Sample records for electric generation system

  1. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail:; Karim, Samsul Ariffin A., E-mail: [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)


    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  2. Implementation of optimum solar electricity generating system (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.


    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  3. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW


    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  4. Primary electric power generation systems for advanced-technology engines (United States)

    Cronin, M. J.


    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  5. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)


    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  6. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee


    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  7. Agent Based Control of Electric Power Systems with Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad

    Distributed generation, decentralized and local control, self organization and autonomy are evident trends of today's electric power systems focusing on innovative control architectures such as MicroGrids, Virtual Power Plants, Cell based systems, plug-in electric vehicles and real time markets...... have been developed particularly in the area of communication and distributed control. Electric power industry is eager to explore, evaluate and adopt these new advancements in ICT for improving its current practices of automation and control in order to cope with above mentioned challenges....... This thesis focuses on making a systematic evaluation of using intelligent software agent technology for control of electric power systems with high penetration of distributed generation. The thesis is based upon a requirement driven approach. It starts with investigating new trends and challenges in Electric...

  8. Study of thermoelectric systems applied to electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A. [Dpto. Ingenieria Mecanica, Energetica y de Materiales, Universidad Publica de Navarra, Pamplona (Spain)


    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated. (author)

  9. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S


    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  10. Electric Generator in the System for Damping Oscillations of Vehicles

    Directory of Open Access Journals (Sweden)

    Serebryakov A.


    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  11. Electric Generator in the System for Damping Oscillations of Vehicles (United States)

    Serebryakov, A.; Kamolins, E.; Levin, N.


    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  12. Application of field-modulated generator systems to dispersed solar thermal electric generation (United States)

    Ramakumar, R.


    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  13. Development of Power Management System for Electric Power Generation in Tanker Ship Based on Simulation

    National Research Council Canada - National Science Library

    Indra Ranu Kusuma; Raynaldi Pratama


    Power management system (PMS) for electric power generation in ship, in the case of tanker ship, is the system that has function to control and to monitor all generators in ship as the main electricity supplier for all electric...

  14. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems (United States)

    Ramakumar, R.; Bahrami, K.


    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  15. Systems assessment of future electricity generation options for Australia

    Energy Technology Data Exchange (ETDEWEB)

    A. Cottrell; J. Nunn; A. Urfer; L. Wibberley; P. Scaire; D. Palfreyman [BHP Billiton (Australia)


    This study was carried out to assess future energy options (focus on electricity generation) in an Australian context, with the premise that step reductions in greenhouse gas emissions could and should occur. It integrates life cycle analysis (LCA) and technology modelling tools for the assessment of several coal based power generation technologies, both now and into the future (to 2030), focussing on the unique Australian context. The technology combinations evaluated include: Incremental developments in pf and gas; Alternative technologies - integrated gasification combined cycle gas turbine (IGCC); underground coal gasification (UCG); New technologies - direct fired coal combined cycle (DFC-CC), oxygen-pf with CO{sub 2} capture, IGCC with CO{sub 2} capture; and Wind. It includes a range of technical, economic and environmental issues and solutions, as currently understood. The goal has been to give a clear concept of the principles used in our approach to systems assessment. 38 figs., 26 tabs.


    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur


    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  17. The 400-Hertz constant-speed electrical generation systems (United States)

    Mcclung, R.


    Materials illustrating a presentation on 400 Hz constant speed generation systems are presented. The system features are outlined, components and functioning described, and display graphics illustrated.

  18. Evaluation of Glare at the Ivanpah Solar Electric Generating System

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sims, Cianan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Christian, Joshua Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The Ivanpah Solar Electric Generating System (ISEGS), located on I - 15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. Reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground - based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impact s of the glare . Results showed that the intense glare viewed from the airspace above ISEGS was caused by he liostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (pot ential for after - image) up to a distance of %7E6 miles (10 km), but the values were below the threshold for permanent eye damage . Glare from the receivers had a low potential for after - image at all ground - based monitoring locations outside of the site bound aries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed. This page intentionally left blank

  19. Solar Electric Generating System II finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Anderson, J.R.


    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  20. Electric generators: Roesel

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.


    A new and unique type of electrical generator is described that will provide constant frequency output (within 0.01% or better) regardless of rotational speed variations. It accomplishes this with no added bulk over conventional generators, and with excellent efficiency. The same principle that permits constant frequency output also provides the means for output voltage regulation with varying drive speed and/or varying load. Onsite power generation aspects of the Integrated Community Energy Systems (ICES) concept include the requirement to follow community electric loads and the possible use of internal combustion piston engines with waste heat recovery to drive electric generators. The diesel engine is a prime candidate from commercially available technologies for which part-load shaft efficiency is better at reduced speed than for constant-speed operation required by conventional AC generators. The unique characteristics of the Roesel generator allow prime mover speed to decrease with load and offer improved engine-generator system efficiency in ICES applications.

  1. Regulatory review and barriers for the electricity supply system for distributed generation in EU-15

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Skytte, Klaus


    When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from...... distributed generation. This paper reviews the current regulation of the grids with respect to distributed generation in EU-15 Member States and compares the different systems. Several barriers are identified....

  2. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya


    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  3. Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study


    Lebsir, A; Bentounsi, A; Benbouzid, Mohamed; Mangel, H


    International audience; This paper describes a comparative study allowing the selection of the most appropriate innovative structures for electrical machines for a wind turbine system. This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the three main conventional electric generator in wind energy application system that are the Doubly-Fed Induction Generator (DFIG), the Squirrel-Cage Induction Generator (SCIG), the Permane...

  4. Wind power. [electricity generation (United States)

    Savino, J. M.


    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  5. Group excitation control of generators in state regional electric power plant transformer station automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gumin, M.I.; Rosman, L.V.; Tarnavskii, V.M.


    Group excitation control of electric generators according to standard methods is essential for the management of power plant conditions according to voltage and reactive power. A system is described that provides coordinated changes in the automatic excitation controller set point for generators that operate on common buses. The advantages of the excitation control system are discussed.

  6. 150 KVA Samarium Cobalt VSCF Starter Generator Electrical System (United States)


    considerable hand labor. Addition of a provision for suitable electrical connection by the SCR manufacturer wou;d be desirable for production runs. Predicted...licen- sing the holder or any other person or corporation, or conveying any rights or permission to manufacture , use, or sell any patented invent,’n...tesile strength to contain the magnets and pole pieces up through the overspeed rating of the rotor. The cho.;en process uses maraging steel as the

  7. Implantable power generation system utilizing muscle contractions excited by electrical stimulation. (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko


    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  8. Development of Power Management System for Electric Power Generation in Tanker Ship Based on Simulation

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma


    Full Text Available Power management system (PMS for electric power generation in ship, in the case of tanker ship, is the system that has function to control and to monitor all generators in ship as the main electricity supplier for all electric equipments or installed load. The number of total load that supplied by generator depends on the frequency of the use of load itself which would be read in PMS as well. It leads the operator to take a decision on how many generator should be operate whether in parralel or stand alone operation to fulfilling the power needs. Those loads should be grouped into essential and non essential load. This groups affecting the performance of the generators, where it will covers the maximum load at 306.67 kw under the condition of all electric equipments are operated well while the cargo handling of tanker ship is on process. However, in the state of emergency while the non essential electrical equipments are being cut off trough PMS, the generator will only covers the the maximum load at 253.88 kw to fulfilling the same needs. In the extreme case (total efficiency of parralel operation at 70%, the generators would cover the total load at 306.6 kw still by sparing the generated power of 52.72 kw.

  9. Electricity Generation Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aabakken, Jorn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ganda, Francesco [Argonne National Lab. (ANL), Argonne, IL (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tarka, Thomas [National Energy Technology Lab. (NETL), Albany, OR (United States); Brewer, John [National Energy Technology Lab. (NETL), Albany, OR (United States); Schultz, Travis [National Energy Technology Lab. (NETL), Albany, OR (United States)


    This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.

  10. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems (United States)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko


    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  11. A Comparison of Electricity Generation System Sustainability among G20 Countries

    Directory of Open Access Journals (Sweden)

    Jinchao Li


    Full Text Available Planning for electricity generation systems is a very important task and should take environmental and economic factors into account. This paper reviews the existing metrics and methods in evaluating energy sustainability, and we propose a sustainability assessment index system. The input indexes include generation capacity, generation cost, and land use. The output indexes include desirable and undesirable parts. The desirable outputs are total electricity generation and job creation. The undesirable outputs are external supply risk and external costs associated with the environment and health. The super-efficiency data envelopment analysis method is used to calculate the sustainability of electricity generation systems of 23 countries from 2005 to 2014. The three input indexes and three undesirable output indexes are used as the input variables. The two desirable outputs are used as the output variables. The results show that most countries’ electricity generation sustainability values have decreasing trends. In addition, nuclear and hydro generation have positive effects. Solar, wind, and fossil fuel generation have negative effects on sustainability.

  12. Investigation of a generator system for generating electrical power, to supply directly to the public network, using a windmill (United States)

    Tromp, C.


    A windpowered generator system is described which uses a windmill to convert mechanical energy to electrical energy for a three phase (network) voltage of constant amplitude and frequency. The generator system controls the windmill by the number of revolutions so that the power drawn from the wind for a given wind velocity is maximum. A generator revolution which is proportional to wind velocity is achieved. The stator of the generator is linked directly to the network and a feed converter at the rotor takes care of constant voltage and frequency at the stator.

  13. Utilisation of quantitative reliability concepts in evaluating the marginal outage costs of electric generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Raymond; Billinton, Roy [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Electrical Engineering


    Marginal outage costs are an important component of electricity spot prices. This paper describes a methodology based on quantitative power system reliability concepts for calculating these costs in electric generating systems. The proposed method involves the calculation of the incremental expected unserved energy at a given operating reserve level and lead time and the multiplication of this value by the average cost of unserved energy of the generating system. An extension of the proposed method is applied to interconnected generating systems in order to calculate the impact of assistance from neighbouring systems on the marginal outage cost profile of the assisted system. This method is based on the equivalent assisting unit approach. The methods discussed in this paper are illustrated by calculating the marginal outage cost profile of a small educational test system and by examining the effect of selected modelling assumptions and parameters to see how simplified representations can be used to approximate the results obtained using more detailed reliability models. (author)

  14. Water withdrawal and consumption reduction analysis for electrical energy generation system (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  15. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov


    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  16. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed


    The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give...... a description of state of the art for the distributed power generation systems (DPGS) based on renewable energy and explores the power converter connected in parallel to the grid which are distinguished by their contribution to the formation of the grid voltage and frequency and are accordingly classified...

  17. Developing A Family-Size Biogas-Fueled Electricity Generating System

    Directory of Open Access Journals (Sweden)

    Agus Haryanto


     Keywords: biogas; family size; generator; electricity; bio-filter.  Article History: Received Janury 16th 2017; Received in revised form 2nd June 2017; Accepted 18th June 2017; Available online How to Cite This Article: Haryanto, A., Marotin, F., Triyono, S., Hasanudin, U. (2017, Developing A Family-Size Biogas-Fueled Electricity Generating System. International Journal of Renewable Energy Develeopment, 6(2, 111-118.

  18. Generation Ratio Availability Assessment of Electrical Systems for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede


    An availability index, Generation Ratio Availability (GRA), is proposed to evaluate the electrical system of offshore wind farms (OWF). The GRA is the probability that at least a certain percent of wind power could be transferred to the grid system through the concerned electrical system. The GRA....... Comprehensive studies have been conducted to investigate the influence of the network design, component parameters, and wind-speed regimes on the GRA. The analysis presented in this paper is useful for both future wind farm planning and existing OWF evaluation....

  19. Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Akhil Kadiyala


    Full Text Available This paper evaluates life cycle greenhouse gas (GHG emissions from the use of different biomass feedstock categories (agriculture residues, dedicated energy crops, forestry, industry, parks and gardens, wastes independently on biomass-only (biomass as a standalone fuel and cofiring (biomass used in combination with coal electricity generation systems. The statistical evaluation of the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh for biomass electricity generation systems was based on the review of 19 life cycle assessment studies (representing 66 biomass cases. The mean life cycle GHG emissions resulting from the use of agriculture residues (N = 4, dedicated energy crops (N = 19, forestry (N = 6, industry (N = 4, and wastes (N = 2 in biomass-only electricity generation systems are 291.25 gCO2e/kWh, 208.41 gCO2e/kWh, 43 gCO2e/kWh, 45.93 gCO2e/kWh, and 1731.36 gCO2e/kWh, respectively. The mean life cycle GHG emissions for cofiring electricity generation systems using agriculture residues (N = 10, dedicated energy crops (N = 9, forestry (N = 9, industry (N = 2, and parks and gardens (N = 1 are 1039.92 gCO2e/kWh, 1001.38 gCO2e/kWh, 961.45 gCO2e/kWh, 926.1 gCO2e/kWh, and 1065.92 gCO2e/kWh, respectively. Forestry and industry (avoiding the impacts of biomass production and emissions from waste management contribute the least amount of GHGs, irrespective of the biomass electricity generation system.

  20. Performance monitoring algorithm for optimizing electrical power generated by using photovoltaic system (United States)

    Pradeep, M. V. K.; Balbir, S. M. S.; Norani, M. M.


    Demand for electricity in Malaysia has seen a substantial hike in light of the nation's rapid economic development. The current method of generating electricity is through the combustion of fossil fuels which has led to the detrimental effects on the environment besides causing social and economic outbreaks due to its highly volatile prices. Thus the need for a sustainable energy source is paramount and one that is quickly gaining acceptance is solar energy. However, due to the various environmental and geographical factors that affect the generation of solar electricity, the capability of solar electricity generating system (SEGS) is unable to compete with the high conversion efficiencies of conventional energy sources. In order to effectively monitor SEGS, this study is proposing a performance monitoring system that is capable of detecting drops in the system's performance for parallel networks through a diagnostic mechanism. The performance monitoring system consists of microcontroller connected to relevant sensors for data acquisition. The acquired data is transferred to a microcomputer for software based monitoring and analysis. In order to enhance the interception of sunlight by the SEGS, a sensor based sun tracking system is interfaced to the same controller to allow the PV to maneuver itself autonomously to an angle of maximum sunlight exposure.

  1. Method and apparatus for steam mixing a nuclear fueled electricity generation system (United States)

    Tsiklauri, Georgi V.; Durst, Bruce M.


    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  2. Electricity generation directly using human feces wastewater for life support system (United States)

    Fangzhou, Du; Zhenglong, Li; Shaoqiang, Yang; Beizhen, Xie; Hong, Liu


    Wastewater reuse and power regeneration are key issues in the research of bioregeneration life support system (BLSS). Microbial fuel cell (MFC) can generate electricity during the process of wastewater treatment, which might be promising to solve the two problems simultaneously. We used human feces wastewater containing abundant organic compounds as the substrate of MFC to generate electricity, and the factors concerning electricity generation capacity were investigated. The removal efficiency of total chemical oxygen demand (TCOD), Soluble chemical oxygen demand (SCOD) and NH4+ reached 71%, 88% and 44%, respectively with two-chamber MFC when it was fed with the actual human feces wastewater and operated for 190 h. And the maximum power density reached 70.8 mW/m 2, which implicated that MFC technology was feasible and appropriate for treating human feces wastewater. In order to improve the power generation of MFC further, human feces wastewater were fermented before poured into MFC, and the result showed that fermentation pretreatment could improve the MFC output obviously. The maximum power density of MFC fed with pretreated human feces wastewater was 22 mW/m 2, which was 47% higher than that of the control without pretreatment (15 mW/m 2). Furthermore, the structure of MFC was studied and it was found that both enlarging the area of electrodes and shortening the distance between electrodes could increase the electricity generation capacity. Finally, an automatic system, controlled by time switches and electromagnetic valves, was established to process one person's feces wastewater (1 L/d) while generating electricity. The main parts of this system comprised a pretreatment device and 3 one-chamber air-cathode MFCs. The total power could reach 787.1 mW and power density could reach the maximum of about 240 mW/m 2.

  3. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob


    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice......, the proposed method is potentially useful for designing market rules and evaluating different design options. Following works is underway on application and simulation of proposed method using the realistic distribution system of Bornholm Island in Denmark....

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O& #39; Connell, R.


    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  5. A systems model and potential leverage points for base load electric generating options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.


    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  6. Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea

    Directory of Open Access Journals (Sweden)

    Kyeongsik Yoo


    Full Text Available The South Korean government has long been attempting to reduce the nation’s heavy reliance on fossil fuels and increase environmental safety by developing and installing renewable power generation infrastructures and implementing policies for promoting the green growth of Korea’s energy industry. This study focuses on the use of independent renewable power generation systems in the more than 3000 officially affirmed islands off Korea’s coast and proposes a simulated solution to the electricity load demand on Ulleungdo Island that incorporates several energy sources (including solar, batteries, and wind as well as one hydro-electric and two diesel generators. Recommendations based on the simulation results and the limitations of the study are discussed.

  7. Comparative health and safety assessment of the satellite power system and other electrical generation alternatives

    Energy Technology Data Exchange (ETDEWEB)


    The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

  8. 75 FR 63198 - Notice of Availability of the Record of Decision for the Ivanpah Solar Electric Generating System... (United States)


    ...] Notice of Availability of the Record of Decision for the Ivanpah Solar Electric Generating System Project... the California Desert Conservation Area (CDCA) Plan for the Ivanpah Solar Electric Generating . SUPPLEMENTARY INFORMATION: The ISEGS Project was proposed by Solar Partners I, Solar Partners II...

  9. Electricity generation using electromagnetic radiation (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara


    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  10. Simulation of photovoltaic systems electricity generation using homer software in specific locations in Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.


    Full Text Available In this paper basic information of Homer software for PV system electricity generation, NASA - Surface meteorology and solar energy database, RETScreen, PVGIS and HMIRS (Hydrometeorological Institute of Republic of Serbia solar databases are given. The comparison of the monthly average values for daily solar radiation per square meter received by the horizontal surface taken from NASA, RETScreen, PVGIS and HMIRS solar databases for three locations in Serbia (Belgrade, Negotin and Zlatibor is given. It was found that the annual average values of daily solar radiation taken from RETScreen solar database are the closest to the annual average values of daily solar radiation taken from HMIRS solar database for Belgrade, Negotin and Zlatibor. Monthly and total for year values of electricity production of fixed on-grid PV system of 1 kW with optimal inclinated and south oriented solar modules, in Belgrade, Negotin and Zlatibor using HOMER software simulation based on data for daily solar radiation taken from NASA, RETScreen, PVGIS and HMIRS databases are calculated. The relative deviation of electricity production of fixed on-grid PV system of 1 kW using HOMER software simulation based on data for daily solar radiation taken from NASA, RETScreen, and PVGIS databases compared to electricity production of fixed on-grid PV system of 1 kW using HOMER software simulation based on data for daily solar radiation taken from HMIRS databases in Belgrade, Negotin and Zlatibor are given. [Projekat Ministarstva nauke Republike Srbije, br. TR 33009

  11. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System (United States)

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank


    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

  12. Oxygen transport membrane reactor based method and system for generating electric power (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan


    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  13. A space-based combined thermophotovoltaic electric generator and gas laser solar energy conversion system (United States)

    Yesil, Oktay


    This paper describes a spaceborne energy conversion system consisting of a thermophotovoltaic electric generator and a gas laser. As a power source for the converson, the system utilizes an intermediate blackbody cavity heated to a temperature of 2000-2400 K by concentrated solar radiation. A double-layer solar cell of GaAs and Si forms a cylindrical surface concentric to this blackbody cavity, receiving the blackbody radiation and converting it into electricity with cell conversion efficiency of 50 percent or more. If the blackbody cavity encloses a laser medium, the blackbody radiation can also be used to simultaneously pump a lasing gas. The feasibility of blackbody optical pumping at 4.3 microns in a CO2-He gas mixture was experimentally demonstrated.

  14. Evaluation of the flat-plate solar collector system for electric power generation (United States)

    Athey, R. E.


    This evaluation of the flat-plate collector system was designed to determine the number of flat-plate collectors required to generate a given amount of electricity with optimum efficiency. Variable parameters are the temperature of the heat-transport fluid, both to and from the collector field. In the analysis, the efficiency of the flat-plate collectors was coupled to the efficiency of the thermal cycle to calculate optimal overall system efficiencies. Overall system efficiencies for the system are on the order of 3.5 per cent or less. Over two million 4 ft-by-4 ft collectors would be required to produce 100,000 kW(e). Based on the results, it can be shown that the limiting factor in the use of the flat-plate collector system for electric power generation is the efficiency of the collectors. An increase in the overall system efficiency can occur only if the collector efficiency can be increased at higher surface temperatures.

  15. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam


    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  16. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.


    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  17. Global renewable energy-based electricity generation and smart grid system for energy security. (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M


    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  18. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.


