brown, C.S.; Stohlgren, T.J.

    2009-01-01

    The United States National Park Service was created to protect and make accessible to the public the nation's most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many threatened and endangered plants and high native plant species richness also had high non-native plant species richness. Non-native plant species richness was correlated with number of visitors and kilometers of backcountry trails and rivers. In addition, this work reveals patterns that can be further explored empirically to understand the underlying mechanisms. ?? Springer Science+Business Media B.V. 2008.

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  18. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  19. ELECNUC. Nuclear power plants in the world - 2012 edition, Status on 2011-12-31

    International Nuclear Information System (INIS)

    2012-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2011 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2011/01/01; Worldwide status of nuclear power plants (12/31/2011); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2011; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear powe plants by country at the end 2011; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2011; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2011; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2011; Long term shutdown units at 12/31/2011; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  20. Construction of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Jicha, J.

    1989-01-01

    The Temelin nuclear power plant with four WWER-1000 reactors is designed to supply electricity in an amount of 23 TWh/yr and heat in an amount of 8000 TJ/yr in the first stage. The maximum heat extraction should be 922 MW. The plant construction includes the building of 10 buildings, the total cost being 52 thousand million Czechoslovak crowns. Another 41 investment items are associated with the plant construction. The most important of them include constructions for leading out the electric power, for standby electricity supply for the power plant, and for the extraction of heat from the plant and its supply to the town of Ceske Budejovice. The first unit should be started up for test performance in November 1992, the second in 1994 and the whole power plant should be complete by 1998. The state of the construction by February 1989 is described in detail. Attention is also paid to the preparatory activity for the operation and to social welfare of the personnel. (Z.M.)

  1. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  2. Per unit representation of electrical magnitudes in batteries: A tool for comparison and design

    International Nuclear Information System (INIS)

    Gauchia, Lucia; Sanz, Javier

    2009-01-01

    When a comparison between the performance of batteries with different characteristics, or sizing of a particular battery system in a power system (electrical grid, etc.) is carried out, the usual expression of electrical variables in terms of absolute magnitudes (Volts, etc.) has some important disadvantages derived from the wide range of values these variables can assume, as they are dependant on the 'size' of the system, defined by its rated capacity, voltage or current. This makes impossible any direct comparison between different alternatives. Furthermore, it collides with the usual way power engineers use to represent and analyze the electrical power system. This paper proposes the application of a per unit system to batteries to overcome these problems. In this per unit system, all magnitudes are represented as non-dimensional values, with reference to a set of base magnitudes. Therefore, absolute values are converted into relative ones, which allow a direct comparison between different batteries. To apply a per unit system, a set of base magnitudes is studied and defined taking into account the special characteristics of a battery. The conclusion is that with a per unit system the information extracted is more accessible, direct and representative than using absolute magnitudes

  3. Cost savings from extended life nuclear plants

    International Nuclear Information System (INIS)

    Forest, L.R. Jr.; Deutsch, T.R.; Schenler, W.W.

    1988-09-01

    This study assesses the costs and benefits of nuclear power plant life extension (NUPLEX) for the overall US under widely varying economic assumptions and compares these with alternative new coal- fired plants (NEWCOAL). It is found that NUPLEX saves future electricity consumers more than 3 cents/-kwh compared with NEWCOAL. The NUPLEX costs and benefits for existing individual US nuclear power plants under base-line, or most likely, assumptions are assessed to determine the effects of the basic plant design and plant age. While benefits vary widely, virtually all units would have a positive benefit from NUPLEX. The study also presents a cost-benefit analysis of the nuclear industry's planned advanced light water reactor (ALWR). It is concluded that ALWR offers electrical power at a substantially lower cost than NEWCOAL. 9 refs., 6 figs

  4. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1991-06-01

    Supplement 34 to the Safety Evaluation Report for the application by Pacific Gas and Electric Company (PG ampersand E) for licenses to operate Diablo Canyon Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-275 and 50-323, respectively) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement documents the NRC staff review of the Long-Term Seismic Program conducted by PG ampersand E in response to License Condition 2.C.(7) of Facility Operating License DPR-80, the Diablo Canyon Unit 1 operating license. 111 refs., 20 figs., 31 tabs

  5. Progress of innovation of electrical power technology in FY2013

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Yamaguchi, Hiroshi

    2014-01-01

    The following is the description of technical innovations at 12 companies including Tokyo Electric Power Company, Chubu Electric Power Company, and Japan Atomic Power Company. Tokyo Electric Power Company presented (1) the developments of a wet-type air decontaminating apparatus for inside/outside of power plant, (2) a robot to be used for field investigation at the Fukushima Daiichi nuclear power plant, (3) a visualization technology using laser for detection, and (4) removal of debris at the power plant. Chubu Electric Power Company presented application of a flap gate to the opening on exterior wall of building as a countermeasure against tsunami at the Hamaoka nuclear power plant. Hokuriku Electric Power Company presented a nuclear reactor operation training simulator for full-scope operation training for the Shika nuclear power station. Chugoku Electric Power Company presented their efforts in implementing a predictive monitoring system at the Shimane Nuclear Power Station. Shikoku Electric Power Company presented the installation of a weir with a flap gate to the interior of seawater pit as a countermeasure against tsunami. Japan Atomic Power Company presented an impact assessment method of fallout during transportation of materials caused by nuclear reactor accident, design and development of a square-type shielding container for radioactive wastes, a strength test on concrete materials for the safety design of Tsuruga Power Station Units 3 and 4, decommissioning of nuclear power plant, and research and development of the fast breeder reactor. (S.Y.)

  6. United States/Mexico electricity exchanges. [History, incentives, and constraints

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-05-01

    As a result of the agreement between the respective presidents, a joint study was undertaken to analyze the possibilities of increasing the international electricity exchange between the two countries. Responsibility for this undertaking was assigned to the United States Department of Energy (DOE) and to the Direccion de Energia de Mexico (DEM) through the Comision Federal de Electricidad (CFE). Representatives from Mexico and the US were chosen from the regional utilities along the border between the two countries and made up working groups that particiated in the study. With the support of both governments, and a high degree of cooperation between the two countries, work on the study was completed within fourteen months The completion of the study has been a major step in broadening the base of bilateral energy relations. the study highlights the opportunities for increased electricity exchanges, which could increase cooperation along the common border. Expansion of electricity interchange could offer substantial economic benefit to both countries, both directly and indirectly. Direct benefits include increased reliability of electric power and cost savings through economies of scale and diversity of peak demand patterns. Indirect benefits include improved economic and employment opportunities, especially in the border areas of both countries. This report provides background on the history of past exchanges and the characteristics of the US and Mexico electric systems, a summary of opportunities and incentives, and suggestions for procedures to remove obstacles and constraints.

  7. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  8. Development of regulatory requirements/guides for desalination unit coupled with nuclear plant

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik

    2005-10-01

    The basic design of System-integrated Modular Advanced Reactor (SMART), a small-to-medium sized integral type pressurized water reactor (PWR) with the capacity of 330MWth, has been developed in Korea. In order to demonstrate the safety and performance of the SMART design, 'Development Project of SMART-P (SMART-Pilot Plant)' has been being performed as one of the 'National Mid and Long-term Atomic Energy R and D Programs', which includes design, construction, and start-up operation of the SMART-P with the capacity of 65MWth, a 1/5 scaled-down design of the SMART. At the same time, a study on the development of regulatory requirements/guides for the desalination unit coupled with nuclear plant has been carried out by KINS in order to prepare for the forthcoming SMART-P licensing. The results of this study performed from August of 2002 to October of 2005 can be summarized as follows: (1) The general status of desalination technologies has been survey. (2) The design of the desalination plant coupled with the SMART-P has been investigated. (3) The regulatory requirements/guides relevant to a desalination unit coupled with a nuclear plant have been surveyed. (4) A direction on the development of domestic regulatory requirements/guides for a desalination unit has been established. (5) A draft of regulatory requirements/guides for a desalination unit has been developed. (6) Expert technical reviews have been performed for the draft regulatory requirements/guides for a desalination unit. The draft regulatory requirements/guides developed in this study will be finalized and can be applied directly to the licensing of the SMART-P and SMART. Furthermore, it will be also applied to the licensing of the desalination unit coupled with the nuclear plant