    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  19. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems (United States)

    Xu, D.; Kang, L.


    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  20. Electricity generation from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Isensee, E.; Wenzlaff, R.


    A biogas plant produces energy throughout the year. This results in high gas surplus in summer. For this reason, the high demand in winter-time cannot be covered as a rule. This incongruity cannot be removed by storage since storage will compensate but short-term supply variations or is to cover short-term peak loads. In addition, electricity generation allows whole-year utilization of the plant.

  1. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System (United States)

    Raman, Apurva

    This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

  2. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang


    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  3. Electricity generation and health. (United States)

    Markandya, Anil; Wilkinson, Paul


    The provision of electricity has been a great benefit to society, particularly in health terms, but it also carries health costs. Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows the health burdens to be greatest for power stations that most pollute outdoor air (those based on lignite, coal, and oil). The health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This same ranking also applies in terms of greenhouse-gas emissions and thus, potentially, to long-term health, social, and economic effects arising from climate change. Nuclear power remains controversial, however, because of public concern about storage of nuclear waste, the potential for catastrophic accident or terrorist attack, and the diversion of fissionable material for weapons production. Health risks are smaller for nuclear fusion, but commercial exploitation will not be achieved in time to help the crucial near-term reduction in greenhouse-gas emissions. The negative effects on health of electricity generation from renewable sources have not been assessed as fully as those from conventional sources, but for solar, wind, and wave power, such effects seem to be small; those of biofuels depend on the type of fuel and the mode of combustion. Carbon dioxide (CO2) capture and storage is increasingly being considered for reduction of CO2 emissions from fossil fuel plants, but the health effects associated with this technology are largely unquantified and probably mixed: efficiency losses mean greater consumption of the primary fuel and accompanying increases in some waste products. This paper reviews the state of knowledge regarding the health effects of different methods of generating electricity.

  4. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma


    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  5. Mathematical model of the standalone electrical supply system with distributed photoelectric generation

    Directory of Open Access Journals (Sweden)

    Muravyev Dmitry I.


    Full Text Available A promising way to increase the technical and economic characteristics of standalone power supply systems is to incorporate renewable energy installations in their structure. Photoelectric generators based on distributed sources are optimal technologies for the use of renewable energy sources in 0.4 kV low-voltage power grid. The most common option is a hybrid system with photoelectric power stations (PES incorporated into the local network of the diesel power station (DPS. Photoelectric stations meet all environmental requirements and can make a significant contribution to the electrification of remote settlements, tourist and agricultural field. This paper deals with stabilization of voltage value and reduction of losses of electric energy depending on the parameters of elements of power supply systems of radial type (0,4 kV with an installed capacity of up to 100 kW. The research has been conducted by simulating the operating modes of hybrid power systems of various configurations. To analyze the joint work of a photoelectric station with a diesel power station, a mathematical model is created in the Simulink (SimPowerSystems application of the MatLab R2016b program. Most of the known works do not show the issues of quality and power losses in the standalone power supply system with photoelectric distributed generation. [5,6,7,9,10].

  6. On-Chip electric power generation system from sound of portable music plyers and smartphones towerd portable uTAS

    NARCIS (Netherlands)

    Naito, T.; Kaji, N.; le Gac, Severine; Tokeshi, M.; van den Berg, Albert; Baba, Y.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.


    This paper demonstrates electric generation from sound to minimize and integrate microfluidic systems for point of care testing or in-situ analysis. In this work, 5.4 volts and 50 mW DC was generated from sound through an earphone cable, which is a versatile system and able to actuate small size and

  7. Migration from Gasoline to Gaseous Fuel for Small-scale Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Sukandar Sukandar


    Full Text Available This paper describes a study that gives a consideration to change fuel source for electricity generator from gasoline to combustible gas. A gaseous fuel conversion technology is presented and its performance is compared with gasoline. In the experiment, two types of load were tested, resistive and resistive-inductive. By using both fuels mostly the power factor (Cos ? of resistive-inductive load variations were greater than 0.8, and they had slight difference on operational voltage. The drawback of using gaseous fuel is the frequency of the electricity might be up to 10 Hz deviated from the standard frequency (i.e. 50 Hz. In the lab scale experiment, the gasoline consumption increased proportionally with the load increase, while using gaseous fuel the consumption of gas equal for two different load value in the range of 50% maximum load, which is 100 gram per 15 minutes operation. Therefore, the use of gaseous generation system should have average power twice than the required load. The main advantage using gaseous fuel (liquefied petroleum gas or biogas compared to gasoline is a cleaner emitted gas after combustion.

  8. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.


    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  9. Thermoelectric generator systems for waste heat usage in diesel electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Heghmanns, Alexander; Schimke, Robert; Beitelschmidt, Michael [Technische Univ. Dresden (Germany). Inst. fuer Festkoerpermechanik (IFKM); Geradts, Karlheinz [Bombardier Transportation (Switzerland) AG, Zuerich (Switzerland)


    It is widely known, that the main part of the life cycle costs of diesel electric locomotives are the consumption costs for diesel fuel. On top of that the rising awareness of politics and society for environment protection and rising prices for energy shift that topic into the focus. One possibility to lower the fuel consumption is to recover the exhaust waste heat of the combustion engine. This can be achieved by converting the energy of the exhaust into mechanical energy (e.g. Steam Expander) or into electrical energy by a thermoelectric generator (TEG). Using a high power TEG in a diesel electric locomotive is advantageous because of the electrified powertrain. That means there is a considerably high demand of electric power in almost all driving states. The challenge is to develop a system with a sufficient efficiency in order to achieve a short return of investment period. Up to now some TEG system prototypes have been developed for automotive applications. For example a combination of a TEG with the EGR, where cooling of the exhaust gas is necessary, proved to be promising. But because of the low temperature gradient in the EGR the output power is very limited. In future automotive systems the TEG could be integrated directly into the exhaust tract which leads to high temperature gradients and promises a higher power output. The challenge is to develop an efficient TEG material and a system which withstands the mechanical stress caused by the thermal cycles. For diesel electric locomotives a relatively good efficiency can be achieved by using a heat transfer oil circuit as intermediary heat carrier instead of integrating the TEG directly into the exhaust tract. This offers the advantage of using the better heat transfer between exhaust and oil compared to the heat transfer directly from exhaust to the TEG. Therefore a high power can be transmitted. Furthermore it is possible to collect the waste heat of secondary heat sources like the brake resistor. Another

  10. Distributed Generation Integration in the Electric Grid: Energy Storage System for Frequency Control

    Directory of Open Access Journals (Sweden)

    Maurizio Delfanti


    Full Text Available During the last few years generation from renewable energy sources (RESs has grown considerably in European electrical networks. Transmission system operators are greatly concerned about the impact of RESs on the operational security and efficiency of their networks and more in general of the ENTSO-E interconnected system. Grid codes are to be revised in order to harmonise the rules regarding the connection of RES power plants. A main issue concerns frequency control: frequency is greatly affected by RESs intermittency and its deviations must be limited as much as possible in order to guarantee a suitable level of power quality. To improve frequency stability, in the future, Grid codes could extend frequency control requirements also to RES units, whereas today they are applied only to conventional power plants. Energy storage systems can be a possible solution to increase the flexibility and performance of RES power plants: they allow generators to modulate their power injections without wasting renewable energy. In this paper, the authors studied the suitability of extending frequency control to RES units integrating them with energy storage systems. In particular, the paper focuses on the impact of frequency control on the storage lifetime by analysing the power charge/discharge in response to real frequency oscillations.

  11. Snow melting system with electric heating using photovoltaic power generation; Solar yusetsuko

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Fujita, S.; Kaga, T.; Koyama, N. [Hachinohe Institute of Technology, Aomori (Japan)


    This paper clarifies the solar characteristics in Hachinohe district, to investigate a possibility of the snow melting system with electric heating using solar energy. Power demand for snow melting, power generated by the photovoltaic (PV) array, area of PV array, and working conditions of the system, as to temperature, precipitation and snowfall, were investigated. The percentage of sunshine is 44% in Hachinohe district, which has more fortunate natural condition for utilizing solar radiation compared with that of 20% in Aomori prefecture. The intensity of solar radiation in winter from December to March is around 500 W/m{sup 2} in average, which is equivalent to the quantity of solar radiation, around 2 kWh/m{sup 2} a day. When assuming that snow on the road surface is frozen at the snowfall under the air temperature below -3{degree}C, the occurrence frequency is 50% during January and February in Hachinohe district, which means one frozen day for two days and is equivalent to the occurrence frequency of frozen days, 34% in average during winter. The electric application ratio is 0.34 at the maximum in winter. That is, days of 34% for one month are required for snow melting. 3 figs., 3 tabs.

  12. Generation of electrical power (United States)

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.


    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  13. Influences on dispatch of power generation when introducing electric drive vehicles in an Irish power system year 2020

    DEFF Research Database (Denmark)

    Juul, Nina; Mullane, Alan; Meibom, Peter

    Increased focus on global warming and CO2 emissions imply increased focus on the energy system, consisting of the heat, power, and transport systems. Solutions for the heat and power system are increasing penetrations of renewable heat and power generation plants such as wind power and biomass heat...... plants. For the future transport system, electric drive vehicles are expected to be one of the solutions. Introducing different electric drive vehicle penetrations in a power system with a large amount of wind power, changes the usage of the predefined power system. This work presents investigations...... of different charging regimes’ influence of the power dispatch in the Irish power system. Analyses show an overall cost decrease and CO2 emission increase in the heat and power system with the introduction of electric drive vehicles. Furthermore, increased intelligence in the electric drive vehicle charging...

  14. Stability assessment of a droop-controlled multi-generator electrical power system in the more electric aircraft using parameter space approach


    Gao, Fei; Zheng, Xiancheng; Bozhko, Serhiy


    This paper investigates the dynamic stability of a droop-controlled multi-generator system in the more electric aircraft (MEA). Based on the developed state-space model of the potential dc electrical power system (EPS) architecture, the stability boundaries of EPS operation depending on parameter variations including component parameters and operating conditions are investigated. The effect of multiple parametric uncertainties on EPS stability is graphically illustrated by stability regions m...

  15. Matching of renewable source of energy generation graphs and electrical load in local energy system (United States)

    Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav


    The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.

  16. Next-generation building energy management systems and implications for electricity markets.

    Energy Technology Data Exchange (ETDEWEB)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)


    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  17. Electrical power generation by mechanically modulating electrical double layers. (United States)

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu


    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  18. Mini-biomass electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)


    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  19. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.


    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  20. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage (United States)

    Abermann, S.


    The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H) triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM) electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  1. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O' Connell, R.; Hern, T.; Miller, B.


    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  2. Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Raghava Kommalapati


    Full Text Available This paper contains an extensive review of life cycle assessment (LCA studies on greenhouse gas emissions (GHG from different material-based photovoltaic (PV and working mechanism-based concentrating solar power (CSP electricity generation systems. Statistical evaluation of the life cycle GHG emissions is conducted to assess the role of different PVs and CSPs in reducing GHG emissions. The widely-used parabolic trough and central receiver CSP electricity generation systems emitted approximately 50% more GHGs than the paraboloidal dish, solar chimney, and solar pond CSP electricity generation systems. The cadmium telluride PVs and solar pond CSPs contributed to minimum life cycle GHGs. Thin-film PVs are also suitable for wider implementation, due to their lower Energy Pay-Back Time (EPBT periods, in addition to lower GHG emission, in comparison with c-Si PVs.

  3. Electrical system architecture (United States)

    Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL


    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  4. Electric vehicles, power generation systems of the solar age; Das Elektrofahrzeug als Regelenergiekraftwerk des Solarzeitalters

    Energy Technology Data Exchange (ETDEWEB)

    Engel, T. [EUROSOLAR-Sektion Deutschland (Germany)]|[Deutschen Gesellschaft fuer Sonnenenergie (Germany). Arbeitsschwerpunkt ' Solare Mobilitaet'


    Integration of electric vehicles with power storage and supply of stored power to the grid is a highly advantageous strategy for a decentral, solar power economy. The concept may also find its supporters in the existing fossil-atomic power economy where electric cars have their uses as well. Solar power autonomy necessitates power storage systems. Financial incentives should be specified in an amended EEG (Energy Conservation Act), and vehicles by the vehicle-to-grid principles should not be neglected. (orig.)

  5. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies (United States)

    Bose, Bimal K.; Kim, Min-Huei


    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  6. A research on thermoelectric generator's electrical performance under temperature mismatch conditions for automotive waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Z.B. Tang


    Full Text Available The thermoelectric generators recover useful energy by the function of thermoelectric modules which can convert waste heat energy into electricity from automotive exhaust. In the actual operation, the electrical connected thermoelectric modules are operated under temperature mismatch conditions and then the problem of decreased power output causes due to the inhomogeneous temperature gradient distribution on heat exchanger surface. In this case study, an individual module test system and a test bench have been carried out to test and analyze the impact of thermal imbalance on the output electrical power at module and system level. Variability of the temperature difference and clamping pressure are also tested in the individual module measurement. The system level experimental results clearly describe the phenomenon of thermoelectric generator's decreased power output under mismatched temperature condition and limited working temperature. This situation is improved with thermal insulation on the modules and proved to be effective.

  7. Production of electricity through biomass gasification system downdraft and generator group with a capacity of 50 kVA

    Directory of Open Access Journals (Sweden)

    Fabrízio Luiz Figueiredo


    Full Text Available This paper presents the results of tests performed with an internal combustion engine adapted to MWM Otto cycle, coupled to an electricity generator with a capacity of 50 kVA, fed exclusively with synthesis gas from a biomass gasifier downdraft, using wood eucalyptus. Also featured are the characteristics and efficiency of the generator set, in order to assess the feasibility of applying the system in remote locations, where biomass is available and the system of conventional electric power transmission is hampered by distance. The synthesis gas generated showed the average composition of 16,9% H2, 20% CO, 10,9% CO2, CH4, 2% and 50,1% N2. The performance of the span was monitored by applying loads of 0, 7, 13, 20,1 and 26,4 kW, the generator, keeping the average voltage of 222 V and currents of 0, 18,5, 33, 51, 84 and 67 A.

  8. Analysis Of Functional Stability Of The Triphased Asynchronous Generator Used In Conversion Systems Of A Eolian Energy Into Electric Energy

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents a study of the influence of the main perturbation agent over the functional stability of the triphased asynchronous generator (for the two alternative: with coiled and short circuit rotor, used for the conversion systems from a eolian energy into electric energy.

  9. Installation of electric generators on turbine engines (United States)

    Demel, H. F.


    The installation of generators on turbine aircraft is discussed. Emphasis is placed on the use of the samarium cobalt generator. Potential advantages of an electric secondary power system at the engine level are listed. The integrated generator and the externally mounted generator are discussed. It is concluded that the integrated generator is best used in turbojet and low bypass ratio engines where there is no easy way of placing generators externally without influencing frontal areas.

  10. Optimization Methodologies of Mixed Electrical Generators in ...

    African Journals Online (AJOL)

    This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. The principals' interests of this system are the independence production, and the supplying of electric energy in isolated localities. Have at one's the energetic and economic models, and ...

  11. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19 locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.

  12. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei


    This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...... into the islanding operation mode, while the centralized joint load frequency control (CJLFC) utilizing DGs handles the secondary frequency regulation. The BESS with the associated controllers has been modelled in Real-time digital simulator (RTDS) in order to identify the improvement of the frequency and voltage...


    Jordan, K.C.


    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  14. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems (United States)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  15. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal


    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  16. Low cost home automation system: a support to the ecological electricity generation in Colombia

    Directory of Open Access Journals (Sweden)

    Elmer Alejandro Parada Prieto


    Full Text Available Context/Objective: In Colombia, consumption of residential electricity accounts for about 40% of the national demand; therefore, alternatives to reduce this consumption are needed. The goal of this study was to develop a home automation prototype to control the illumination of a household and to foster the efficient use of energy. Method: The system consists of independent control modules and an information manager module; the control module regulates the luminaires using a microcontroller and a presence sensor, and exchanges data by means of a radio frequency transceiver; the manager module allows the access to the control modules from a Web interface. The prototype was implemented in a household located in the city of San José de Cúcuta, Colombia, during a 60 days period. Results: The operation of the system diminished the total electricity consumption by 3,75 %, with a z-score of -1,93 that was obtained from the statistical analysis. Conclusions: We concluded that the prototype is inexpensive in comparison to similar technologies available in the national and international markets, and it reduces the waste of electrical energy due to the consumption habits of the residents in the case study.

  17. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator. (United States)

    Chang, Ho; Yu, Zhi-Rong


    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.

  18. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney


    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  19. Optimization of Electricity Generation Schemes in the Java-Bali Grid System with Co2 Reduction Consideration

    Directory of Open Access Journals (Sweden)

    Farizal Farizal


    Full Text Available This research considers the problem of reducing CO2 emissions from the Java-Bali power grid system that consists of a variety of power-generating plants: coal-fired, natural gas, oil, and renewable energy (PV, geothermal, hydroelectric, wind, and landfill gas. The problem is formulated as linear programming and solved using LINGO 10. The model was developed for a nation to meet a specified CO2 emission target. Two carbon dioxide mitigation options are considered in this study, i.e. fuel balancing and fuel switching. In order to reduce the CO2 emissions by 26% in 2021, State Electric Supply Company (PLN has to generate up to 30% of electricity from renewable energy (RE, and the cost of electricity (COE is expected to increase to 617.77 IDR per kWh for a fuel balancing option, while for fuel switching option, PLN has to generate 29% of electricity from RE, and the COE is expected to increase to 535.85 IDR per kWh.

  20. Bike-powered electricity generator

    Directory of Open Access Journals (Sweden)



    Full Text Available Finding new energy sources is an important challenge of our times. A lot of research focuses on identifying such sources that can also be exploited with relatively simple and efficient systems. These sources can be either new materials that can be used to generate energy, or solutions to scavenge already existing forms of energy. Part of the latter class of solutions, the system presented in this paper converts the energy consumed by many people in gyms (or even at home, during exercise into electric energy. This energy exists anyway, because people want to be healthier or to look better. Currently, this significant (in our opinion amount of energy is actually wasted and transformed into heat. Instead, in this study, a prototype scavenging system (dedicated to fitness/stationary bikes to collect and (reuse this energy is presented. Specifically, we depict the design of a low-budget system that uses existing, discrete components and is able to scavenge some of the energy spent by the biker. The experimental results show that the system is functional, but its efficiency is limited by (mechanical losses before the collection.

  1. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E


    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  2. Electric generation situation through hybrid systems in Para state and perspectives in face of the global supply of electric power; Situacao da geracao eletrica atraves de sistemas hibridos no estado do Para e perspectivas frente a universalizacao da energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Claudomiro Fabio de Oliveira; Pinho, Joao Tavares; Pereira, Edinaldo Jose da Silva; Galhardo, Marcos Andre Barros; Vale, Silvio Bispo do; Maranhao, Wilson Monteiro de Albuquerque [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Grupo de Estudos e Desenvolvimento de Alternativas Energeticas], e-mail:


    This work presents an analysis of the hybrid systems for electricity generation installed in the State of Para, emphasizing the profile of the supplied localities, the conversion technologies in the several configurations used for electric power generation, the social, economic and environmental impacts caused by such systems, the management and sustainability of the systems, and their perspectives in face of the global supply of electric power in Brazil. (author)

  3. Quasi-Static Electric Field Generator (United States)

    Generazio, Edward R. (Inventor)


    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  4. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  5. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William


    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  6. Scenarios of Expansion to Electric Generation Capacity

    Directory of Open Access Journals (Sweden)

    José Somoza-Cabrera


    Full Text Available We show the building scenarios of expansion to electric generation capacity enough to supply the demand to 2050. We were using the LEAP facility (Long-range Energy Alternatives Planning System, to simulate dispatch of electricity at minimum cost. Finally, we show the cost-benefice analysis of the technologies availability, included externality and CO2 emission limited. However that we included the externals cost in this analysis, it results insufficient to closed gap between fossil and renewable technologies of electric generation. Nevertheless, in some opportunities the renewable options had very important participations in the minimal cost scenario of expansion.

  7. Electric Field Generation in Martian Dust Devils (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.


    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  8. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng


    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  9. Generating units in operation. National electrical system (Public service) 2002; Unidades generadoras en operacion. Sistema electrico nacional (Servicio publico) 2002

    Energy Technology Data Exchange (ETDEWEB)



    The information regarding the generation effective capacity updated to December 31, 2002 is presented. A detailed description of the effective capacity by generation region, control area, generation type and federal entity is presented. Also graphs are shown with the energy balance of the National Electrical System of Comision Federal de Electricidad and Luz y Fuerza del Centro. [Spanish] Se presenta la informacion relativa a la capacidad efectiva de generacion actualizada al 31 de diciembre de 2002. Se hace una descripcion detallada de la capacidad efectiva por region de generacion, por area de control, por tipo de generacion y por entidad federativa. Tambien se presentan unas graficas con el balance de energia del Sistema Electrico Nacional de la Comision Federal de Electricidad y de Luz y Fuerza del Centro.

  10. Structural Modeling for the Comparison Indicators in Various Electricity Generating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Ho; Kim, Tae Woon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Comparison indicators of various power systems can be yielded by solving a multicriteria decision-making (MCDM) problem. In reality, there are different grades of interdependence among the decision elements (e.g., decision goal, decision criteria, and decision alternatives). In our previous work, based on an analytic hierarchy process (AHP) technique, an independence model was developed for the comparison indicators under the assumption that there is no interdependence among the decision elements. For handling different interdependence phenomena (e.g., independence, inner dependence, outer dependence, feedback effect, a combination thereof) among the decision elements, one of the simplest graph structures was investigated on the basis of an analytic network process (ANP) technique. In the present work, the main objective is to study an assessment model with a high grade of interactions among the decision elements. Comparison indicators (e.g., weighting factors, overall priority scores, and risk attitudes towards a nuclear power plant) for seven power generation systems are obtained.

  11. Electromechanically generating electricity with a gapped-graphene electric generator (United States)

    Dressen, Donald; Golovchenko, Jene


    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  12. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.


    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  13. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. (United States)

    Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E


    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.

  14. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.


    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  15. Apparatuses and methods for generating electric fields (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L


    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  16. Application of photovoltaic generating system to electric power in large ship; Taiyoko hatsuden system no ogata senpaku eno oyo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Katagi, T.; Ogawa, S.; Nishikawa, E.; Hashimoto, T. [Kobe University of Mercantile Marine, Kobe (Japan); Ishida, K.


    This paper describes the design of electric power system in a ship with photovoltaic power generating system, to examine applicability of the photovoltaic power generating system to the inboard power source. It also discusses effectiveness of the system for sea environment. At first, the actual route of a car carrier, meteorological data, and quantity of power consumption were picked up from the deck logbook and engine logbook. Then, the installation area of photovoltaic arrays, the quantity of photovoltaic power generation derived from the quantity of solar radiation, and the capacities of batteries and inverters were calculated, to design the electric power system in the ship with photovoltaic power generation system. Moreover, the NOx and SOx emissions were compared between the present power system and the usual power system using diesel power generator, to discuss the effectiveness of the present system for sea environment. Consequently, it was found that the emission of NOx was reduced by about 33% and the emission of SOx was reduced by about 28% compared to the usual power system. The effectiveness for sea environment was confirmed. 9 refs., 5 figs., 4 tabs.

  17. Application of CRO-EOL expert system for selecting the optimal wind turbine generator system as part of a combined electric energy system of an island

    Energy Technology Data Exchange (ETDEWEB)

    Klarin, Branko; Pilic-Rabadan, Ljiljana; Milas, Zoran [University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)


    This work deals with the problems in selecting the units of a wind turbine generator system which are to be built into the wind farms for operation in combination with classical sources of electric energy. Using the example of a Mediterranean island the course of procedure is presented and the results make part of the study on determination of the island development strategy, with tourism being its principal economic branch. The selection of optimal units of the wind turbine generator system should be based on a set of influencing factors. The selection is carried out by means of the expert system mechanism, taking into account the requirements for environmental protection and technical and economic parameters. It can be concluded that the obtained wind generator units are optimal with respect to the given criteria. The production of electric energy obtained by simulating the operation of a wind energy plant is feasible in practice at a price per kWh competitive with classical energy sources. (Author)

  18. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M


    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  19. Generation of electricity from FeCl3 pretreatment of rice straw using a fuel cell system. (United States)

    Kim, Ilgook; Saif Ur Rehman, Muhammad; Kim, Kyoung Heon; Han, Jong-In


    This study explored a new approach to the pretreatment of lignocellulosic biomass using FeCl3 combined with a fuel cell system to generate electricity. After pretreatment, ferric iron (Fe(3+)), a strong catalyst in the hydrolysis of carbohydrate, was found to be reduced to ferrous iron (Fe(2+)) by means of the oxidation of xylose and lignin. Ferrous iron, as a fuel, was employed to the anode part of a fuel cell, generating power of 1110 mW/m(2). During the fuel cell operation, ferrous iron was completely removed through oxidation to ferric iron and precipitated out. The optimal conditions for the operation of the fuel cell were found to be a pH of 7.0 and ferrous iron concentration of above 0.008 M. These results clearly show that a fuel cell system could be used not only to remove ferrous iron from liquid hydrolysate, but also to produce electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.


    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  1. CFD modeling and simulation of a hydropower system in generating clean electricity from water flow

    National Research Council Canada - National Science Library

    Akinyemi, Oladapo S; Liu, Yucheng


    ...) modeling and simulation. Performance of paddle wheels in producing hydropower out of running water under different speeds was evaluated, and effects of side and bottom fins and paddle wheel shape on power generation were...

  2. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system. (United States)

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, NikAthirah; Lee, Sin-Li; Yusuf, Sara Yasina


    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their V oc , J sc and P max . The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Experience in operation and maintenance of systems of electrical generation by micro turbine: Transierra S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Franz Miranda [TRANSIERRA S.A., Santa Cruz (Bolivia)


    This work tries to share the experience of throughout six years, turned into experience of operation and maintenance of micro turbines for generation electrical; same those are used in the stations of measurement of Transierra S.A. In the initial stage it would describe to the ways and characteristic operative qualities for each one of the Micro Turbines in each scene that differs throughout the four stations that the GASYRG composes, taking like game the analysis of the thermal efficiency. Next a particular description of happened events would be realized in the six translated years in faults of general and particular way, centering the attention to the analysis of the resources provided by the controllers of the equipment through registry of events. Analyses that finally would be translated in solutions to short and medium term obtaining operative continuity and provision of electrical energy indispensable for the systems of measurement and control of the stations. Finally a description of all the particular solutions and modifications that went giving problems of design which they were not contemplated by the manufacturer emanated of the necessity and shaped with the aid of the same knowledge of the equipment. (author)

  4. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    National Research Council Canada - National Science Library

    Jinsung Chun; Hyun-cheol Song; Min-gyu Kang; Han Byul Kang; Ravi Anant Kishore; Shashank Priya


    .... Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system...

  5. Role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. Simulation and optimization; Rolle und Bedeutung der Stromspeicher bei hohen Anteilen erneuerbarer Energien in Deutschland. Speichersimulation und Betriebsoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Niklas


    The share of renewable electricity generation of gross electricity consumption in Germany increased from 6.8 % to about 20 % during the years of 2000 and 2011. This share will increase even more in the future. The greater part of the renewable electricity generation is characterized by significant fluctuations, which can only be planned to a limited extent. Hence, the electricity system in Germany faces the challenge to integrate an increasing amount of fluctuating renewable electricity generation. Additionally the system stability needs to be ensured, despite a decreasing capacity in conventional power plants. One option to support the integration of large amounts of renewable electricity generation and to enhance system stability is the deployment of storage technologies. The aim of this research was to analyze the role of storage technologies to integrate high shares of renewable electricity generation into the electricity system of Germany. To achieve this aim, adiabatic compressed air energy storage, diabatic compressed air energy storage and mobile battery storage systems were simulated and compared with a pumped hydro storage as the reference storage system. Key characteristics of these storage systems were modeled within a fundamental stochastic unit commitment model of the German power markets (Joint-Market-Model) in order to analyze the effect of the implementation of these storage systems on the overall cost of the electricity system. Additionally, the operation of the storages in an electricity system with high shares of renewable energy was evaluated. The results show that the integration of large shares of renewable electricity generation into the grid can only be achieved with a substantial implementation of storage systems. To integrate 50 % of renewable energy, a storage power of 27 GW and storage capacity of 245 GWh is needed. For a renewable energy share of 80 %, a storage power of 78 GW and a storage capacity of 6.3 TWh are necessary. A 100

  6. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.


    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  7. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L


    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  8. Electric Vehicle Propulsion System


    Keshri, Ritesh Kumar


    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...


    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  10. Secondary electric power generation with minimum engine bleed (United States)

    Tagge, G. E.


    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  11. Generating Renewable Electricity from Food Waste

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.


    Full Text Available Mini biogas power plant (MBPP was first used and launched in Malaysia by Universiti Sains Malaysia (USM. USM with the collaboration with Enerbon Sdn Bhd had set up this mini biogas power plant as an education and research and development tools to professionals and researchers and at the same time giving opportunities to people who are interested with this system to witness and experience it themselves by looking at how this mini biogas power plant works. There are 2 main objectives of this study being carried out; firstly to determine whether food wastes (canteen and cafeterias wastes can produce methane gas (biogas that can generate heat and electricity and secondly to establish how much methane gas (biogas can be produced with the certain amount of the feedstock. It should be pointed out that this MBPP can generate 600kW electricity per day as this system can generate electricity about 25kW/h. The methane produced per day is approximately 180 cubic metres. The higher the wastes, the higher the amount of methane gas produced. The cow dung is used to increase the bacteria in the tank; the methane gas production will be higher if the bacteria breed.

  12. Particularities of the distributed generation with photovoltaic systems and the interaction of electric grid; Particularidades da geracao distribuida com sistemas fotovoltaicos e sua integracao com a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Wilson Negrao; Ziles, Roberto [Universidade de Sao Paulo (USP), SP (Brazil). Programa Interunidades de Pos-Graduacao em Energia. Lab. de Sistemas Fotovoltaicos], e-mail:, e-mail:


    In this work an approach of the particularities of the distributed generation with photovoltaic systems as well as the interaction of these systems with the electric grid is done, base aspects related to your operation and the several forms of conceive a grid connected photovoltaic system (SFCR) are taking into accounted. It shows through the different forms of consolidate the connection with the electric grid, which besides the inverter be the key element of this kind system, SFCRs' Interaction with the electric grid is enough influenced by the incentive policies or given treatment for this application in each place in particular. That aspect can influence in the demand by the owner of the installation, mostly if this is a captive consumer that now becomes an electric power producer. (author)

  13. Powertrain system for a hybrid electric vehicle (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.


    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  14. Electrical-Generation Scenarios for China

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Krakowski, R.A.


    The China Energy Technology Program (CETP) used both optimizing and simulation energy- economic-environmental (E3) models to assess tradeoffs in the electricity-generation sector for a range of fuel, transport, generation, and distribution options. The CETP is composed of a range of technical tasks or activities, including Energy Economics Modeling (EEM, optimizations), Electric Sector Simulation (ESS, simulations), Life Cycle Analyses (LCA, externalization) of energy systems, and Multi-Criteria Decision Analyses (MCDA, integration). The scope of CETP is limited to one province (Shandong), to one economic sector (electricity), and to one energy sector (electricity). This document describes the methods, approaches, limitations, sample results, and future/needed work for the EEM ( optimization-based modeling) task that supports the overall goal of CETP. An important tool used by the EEM task is based on a Linear Programming (LP) optimization model that considers 17 electricity-generation technologies utilizing 14 fuel forms (type, composition, source) in a 7-region transportation model of China's electricity demand and supply system over the period 2000-2030; Shandong is one of the seven regions modeled. The China Regional Electricity Trade Model (CRETM) is used to examine a set of energy-environment-economy E3-driven scenarios to quantify related policy implications. The development of electricity production mixes that are optimized under realistically E3 constraints is determined through regional demands for electricity that respond to exogenous assumptions on income (GDP) and electricity prices through respective time-dependent elasticities. Constraints are applied to fuel prices, transportation limits, resource availability, introduction (penetration) rates of specific technology, and (where applicable) to local, regional, and countrywide emission rates of CO{sub 2}, SO{sub 2} and NO{sub x}. Importantly, future inter- regional energy flows are optimized with



    J. A. Baskar*, Dr. R. Hariprakash (IITM), Dr. M. Vijayakumar


    Integration of Distributed Generation (DG) in an electrical distribution system has increased recently due to voltage improvement, line loss reduction, environmental advantages, and postponement of system upgrading, and increasing reliability. Improper location and capacity of DG may affect the voltage stability on the Distribution System (DS). Optimization techniques are tools used to predict size and locate the DG units in the system, so as to utilize these units optimally within certain li...

  16. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field (United States)

    Khalil, A. A. I.


    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  17. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim


    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.



    K. V. Dobrego


    Nowadays we observe rather rapid growth of energy accumulators market. There are prerequisites to their extensive application in Belarus. In spite of technology development problems pertaining to optimization of electric power and their operation under conditions of specific systemsgenerator – accumulator – consumer” (GAC) have not obtained proper consideration. At the same time tuning and optimization of the GAC system may provide competitive advantages to various accumulating systems beca...

  19. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrik, Imad [An-Najah National Univ., Nablus (PS). Energy Research Centre; Lecumberri, Marta


    The energy situation in Palestine is somewhat unique when compared to other countries in the Middle East. There are virtually no available natural resources, and due to the ongoing political situation, the Palestinians rely (or have to rely) almost totally on Israel for their energy needs. This paper presents three energy supply alternatives for a remote village represented in PV system, diesel generator and electric grid. Design of these systems and the associated costs of their utilization are illustrated. Economic evaluation methods are used to compare the economic-effectiveness of these energy systems. The results show that, utilizing of PV systems for rural electrification in Palestine is economically more useful than using diesel generators or extension of the high voltage electric grid. The obtained results represents also a helpful reference for energy planers in Palestine and justify the consideration of PV systems more seriously. (orig.)

  20. Electricity generation from digitally printed cyanobacteria. (United States)

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J


    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  1. Performance testing of the Ford/GE Second Generation Single-Shaft Electric Propulsion (ETX-II) System

    Energy Technology Data Exchange (ETDEWEB)

    MacDowall, R.D.; Burke, A.F.


    System-level-operational testing of the ETX-II test-bed electric vehicle is described and the results discussed. Because the traction battery is a major factor in the performance of an electric vehicle, previously reported work on the sodium-sulfur battery designed for use with the ETX-II is reviewed in detail. Chassis dynamometer performance of the test-bed vehicle met or exceeded design goals and compared reasonably well with SIMPLEV computer modeling results. Areas are identified wherein further work is needed to establish a firmer basis for comparison of the simulation and the observed results.

  2. Electric vehicle drive systems (United States)

    Appleyard, M.


    New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.

  3. Electric bus systems. (United States)


    Pure electric buses (EBs) offer an alternative fuel for the nations transit bus systems. To : evaluate EBs in a transit setting, this project investigated the five electric bus fleet of the : StarMetro transit system of the city of Tallahassee, FL...


    Directory of Open Access Journals (Sweden)

    Yasser Maklad


    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.


    Directory of Open Access Journals (Sweden)

    K. V. Dobrego


    Full Text Available Nowadays we observe rather rapid growth of energy accumulators market. There are prerequisites to their extensive application in Belarus. In spite of technology development problems pertaining to optimization of electric power and their operation under conditions of specific systemsgenerator – accumulator – consumer” (GAC have not obtained proper consideration. At the same time tuning and optimization of the GAC system may provide competitive advantages to various accumulating systems because application of accumulator batteries in non-optimal charge – discharge conditions reduces its operating resource. Optimization of the GAC system may include utilization of hybrid accumulator systems together with heterogeneous chemical and mechanical accumulators, tuning of system controller parameters etc. Research papers present a great number of empirical and analytical methods for calculation of electric loads. These methods use the following parameters as initial data: time-averaged values of actual electric power consumption, averaged apartment electric loads, empirical and statistical form coefficients, coefficients of maximum electric load for a group of uniform consumers. However such models do not meet the requirements of detailed simulation of relatively small system operation when the simulation must correspond to non-stationary, non-averaged, stochastic load nature. The paper provides a simple approach to the detailed simulation of electric loads in regard to small projects such as multi-unit apartment building or small agricultural farm. The model is formulated both in physical and algorithmic terms that make it possible to be easily realized in any programming environment. The paper presents convergence of integral electric power consumption, which is set by the model, to statistically averaged parameters. Autocorrelation function has been calculated in the paper that shows two scales for autocorrelation of simulated load diagrams

  6. Electrical system for a motor vehicle (United States)

    Tamor, Michael Alan


    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  7. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao


    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  8. Applied risk analysis to the future Brazilian electricity generation matrix

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair; Fernandez, Eloi; Correa, Antonio


    This study compares energy conversion systems for the generation of electrical power, with an emphasis on the Brazilian energy matrix. The financial model applied in this comparison is based on the Portfolio Theory, developed by Harry Markowitz. The risk-return ratio related to the electrical generation mix predicted in the National Energy Plan - 2030, published in 2006 by the Brazilian Energy Research Office, is evaluated. The increase of non-traditional renewable energy in this expected electrical generating mix, specifically, residues of sugar cane plantations and wind energy, reduce not only the risk but also the average cost of the kilowatt-hour generated.

  9. Electricity supply system and generation expansion plan in Sri Lanka; Suriranka no denryoku jijo to dengen kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, M. [Chuo Kaihatsu Corp., Tokyo (Japan)


    A history of the electric power enterprise in Sri Lanka is quite new. As a real power generation plant for a general supply, since the Old Laxapana (8.33 MW {times} 3 units) plant has been developed, 15 hydraulic power plants, the annual power generation quantity of 3832 GWh have been developed up to present, and now this hydraulic power generation has formed a supply as the main constituents. So as to supplement this hydraulic power generation, the thermal power plants of 250 MW such as the petroleum thermal, diesel and gas turbine plants have been developed during 1962-1984. These thermal power plants have a role to replenish the peak power in the dry season. Accompanied with an economic growth the power demands elongate at a rate of GDP elastic value. The sold power quantity in 1992 is 2869 GWh, and its breakdown is a proportion of 23% for the household, 37% for the industry and 40% for the others. As for a power source development from now on, although there are currently 7 projects of the hydraulic development appropriated in the long term plan as economically feasible for development, none of other projects are not yet set to be worked except 2 projects being advanced the development preparation by an aid through Japanese Government. 3 figs., 3 tabs.

  10. Prospect of electric generation using sound (United States)

    Ge, Qingyu


    Noise is also an important energy, but has been controlled for its harm. If noise can be made effective use of at the same time, there would be a large change in social life. Based on studies on converting sound to electricity over the years, some effective implements of electric generation using sound are put forward for the new situation of utilizing of noise.

  11. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James


    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  12. Feasibility Analysis and Simulation of a Stand-Alone Photovoltaic Energy System for Electricity Generation and Environmental Sustainability – equivalent to 650VA fuel-powered generator - popularly known as I pass my neighbour

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani


    Full Text Available Photovoltaic (PV power system can be used to replace wholly 650VA generator for electricity generation for household use in Nigeria. This paper presented the feasibility analysis of load data and simulation study of a stand-alone PV power system that produced the electrical needs of a household. This study is based on designing of PV energy system for household use. The patterns of load consumption within the household were studied and suitably modeled for simulation. The simulation study indicates that energy requirements to provide electricity which is equivalent to 650VA generator for household use in Nigeria can be accomplished by 520W solar PV array, 2312 Ah nominal capacity battery, and a 1kW DC/AC inverter. This would be suitable for deployment of 100% clean energy for environmental sustainability and uninterruptable power performance in the household. The results of this research show that, with a low-power consuming appliances, it is possible to meet the entire annual electricity demand of a single household solely through a stand-alone PV energy supply. Installing solar panels by most Nigerian home can significantly reduce home reliance on government power thereby reduce the strain on the current capacity of our power generation infrastructure. A detailed design and description of the system were presented in this paper.

  13. Results of photovoltaic power generation system operation in Tokyo Electric Power Company; Tokyo Denryoku ni okeru taiyoko hatsuden setsubi no unten jisseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, H.; Itokawa, K. [Tokyo Electric Power Co. Inc., Tokyo (Japan)


    A report was made on the measurement of data and the results of the analysis at 14 sites of photovoltaic power generation facilities operated under system interconnection by Tokyo Electric Power Company. This type of system is provided in 40 sites as of the end of fiscal 1995, generating 479kw. The items measured were the generated electric energy at all 14 sites, and the quantity of solar radiation, outside air temperature, panel temperature, etc., at limited sites; and the capacity of each equipment, azimuth and inclination of the panel were also recorded simultaneously. Hourly values were used for the analysis. Five minute values were utilized, however, in the examination of the cause of lowered output and in the situation recognition of the influence of the shade or the change of weather. The utilization factor of the facilities was in the average 10.8% in fiscal 1994 and 10.7% in fiscal 1995. The factor decreased slightly unless the panel azimuth faced due south. The utilization factor at the panel inclination of 35 degrees and 45 degrees showed both 10.4% through the year making no difference. The system seemed to show no overwhelming possibilities in coping with electric power demand. The reason was that deviation existed for 2 hours or so in the peak and that reliability was low as basic power facilities. However, it was determined that the system be continuously examined in future. 9 figs., 1 tab.