  9. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  10. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  11. Api Energia IGCC plant is fully integrated with refinery

    Energy Technology Data Exchange (ETDEWEB)

    Del Bravo, R. [api Energia, Rome (Italy); Trifilo, R. [ABB Sadelmi, Milan (Italy); Chiantore, P.V. [api anonima petroli Italiania Spa, Rome (Italy); Starace, F. [ABB Power Generation, Baden (Switzerland); O`Keefe, L.F. [Texico, White Plains (United States)

    1998-06-01

    The api Energia integrated gasification combined cycle (IGCC) plant being built at Falconara Marittima, on Italy`s Adriatic coast, is one of the three IGCC plants under construction in Italy following the liberalization of the electricity production sector. The plant will take 59.2 t/h of high sulphur heavy oil produced by the Falconara refinery, convert it to syngas and use the gas to generate 280 MW of electricity, plus steam and other gases for use in the refinery. The IGCC plant will be highly integrated into the refining process, with a large number of interchanges between the IGCC unit and the rest of the refinery. (author)

  12. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The present report presents results from two closely related projects, carried out in parallel, under the PSO-F and U 2002. The one project is 'Survey of controllability in de-centralized combined heat and power plants' project number PSO 4724 and is fully reported here. The other project: 'Optimal operation of priority production units, project number PSO 4712, only the part project 'Technological foundations is reported here. In project 4724 the technical conditions that matter regarding controllability of electricity production in de-centralized heat and power stations are surveyed. In this context the term controllability means how fast and to which extent the load factors of the plants can be changed. Also, is has been investigated which options are available for improving the controllability, their potentials and estimates on required investments associated. The investigation covers CHP plants having a production capacity of up to 30 MW of electricity. The main part of the de-centralized CHP plants are based on spark ignited internal combustion engines (Otto engines). Most of these engines are fuelled by natural gas and a smaller part by biogas. A minor number are gas turbines fuelled by natural gas and steam turbines in industrial applications, waste incineration plants or in combined cycle power plants. The mapping has among others consisted of a number of visits on selected different types of plants including interview with people responsible for the daily operation. From these interviews data on the actual operating strategy and technical data have been provided. In addition suppliers of engines and other equipment involved have been contacted for technical information or recommendations regarding possible changes in operation strategy. Searching the Internet has been widely used for identification of technical investigations concerning e.g. operation and maintenance of relevant equipment. Finally, substantial statistical data from

  13. FleetPower: Creating Virtual Power Plants in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha); W. Ketter (Wolfgang); A. Gupta (Alok)

    2017-01-01

    textabstractElectric vehicles have the potential to be used as virtual power plants to provide reliable back-up power. This generates additional profits for carsharing rental firms, who rent vehicles by the minute. We show this by developing a discrete event simulation platform based on real-time

  14. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: Some of Japan's commercial light water reactors (LWRs) have been operating for more than 30 years. The more progress in ageing, the more increasing concerns of the public will grow about such nuclear power plants. In order to develop basic policies regarding countermeasures against ageing on nuclear power plants, in 1996, the Ministry of International Trade and Industry (MITI) summarized a report entitled 'Basic Policy on Aged Nuclear Power Plants'. The MITI also indicated that following 30 years' commercial operation of these plants, the electric utility companies should conduct technical evaluations for the ageing of all the components in the plants and to prepare detailed maintenance plans for the future. The Nuclear Safety Commission (NSC) accepted the MITI's report as appropriate in November 1998. The Commission also recommended the addition of effective countermeasures against ageing to the Periodical Safety Review and the evaluation of activities in response to ageing in order to implement such activities regularly and systematically in the future. The MITI reviewed the ageing countermeasures conducted by the electric utility companies and issued the second report entitled 'Evaluation of Countermeasures for ageing Conducted by Electric Utility Companies and Future Plans to cope with ageing'. The evaluation was made for Tsuruga Power Station Unit 1, Mihama Power Station Unit 1, and Fukushima Daiichi Nuclear Power Station Unit 1. At the same time, the MITI determined to incorporate the technical evaluations of ageing and the preparation of long-term maintenance plans into the periodical safety review in the future. The Kansai Electric Power Co., Inc., and Tokyo Electric Power Co. conducted the technical evaluations in their periodical safety reviews concerning the ageing phenomena of all their safety-related components/structures of Mihama Power Station Unit 2 and Fukushima Daiichi Nuclear Power Station Unit 2. Also, concerning ageing, they

  15. Comparison of the General Electric BWR/6 standard plant design to the IAEA NUSS codes and guides

    International Nuclear Information System (INIS)

    D'Ardenne, W.H.; Sherwood, G.G.

    1985-01-01

    The General Electric BWR/6 Mark III standard plant design meets or exceeds current requirements of published International Atomic Energy Agency (IAEA) Nuclear Safety Standards (NUSS) codes and guides. This conclusion is based on a review of the NUSS codes and guides by General Electric and by the co-ordinated US review of the NUSS codes and guides during their development. General Electric compared the published IAEA NUSS codes and guides with the General Electric design. The applicability of each code and guide to the BWR/6 Mark III standard plant design was determined. Each code or guide was reviewed by a General Electric engineer knowledgeable about the structures, systems and components addressed and the technical area covered by that code or guide. The results of this review show that the BWR/6 Mark III standard plant design meets or exceeds the applicable requirements of the published IAEA NUSS codes and guides. The co-ordinated US review of the IAEA NUSS codes and guides corroborates the General Electric review. In the co-ordinated US review, the USNRC and US industry organizations (including General Electric) review the NUSS codes and guides during their development. This review ensures that the NUSS codes and guides are consistent with the current US government regulations, guidance and regulatory practices, US voluntary industry codes and standards, and accepted US industry design, construction and operational practices. If any inconsistencies are identified, comments are submitted to the IAEA by the USNRC. All US concerns submitted to the IAEA have been resolved. General Electric design reviews and the Final Design Approval (FDA) issued by the USNRC have verified that the General Electric BWR/6 Mark III standard plant design meets or exceeds the current US requirements, guidance and practices. Since these requirements, guidance and practices meet or exceed those of the NUSS codes and guides, so does the General Electric design. (author)

  16. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  17. Safety-evaluation report related to the operation of Diablo Canyon Nuclear Power Plants, Units 1 and 2. Docket Nos. 50-275 and 50-323. Supplement No. 18

    International Nuclear Information System (INIS)

    1983-08-01

    Supplement 18 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plants, Units 1 and 2 (Docket Nos. 50-275 and 50-323), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports on the verification effort for Diablo Canyon Unit 1 that was performed between November 1981 and the present in response to Commission Order CLI-81-30 and an NRC letter to the licensee

  18. Design issues concerning Iran's Bushehr nuclear power plant VVER-1000 conversion

    International Nuclear Information System (INIS)

    Carson, C.F.

    1996-01-01

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was ∼80% complete and unit 2 was ∼50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction

  19. Safety evaluation report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement 20 to the Safety Evaluation Report for Pacific Gas and Electric Company's application for licenses to operate Diablo Canyon Nuclear Power Plant, Unit 1 and Unit 2 (Docket Nos. 50-275 and 50-323), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports on the verification effort for Diablo Canyon Unit 1 that was performed between November 1981 and the present in response to Commission Order CLI-81-30 and an NRC letter of November 19, 1981 to the licensee. Specifically, Supplement 20 addresses those issues and other matters identified in Supplements 18 and 19 that must be resolved prior to Unit 1 achieving criticality and operating at power levels up to 5% of rated full power. This SER Supplement applies only to Diablo Canyon Unit 1

  20. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  1. Planning of maintenance of electrical equipment in nuclear plants/laboratories [Paper No.: VB-3

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Bhattacharyya, A.K.