  14. Electric distribution systems

    CERN Document Server

    Sallam, A A


    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  15. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R


    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  16. Electricity generation choices for the near term (United States)

    Bodansky, D.


    The alternatives available for the generation of electricity in the United States in the next few decades are evaluated. The present sources of electricity and recent trends in the amount of electricity generated by the various sources are reviewed, and widely varying projections of future energy demand are discussed, noting that electricity demand is expected to increase considerably if a significant reduction in oil consumption is achieved. The renewable energy resources hydroelectric power, biomass energy, geothermal power, direct solar power and wind energy are found to be incapable of making a major contribution to electricity expansion by the year 2000. Coal and nuclear power are then discussed as the most practical alternatives, and the advantages of nuclear power in the areas of cost and safety, despite the Three Mile Island accident, are pointed out. It is concluded that for the near future, all of the possible options deserve investigation.

  17. Fluidic Active Transducer for Electricity Generation (United States)

    Yang, Youngjun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang


    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug.

  18. Electric power plant technology. Generators, transformers, auxiliary installations, protective systems. Lecture notes. 5. rev. ed.; Elektrische Kraftwerkstechnik. Generatoren, Transformatoren, Eigenbedarfsanlagen, Schutzeinrichtungen. Vorlesungsskript

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ulrich


    The lecture series on electric power plant engineering was initiated in 1969 by Prof. Helmut Schaefer, founder of the then department of power economy and power plant engineering. The lecture series was continuously updated in its contents and didactic approach, e.g. by integrating innovative power generation concepts like micro cogeneration plants and fuel cell systems. The focus is on the fundamentals and function of generators, main transformers, auxiliary installations and protective systems in power plant. Apart from the electrotechnical aspects, also aspects of mechanical engineering are gone into. Also discussed are energy conversion concepts fo renewable power generation plants like wind turbines and PV systems. This is the 5th, completely revised edition. It addresses primarily attendants of the lectures but may also serve as a textbook and reference manual for interested experts.

  19. Design and evaluation of brushless electrical generators (United States)

    Collins, F. A.; Ellis, J. N.


    Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.

  20. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)


    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  1. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. (United States)

    Oon, Yoong-Ling; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Sin; Lehl, Harvinder Kaur; Thung, Wei-Eng


    An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Analysis methodology for economic technical feasibility studies in offshore electrical generation systems; Metodologia de analisis para estudios de factibilidad tecnica economica en sistemas de generacion electrica costa fuera

    Energy Technology Data Exchange (ETDEWEB)

    Fiscal Escalante, Raul [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)


    An analysis methodology followed in the development of technique-economic feasibility studies of systems of electrical generation in offshore electrical installations is presented, including the obtaining of the curves of the turbine and generator performance, the technical considerations for the formulation of the operation scenes and the calculations of the economic evaluation of a real scenario. [Spanish] Se muestra una metodologia de analisis seguida en el desarrollo de estudios de factibilidad tecnica-economica de sistemas de generacion electrica en instalaciones electricas costa fuera, incluyendo la obtencion de las curvas de comportamiento de la turbina y el generador, las consideraciones tecnicas para la formulacion de los escenarios de operacion y los calculos de la evaluacion economica de un escenario real.

  3. On the Path to SunShot. Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report examines how the bulk power system may need to evolve to accommodate the increased photovoltaic (PV) penetration resulting from achievement of the U.S. Department of Energy's SunShot cost targets. The variable and uncertain nature of PV-generated electricity presents grid-integration challenges. For example, the changing net load associated with high midday PV generation and low electricity demand can create 'overgeneration' that requires curtailment of PV output and reduces PV's value and cost-competitiveness. Accommodating the changes in net load resulting from increased variable generation requires enhancements to a power system's 'flexibility,' or ability to balance supply and demand over multiple time scales through options including changes in system operation, flexible generation, reserves from solar, demand response, energy storage, and enhanced transmission and regional coordination. For utility-scale PV with a baseline SunShot levelized cost of electricity (LCOE) of 6 cents/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6 cents/kWh to almost 11 cents/kWh in a California grid system with limited flexibility. However, increasing system flexibility could minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. In the longer term, energy storage technologies--such as concentrating solar power with thermal energy storage--could facilitate the cost-effective integration of even higher PV penetration. Efficient deployment of the grid-flexibility options needed to maintain solar's value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  4. On the Path to SunShot - Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  5. Specification of a system for planning and analysis of independent generator connection impact on the electric distribution system; Especificacao de um sistema de planeamento e analise do impacto da conexao de geradores independentes no sistema electrico da distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Proenca, Luis Miguel; Matos, Manuel Antonio [Instituto de Engenharia de Sistemas e Computadores (INESC), Porto (Portugal); Campos, Manuel Luis Borges [Centro para a Excelencia na Distribuicao (CED), Sao Paulo, SP (Brazil)


    This paper describes a system for planning and analysis of the independent generator connection impact on the electric distribution system. This system is being developed under a contract signed between the Center for Excellency in the Distribution (CED), state of Sao Paulo - Brazil and the INESC, Porto - Portugal - energy unit.

  6. Life Cycle Assessment of Electricity Systems

    DEFF Research Database (Denmark)

    Turconi, Roberto

    the robustness of LCA results for a multitude of products producing or consuming electricity throughout the lifecycle. The main findings in relation to: (i) electricity generation, (ii) power transmission and distribution and (iii) low-carbon electricity systems are reported in the following paragraphs. A great...

  7. Electricity generation modeling and photovoltaic forecasts in China (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  8. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Blevins, Brandon R [ORNL; Hadley, Stanton W [ORNL; Harrison, Thomas J [ORNL; Jochem, Warren C [ORNL; Neish, Bradley S [ORNL; Omitaomu, Olufemi A [ORNL; Rose, Amy N [ORNL


    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the

  9. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  10. Centralizing or decentralizing: the impact of decentralized electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Asbury, J. G.; Webb, S. B.


    If rising fuel prices or public policy make decentralized electric generation economical for the residential, commercial, and manufacturing sectors, the economies of scale in these sectors will increase. With current technology, some energy users, such as most single-family dwellings, will find it prohibitively expensive to install and use total-energy systems. They will continue to purchase electricity from a central utility, even though a decline in the utility's customers may increase its cost and prices. Other energy users, such as mid-sized manufacturing enterprises, might find it economical to set up their own generating facilities but would still find themselves operating at higher energy costs per unit of output than larger enterprises with more efficient systems. In both cases, decentralized electric generation would work against the smaller energy users, putting them at a disadvantage relative to the larger, more concentrated users. The objective of this paper is not to oppose alternative energy technologies in general or decentralized electric generation in particular. Such technology should be used if it becomes economical. It is false, however, to argue that decentralized generation is desirable because it will decentralize decision-making in the economy. Like carpooling, public transportation, and other measures to reduce energy cost, cogeneration and total-energy systems that make decentralized electric generation economical will also require increased coordination of economic decision-making.

  11. Solar electric systems (United States)

    Warfield, G.

    Subjects discussed in connection with solar electricity are related to solar radiation fundamentals, wind electric conversion and utilization, the basic theory of solar cells, photovoltaic materials, photovoltaic technology, components of solar thermal electric systems, solar thermal power plants, and integrated solar thermal electric complexes. The solar technology development in the Arab world is also examined, taking into account the horizon of solar energy in the Arab countries, solar energy activities at the Scientific Research Council in Iraq, solar energy activities at the Royal Scientific Society in Jordan, the solar energy program at Kuwait Institute for Scientific Research, application of solar energy in Libya, prospects of solar energy for Egypt, solar energy programs in Qatar, performance characteristics of a 350 kW photovoltaic power system for Saudi Arabian villages, nonconventional energy in Syria, wind and solar energies in Sudan, solar electric research and development program in Tunisia, and solar energy research and utilization in Yemen Arab Republic. No individual items are abstracted in this volume

  12. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition. (United States)

    Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang


    Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G


    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  14. Proposal simplified estimation method for annual electricity generation of photovoltaic systems; Taiyoko hatsuden shisutemu no nenkan hatsudenryo no kan'i suiteihoshiki no teian

    Energy Technology Data Exchange (ETDEWEB)

    Unozawa, H.; Kurokawa, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan); Sugibuchi, K. [Daido Hoxan Inc., Osaka (Japan)


    For designing photovoltaic (PV) systems appropriately, it is necessary to estimate solar radiation on an inclined surface at arbitrary azimuth and tilt angles accurately. The authors proposes a nomograph that expresses data graphically from irradiation database for 225 sites which proposed by the Japan Weather association. This allows to estimate easily solar radiation on an inclined surface. In addition, by combining the solar radiation climatic zone of Japan, solar radiation on an inclined in a simple procedure. In this paper, a simplified method for annual electricity generation calculation sheet is also proposed. By this work, fundamental planning work can be accomplished without any professional knowledge. (author)

  15. System for electric power generation with photovoltaic solar modules for charging the batteries of an electric wheelchair; Sistema de geracao de energia eletrica com modulos solares fotovoltaicos para o carregamento de baterias de uma cadeira de rodas eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Rafael Pimenta; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratinguta, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails:,


    Renewable energy is all kind of energy produced from a natural source that not diminish because its utilization is 'renewable'. More and more renewable energy resources are used, because they offer multiple advantages such as the energy output facility in small scale and because they are entirely compatible with the environment. The renewable energy used in this project is the photovoltaic solar energy, obtained by the direct conversion of the solar energy in electric energy through the use of solar cells, that can be of several kinds, being the most common of silicon. The main advantage of photovoltaic system is the generation of clean electric energy, or either, generates energy without emitting pollutant and without destroying the environment, moreover is an inexhaustible source of energy. The main disadvantage is, nowadays, the high cost and its low efficiency, so to continue developing it is necessary establish capable mechanisms to make it possible. The search of these mechanisms of incentive becomes-itself a lot important, because the renewable energy and not conventional do not produce a financial return to the investor properly said, but brings lots of benefits to the community, the society and to the environment. This project has the purpose of create an electric energy generation system through solar photovoltaic modules to carry batteries of a motorized wheelchair. An electric wheelchair is moved by electric motors of direct current that are feed by batteries, permitting a medium autonomy of 10 km by load. The batteries are recharged by a battery supplier. This operation should be carried out daily in a space of 6 to 8 hours. According to the Demographic Census realized in 2000 carried out by the IBGE, Brazil has around 1.416.060 physical deficient, which 861.196 are men and 554.864 are women. From a request of a user of electric wheelchair the idea of this project was shown up. The user complained that he stayed a long time carrying his seat

  16. Electricity generation using molten salt technology


    Osarinmwian, Charles


    The anodic release of carbon dioxide gas in the molten salt Hall-Heroult process can be used to power a turbine for electricity generation. The application of this new concept in molten salt reprocessing in the nuclear industry is considered because it could facilitate the suitability of carbon dioxide cycles to certain types of nuclear reactor. The theoretical power of 27.8 MW generated by a molten salt Hall-Heroult reactor is comparable with a next-generation biomass plant that sources low-...

  17. Sustainability evaluation of decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Karger, Cornelia R.; Hennings, Wilfried [Research Centre Juelich, Programme Group Humans, Environment, Technology (MUT), 52425 Juelich (Germany)


    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  18. Electric vehicle system for charging and supplying electrical power (United States)

    Su, Gui Jia


    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  19. The Future of Electricity Generation in New Zealand


    Bishop, Phil; Bull, Brian


    Increasing demand for electricity in New Zealand requires approximately 150 megawatts of new capacity to be installed annually. Rapidly increasing global prices for fossil fuels; the New Zealand Energy Strategy with its focus on renewable technologies; climate change policies; and a gradual shift from an energy constrained electricity system to one with capacity constraints are all factors underlying a change in the type of generation plant being installed and the location of that plant. This...

  20. Modelling of thermoelectric devices for electric power generation


    Bitschi, Andreas


    The efficient usage of energy at all stages along the energy supply chain and the utilization of renewable energies are very important elements of a sustainable energy supply system. Especially at the conversion from thermal to electrical power a large amount of unused energy (“waste heat”) remains. This energy, because of its relatively low temperature und low energy density can generally not be used for the generation of electrical power by the conventional thermodynamic cycles (Clausius Ra...

  1. Biomass gasification systems in electric energy generation for isolated communities; Sistemas de gaseificacao de biomassa na geracao de energia eletrica para comunidades isoladas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortine Gonzales; Martins, Osvaldo Stella; Santos, Sandra Maria Apolinario dos; Basaglia, Fernando [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail:, e-mail:, e-mail:, e-mail:, e-mail:; Ushima, Ademar Hakuo [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)], e-mail:


    The project 'Comparison Among Existing Technologies of Biomass Gasification', agreement FINEP/CT-ENERG 23.01.0695.00, is a partnership between CENBIO - The Brazilian Reference Center on Biomass, BUN - Biomass Users Network of Brazil, IPT - Technology Research Institute and UA - Amazon University. The main objective of this project is to study a biomass gasifier system and its implantation, using a sustainable way, at isolated communities in the North Region, offering an alternative to replace fossil fuel. The system is composed by a gasifier from Indian Institute of Science - IISc, that can generate 20 kW of output energy, a generator (internal combustion engine), an ashes extractor, a water cooler and treatment system, a dryer and a control panel. The project, developed at IPT, intends to evaluate the operation conditions of the gasification system: gas cleaning, electric power generation and the technology transfer to Brazil, allowing the formation of human resources in the Brazilian North region and collaborating with the national institutions from this area. (author)

  2. Supervisory fussy control for an electric generating hybrid system; Control supervisorio difuso para un sistema hibrido de generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas Mendoza, Javier


    This work presents the development of a fuzzy supervisory controller for a hybrid power system (HPS). After reviewing the actual configurations for Hybrid Systems used around the world, it was defined the configuration and constitutive elements to be implemented in proposed HPS. The HPS includes: photovoltaic arrays, wind turbines as renewable sources, a Gen-set as a back-up system, a battery bank a mean for energy storage, AC loads and finally an inverter to transform DC to AC in order to provide electricity to the loads. Once the HPS configuration was selected, the mathematical models for the different elements of the system were selected. The validation of the models was made comparing the results from the model with collected real data of an experimental HPS installed in Pachuca Hidalgo. Using MatLab it was developed a program to simulate the operation of the a HPS. The main function of the supervisory controller within the HPS is to satisfy the objectives of operation of the system, and it was defined as part of the research work. The operation philosophy of the supervisory controller was defined having selected HPS configuration and the operation objectives of the system. Regarding to the supervisory controller development, first it was carried out a bibliographic review of the supervisory controllers that are used nowadays whose use some techniques of intelligent control. As result form this review the fuzzy logic technique was chosen to be implemented in the supervisory controller proposed. The resulting supervisory controller was a multi- variable system type, and it is implementation was challenging task. Its development was made using the hierarchic decomposition based on meta-knowledge. As result a smaller diffuse systems with a less number of rules were obtained. An important part of the work was the implementation of the supervisory controller in Matlab. The controller tested in the developed simulation program for SHGE. The results of operation of

  3. Merits of excess bagasse as fuel for generating electricity. [Florida

    Energy Technology Data Exchange (ETDEWEB)

    Perea, P.


    The rising cost of fuel oil improves the economics for sugar factories of using excess bagasse to produce more electricity than they require for sale to the public utility companies. Recently, the United States Sugar Corporation, in Florida, initiated the operation of a 20 MW plant fueled with excess bagasse only, and the electricity it generates is sold to a local utility. This constitutes a saving of 10 million liters of oil per year. The operating cycle is described of a system of high-pressure boilers and automatically controlled turbogenerator for the production of energy from bagasse. This system is a pre-engineered design which is very simple to install and operate and can be fitted in with the electric-generating installations which are normally found in practically any sugar factory without making significant modifications to the factory. An economic analysis is presented of power generation using excess bagasse for a 3MW unit and a 4MW unit.

  4. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies


    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  5. Production inefficiency of electricity markets with hydro generation

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, Andy; Guan, Ziming; Khazaei, Javad; Zakeri, Golbon [Electric Power Optimization Centre (EPOC), Department of Engineering Science, University of Auckland, 70 Symonds Street, Auckland (New Zealand)


    Electricity market designs that decentralize decision making for participants can lead to inefficiencies in the presence of nonconvexity or missing markets. This has been shown in the case of unit-commitment problems that can make a decentralized market equilibrium less efficient than a centrally planned solution. Less attention has been focused on systems with large amounts of hydro-electric generation. We describe the results of an empirical study of the New Zealand wholesale electricity market that attempts to quantify production efficiency losses by comparing market outcomes with a counterfactual central plan. (author)

  6. Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. (United States)

    Birjandi, Noushin; Younesi, Habibollah; Ghoreyshi, Ali Asghar; Rahimnejad, Mostafa


    In the present study, the potential application of the bio-electro-Fenton (BEF) process for the treatment of medicinal herbs wastewater in a mediator-less microbial fuel cell (MFC) system is investigated. This process is operated in a dual-chamber MFC with anaerobic seed sludge as biocatalyst in an anode chamber under conditions of neutral pH, an aerobic cathode chamber equipped with a Fe@Fe2O3/graphite composite cathode and a Nafion membrane as a separator. The performance of the MFC is determined in three different mixed liquor suspended solids (MLSS) loadings, Nafions (112, 115) and a salt bridge in an air-cathode BEF process, in terms of power generation, chemical oxygen demand (COD) removal efficiency, columbic and energy efficiencies. Under optimal conditions, the batch experiment results show that the cathode chamber of the BEF reactor, equipped with Nafion 112 and inoculated with seed sludge at 3000 mg L(-1) MLSS concentration, produces the maximum power density of 49.76 mW m(-2), 0.56 mg L(-1) and 29 mol L(-1) of H2O2 and Fe(2+), respectively. Under these conditions, the MFC achieves COD removal 78.05% in the anaerobic anode chamber and 84.02% as a result of aerobic processes from the air-cathode BEF chamber, whilst the maximum voltage εcb and εE values are 600 mV, 4.09% and 1.37%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure (United States)

    Chaudhry, Hina


    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  8. Replacement of electrical protection of generation (main generator, main transformer and auxiliary transformers) and new associated monitoring system; Sustitucion de portecciones electricas de generacion (genrador principal, transformador principal y transformadores auxiliares) y nuevo sistema de supervision asociado

    Energy Technology Data Exchange (ETDEWEB)

    Archilla, J.


    The replacement of the electrical protection of generation is a technological quantum leap, since moving from an analog system (known by) (all, intuitive and visual) to a digital (integrates the hardware on a single computer, much more powerful and programmable). The keys to overcoming the challenge are know to manage the technological leap, the operational limitations of plant (keep operating the)preferred sources of energy) and make a good design (including a review independent of the configuration of the relays, taking into account the experience (operational available).

  9. Design of a non-linear contro ller to track de maximum power point of photovoltaic systems in electrical power systems with distributed generation


    Delgado Martín, Aránzazu


    This Doctoral thesis work is focused on the non-linear backstepping control of a buck-boost power converter and DC/AC power converter to track the maximum power point in PV systems and transfer the power to the electrical network. First, a backstepping control has been implemented to regulate the PV array output voltage in simulation to achieve the maximum power point. Forthat, a grid-connected PV system that consists of a PV array, a buck-boost converter, a DC/AC converter and a load has ...

  10. Carbon Monoxide Poisoning from Portable Electrical Generators. (United States)

    Hampson, Neil B; Dunn, Susan L


    Portable electrical generators have been responsible for over 800 accidental carbon monoxide (CO) poisoning deaths in the United States from 1999-2012. Because mortality figures are typically the only data reported with regard to the adverse effects of generators, we describe a nonfatal segment of the poisoned population to further emphasize the significance of the problem. Unidentifiable information about patients treated in the United States with hyperbaric oxygen for acute CO poisoning was prospectively reported by participating centers. Those patients poisoned by portable generators were selected for analysis. Of 1604 patients reported from August 1, 2008 to July 31, 2011, there were 264 accidentally poisoned by portable generators. Exposures occurred in 151 incidents in 33 states. In 99 incidents, poisoning occurred in a residence. Average patient age was 37 ± 20 years (range 1 to 90+ years). Of those poisoned, 146 (55%) were non-Hispanic white, 57 (22%) were black, 52 (20%) were Hispanic white, 4 (2%) were Asian, and 4 (2%) were Native American. English was spoken by 96%. The most common symptoms included headache (62%), dizziness (52%), and loss of consciousness (50%). Blood carboxyhemoglobin levels averaged 22.7 ± 9.0% (range 2.3-48.3%). Thirty-six patients demonstrated evidence of cardiac ischemia. Acute, severe CO poisoning from portable electric generators is common in the United States, likely affecting an estimated 4000 individuals annually, occurring predominantly in residential settings, and affecting English language-speaking individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and... (United States)


    ... Occupational Safety and Health Administration Electrical Protective Equipment Standard and the Electric Power... on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and... Equipment Standard (29 CFR 1910.137) and the Electric Power Generation, Transmission, and Distribution...