    1981-01-01

    Satisfactory operating performance of electrical systems ensures continuous availability of power to the various plants and machinery in nuclear plant and laboratories. For effective optimal functioning of the electrical equipment and to reduce their down time, scheduled planning of maintenance to the equipment is essential. Maintenance of power plant, nuclear or fossil, and industrial plant and research laboratories demands essential ingredients such as right type of trained and motivated technical personnel, adoption of standard procedures for maintenance, adequate safety and protection for equipment, safety procedures adopted in the installation to prevent hazards to the workers, provision of adequate stores and inventories, facilities for quick repairs and testing of equipment and effective planning of procedures for their maintenance. While breakdown maintenance allows equipment to operate before it is repaired or replaced, preventive maintenance makes use of scheduled inspection and periodical equipment overhaul and has little value for predicting future continuous performances of equipment. The engineered maintenance is most advantageous and offers maximum operating time to reduce down time of the equipment while adding predictive testing technique to aid in determining the frequency of overhaul of equipment. The important checks to be conducted and preventive maintenance programme to be scheduled are discussed in this paper. The safety and reliable functioning of the electrical equipment depend on proper optimal design, selection of equipment, their installation, subsequent maintenance and strict compliance with safety regulations. (author)

  2. Industrial plant electrical systems: Simplicity, reliability, cost savings, redundancies

    International Nuclear Information System (INIS)

    Silvestri, A.; Tommazzolli, F.; Pavia Univ.

    1992-01-01

    This article represents a compact but complete design and construction manual for industrial plant electrical systems. It is to be used by design engineers having prior knowledge of local power supply routes and voltages and regards principally the optimum choice of internal distribution systems which can be radial or single, double ringed or with various network configurations, and with single or multiple supplies, and many or few redundancies. After giving guidelines on the choosing of these options, the manual deals with problematics relevant to suitable cable sizing. A cost benefit benefit analysis method is suggested for the choice of the number of redundancies. Recommendations are given for the choice of transformers, motorized equipment, switch boards and circuit breakers. Reference is made to Italian electrical safety and building codes

  3. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  4. A review of electric cable aging effects and monitoring programs for plant license renewal

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1999-01-01

    As commercial nuclear power plants approach the end of their original license period, some utilities are considering the possibility of license renewal. The requirements for applying for license renewal are specified in the License Renewal Rule, which is in Title 10 of the Code of Federal Regulations, Part 54 (10 CFR54). Among the requirements specified in the rule is the performance of an Integrated Plant Assessment (IPA) which identifies and lists structures and components subject to an aging management review. The intent of this requirement is to ensure that aging degradation will not adversely affect plant safety during the license renewal period. The aging management review includes an identification of the aging effects and monitoring programs for components within the scope of the rule. Among the components within the scope are electric cables since they are passive, long-lived components that are not replaced on a periodic basis. This paper examines the aging causes and effects of electric cables, along with the programs that are typically used to ensure that proper aging management practices are in place to monitor and mitigate the effects of aging on electric cables

  5. Simulator of nuclear power plant with WWER-440 units

    International Nuclear Information System (INIS)

    Krcek, V.

    1985-01-01

    The use is discussed of simulators in the training of qualified personnel for the construction and operation of nuclear power plants. Simulators are used for training all activities and thinking processes related to the control of a nuclear reactor in the course of quasi-steady and non-steady states. The development and implementation is summed up of the construction of such a simulator for WWER-440 nuclear power plants. The main parts of the simulator include the unit control room, the computer system, the teacher's workplace and the interface system. The possibility of simulating the functions of the unit for personnel training is based on the description of the behaviour of the simulated object in form of mathematical models of its basic technological subsystems and their interrelations within the range of operating patterns. (J.C.)

  6. Nuclear power plants in Europe 1995. Report about operation, construction, and planning in 18 European countries

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Report about Operation, Construction, and Planning in 18 European Countries Eighteen European countries operate and build, respectively, nuclear power plants in 1995. The ''Nuclear Power Plants in Europe 1995'' atw report singles out the main events and lines of development. As per August 1995, 214 (1994: 215) nuclear generating units (which means power reactors for the purposes of this report) with an aggregate 177,010 (176,322) MWe installed gross capacity are in operation in seventeen countries, and 26 (30) units with 24,786 (28,086) MWe are under construction in seven countries. This adds up to a total of 240 (245) nuclear generating units with an aggregate 201,796 (204,408) MWe. In the nuclear power plants in Europe, some 1048 TWh of nuclear power was converted into electric power in 1994; 792 TWh of this aggregate was converted in 137 units in the European Union (EU). In the EU the share of nuclear power in the public supply of electricity was 36%. Lithuania, with 77%, has the highest share of nuclear power in Europe, followed by France with 75% and Belgium with 56%. The lowest percentage, only 5%, is recorded in the Netherlands. As a consequence of electricity imports, nuclear power holds considerable shares in the public electricity supply also of countries in which no nuclear power plants are operated, such as Italy or Austria. (orig.) [de

  7. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  8. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  9. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323). Supplement No. 30

    International Nuclear Information System (INIS)

    1985-04-01

    Supplement 30 to the Safety Evaluation Report for the application by the Pacific Gas and Electric Company (PG and E) to operate the Diablo Canyon Nuclear Power Plant - Unit 2 (Docket No. 50-323) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. SSER 30 reports on the staff's technical review and evaluation of the design and analysis of Unit 2 piping systems and pipe supports. The staff effort includes an evaluation of PG and E's treatment of issues raised during the Unit 1 design verification, actions resulting from low power License Condition 2.C.(11) in the Unit 1 low power license DPR-76 and the Unit 2 applicability and resolution of certain allegations related to piping and supports

  10. Environment pollution with aluminium around a coalburning electric power plant

    International Nuclear Information System (INIS)

    Hermann, J.

    1997-01-01

    The experiments were carried out from November 1991 till November 1993 on the area surrounding an electric power plant within the circle of 20 km diameter and five geographical directions (N, S, SE, E, W). The results presented in this paper have indicated the threats caused by emissions of the power plant ashes and dusts. Mean aluminium content in soil has been multiply surpassed on the area studied. This must have as impact on fauna and flora. The distribution and intensity of pollution is determined first of all by the distance from the emitters and direction of prevailing winds. A part of aluminium contained in water soluble compounds can be distributed on large areas, what adds a lot to the threat to animals. That is why high chimneys do not solve the problem of pollution around big industrial plants. (author)

  11. Acceptance test report for project C-157 ''T-Plant electrical upgrade''

    International Nuclear Information System (INIS)

    Jeppson, L.A.

    1997-01-01

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ''Acceptance Test Proceedure for Project C-157 'T Plant Electrical Upgrade''' The test was completed and approved without any problems or exceptions

  12. Acceptance test report for project C-157 ``T-Plant electrical upgrade``

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, L.A.

    1997-08-05

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

  13. Electric motor-transformer aggregate in hermetic objects of transport vehicles

    Science.gov (United States)

    Zabora, Igor

    2017-10-01

    The construction and features of operation for new electrical unit - electric motor-transformer aggregate (DTA) are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees). Main objective of spent researches is the substantiation of possibility reliable and effective electric power transform with electric machine means directly in hermetic objects with extreme conditions environment by means of new DTA. The principle and job analysis of new disk induction motors of block-module type are observed.