  12. Supervisory control for hybrid systems of electrical generation based on fuzzy logic; Control supervisorio para sistemas hibridos de generacion electrica basado en logica difusa

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas M, Javier; Ortega S, Cesar [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Caratozzolo M, Patricia [Instituto Tecnologico de Estudios Superiores de Monterrey, campus Cd. de Mexico (Mexico)


    The development and integration of hybrid systems of electrical generation (SHGE) of small capacity: The intention of these developments is its implementation in isolated or far away communities from conventional electric networks, that contribute in the own productive processes of these towns. As part of these work a system of control for their hybrid system wind-photovoltaic- internal combustion machine was developed that operates nowadays in a system installed in Pachuca, Hidalgo, Mexico. However, in the two past years, the GENC has worked, altogether with the Management of Control and Instrumentation of the Instituto de Investigaciones Electricas (IIE) and the Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET) (National Center of Research and Technological Development), to incorporate an intelligent control technique in the regulation of the hybrid systems of wind-photovoltaic-machine of internal combustion type. Lemos de Pereira rises that the main problems of the present technology of the SHGE are related to the control and supervision of the power systems. The system that is in charge of the actions of load control and dispatch is denominated supervisory control. This controller supervises the operation of all the components, regulates the entry or exiting of operation of the generation systems, as well as the loads. [Spanish] El desarrollo e integracion de sistemas hibridos de generacion electrica (SHGE) de pequena capacidad. El proposito de estos desarrollos es su implementacion en comunidades aisladas o alejadas de la red electrica convencional, las cuales contribuyan en los procesos productivos propios de estos poblados. Como parte de dichos trabajos se desarrollo un sistema de control para su sistema hibrido eolico-fotovoltaico-maquina de combustion interna que opera actualmente en un sistema instalado en Pachuca, Hidalgo, Mexico. Ahora bien, en los dos ultimos anos, la GENC ha trabajado, en conjunto con la Gerencia de Control e

  13. TOPEX electrical power system (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest


    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  14. Bio-electricity Generation using Jatropha Oil Seed Cake. (United States)

    Raheman, Hifjur; Padhee, Debasish


    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  15. Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors (United States)


    AFRL-AFOSR-VA-TR-2016-0143 Electrically-generated spin polarization in non -magnetic semiconductors Vanessa Sih UNIVERSITY OF MICHIGAN Final Report 03...SUBTITLE (YIP) - Electrically-generated spin polarization in non -magnetic semiconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0258 5c...that produced electrically-generated electron spin polarization in non -magnetic semiconductor heterostructures. Electrically-generated electron spin

  16. MHD Generating system (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix


    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  17. Modeling and simulation of the generation automatic control of electric power systems; Modelado y simulacion del control automatico de generacion de sistemas electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Caballero Ortiz, Ezequiel


    This work is devoted to the analysis of the Automatic Control of Electrical Systems Generation of power, as of the information that generates the loop with Load-Frequency Control and the Automatic Voltage Regulator loop. To accomplish the analysis, the control classical theory and feedback control systems concepts are applied. Thus also, the modern theory concepts are employed. The studies are accomplished in the digital computer through the MATLAB program and the available simulation technique in the SIMULINK tool. In this thesis the theoretical and physical concepts of the automatic control of generation are established; dividing it in load frequency control and automatic voltage regulator loops. The mathematical models of the two control loops are established. Later, the models of the elements are interconnected in order to integrate the loop with load frequency control and the digital simulation of the system is carried out. In first instance, the function of the primary control in are - machine, area - multi machine and multi area - multi machine power systems, is analyzed. Then, the automatic control of generation of the area and multi area power systems is studied. The economic dispatch concept is established and with this plan the power system multi area is simulated, there in after the energy exchange among areas in stationary stage is studied. The mathematical models of the component elements of the control loop of the automatic voltage regulator are interconnected. Data according to the nature of each component are generated and their behavior is simulated to analyze the system response. The two control loops are interconnected and a simulation is carry out with data generated previously, examining the performance of the automatic control of generation and the interaction between the two control loops. Finally, the Poles Positioning and the Optimum Control techniques of the modern control theory are applied to the automatic control of an area generation


    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  19. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane


    Full Text Available Energy harvesting has become a promising and alternative solution to conventional energy generation patterns to overcome the problem of supplying autonomous electrical systems. More particularly, thermal energy harvesting technologies have drawn a major interest in both research and industry. Thermoelectric Generators (TEGs can be used in two different operating conditions, under constant temperature gradient or constant heat flow. The commonly used TEG electrical model, based on a voltage source in series with an electrical resistance, shows its limitations especially under constant heat flow conditions. Here, the analytical electrical modeling, taking into consideration the internal and contact thermal resistances of a TEG under constant temperature gradient and constant heat flow conditions, is first given. To give further insight into the electrical behavior of a TEG module in different operating conditions, we propose a new and original way of emulating the above analytical expressions with usual electronics components (voltage source, resistors, diode, whose values are determined with the TEG’s parameters. Note that such a TEG emulation is particularly suited when designing the electronic circuitry commonly associated to the TEG, to realize both Maximum Power Point Tracking and output voltage regulation. First, the proposed equivalent electrical circuits are validated through simulation with a SPICE environment in static operating conditions using only one value of either temperature gradient or heat flow. Then, they are also analyzed in dynamic operating conditions where both temperature gradient and heat flow are considered as time-varying functions.

  20. Nonlinear characteristics of the rotating exciter system of power plant generators in case of electricity accidents; Transientes Verhalten des rotierenden Erregersystems von Kraftwerksgeneratoren bei elektrischen Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Nader


    Different types of exciter are used for voltage supply to the synchronous generators of power stations depending on the required power and design. The exciter system of the generator, which as a rule consists syncronous motors and commutators, is commonly modeled in conventional models by control units with nonlinear characteristics which do not give an accurate picture of the dynamic processes inside the exciter motor. It was not possible to assess the component loads of the exciter components and the physical characteristics within the exciter system. In this study, a brushless exciter for the grid-connected synchronous generator was investigated which consists of two synchronous motors as primary and secondary exciter and two commutator bridges. A dynamic simulation model was developed for calculating the interactions between the grid, generator and exciter unit in consideration of electromagnetic and galvanic coupling. For this, the normal control units were replaced by physical components of the exciter system, i.e. electric exciter motors and commutators. The study was carried out using an enhanced version of the Siemens NETOMAC software, which provided information on the loads on the exciter components in case of internal and external failures. In particular, loads in coils and commutators were calculated that could not be measured before. The findings enable more accurate dimensioning of the exciter unit making it more fail-safe, and the protective systems can be adjusted more accurately. One important result of the investigation was the identification of all dynamic processes going on between the exciter motors, commutators, generator and grid induced by external and internal failures. (orig.) [German] Zur Spannungsversorgung der Synchrongeneratoren in Kraftwerken werden je nach Leistungsanforderung und Baukonzept unterschiedliche Erregereinrichtungen verwendet. Das Erregersystem des Generators, das in der Regel aus Erregersynchronmaschinen und

  1. Analysis and Design of a Dish/Stirling System for Solar Electric Generation with a 2.7 kW Air-Cooled Engine

    Directory of Open Access Journals (Sweden)

    Beltrán-Chacón R.


    Full Text Available This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same. The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities.

  2. Meeting residential space heating demand with wind-generated electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Larry [Electrical and Computer Engineering, Energy Research Group, Dalhousie University, Halifax, Nova Scotia (Canada)


    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  3. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering


    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  4. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.


    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  5. Vehicle electrical system state controller (United States)

    Bissontz, Jay E.


    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  6. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.


    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation

  7. 18 CFR 801.12 - Electric power generation. (United States)


    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  8. Electric power generation and environment in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tuzuner, S. [Turkish Electricity Generation and Transmission Corporation, Ankara (Turkey)


    The paper, submitted by the Government of Turkey to the Ad Hoc Group of Experts on Coal and Thermal Power, 5-6 October 1998, outlines the Government`s current energy policy for power generation which gives priority to the utilization of domestic resources. Electricity demand is met by hydroelectric and fossil fuel sources. In 1997, hydro installed capacity was 10102.6 MW and thermal 11786.8 (from lignite, natural gas and oil). Domestic low quality lignite contributes 48.2% of the thermal power generated, but its share has decreased over the period 1985 to 1997 from 64.6% as a consequence of installation of natural gas combined cycle power plants. FGD plants will be retrofitted to existing coal-fired plants to meet environmental requirements. One such plant is in operation at Cayirhan Power Station and FGD plants are being built at Yatagan, Kemerkoy and Yenikoy. New units at Cayirhan, Kangal and Elbistan-B incorporated FGD plants. Almost all plants have electofilters operating at 99.4-99.8% efficiency. A new plant, Can Thermal Power Station will be based on circulating fluidized bed technology. 3 tabs.

  9. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  10. Solar cells as a renewable source for electricity generation


    Mezek, Maksimilijan


    Thesis is dedicated to in-service primary school technology teachers. The operation of solar cells is described first, then a history, followed by the direction of the development of solar cells. The next part of the thesis compare generation of electricity with various power plants in relation to the environment. There is also described some photovoltaic systems and what are the possibilities of obtaining solar energy. Project-based learning characteristics, types and phases are presente...

  11. Solar powered Stirling cycle electrical generator (United States)

    Shaltens, Richard K.


    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  12. Automation of steam generator services at public service electric & gas

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, H.; Wray, J.; Scull, D. [Public Service Electric & Gas, Hancock`s Bridge, NJ (United States)


    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was due to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.

  13. Effect of biphasic electrical current stimulation on IL-1β-stimulated annulus fibrosus cells using in vitro microcurrent generating chamber system. (United States)

    Kim, Joo Han; Choi, Hyuk; Suh, Min Ji; Shin, Jae Hee; Hwang, Min Ho; Lee, Heung-Man


    Human annulus fibrosus (AF) cells were stimulated in vitro with interleukin (IL)-1β and exposed to biphasic electrical currents. To identify the effect of biphasic electrical currents on the production of the extracellular matrix-modifying enzymes and inflammatory mediators in IL-1β-stimulated AF cells. Symptomatic disc degeneration is an important cause of chronic intractable lumbar pain and is associated with macrophage-mediated inflammation in the AF. The inflammatory reaction relationship has not been studied in the AF. Human AF cells were treated with 1 ng/mL IL-1β and cultured in a microcurrent generating chamber system. The levels of matrix metalloproteinase (MMP)-1, MMP-3, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, IL-6, IL-8, vascular endothelial growth factor (VEGF), insulin-like growth factor, and nitric oxide (NO) were measured. Expression of cyclooxygenase 2 and type I collagen mRNA was analyzed. Compared with unstimulated cells, IL-1β-stimulated AF cells produced significantly higher levels of MMP-1, MMP-3, IL-6, IL-8, NO, and VEGF, and lower levels of TIMP-1 and TIMP-2. Exposure to a 250-mV/mm field induced time-dependent increases in IL-6, NO, MMP-1, TIMP-1, VEGF, and insulin-like growth factor-1 production. The cells exposed to 500-mV/mm field produced significantly less MMP-1, TIMP-1, IL-6, and VEGF than unexposed cells (MMP-1, 17.2 ± 4.7 ng/mL vs. 27.3 ± 3.9 ng/mL, P< 0.05; TIMP-1, 12.4 ± 3.3 ng/mL vs. 22.3 ± 2.1 ng/mL, P< 0.02; IL-6, 2.5 ± 0.9 ng/mL vs. 6.39 ± 1.90 ng/mL, P< 0.05; and VEGF, 0.1 ± 0.04 ng/mL vs. 0.44 ± 0.15 ng/mL, P< 0.03). NO production was markedly increased at 500 mV/mm (P< 0.0001). We showed that exposure of IL-1β-stimulated AF cells to a 500 mV/mm inhibited MMP-1, IL-6, VEGF, and TIMP-1 production. The results suggest that biphasic electrical current stimulation may have efficacy in diminishing symptomatic disc degeneration. N/A.

  14. Distributed Generation of Electricity and its Environmental Impacts (United States)

    When connected to the electric utility’s lower voltage distribution lines, distributed generation can help support delivery of clean, reliable power to additional customers and reduce electricity losses along transmission and distribution lines.

  15. Promising Electric Aircraft Drive Systems (United States)

    Dudley, Michael R.


    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  16. Green electricity: Tracking systems for environmental disclosure

    Energy Technology Data Exchange (ETDEWEB)

    Biewald, B.E.; Ramey, J.A. [Synapse Energy Economics, Inc., Cambridge, MA (United States)


    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.


    Landis, Geoffrey A. (Inventor)


    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  18. The renewable electric plant information system

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.


    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  19. Generation capacity expansion planning in deregulated electricity markets (United States)

    Sharma, Deepak

    With increasing demand of electric power in the context of deregulated electricity markets, a good strategic planning for the growth of the power system is critical for our tomorrow. There is a need to build new resources in the form of generation plants and transmission lines while considering the effects of these new resources on power system operations, market economics and the long-term dynamics of the economy. In deregulation, the exercise of generation planning has undergone a paradigm shift. The first stage of generation planning is now undertaken by the individual investors. These investors see investments in generation capacity as an increasing business opportunity because of the increasing market prices. Therefore, the main objective of such a planning exercise, carried out by individual investors, is typically that of long-term profit maximization. This thesis presents some modeling frameworks for generation capacity expansion planning applicable to independent investor firms in the context of power industry deregulation. These modeling frameworks include various technical and financing issues within the process of power system planning. The proposed modeling frameworks consider the long-term decision making process of investor firms, the discrete nature of generation capacity addition and incorporates transmission network modeling. Studies have been carried out to examine the impact of the optimal investment plans on transmission network loadings in the long-run by integrating the generation capacity expansion planning framework within a modified IEEE 30-bus transmission system network. The work assesses the importance of arriving at an optimal IRR at which the firm's profit maximization objective attains an extremum value. The mathematical model is further improved to incorporate binary variables while considering discrete unit sizes, and subsequently to include the detailed transmission network representation. The proposed models are novel in the

  20. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath


    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  1. A Model for sustainable biomass electricity generation in Bangladesh


    Hossain, A. K. M. S.


    Bangladesh, where only 20% of the total population are connected to grid electricity, has a promising scope to utilise biomass for decentralised electricity generation. In this study, sustainable biomass electricity generation model was developed for the country, by combining tech no-econometric and optimisation modelling techniques. The developed model addresses the biomass generation and availability, feasible technologies, cost and efficiency correlations, economic plant siz...

  2. Integrated engine-generator concept for aircraft electric secondary power (United States)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.


    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  3. Hybrid system of generating electricity, solar eolic diesel San Juanico, Baja California Sur, Mexico; Sistema hibrido de generacion electrica, eolico solar diesel San Juanico, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, Javier [Comision Federal de Electricidad, La Paz, Baja California Sur (Mexico); Johnston, Peter [Technology Development, Arizona (United States); Napikoski, Chester [Generation Engineering, Arizona (United States); Escutia, Ricardo [Comision Federal de Electricidad, Baja California Sur (Mexico)


    The Comision Federal de Electricidad (CFE), and the northamerican electric company Arizona Public Service (APS), made an agreement of collaboration to develop a project of generating electricity with the use of renewable resources. The premises that where agreed on are the following: 1. Focus the project a rural community. 2. The cost of the whole project should be lower than compared to the interconnection to a conventional system. 3. Acceptance of the community, and the governmental authorities. 4. Sustentability of the operation of the system. Several technical and economical analysis where done, such as the evaluation of the solar and eolic resources, study of the environmental impact, negotiation agreements so it would be possible to obtain de economical resources from Niagara Mohawk (NIMO), and the USAID, all of this thru the supervising of the Sandia National Laboratories. After the anemometric and solar radiation measures where made, it was considered that the community of San Juanico, en Baja California Sur, Mexico, was the most feasible one, it was necessary also to consider the aspects of logistics, socials, size of the community and as a detonator for the economic activities of tourism and fishing. The APS formulated the executive project in accordance with the recommendations of the different areas of CFE. The project consists basically in the installation of 10 wind generators of 10 Kw, a battery bank for 432 KWh, plus a diesel generator for emergencies of 80 Kw. Besides the civil and electromechanical installation. It was necessary to involve the community in the knowledge and followup of the project form it's, considering that this factor would be essential, so it could be successful. Lamps of low consumption where installed on the houses and street lightning, to optimize the system. The patronato that is a civil association of the community, is in charge of the administration of the system, it receives support from personnel of CFE. The income

  4. Electric field generated by axial longitudinal vibration modes of microtubule. (United States)

    Cifra, M; Pokorný, J; Havelka, D; Kucera, O


    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Wind farm electrical system (United States)

    Erdman, William L.; Lettenmaier, Terry M.


    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  6. Electric vehicle battery systems

    National Research Council Canada - National Science Library

    Dhameja, Sandeep


    ... what has been written, Butterworth- Heinemann prints its books on acid-free paper whenever possible. Butterworth- Heinemann supports the efforts of American Forests and the Global ReLeaf program in its campaign for the betterment of trees, forests, and our environment. Library of Congress Cataloging-in-Publication Data Dhameja, Sandeep. Electric vehi...

  7. Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis (United States)

    Liu, Fei; Coronell, Orlando; Call, Douglas F.


    Capacitive flow electrode systems that generate electricity from salinity gradients are limited by low power densities, inefficient electrical current collection, and complex system operation. We show here the proof-of-concept that a single reverse electrodialysis cell using continuously recirculated activated carbon flow electrodes can generate uninterrupted electricity from an artificial sea/river water gradient. Power densities reached 61 ± 5.7 mW m-2 (normalized to total membrane surface area) and current densities 2.4 ± 0.13 A m-2 when a 10% by weight carbon loading was used with graphite plate current collectors. Using high-surface area graphite brush current collectors, maximum power densities increased more than 320% to 260 ± 8.7 mW m-2 and maximum current densities more than 400% to 14 ± 0.59 A m-2. The performance improvements were attributed to a more than 80% decrease in electrode resistances when brushes were used instead of plates. A control static capacitive electrode system obtained slightly higher average power densities (290 ± 8.7 mW m-2), but could not produce it continuously, highlighting the operational advantage of the recirculated flow electrode design.

  8. Electrical motor/generator drive apparatus and method (United States)

    Su, Gui Jia


    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  9. Environmental control implications of generating electric power from coal. Appendix C. Gasification/combined-cycle power generation: comparison of alternative systems. 1977 technology status report. [246 references w. abstracts

    Energy Technology Data Exchange (ETDEWEB)



    The technical, economic, and environmental aspects of low-Btu gasification/combined-cycle power-generation (LBG/CCPG) plants are assessed, using available published data. Six base-case plants, based on three different gasifiers and two different coals, are investigated. A representative combined power cycle is selected for analysis, and material and energy balances for the six systems are developed. Emissions of various air pollutants, including sulfur dioxide and nitrogen oxides, and discharge rates of aqueous effluents are also calculated. The costs of electricity produced are derived for the six systems, using estimated plant-investment and operating costs. These costs and the emissions of various pollutants are compared with those for a conventional 500-MWe coal-based power plant using flue-gas cleaning and in compliance with the federal New Source Performance Standards. Finally, the commercialization potential of coal-based combined-cycle plants, based on the technical feasibility of building a first plant in the 1985 period and on economic viability, is evaluated. This evaluation is based on the current status of research and development programs for various components of the combined-cycle plant, such as gas turbines and fuel-gas-cleaning systems, and on the status of the demonstration plant.

  10. Long-term impacts of battery electric vehicles on the German electricity system (United States)

    Heinrichs, H. U.; Jochem, P.


    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  11. Surplus from and storage of electricity generated by intermittent sources (United States)

    Wagner, Friedrich


    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  12. The General Electric MOD-1 wind turbine generator program (United States)

    Poor, R. H.; Hobbs, R. B.


    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed.

  13. Photovoltaic technology of electricity generation for desert camping

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, S.; Shash, A.A.; Baghabra Al Amoudi, O.S. [King Fahd Univ. of Petroluem and Minerals, Dhahran (Saudi Arabia). Center for Engineering Research


    This paper presents a case study on the utilisation of global solar radiation data on horizontal surface to perform an economic feasibility study of using Photovoltaic (PV) panels with battery backup to meet a small load for a camping site in Saudi Arabia. The analysis considers three scenarios with daily average energy demands: (a) full load, (b) 75% load, and (c) half load, with annual peak load of 3.84, 3.06 and 2.27 kW, respectively. Each of these loads is further studied economically to investigate the effect of battery storage for one to five days. The paper also compares the cost of electricity generation in $/kWh between the PV system and diesel-generating systems. The economic indicators suggest that larger PV systems are preferred over the smaller ones with minimal storage option. [Author].