  14. Upgrade of Control and Protection System of the Ignalina Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Wright, Ronald E.; Fletcher, Norman; Sidnev, Victor E.; Bickel, John H.; Vianello, Aldo; Pearsall, Raymond D.

    2003-01-01

    The Ignalina nuclear power plant (NPP) Units 1 and 2 are Soviet-designed, RBMK (Reaktor Bolshoi Moschnosti Kipyashchiy), channelized, large power-type reactors. The original-design electrical capacity for each unit was 1500 MW. Unit 1 began operating in 1983, and Unit 2 was started up in 1987. In 1994, the government of Lithuania agreed to accept grant support for the Ignalina NPP Safety Improvement Program with funding supplied by the Nuclear Safety Account of the European Bank for Reconstruction and Development (EBRD). As conditions for receiving this funding, the Ignalina NPP agreed to prepare a comprehensive safety analysis report that would undergo independent peer review after it was issued. The EBRD Safety Panel oversaw preparation and review of the report. In 1996, the safety analysis report for Unit 1 was completed and delivered to the EBRD. Part of the analyses covered anticipated transients without scram (ATWS). The analysis showed that some ATWS scenarios could lead to unacceptable consequences in <1 min. The EBRD Safety Panel recommended to the government of Lithuania that the Ignalina NPP develop and implement a program of compensatory measures for the control and protection system before the unit would be allowed to return to operation following its 1998 maintenance outage. A compensatory control and protection system that would mitigate the unacceptable consequences was designed, procured, manufactured, tested, and installed. The project was funded by U.S. Department of Energy

  15. Chapter 2. The production units

    International Nuclear Information System (INIS)

    1998-01-01

    In the second chapter of this CD ROM the production units of the Slovak Electric, Plc. (Slovenske elektrarne, a.s.), are presented. It consist of next paragraphs: (1) Nuclear power plants (A-1 Nuclear Power Plant (History, Technological scheme, basic data are presented); V-1, V-2 Bohunice Nuclear Power Plant (History 1972-1985, technological scheme; nuclear safety, radiation protection, heat supply, international co-operation and basic data are presented); Mochovce Nuclear Power Plant (History 1980-1998, technological scheme, construction completion, milestones of commissioning, safety and environmental protection as well as basic data are included). (2) Conventional sources of energy (Vojany fossil power plant (History 1959-1992, Technological units of power plant, Impact of operation on the environment, Plant of Vojany FPP Renewal and Reconstruction, Basic data are listed), Novaky fossil power plant (History 1949-1998, Technological scheme, current investment construction, basic data, Handlova heating plant). Kosice Combined Heat Power Plant (History 1960-1995, technological scheme, State metrology centre, acredited chemical laboratory, basic data). (3) Hydroelectric power plants (Trencin HPPs: Cierny Vah pumped storage HPP, Liptovska Mara HPP, Orava HPP, Sucany HPP, Miksova HPP, Nosice HPP, Velke Kozmalovce HPP, Gabcikovo HPP, Dubnica HPP, Nove Mesto n/V HPP, Madunice HPP, Kralova HPP) and Dobsina HPPs: (Dobsina HPP, Ruzin HPP, Domasa HPP, small HPPs) are presented

  16. Mathematical models of power plant units with once-through steam generators

    International Nuclear Information System (INIS)

    Hofmeister, W.; Kantner, A.

    1977-01-01

    An optimization of effective control functions with the current complex control loop structures and control algorithms is practically not possible. Therefore computer models are required which may be optimized with the process and plant data known before start-up of thermal power plants. The application of process computers allows additional predictions on the control-dynamic behavior of a thermal power plant unit. (TK) [de

  17. Feasibility study on economic operation of wind farms in the electric power system of the Republic of Croatia

    International Nuclear Information System (INIS)

    Rabadan, L.P.; Sansevic, M.; Klarin, B.