  14. Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea

    Directory of Open Access Journals (Sweden)

    Eunil Park


    Full Text Available While environmental and energy concerns have become global issues, the government of South Korea has made notable efforts and formulated plans for the diffusion of renewable energy generation facilities for the nation’s public and governmental institutions. Accordingly, Jeju Island has become one of the most promising locations for utilizing renewable energy resources. This study aims to propose potential configurations for renewable energy generation facilities (mainly solar and wind energy facilities in response to the electricity demand of the main local governmental offices of Jeju Special Self-Governing Province. The study utilizes the hybrid optimization of multiple energy resources software to simulate two optimized configurations for generation at a cost of energy of $0.306 per kWh (independent and $0.204 per kWh (grid-connected with 100% renewable fraction for the island. The implications of the simulation results and limitations of the study are discussed.

  15. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana


    The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...

  16. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding


    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  17. Global potential for wind-generated electricity (United States)

    Lu, Xi; McElroy, Michael B.; Kiviluoma, Juha


    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines. PMID:19549865

  18. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern


    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  19. Electric power generating plant having direct-coupled steam and compressed-air cycles (United States)

    Drost, M.K.


    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  20. Electric power generating plant having direct coupled steam and compressed air cycles (United States)

    Drost, Monte K.


    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  1. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell. (United States)

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E


    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  2. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro


    A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...... and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric...

  3. Analysis of the energy portfolio for electricity generation; Analisis del portafolio energetico para la generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J., E-mail: [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  4. Space Station Electrical Power System (United States)

    Labus, Thomas L.; Cochran, Thomas H.


    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  5. Potential of Biomass Based Electricity Generation in Sri Lanka

    Directory of Open Access Journals (Sweden)

    KP Ariyadasa


    Full Text Available Biomass has attracted much attention as a primary energy source for electricity generation due to its potential to supply low cost fuel source with considerable environmental and socio-economic benefits. Despite having favorable climatic conditions to grow and use biomass for electricity generation, biomass based electricity generation in Sri Lanka is lagging behind due to many reasons. Many countries rely on the agricultural or forestry by-products or residuals as the main source of biomass for electricity generation mainly due to the comparatively low cost and sustainable supply of these by-products. Sri Lanka does not have this advantage and has to rely mainly on purposely grown biomass for electricity generation. Development of short rotation energy plantations seems to be the best option available for Sri Lanka to produce biomass for commercial scale electricity generation. The highly favorable growing conditions, availability of promising tree species and a variety of plantation management options and significant environmental and socio-economic benefits associated with energy plantation development greatly favor this option. This paper examines the potential of using plantation grown biomass as a fuel source for electricity generation in Sri Lanka.

  6. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  7. Solar-Electric Dish Stirling System Development

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, T.R.


    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  8. Next generation information systems

    Energy Technology Data Exchange (ETDEWEB)

    Limback, Nathan P [Los Alamos National Laboratory; Medina, Melanie A [Los Alamos National Laboratory; Silva, Michelle E [Los Alamos National Laboratory


    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  9. Computational Needs for the Next Generation Electric Grid Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil


    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power

  10. Autonomously managed electrical power systems (United States)

    Callis, Charles P.


    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  11. Energy and Economic Effectiveness of Electricity Generation Technologies of the Future

    Directory of Open Access Journals (Sweden)

    Bolesław Zaporowski


    Full Text Available The paper presents the analysis of energy and economic effectiveness of electricity generation technologies of the future in: system power plants, large and medium scale combined heat and power (CHP plants, and small scale power plants and CHP plants (distributed sources. For particular generation technologies were determined the quantities characterizing their energy effectiveness, unitary emission of CO2 (kg CO2/kWh and unitary discounted electricity generation costs of 2013.

  12. Pestel study: system comparison of the generation of electric current and heating energy in coupled and uncoupled plants; Pestel Studie: Systemvergleich der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, K.P.


    A system comparison of the generation of electric current and heating energy in coupled and uncoupled plants was carried out in the years 1983/84 at the Eduard Pestel Institute for system research in Hannover. A report is given on the main focus of the investigation which was the comparison of cogeneration power plant for cogeneration with the current generation in modern condensation power plants and the corresponding generation of heating energy in modern gas boilers. The primary energy consumption for generating electric current was compared by means of four examples to the consumption for heating energy generation. The costs of this generation in terms of national economy and industrial management were also compared to each other by means of four examples. (orig.) [Deutsch] Am Eduard Pestel Institut fuer Systemforschung e.V. in Hannover wurde in den Jahren 1983/1984 ein Systemvergleich zwischen der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen durchgefuehrt. Schwerpunkt der Untersuchung, ueber den heute berichtet werden soll, war der Vergleich von - Blockheizkraftwerken zur gekoppelten Erzeugung mit - einer Stromerzeugung in modernene Kondensationskraftwerken und der entsprechenden Heizwaermeerzeugung in modernen Gaskesseln. Dabei wurden anhand von vier konkreten Fallbeispielen jeweils - die Primaerenergieverbraeuche fuer die Strom- und Heizwaermeerzeugung sowie - die volkswirtschaftlichen und betriebswirtschaftlichen Kosten dieser Erzeugung miteinander verglichen. (orig.)

  13. Electric Field Quantitative Measurement System and Method (United States)

    Generazio, Edward R. (Inventor)


    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  14. NPDES Permit for Potomac Electric Power Company (PEPCO) Benning Generating Station (United States)

    Under National Pollutant Discharge Elimination System permit number DC0000094, the Potomac Electric Power Company (PEPCO) Benning Generating Station is authorized to discharge from from a facility to receiving waters named Anacostia River.

  15. Technical feasibility study for the development of a large capacity wind powered electrical generating system. [by using vertical airfoil motion along track system (United States)

    Powe, R. E.


    The engineering feasibility of developing a basic mechanical system necessary for extracting large amounts of power (on the order of 10 to 20 MW) from the wind is considered using the concept of vertical airfoils moving along a closed horizontal track system. Attention is focused on those components necessary for the conversion of wind energy to mechanical energy, although the general characteristics and critical aspects of other components are also considered. The four phases of this program are: (1) Establishment of component specifications and interface requirements for major system components; (2) formulation of alternative sets of conceptual designs for major system components; (3) engineering analysis of various components and systems; and (4) re-examination of basic concept and identification of any desirable follow-up work.

  16. Electrical power system WP-04 (United States)

    Nored, Donald L.


    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  17. Storing the Electric Energy Produced by an AC Generator (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao


    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  18. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil. (United States)

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  19. Use of wind turbines to generate electricity for highway buildings. (United States)


    To determine the feasibility of using wind turbines to generate electrical power, measurements of wind speeds were made for a period of one year at three installations of the Virginia Department of Highways and Transportation. Unfortunately, the wind...

  20. Selecting Electricity Generation Sources in Remote Locations (United States)


    The RPS dictates how much of the electrical sector is to be provided by renewable sources such as wind, solar, hydro, geothermal, and biomass ...151.2 0.0% 1.7% Ethiopia 0.0 0.0 7.0 7.0 7.0 7.0 0.0% 0.1% France ( Guadeloupe ) 4.2 4.2 4.2 4.2 14.7 14.7 0.0% 0.2% Germany 0.0 0.0 0.0 0.2 0.2 0.2

  1. Cost system applied in company of generating and transmitting electric energy - CHESF; Sistema de custos aplicado em empresa geradora e transmissora de energia eletrica - CHESF

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Crisalvo Sampaio, e-mail:


    This paper introduces the Operational Costs System 'SCOPES', developed by Companhia HidroEletrica do Sao Francisco - CHESF, with the objective of providing the leadership, knowledge of costs and expenditures generated in the various activities of the cost formation chain, enabling effective monitoring and management of resources incurred in the chain.

  2. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, Greg [Cool Energy, Inc., Boulder, CO (United States); Weaver, Samuel P. [Cool Energy, Inc., Boulder, CO (United States)


    Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of US power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one

  3. Electricity generation from swine wastewater using microbial fuel cells. (United States)

    Min, Booki; Kim, Jungrae; Oh, Sangeun; Regan, John M; Logan, Bruce E


    Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters and simultaneously producing electricity. Preliminary tests using a two-chambered MFC with an aqueous cathode indicated that electricity could be generated from swine wastewater containing 8320 +/- 190 mg/L of soluble chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 omega resistor), which was 79% larger than that previously obtained with the same system using domestic wastewater (146 +/- 8 mW/m2) due to the higher concentration of organic matter in the swine wastewater. Power generation as a function of substrate concentration was modeled according to saturation kinetics, with a maximum power density of P(max) = 225 mW/m2 (fixed 1000 omega resistor) and half-saturation concentration of K(s) = 1512 mg/L (total COD). Ammonia was removed from 198 +/- 1 to 34 +/- 1 mg/L (83% removal). In order to try to increase power output and overall treatment efficiency, diluted (1:10) wastewater was sonicated and autoclaved. This pretreated wastewater generated 16% more power after treatment (110 +/- 4 mW/m2) than before treatment (96 +/- 4 mW/m2). SCOD removal was increased from 88% to 92% by stirring diluted wastewater, although power output slightly decreased. These results demonstrate that animal wastewaters such as this swine wastewater can be used for power generation in MFCs while at the same time achieving wastewater treatment.

  4. Intravenous Fluid Generation System (United States)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John


    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  5. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei


    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel cell power.

  6. Distributed Generation in European Electricity Markets

    DEFF Research Database (Denmark)

    Ropenus, Stephanie

    This thesis describes the different steps needed to design a steadystate computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibr...

  7. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail:, E-mail:, E-mail: [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas


    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  8. Life cycle assessment of electricity generation in Mexico


    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.


    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO2 eq. per year, of which the majority (87%) is du...

  9. The impact of climate change and variability on the generation of electrical power

    Directory of Open Access Journals (Sweden)

    Hagen Koch


    Full Text Available Climate variability and change affect electricity generation in several ways. Electricity generation is directly dependent on climate/weather parameters like wind (wind power generation or air temperature and resulting water temperature (thermal power plants. River discharge as a result of precipitation and temperature, the latter being one main factor influencing evapotranspiration, is important for hydro power generation and cooling of thermal power plants. In this study possible effects of climate variability and change on electricity generation in Germany are analyzed. Considered is electricity generation by thermal power plants, wind power plants and hydro power plants. While hydro power plants and thermal power plants are affected negatively due to declining river discharge or higher water temperatures, for wind power generation no clear tendency was found. The reduction for hydro power generation could be leveled out by a slight increase in installed capacity and modernization of turbines and generators. By a replacement of old once-through cooling systems by closed-circuit cooling systems for new thermal power plants the negative impacts on electricity generation can be reduced significantly. The planned increase of installed capacity for wind power generation clearly surpasses the changes arising from climate change.

  10. Development of a automatic positioning system of photovoltaic panels for electric energy generation; Desenvolvimento de um sistema de posicionamento automatico de placas fotovoltaicas para a geracao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alceu F.; Cagnon, Odivaldo Jose [Universidade Estadual Paulista (DEE/FEB/UNESP), Bauru, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica; Seraphin, Odivaldo Jose [Universidade Estadual Paulista (DER/FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural


    This work presents an automatic positioning system for photovoltaic panels, in order to improve the conversion of solar energy to electric energy. A prototype with automatic movement was developed, and its efficiency in generating electric energy was compared to another one with the same characteristics, but fixed in space. Preliminary results point to a significant increase in efficiency, obtained from a simplified process of movement, in which sensors are not used to determine the apparent sun's position, but instead of it, the relative Sun-Earth's position equations are used. An innovative movement mechanical system is also presented, using two stepper motors to move the panel along two-axis, but with independent movement, contributing, this way, to save energy during the positioning times. The use of this proposed system in rural areas is suggested. (author)


    Directory of Open Access Journals (Sweden)

    A. V. Levin


    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  12. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.


    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  13. Increase of electric power quality in autonomous electric power systems

    Directory of Open Access Journals (Sweden)

    И. А. Паньков


    Full Text Available With the constant development of electronics for control and monitoring of the work for significant and important elements of electric power systems, the requirements to the quality of electric power also increase. The issues of increasing the quality of electricity are solved in the field of power supply systems, which are the backbone of any electric network, because of their wider distribution and usage, unlike the autonomous electric power systems. In turn, with the development of the marine and river fleet, as well as appearance of such a promising direction for mining operations, like the Arctic zone, the autonomous electric power plants become especially important. One of the main problems of such systems is an insufficient research of the problem of the quality of electric power. The article presents a model of an autonomous electric power system. To simulate such systems, the MathLab package with the Simulink application is being widely used. The developed model provides an assessment of the quality of electricity in it, a comparison of the assessment obtained in existing systems, and a modern solution is proposed to improve the quality of electricity.

  14. The physics of electric power systems

    Directory of Open Access Journals (Sweden)

    Ohler C.


    Full Text Available The article describes electric power systems from a physicist’s point of view. In contrast to common introductory textbooks on power systems, the emphasis is on the physical design, that is the material selection and the choice of the geometrical shape, of the fundamental components as it follows from the function and serves the main purpose. Why do power system components look the way they look? This is the question addressed in an accessible way. Four fundamental components are needed to make the most elementary power system: overhead transmission lines, transformers, synchronous generators, and circuit breakers. High-voltage overhead lines make efficient long-distance transmission of electric power possible. Transformers step up the power from the generating plant and cascade it down to the final consumption. For their ability to control, independently, real and reactive power, synchronous generators are the most common type of generators. And it is only through the immediate extinction of plasma arcs in circuit breakers that shortcircuit currents can be interrupted and faulty segments of the grid disconnected.

  15. Evaluation of full strength paper mill effluent for electricity generation ...

    African Journals Online (AJOL)



    Nov 7, 2011 ... renewable energy, have considered anaerobic treatment for the generation of volatile fatty acids, biogases. (Kaksonen et al., 2003; Najafpour et al., 2009) and direct generation of electricity in microbial fuel cells — MFCs. (Nimje et al., 2009; Cha et al., 2010; Kassongo and Togo,. 2010). In the latter, effluent ...

  16. optimization methodologies of mixed electrical generators in algeria ...

    African Journals Online (AJOL)

    GENERATORS IN ALGERIA BASED ON RENEWABLE APPLICATION TO. TELECOMMUNICATIONS ... This article deals of the optimization of renewable energy electric generators, for the alimentation of radio .... L'optimisation permet non seulement d'obtenir un optimum absolu, mais aussi de trouver une bonne solution, ...

  17. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.


    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  18. Generation Companies’ Operative Strategies in the Spot Electricity Market

    Directory of Open Access Journals (Sweden)

    Tovar-Hernández J.H.


    Full Text Available In traditional regulation the obligation to meet the consumer demand was assumed, this guaranteed to generation companies the full recovery of their costs. However, in order to achieve greater efficiency, reduce the price of electricity, meet the continuously growing electricity consumption, and equalize prices in different regions, a new structure of the electricity industry has been created, where electric energy is traded through a market. Generation company’s future cash flows depend on day to day market participation, in order to satisfy all of their financial and economic requirements. In this paper, future cash flows required to fulfill with economic and financial commitments by a generation company immerse in this new market structure are studied. For this purpose, future cash flows are considered to be dependent on a single asset: electricity. Several scenarios with different fuel prices are generated in order to estimate the generation company’s future cash flows. The response of the competing generation companies is taken into account at each scenario. The fuel price changes are modelled using a concurrent binary tree.

  19. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Chick, Lawrence A.


    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  20. Generation of rotary vibrations in internal combustion engines with elastically coupled electric power systems; Erzeugung von verbrennungsmotorischen Drehschwingungen mit elastisch gekoppelten elektrischen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Jens Werner [Rostock Univ. (Germany). Inst. fuer Antriebstechnik und Mechatronik


    The design of motor car powertrains requires simulations as well as prototype tests. For the simulations, prototype parameters must be identified on test rigs, simulation results must be verified, and life tests must be carried out. This necessitates realistic and reproducible excitation of vibrations. Thee book describes the development and construction of a test rig which, with the aid of electric power systems, induces rotary vibrations like those which may occur in internal combustion engines due to gas forces and unbalanced mass forces. In combination with excess resonance, the test stand achieves high dynamics with average rotary momenta up to 600 Nm. The development process is documented, from test stand design with specially developed servo-engines to the control hardware to modelling, control element design, and commissioning. (orig.)

  1. Nanostructured Silicon Used for Flexible and Mobile Electricity Generation. (United States)

    Sun, Baoquan; Shao, Mingwang; Lee, Shuitong


    The use of nanostructured silicon for the generation of electricity in flexible and mobile devices is reviewed. This field has attracted widespread interest in recent years due to the emergence of plastic electronics. Such developments are likely to alter the nature of power sources in the near future. For example, flexible photovoltaic cells can supply electricity to rugged and collapsible electronics, biomedical devices, and conformable solar panels that are integrated with the curved surfaces of vehicles or buildings. Here, the unique optical and electrical properties of nanostructured silicon are examined, with regard to how they can be exploited in flexible photovoltaics, thermoelectric generators, and piezoelectric devices, which serve as power generators. Particular emphasis is placed on organic-silicon heterojunction photovoltaic devices, silicon-nanowire-based thermoelectric generators, and core-shell silicon/silicon oxide nanowire-based piezoelectric devices, because they are flexible, lightweight, and portable. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solar electricity supply isolines of generation capacity and storage. (United States)

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W


    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.

  3. Electricity generation using membrane and salt bridge microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Booki Min; Shaoan Cheng [Pennsylvania State University, University Park, PA (United States). Dept. of Civil and Environmental Engineering; Logan, B.E. [Pennsylvania State University, University Park, PA (United States). Dept. of Civil and Environmental Engineering; Pennsylvania State University, University Park, PA (United States). The Penn State Hydrogen Energy Center


    Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved organic matter, but optimization of MFCs will require that we know more about the factors that can increase power output such as the type of proton exchange system which can affect the system internal resistance. Power output in a MFC containing a proton exchange membrane was compared using a pure culture (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum was essentially the same, with 40 {+-} 1 mW/m{sup 2} for G. metallireducens and 38 {+-} 1 mW/m{sup 2} for the wastewater inoculum. We also examined power output in a MFC with a salt bridge instead of a membrane system. Power output by the salt bridge MFC (inoculated with G. metallireducens) was 2.2 mW/m{sup 2}. The low power output was directly attributed to the higher internal resistance of the salt bridge system (19920 {+-} 50 {omega}) compared to that of the membrane system (1286 {+-} 1 {omega}) based on measurements using impedance spectroscopy. In both systems, it was observed that oxygen diffusion from the cathode chamber into the anode chamber was a factor in power generation. Nitrogen gas sparging, L-cysteine (a chemical oxygen scavenger), or suspended cells (biological oxygen scavenger) were used to limit the effects of gas diffusion into the anode chamber. Nitrogen gas sparging, for example, increased overall Coulombic efficiency (47% or 55%) compared to that obtained without gas sparging (19%). These results show that increasing power densities in MFCs will require reducing the internal resistance of the system, and that methods are needed to control the dissolved oxygen flux into the anode chamber in order to increase overall Coulombic efficiency. (author)

  4. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)


    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  5. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya


    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  6. Generation expansion planning in a competitive electric power industry (United States)

    Chuang, Angela Shu-Woan

    This work investigates the application of non-cooperative game theory to generation expansion planning (GEP) in a competitive electricity industry. We identify fundamental ways competition changes the nature of GEP, review different models of oligopoly behavior, and argue that assumptions of the Cournot model are compatible with GEP. Applying Cournot theory of oligopoly behavior, we formulate a GEP model that may characterize expansion in the new competitive regime, particularly in pool-dominated generation supply industries. Our formulation incorporates multiple markets and is patterned after the basic design of the California ISO/PX system. Applying the model, we conduct numerical experiments on a test system, and analyze generation investment and market participation decisions of different candidate expansion units that vary in costs and forced outage rates. Simulations are performed under different scenarios of competition. In particular, we observe higher probabilistic measures of reliability from Cournot expansion compared to the expansion plan of a monopoly with an equivalent minimum reserve margin requirement. We prove several results for a subclass of problems encompassed by our formulation. In particular, we prove that under certain conditions Cournot competition leads to greater total capacity expansion than a situation in which generators collude in a cartel. We also show that industry output after introduction of new technology is no less than monopoly output. So a monopoly may lack sufficient incentive to introduce new technologies. Finally, we discuss the association between capacity payments and the issue of pricing reliability. And we derive a formula for computing ideal capacity payment rates by extending the Value of Service Reliability technique.

  7. Generator voltage stabilisation for series-hybrid electric vehicles. (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R


    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  8. Electric power system basics for the nonelectrical professional

    CERN Document Server

    Blume, Steven W


    The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry. This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems.

  9. Plant/microbe cooperation for electricity generation in a rice paddy field. (United States)

    Kaku, Nobuo; Yonezawa, Natsuki; Kodama, Yumiko; Watanabe, Kazuya


    Soils are rich in organics, particularly those that support growth of plants. These organics are possible sources of sustainable energy, and a microbial fuel cell (MFC) system can potentially be used for this purpose. Here, we report the application of an MFC system to electricity generation in a rice paddy field. In our system, graphite felt electrodes were used; an anode was set in the rice rhizosphere, and a cathode was in the flooded water above the rhizosphere. It was observed that electricity generation (as high as 6 mW/m(2), normalized to the anode projection area) was sunlight dependent and exhibited circadian oscillation. Artificial shading of rice plants in the daytime inhibited the electricity generation. In the rhizosphere, rice roots penetrated the anode graphite felt where specific bacterial populations occurred. Supplementation to the anode region with acetate (one of the major root-exhausted organic compounds) enhanced the electricity generation in the dark. These results suggest that the paddy-field electricity-generation system was an ecological solar cell in which the plant photosynthesis was coupled to the microbial conversion of organics to electricity.

  10. Control of new energy sources in an electric utility system (United States)

    Kirkham, H.


    The addition of generators based on renewable resources to the electric power system brings new problems of control and communication if the generators are to be controlled as an integrated part of the power system. Since many of these generators are small, it will require a large number of them, connected to the distribution system, to represent an appreciable fraction of the total generation. This situation contrasts with present day generation control which typically involves only the control of a small number of large generators. This paper examines the system requirements for integrated control, and proposes a control arrangement in which the incremental cost of power is an important parameter.

  11. Analyzing Distributed Generation Impact on the Reliability of Electric Distribution Network


    Sanaullah Ahmad; Sana Sardar; Babar Noor; Azzam ul Asar


    With proliferation of Distribution Generation (DG) and renewable energy technologies the power system is becoming more complex, with passage of time the development of distributed generation technologies is becoming diverse and broad. Power system reliability is one of most vital area in electric power system which deals with continuous supply of power and customer satisfaction. Distribution network in power system contributed up to 80% of reliability problems. This paper analyzes the impact ...

  12. Apollo Lunar Module Electrical Power System Overview (United States)

    Interbartolo, Michael


    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  13. Turbo-Electric Compressor/Generator Using Halbach Arrays (United States)

    Kloesel, Kurt J. (Inventor)


    The present invention is a turbojet design that integrates power generation into the turbojet itself, rather than use separate generators attached to the turbojet for power generation. By integrating the power generation within the jet engine, the weight of the overall system is significantly reduced, increasing system efficiency. Also, by integrating the power generating elements of the system within the air flow of the jet engine, the present invention can use the heat generated by the power generating elements (which is simply expelled waste heat in current designs) to increase the engine performance.

  14. Development of a dynamometer for an integrated-starter-generator (ISG) motor used in electric vehicles (United States)

    Wang, Zai-zhou; Zhang, Cheng-ning; Song, Qiang; Zhang, Chun-xiang


    Hybrid-Electric Vehicle (HEV) which combined the electric motor with auxiliary power unit in a car driven is introduced. Characteristic of Hybrid-Electric Vehicle are different from the other vehicle, in the structure of Hybrid-Electric Vehicle, Integrated Starter Generator (ISG) electrical system can achieve high efficient performance of driving and generating electricity simultaneously. These systems adopt the sum torque through engine and generator, the motor connected transmission through engine. According to the requirements of different conditions, the torque of motor and transmission are compound in various forms to achieve optimal driving efficiency.This study developed a dynamometer to measure the relationship between locked torques with temperature rises of an Integrated Starter Generator motor used in electrical vehicles. The dynamometer adopted an AC motor to obtain the relationship between drive and load functions, which developed in this study can perform real-time measurements and storage of measured data obtained from the dynamometer. Experiments for measuring temperature rise of ISG motor were performed at three different conditions, namely 56 Nm locked rotor torques and 18.8A locked rotor current; 57.1Nm constant torque at 1050rpm; constant power with 14.3Nm and 4050rpm, respectively. Based on the theory of temperature rise, the temperature rises of motor are 14K, 33.1K, and 16.01K for the tested cases respectively. Measured results show that the performance of motor system is satisfied with the design.


    Directory of Open Access Journals (Sweden)

    A. A. Lobaty


    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  16. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte


    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  17. Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World

    NARCIS (Netherlands)

    Kooten, van G.C.


    A linear programming model is used to examine the impact of carbon taxes on the optimal generation mix in the Alberta electrical system. The model permits decommissioning of generating assets with high carbon dioxide emissions and investment in new gas-fired, wind and, in some scenarios, nuclear

  18. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard


    Electricity generation is a key contributor to global emissions of greenhouse gases (GHG), NOx and SO2 and their related environmental impact. A critical review of 167 case studies involving the life cycle assessment (LCA) of electricity generation based on hard coal, lignite, natural gas, oil...... identified as follows: the energy recovery efficiency and the flue gas cleaning system for fossil fuel technologies; the electricity mix used during both the manufacturing and the construction phases for nuclear and renewable technologies; and the type, quality and origin of feedstock, as well as the amount...... and type of co-products, for biomass-based systems. This review demonstrates that the variability of existing LCA results for electricity generation can give rise to conflicting decisions regarding the environmental consequences of implementing new technologies....


    Energy Technology Data Exchange (ETDEWEB)

    S. Roy


    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  20. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte


    represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...... operation strategy for a Plug-In Electric Vehicle (PEV) in relation to the hourly electricity price in order to achieve minimum energy costs of the PEV. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may...

  1. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)


    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  2. Profiting from competition: Financial tools for electric generation companies (United States)

    Richter, Charles William, Jr.

    Regulations governing the operation of electric power systems in North America and many other areas of the world are undergoing major changes designed to promote competition. This process of change is often referred to as deregulation. Participants in deregulated electricity systems may find that their profits will greatly benefit from the implementation of successful bidding strategies. While the goal of the regulators may be to create rules which balance reliable power system operation with maximization of the total benefit to society, the goal of generation companies is to maximize their profit, i.e., return to their shareholders. The majority of the research described here is conducted from the point of view of generation companies (GENCOs) wishing to maximize their expected utility function, which is generally comprised of expected profit and risk. Strategies that help a GENCO to maximize its objective function must consider the impact of (and aid in making) operating decisions that may occur within a few seconds to multiple years. The work described here assumes an environment in which energy service companies (ESCOs) buy and GENCOs sell power via double auctions in regional commodity exchanges. Power is transported on wires owned by transmission companies (TRANSCOs) and distribution companies (DISTCOs). The proposed market framework allows participants to trade electrical energy contracts via the spot, futures, options, planning, and swap markets. An important method of studying these proposed markets and the behavior of participating agents is the field of experimental/computational economics. For much of the research reported here, the market simulator developed by Kumar and Sheble and similar simulators has been adapted to allow computerized agents to trade energy. Creating computerized agents that can react as rationally or irrationally as a human trader is a difficult problem for which we have turned to the field of artificial intelligence. Some of our

  3. Increasing the capacity of distributed generation in electricity networks by intelligent generator control


    Aristides E. Kiprakis


    The rise of environmental awareness as well as the unstable global fossil fuel market has brought about government initiatives to increase electricity generation from renewable energy sources. These resources tend to be geographically and electrically remote from load centres. Consequently many Distributed Generators (DGs) are expected to be connected to the existing Distribution Networks (DNs), which have high impedance and low X/R ratios. Intermittence and unpredictability of the vario...

  4. Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage


    Faezeh Mosallat; Eric L. Bibeau; Tarek El Mekkawy


    Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern co...

  5. A calculation program for electricity generation costs using LOTUS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Lee, Man Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    This program is designed in order to calculate electricity generation cost by different energy sources, and menu type is adopted for user convenience. This program also graphically shows the share of capital investment cost, O and M cost, and fuel cost. Sensitivity analysis about discount rate can also be carried out by this program, taking into consideration the important role of the discount rate in the generation costs calculation. (Author) 7 refs., 1 fig., 3 tabs.

  6. Quality electricity lines of external power systems electric traction DC

    Directory of Open Access Journals (Sweden)

    A.V. Petrov


    Full Text Available The results of studies that compare and analyze the numerical values of some key indicators quality electricity in the lines of the external power supply system the electric traction DC. As a supplement are additional and fundamental values of energy losses in them.

  7. Consideraciones sobre la protección en la interconexión de la generación distribuida al sistema eléctrico de potencia; Considerations on the protection in the interconnection of the distributed generation to the electric power system

    National Research Council Canada - National Science Library

    Emilio Francesena Bacallao; Marta Bravo de las Casas


    ... energy.The interconnection of the Electric Power System (EPS) with Distributed Generation require of a protection technique whose philosophy can vary with respect to the well-known one and therefore its application must be conceived and based...

  8. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.


    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  9. assessment of wind energy potential for electricity generation in ...

    African Journals Online (AJOL)

    Renewable energy sources such as wind, if thoroughly investigated, could be used to reduce the dependence on fossil fuels for electricity generation. Although wind energy is one of the most efficient renewable energy sources, it is very variable compared to other sources of energy. It is also more sensitive to variations with ...

  10. assessment of wind energy potential for electricity generation in ...

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators ... it is very variable compared to other sources of energy. It is also more sensitive to variations with topography and weather patterns compared to solar energy. ... A study on wind speed pattern and the available wind power in Tanzania.

  11. Generating electricity at a breakwater in a moderate wave climate

    NARCIS (Netherlands)

    Schoolderman, J.; Reedijk, B.; Vrijling, J.K.; Molenaar, W.F.; Ten Oever, E.; Zijlema, M.


    A new concept for wave energy conversion is examined as a proof of concept for generating electricity in a moderate wave climate while being integrated in a caisson breakwater. Physical model testing is performed to analyse the preliminary efficiency of the device and to identify areas of

  12. Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty

    DEFF Research Database (Denmark)

    Conejo, Antonio J.; Baringo, Luis; Kazempour, Jalal

    This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment opti...

  13. Electricity generation: options for reduction in carbon emissions. (United States)

    Whittington, H W


    largest developed source of renewable electricity, but future large-scale projects will probably be limited to the less-developed world: the best schemes in the developed countries have already been exploited. Wave and tidal can be looked on as medium- to long-term generators of electricity, as their respective industries are not as mature as competing renewable resources. Municipal solid-waste combustion and landfill gas technologies can also be seen as short term, as can their rural equivalents, agriculture and forestry waste. Any widespread exploitation of renewable energy will depend on being able to transmit the energy from source to point of use, so the implications for the electrical network from the penetration of substantial levels of renewable energy are presented. Effective management of renewable energy installations will require technical assessment of the range of exploitation strategies, to compare local production of, say, hydrogen and the more traditional transmission of electricity. Such resources will have to compete with others in any national, or grid, system and detailed economic analysis will be necessary to determine the deployment that best fits the trading regime under which the energy will be sold. Consideration will also be necessary to determine how best to control the introduction of this radically new resource such that it does not attract punitive cost overheads until it is mature enough to cope. Finally, it is inescapable that nuclear power is a proven technology that could take its place in any future generation portfolio. Unfortunately, suspicion and mistrust surround waste management and radioactivity release. Unless this is overcome, the lack of confidence engendered by this public mistrust may result in few, if any, new nuclear power stations being built. In the event of that decision, it is difficult to see how CO(2) levels can be significantly reduced: the irony is that nuclear energy may emerge as environmentally essential.

  14. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website.

  15. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.


    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  16. Electricity generation and transmission planning in deregulated power markets (United States)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  17. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)



    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  18. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes


    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  19. Competitive electricity markets, prices and generator entry and exit (United States)

    Ethier, Robert George

    The electric power industry in the United States is quickly being deregulated and restructured. In the past, new electric generation capacity was added by regulated utilities to meet forecasted demand levels and maintain reserve margins. With competitive wholesale generation, investment will be the responsibility of independent private investors. Electricity prices will assume the coordinating function which has until recently been the responsibility of regulatory agencies. Competitive prices will provide the entry and exit signals for generators in the future. Competitive electricity markets have a distinctive price formation process, and thus require a specialized price model. A mean-reverting price process with stochastic jumps is proposed as an appropriate long-run price process for annual electricity prices. This price process is used to develop an analytic real options model for private investment decisions. The required recursive infinite series solutions have not been widely used for real option models. Entry thresholds and asset values for competitive wholesale electricity markets, and exit decisions for plants with significant retirement costs (i.e. nuclear power plants), are examined. The proposed model results in significantly lower trigger prices for both entry and exit decisions, and higher asset values, when compared with other standard models. The model is used to show that the incentives for retiring a nuclear plant are very sensitive to the treatment of decommissioning costs (e.g. if plant owners do not face full decommissioning costs, retirement decisions may be economically premature.) An econometric model of short-run price behavior is estimated by the method of maximum likelihood using daily electricity prices from markets in the USA and Australia. The model specifies two mean reverting price processes with stochastic Markov switching between the regimes, which allows discontinuous jumps in electricity prices. Econometric tests show that a two

  20. Electrical Systems. FOS: Fundamentals of Service. (United States)

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  1. Diesel Electrical Systems. Teacher Edition (Revised). (United States)

    Sprinkle, Tom; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains eight instructional units that cover the following topics: (1) introduction to electrical systems; (2) electrical circuits; (3) electrical indicator circuits; (4) storage batteries; (5) starting systems and circuits; (6) ignition circuits; (7)…

  2. Regional projections of nuclear and fossil electric power generation costs

    Energy Technology Data Exchange (ETDEWEB)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.


    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors.

  3. Potential for generation of public electricity in cane sugar factories

    Energy Technology Data Exchange (ETDEWEB)

    Torisson, T.


    Sugar cane is the most efficient crop for the conversion of solar energy into biomass. The possibility of conservation of energy in cane sugar producing countries by substituting bagasse for imported oil, was studied in Guyana, South America and financed by the World Bank. The concept of cogeneration was considered, where the heat energy generated by burning bagasse of high fiber content is converted into steam and used both for electricity generation and generation of internal power. Several methods of achieving energy efficiency in this process were discussed such as efficient generation and use of the steam by using high pressure boilers, drying and pelletization of bagasse, and using sugar cane trash as fuel. About 40% of the bagasse could be available for the generation of electric energy. A method for evaluation of the power potential showed that the quantity of public electricity produced, depended on certain important process parameters, fiber content, steam conditions and process steam. The cost effectiveness of the project increases with increasing fiber content in the sugar cane.

  4. Multiagent based protection and control in decentralized electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Veloso, Manuela


    Electric power systems are going through a major change both in their physical and control structure. A large num- ber of small and geographically dispersed power generation units (e.g., wind turbines, solar cells, plug-in electric cars) are replacing big centralized power plants. This shift has...... created interesting possibilities for application of intelligent systems such as multiagent systems for control and automation in electric power systems. This paper describes work on designing a multiagent system for protection and control of electric power distribution networks.It demonstrates how...... explicit modeling of capabilities, states, roles and role transition in agents can capture the control and automation in electric power systems. We present illustrative results from using our proposed schema in realistic simulations....

  5. The effects of the German feed-in tariffs for renewable electricity generation on the German energy system. An analysis with the energy system model TIMES-D; Die Auswirkungen des EEG auf das Energiesystem Deutschlands. Eine Betrachtung mit dem Energiesystemmodell TIMES-D

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Birgit; Voss, Alfred; Blesl, Markus; Fahl, Ulrich [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung


    In Germany, the electricity generation from renewable energy has been promoted since the year 2000 by a feed-in tariff system, the Renewable Energy Sources Act (EEG). This article evaluates the long-term impact of the German feed-in tariffs on the development of the German energy system with the help of the energy system model TIMES-D. In the model-based analysis, both the payment side (i.e. the tariffs) and the cost side (i.e. the EEG apportionment) are taken into consideration. Through the promotion of the feed-in tariff system - in combination with the European Emission Trading Scheme (ETS) - the use of renewable energies in electricity generation in Germany rises considerably such that renewable energy sources account for almost 40% of total gross electricity consumption in 2030. Accordingly, until 2020 total EEG fee payments as well as the EEG apportionment increase significantly. The impact of the feed-in tariff system on final electricity demand is, however, relatively small. Alternative scenario settings show that the expansion of the renewable electricity generation through the feed-in tariff system clearly exceeds the development which would occur when trying to reach the reduction targets of the ETS in a cost-efficient way. (orig.)

  6. Generation and management of waste electric vehicle batteries in China. (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen


    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  7. Hybrid electric vehicle power management system (United States)

    Bissontz, Jay E.


    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  8. Probabilistic Fault Diagnosis in Electrical Power Systems (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  9. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.


    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  10. Comparative analysis between two systems to generate electric energy for isolated community in the interior of the Amazon state: fuel cells with natural gas reformer versus diesel generation; Analise comparativa entre dois sistemas de geracao de energia eletrica para a comunidade isolada no interior do estado do Amazonas: celula a combustivel com reformador para gas natural versus gerador diesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Paula Duarte; Bergamini, Cristiane Peres; Camargo, Joao Carlos; Lopes, Daniel Gabriel [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica; Esteves, Gheisa Roberta Telles [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo de Pesquisas e Estudos Ambientais; Silva, Ennio Peres da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin


    Although great part of the domestic territory is already supplied with electric energy, still there are many regions where the system is precarious or nonexistent, generically called isolated communities. In the majority of the cases these communities are supplied with Diesel oil generators and the substitution of this fuel for available alternative energy in the localities has been object of study of some institutions of research spread throughout the country. Currently, the use of fuel cells has been strongly argued in the generation of electric energy associated with the local energy necessity, from the use of a regional fuel and this is due to the high efficiency of allied energy conversion to the low ambient impacts that this equipment offers. Most of the different types of fuel cells use hydrogen as a fuel to produce electricity, and it is extracted from renewable or non-renewable sources of energy. Then, the article has the objective of comparing in first analysis the energy efficiency and the cost between the two systems: the ones used currently in the great majority of the isolated communities, constituted of a Diesel engine-generator system, with Natural Gas Reformer System/ Purifier of Hydrogen/ Fuel Cell/ and to analyze if such project presents characteristics that qualifies it to get the carbon credits proposed in the Mechanism of Clean Development. (author)

  11. Evaluation of solar thermal storage for base load electricity generation

    Directory of Open Access Journals (Sweden)

    Adinberg R.


    Full Text Available In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity demand, a solar annual capacity as high as 70% can be attained by use of a reasonably large thermal storage capacity of 22 full load operating hours. In this study, the overall power system performance is analyzed with emphasis on energy storage characteristics promoting a high level of sustainability for solar termal electricity production. The basic system parameters, including thermal storage capacity, solar collector size, and annual average daily discharge time, are presented and discussed.

  12. Systems for the calculation of electrical parameters and energy efficiency for high-capacity hydroelectric generators; Sistemas para el calculo de parametros electricos y eficiencia energetica para generadores hidroelectricos de gran capacidad

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Martinez, Oscar Alfonso; Pascacio de los Santos, Alberth; Perez Abad, Carlos Alberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Leon Rivera, Nicolas [CFE-LAPEM, Irapuato, Guanajuato (Mexico)


    In recent years, the Comision Federal de Electricidad (CFE) has developed important hydroelectrical power projects in Mexico. Most of them are located in the Santiago River Hydrological System in Nayarit, Mexico. A total of 27 projects with a capacity of 4,300 MW are considered but only 32% of them have been carried out. One of the most ambitious projects that continue in process of construction is the Hydroelectrical Plant La Yesca. This project will conclude in late 2012 and consists of two electric generators of 375 MW, 17 kV. It will be second in power and the third in electrical generation at the system. According to national and international standards, a set of static and dynamic tests must be performed in these generators before commissioning, to ensure their proper operation. Winding stator high voltage endurance test, three phase sudden short circuit test and energy efficiency calculation are some of the most important tests to be performed in a new electrical generator. These tests are difficult to perform on-site due to the equipment capacity required, so very few companies in the world can conduct them. In Mexico no one has the necessary infrastructure for testing in high capacity hydroelectric generators such as those from La Yesca, so the Laboratorio de Pruebas a Equipos y Materiales (LAPEM) has invested in projects to improve this project in order to meet the needs of the Mexican electricity sector. This paper is a description of the systems developed for the calculation of electrical parameters and energy efficiency for this class of generators. [Spanish] En los ultimos anos, la Comision Federal de Electricidad (CFE) ha desarrollado importantes proyectos hidroelectricos en Mexico. La mayor parte se ubican en el Sistema Hidrologico del Rio Santiago en Nayarit, Mexico. Se consideran un total de 27 proyectos con capacidad de 4300 MW, pero solo 32 % de ellos se han llevado a cabo. Uno de los proyectos mas ambiciosos que continua en proceso de

  13. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships. (United States)

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur


    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Wind energy for electricity generation in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, W.J.