    1996-01-01

    In this work are analyzed island and coastal locations on the Adriatic Sea as possible sites of wind farms. The analysis is based on the expert system developed by authors of other literature. The macrolocation selection is performed by the multicriterial decision-making method and in compliance with the current world approach to their wind potential and some other criteria. The choice of wind turbine generator (WTG) unit is based on the fundamental criteria: operational efficiency on the given location, price per installed kW, and price of the generated electricity. The results obtained in this study show that the contribution in electricity yield from the selected wind power plants could amount to 4.33% of the electricity generated by the Croatian power plants in the year 1990. The calculations of electricity costs are based on the quantity of electricity obtained by simulating the operation of the best WTG units selected from the ES database and including other influential factors. In the choice of macrolocations and WTG units the fuzzy method is implemented as part of the ES. (author)

  18. Reducing operating costs: A collaborative approach between industry and electric utilities

    International Nuclear Information System (INIS)

    Tyers, B.; Sibbald, L.

    1993-01-01

    The unit cost of electricity to industrial consumers is expected to increase at a rate of 5% annually in the 1990s. The partnership that has been created between Amoco Canada Petroleum Company and TransAlta Utilities to control the cost of electricity is described. To allow the company to receive lower rates for interruptible power, a number of measures have been taken. The Amoco Whitecourt plant has standby generators in reserve that can be used when utility power is not available. A Pembina compressor can be turned off for up to 12 hours, at 30 minutes notice, without affecting field pressure. At the East Crossfield plant sales gas can be compressed using electricity or a gas-driven engine. Spot market energy is used in a number of plants allowing electric drive alternatives to plant operators and offering short term energy markets. TransAlta invests in electrical equipment such as switchgear as well as transmission lines and transformers. New rate alternatives offered by TransAlta Utilities include review of the need for a demand ratchet, additional time of use rates, unbundling of rates allowing power purchase from alternative sources, rates that follow product costs, reduced rates for conversion of gas to electric drives certain circumstances, energy audits, and power factor credits. 5 figs

  19. Design aspects of a multipurpose fusion power plant for desalination and agrochemical processes

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1975-02-01

    A description is given of the skeletal structure of a multipurpose fusion power plant, designed for desalination and agrochemicals production. The plant is a complex that comprises dual purpose power and desalination units, separation and processing units for recovery of soluble salts in the effluent of the desalination unit, mariculture units for production of algae for food and as food for shrimp and other fish species. The electrical power unit is a two-component fusion device that burns deuterium and helium-3 utilizing a fast fusion cycle

  20. Innovations in techniques of electric power in 2008

    International Nuclear Information System (INIS)

    Ohfusa, Takahiro; Endo, Yukio; Ino, Hiroyuki

    2009-01-01

    Tokyo Electric Power Company (TEPCO), Kansai Electric Power Co., Inc., Tohoku Electric Power and other nine companies reported the results of innovations in techniques of electric power in 2008, Japan. J-Power started construction of the Ohma Nuclear Power Plant (power generating capacity: 1,383 MW, ABWR) in Ohma Town, Aomori prefecture, Japan, in May 2008. TEPCO developed the low vibration control valve and carried out the model experiments using air as fluid and the simulation by computational fluid dynamics. Mach number distribution (ε L =0.068) at the valve showed change of the supersonic jet flow as time advanced and a periodic pressure change on the valve and valve seat. Japan Atomic Power Company reported development of techniques for the established nuclear power station such as control of pipe thinning of the secondary system of PWR by insertion of oxygen at Tsuruga Power Station Unit 2, risk evaluation, the effects of increase of generating power on aging deterioration, and development of heat protective clothing. Researched are a power generation plant of small-and-medium-size reactors which took in reforming technology using the location to a narrow site, funds by stakeholders and the idea of future 'fast breeder reactor system', sodium-cooled loop type reactor, which uses TRU as fuel. The accumulator tank of new type safety system for Tsuruga Power Station Unit 3 and 4 is designed and tested. Decommissioning process of Tokai Power Plant and recycling of shielding materials, blocks and concrete powder are stated. (S.Y.)