    Different aspects of the island Sri Lanka are discussed in relation to the use of wind energy to generate electric power. The electricity demand and supply are dealt with as well as geo-climatic features. Wind resources in different parts of Sri Lanka are determined. Further study is needed to achieve more data on wind potential and wind speeds. Finally a case study is discussed, carried out to assess the feasibility of integration of wind and hydro resources in combination to meet a predetermined load to be used in an optimal configuration. 7 figs., 1 tab.

  15. Modeling and control of an electric power generation hybrid system; Modelado y control de un sistema hibrido de generacion de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Guzman, D; Aguilar Mejia, O; Tapia Olvera, R; Santiago Tepantlan, C. [Universidad Politecnica de Tulancingo, Huapalcalco, Hidalgo (Mexico)]. E-mail:


    With growing concerns on energy subject, the development of renewable energy sources is becoming more attractive. This paper presents the output power control of a wind energy conversion system based on a permanent magnet synchronous generator. The currents from voltage source inverter are controlled in a synchronous orthogonal dqo frame using a decoupled feed-forward control. Based on extensive simulation results using MATLAB/SIMULINK, it has been established that the performance of the controllers both in transient as well as in steady state is quite satisfactory. [Spanish] Con la creciente preocupacion en materia de energia, el desarrollo de fuentes de energia renovables es cada vez mas atractivo. Este trabajo presenta la regulacion de la potencia de salida de un sistema de generacion eolica basado en un generador sincrono de imanes permanentes. Las corrientes de la fuente inversora de voltaje son controladas en un marco de referencia ortogonal dqo usando un compensador por retroalimentacion en adelanto. Las simulaciones realizadas en MATLAB / Simulink, demuestran que los controladores presentan un excelente desempeno en estado transitorio, asi como en estado estacionario.

  16. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, Stephen


    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  17. The generation of electricity by gas turbines using the catalytic combustion of low-Btu gases

    DEFF Research Database (Denmark)

    Frederiksen, O.P.; Qvale, Einar Bjørn


    Various systems for the generation of electricity by gas turbines using catalytic combustion of low-Btu gases have been investigated. Parametric studies of three configurations that are deemed to be practically feasible have been completed. It is shown that thermodynamic efficiency of these systems...


    Energy Technology Data Exchange (ETDEWEB)

    M. Maniyar


    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  19. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion


    of power electronics, ranging from devices to circuit topologies, and similar matters for electric generators, together with results of optimal design studies are included. It is shown that the individual power rating of wind turbines has increased over the years, and technologies required to reach......Wind represents a major and growing source of renewable energy for the electric power systems. This article provides an overview of state-of-the-art technologies and anticipated developments in the area of power electronic drives, controls, and electric generators for large multi-megawatt wind...... turbine systems. The principal components employed in a turbine for energy conversion from wind to electricity are described, and the main solutions that are commercially available are briefly reviewed. The specific issues of complex mission profiles, power codes, and reliability are discussed. Topics...

  20. Nuclear Power as a Basis for Future Electricity Generation (United States)

    Pioro, Igor; Buruchenko, Sergey


    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power – primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 – 40%) or very low (5 – 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  1. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  2. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R. Gordon


    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  3. Stability analysis of large electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Elwood, D.M.


    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  4. Hydrogen storage and generation system (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.


    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  5. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui


    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  6. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng


    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  7. Electricity generation and environmental externalities: Case studies, September 1995

    Energy Technology Data Exchange (ETDEWEB)



    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  8. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails:,,,


    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  9. A power conditioning system for radioisotope thermoelectric generator energy sources (United States)

    Gillis, J. A., Jr.


    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  10. Condition monitoring system of wind turbine generators (United States)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  11. Role of electric discharges in the generation of atmospheric vortices (United States)

    Sinkevich, O. A.; Maslov, S. A.; Gusein-zade, N. G.


    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10-3-10-2 s-1 in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  12. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Venkataramanan, Giri


    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  13. Microbial fuel cells generating electricity from rhizodeposits of rice plants. (United States)

    De Schamphelaire, Liesje; Van den Bossche, Leen; Dang, Hai Son; Höfte, Monica; Boon, Nico; Rabaey, Korneel; Verstraete, Willy


    Living plants transport substantial amounts of organic material into the soil. This process, called rhizodeposition, provides the substrate for the rhizospheric microbial community. In this study, a laboratory-scale sediment microbial fuel cell, of which the anode is positioned in the rhizosphere of the rice plants, is used to microbially oxidize the plant-derived organics. An electrical current was generated through the in situ oxidation of rhizodeposits from living rice plants. The electrical power output of a sediment microbial fuel cell was found to be a factor 7 higher in the presence of actively growing plants. This process offers the potential of light-driven power generation from living plants in a nondestructive way. Sustainable power productions up to 330 W ha(-1) could be attributed to the oxidation of the plant-derived compounds.

  14. Performance of Electricity Generation from Bryophyllum Leaf for Practical Utilisation (United States)

    Khan, Md. Kamrul Alam


    Constructing an affordable cost, environment friendly simplified electrical energy source with Pathor Kuchi Leaf (PKL) for power electrifications which will significantly upgrade the life style of 1.6 billion people especially, who live in rural areas of Bangladesh. However, one fifth of the world's population still lack access to electricity-well, mainly in Sub-Saharan Africa and South Asia (Bangladesh, India, Sri Lanka, Pakistan, Nepal and Bhutan). This innovative technology will meet essential requirements as lighting, telecommunication as well as information access. Electrodes are put into the Bryophyllum Pinnatum Leaf (BPL) or Pathor Kuchi Leaf (PKL) sap and they produce substantially sufficient amount of electricity to power energy consumed electronics and electrical appliances. CuSO4.5H2O solution is used as a secondary salt. The role of CuSO4.5H2O solution has been studied. The electrical and chemical properties, a very important factor for PKL electricity generation device have been studied in this research work. The electrical properties are: internal resistance, voltage regulation, energy efficiency, pulse performance, self discharge characteristics, discharge characteristics with load, capacity of the PKL cell, temperature characteristics and life cycle of the PKL cell. The chemical properties are: variation of voltage, current with the variation of [Zn2+], [Cu2+] and time. The performance of the production of the two bi-products (fertilizer and hydrogen gas production) has been studied. Variation of concentration of Zn2+ and Cu2+ with the variation of percentage of the I am grateful to the authority of the Science and technology ministry,Bangladesh for financial support during the research work.

  15. Equity and electric power generation facility location in California

    Energy Technology Data Exchange (ETDEWEB)

    Warren, E.H. Jr.; Huning, J.R. (Jet Propulsion Lab., Pasadena, CA (USA)); Hutchinson, C.F. (Arizona Univ., Tucson (USA). Office of Arid Lands Studies)


    An alternative to cost/benefit analysis for analyzing the equity of electric power generation facility location, utilizing the potential for air quality degradation, is developed and applied to California. Siting issues motivating disagreement on facility location are reviewed. Equity concepts are introduced, and their implementation is discussed. Several measures for assessing the equity of facility location are proposed, and the equities of existing facility locations in California are analyzed for each measure. Equity considerations for future siting decisions are examined.

  16. Planificación automatizada del arranque de generadores para la restauración de sistemas eléctricos de potencia ;Generator Start-Up automated planning for electric power system restoration

    Directory of Open Access Journals (Sweden)

    Leonel Francisco Aleaga Loaiza


    Full Text Available La elección de la secuencia de arranque de los generadores afecta directamente a la capacidad de generación disponible en el proceso de restauración del sistema de potencia. En este artículo se utiliza un método basado en la planificación automatizada para calcular la secuencia de arranque de las unidades de generación en el proceso de restauración de sistemas eléctricos de potencia. Se presenta una formulación basada en acciones donde se involucran varios factores complejos tales como: la naturaleza combinatoria, el conocimiento de expertos, varias restricciones y condiciones cambiantes en el tiempo que deben cumplirse y la optimización de varios recursos numéricos. Los resultados de prueba sobre el sistema IEEE39-barras muestran que el método es muy eficiente en obtener planes precisos y optimizados para restaurar el sistema de generación utilizando un algoritmo de planificación automatizada basado en la búsqueda heurística con capacidades de razonamiento en tiempo continuo.The choice of generator startup sequence affects directly the available generation capacity in the power system restoration process. In this paper an automated planning based method is used to calculate the startup sequence generating units in the electric power system restoration process. An action-based formulation is presented where several complex factors are involved such us: the combinatorial nature, expert knowledge, several restrictions and changing conditions over time that must be met and the optimization of several numerical resources. The test result son theIEEE39-bus system show that the method is veryefficientto obtain accurate and optimized plans to restore the generation system using an automated planning algorithm based on heuristic search with capabilities of reasoning in continuous time.

  17. Development of the fast reactor MAUS for space electric generation (United States)

    Caira, Marco; Castiglia, Davide; Cumo, Fabrizio; Naviglio, Antonio


    The results achieved through the research carried out between July 1992 and June 1994 on the ``MAUS'' project (a nuclear electric generator to be used in space missions) by the University of Rome ``La Sapienza'', are presented. In particular, a detailed description of the reactor core is reported, according to the ``multi-cell'' fuel solution. The characteristics of fuel elements, of the reactor core, the results of the nuclear analyses carried out and the characteristic curves voltage/current of the thermionic generator are presented in the paper.

  18. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island


    Ana Rodrigues; Denise Machado; Tomaz Dentinho


    The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective e...

  19. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello


    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  20. Importance of hard coal in electricity generation in Poland (United States)

    Plewa, Franciszek; Strozik, Grzegorz


    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  1. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S


    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  2. Wireless distributed functional electrical stimulation system. (United States)

    Jovičić, Nenad S; Saranovac, Lazar V; Popović, Dejan B


    The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype's software. The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers). One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  3. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)


    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  4. 49 CFR 238.425 - Electrical system. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electrical system. 238.425 Section 238.425... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be.... (b) Main battery system. (1) The main batteries shall be isolated from the cab and passenger seating...

  5. 49 CFR 238.225 - Electrical system. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electrical system. 238.225 Section 238.225... Equipment § 238.225 Electrical system. All passenger equipment shall comply with the following: (a... derated for grouping and for operating temperature. (b) Main battery system. (1) The main battery...

  6. Hybrid and Electric Advanced Vehicle Systems Simulation (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.


    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  7. A probabilistic methodology for distributed generation location in isolated electrical service area

    Energy Technology Data Exchange (ETDEWEB)

    Khodr, H.M.; Silva, Marco R.; Vale, Zita; Ramos, Carlos [GECAD - Knowledge Engineering and Decision-Support Research Center of the Polytechnic Institute of Porto (ISEP/IPP), Rua Dr. Antonio Bernardino de Almeida 431, 4200-072 Porto (Portugal)


    Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund's exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks. (author)

  8. The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain

    DEFF Research Database (Denmark)

    Denny, E.; Tuohy, A.; Meibom, Peter


    emissions in Ireland, Great Britain would experience an increase in emissions, resulting in total emissions remaining almost unchanged. The studies suggest that increased interconnection would not reduce excess wind generation. This is because under unit commitment techniques which incorporate wind power...

  9. Nuclear electric propulsion reactor control systems status (United States)

    Ferg, D. A.


    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  10. Regulation of Electric Power Generation while Improving TTP Use Efficiency

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk


    Full Text Available Taking integrated power system of theRepublicofBelarusas an example the paper considers a possibility of heat accumulator use for TPP operation in accordance with the schedule of electric power consumption while maintaining daily supply of heat energy from turbine power takes-off and without involvement of peak-loader boilers used for covering energy loads.

  11. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng


    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  12. Developing Efficient Urban Electrical Systems Using Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Gahagan, Michael


    Electric vehicles and battery storage will complicate utility operations and strain existing networks. One possible solution is the implementation of 'microgrids' autonomous electricity environments that operate within a larger electric utility grid and their 'controllers' Microgrids direct locally generated power to local demand, coordinate with centralized utility networks to meet additional demand, and pass excess supply to neighboring microgrids. This paper explains the evolution of microgrids. It details their design and operation. It also reviews their many benefits within urban settings, including minimizing customer costs while maximizing use of local generation from clean, renewable resources.

  13. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.


    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  14. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo


    This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind...... turbine with partial scale power converter WEG including a two mass mechanical model. The generic models for fixed and variable speed WEGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The wind power...

  15. Modelling grid losses and the geographic distribution of electricity generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg


    In Denmark more than 40% of the electricity consumption is covered by geographically scattered electricity sources namely wind power and local CHP (cogeneration of heat and power) plants. This causes problems in regard to load balancing and possible grid overloads. The potential grid problems...... and methods for solving these are analysed in this article on the basis of energy systems analyses, geographic distribution of consumption and production and grid load-flow analyses. It is concluded that by introducing scattered load balancing using local CHP plants actively and using interruptible loads...

  16. Electric energy production by particle thermionic-thermoelectric power generators (United States)

    Oettinger, P. E.


    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  17. Generation of Electricity Using Solid Waste Management in Krishnagiri Municipalty

    Directory of Open Access Journals (Sweden)



    Full Text Available The electricity sector in India supplies the world's 6th largest energy consumer, accounting for 3.4% of global energy consumption by more than 17% of global population. About 65.34% of the electricity consumed in India is generated by thermal, 21.53% by hydroelectric power plants, 2.70% by nuclear power plants and 10.42% by Renewable Energy Sources. More than 50% of India's commercial energy demand is met through the country's vast coal reserves. The country has also invested heavily in recent years in renewable energy utilization, especially wind energy. Four major economic and social drivers characterize the energy policy of India: a rapidly growing economy, increasing household incomes, limited domestic reserves of fossil fuels and the adverse impact on the environment of rapid development in urban and regional areas. Meanwhile, the rural areas are struggling with a chronically tight supply of electrical power. In order to properly manage the changing conditions, knowledge and estimation of the available resources and applying their relation with the population is of utmost importance. The paper deals with extraction of such information with the help of spatial techniques. This paper deals with estimation of the amount of solid waste generated by a part of the Krishnagiri city using spatial techniques. Solid waste management is one of the most essential functions in a country to achieve a sustainable development.

  18. Fluid power network for centralized electricity generation in offshore wind farms

    NARCIS (Netherlands)

    Jarquin-Laguna, A.


    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network.

  19. Evaluation of conventional electric power generating industry quality assurance and reliability practices

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.T.; Lauffenburger, H.A.


    The techniques and practices utilized in an allied industry (electric power generation) that might serve as a baseline for formulating Quality Assurance and Reliability (QA and R) procedures for photovoltaic solar energy systems were studied. The study results provide direct near-term input for establishing validation methods as part of the SERI performance criteria and test standards development task.

  20. Generation of Electricity from Abattoir Waste Water with the Aid of a ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The generation of electricity from high strength abattoir waste water has been demonstrated to be feasible at room temperature using a novel electron acceptor as catholyte in dual-chambered microbial fuel cell systems with agar- salt bridge inter-connection. The utilization of this electron acceptor in the single ...

  1. Trends in Wind Turbine Generators, and the Role of Electrical Steels

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech


    Designs of permanent magnet synchronous machines suitable for operation as wind turbine generators are presented and discussed. Design differences in machines intended for operation in geared and direct drive systems are illustrated . Special emphasis is given to the effect of varying...... the electrical steel used for stator laminations....

  2. Generation of Electricity from Abattoir Waste Water with the Aid of a ...

    African Journals Online (AJOL)

    The generation of electricity from high strength abattoir waste water has been demonstrated to be feasible at room temperature using a novel electron acceptor as catholyte in dual-chambered microbial fuel cell systems with agar- salt bridge inter-connection. The utilization of this electron acceptor in the single ...

  3. Generation of electric power through wind-diesel hybrid system for a hospital; Geracao de energia eletrica atraves de sistema hibrido diesel-eolico para um hospital

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de; Freire, Raphael Lopes [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica], e-mail:, e-mail:


    This paper presents a wind-diesel hybrid power simulation using the software Homer. The model is applied to the case study of Hospital das Clinicas da UNICAMP Analysis of several alternative energy facilities like wind, photovoltaic (PV), and connection of the isolated system with the grid is done. The costs used in the simulation indicated that the best results were obtained with the wind-diesel system. The payback period for the investment in the system is 8 years. (author)

  4. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee


    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  5. Use of Geothermal Energy for Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mashaw, John M.; Prichett, III, Wilson (eds.)


    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  6. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated (United States)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.


    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  7. A comparison of electrical and photonic pulse generation for IR-UWB on fiber links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Caballero Jambrina, Antonio; Yu, Xianbin


    We present and compare experimental results for electrical and photonic generation of 2-Gb/s pulses for impulse radio ultra-wideband on fiber transmission systems based on direct current modulation of a semiconductor laser diode and external optical injection of a semiconductor laser diode......, respectively. We assess the performance of the two generation approaches in terms of bit-error rate after propagation over 20 km of optical fiber followed by wireless transmission....

  8. Life Cycle Assessment of electricity generation: overview and methodological issues

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    Electricity production is currently responsible for a large share of global Greenhouse Gas (GHG), NOx and SO2 emissions, and their related environmental impacts. This study provides a critical review of the status of research on life cycle assessment (LCA) of electricity generation. NREL [1...... of emissions, those were divided among three life cycle phases: fuel provision, operation of the plant and infrastructure. It was possible to estimate typical emission factors for all technologies except for biomass, where methodological and technical aspects result in very variable outcomes. Within...... these ranges, we identified direct emissions at the plant as the main contributor to the total GHG emissions for fossil fuels, with thermal efficiency being the most determining parameter. Nevertheless, with high thermal efficiency fuel provision becomes increasingly important (e.g. natural gas combined cycle...

  9. 33 CFR 127.1107 - Electrical systems. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical systems. 127.1107 Section 127.1107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems...

  10. Mini Solar and Sea Current Power Generation System (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu


    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  11. Generation technologies of the future for Polish power system

    Directory of Open Access Journals (Sweden)

    Bolesław Zaporowski


    Full Text Available The paper presents an analysis of electricity generation technologies, as well as heat and electricity cogeneration technologies of the future for Polish power system. The analysis focuses on technologies used in three types of power plants: system large power plants, large and medium power CHP plants and small power CHP plants (distributed sources. Individual solutions are characterised by their specifi c CO2 emissions (kg CO2/kWh and specifi c electricity generation cost discounted for 2011 with the carbon emission cost included.

  12. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. (United States)

    Yu, Jaecheul; Seon, Jiyun; Park, Younghyun; Cho, Sunja; Lee, Taeho


    A submerged type microbial fuel cell (MFC) system, which consisted of six readily exchangeable air-cathode MFCs, was evaluated for continuous treatment of low-strength domestic wastewater. When supplied with synthetic wastewater (COD 100 mg/L), the system showed increasing maximum power densities from 191 to 754 mW/m2 as COD loading rates increased (0.20-0.40 kg/m3/day). COD removal efficiencies decreased with increased COD loading rates but the effluent COD concentrations met the relevant effluent quality standard (CODMn 20 mg/L) at all conditions. The system was then operated with domestic wastewater (c.a. 100 mg COD/L) at 0.32 and 0.43 kg/m3/day. The system showed much lower power densities (116-149 mW/m2) at both loading rates, compared to synthetic wastewater. Anodic microbial communities were completely different when the wastewater type was changed. These results suggest that the newly developed MFC system could be applied to treat low-strength domestic wastewater without requiring any additional organic removal stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Lunar Surface Solar Electric Power System Project (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  14. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman


    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  15. Electrical system architecture having high voltage bus (United States)

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL


    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  16. Electrical Engineering. Electrical Utilization Systems. Design Manual-4.4. (United States)


    calculations shall be clearly shown so that any changes that become necessary due to resiting or revisions during construction can be made efficiently. When...mechanical/ electrical systems such as lighting and heating , ventilating and air conditioning, and for multiple tenants within a building. d. Short

  17. Externalities of energy use, analyzed for shipping and electricity generation (United States)

    Thomson, Heather

    Energy use is central to the modern lifestyle, but producing this energy often comes at an environmental cost. The three studies in this paper look at the tradeoffs involved in energy production. The first looks at transitioning marine vessels to natural gas from current distillate fuels. While natural gas will reduce local air pollutants, such as sulfur oxides and particulate matter, the implications for greenhouse gases depend on how the natural gas is extracted, processed, distributed, and used. Applying a "technology warming potential" (TWP) approach, natural gas as a marine fuel achieves climate parity within 30 years for diesel ignited engines, though it could take up to 190 years to reach climate parity with conventional fuels in a spark ignited engine. Movement towards natural gas as a marine fuel continues to progress, and conditions exist in some regions to make a near-term transition to natural gas feasible. The second study looks at externalities associated with electricity generation. The impact on the surrounding community is one concern when siting new electricity generating facilities. A survey was conducted of residents living near an industrial scale wind turbine and a coal-fired power plant to determine their visual and auditory effects on the residents. Results concluded that respondents living near the wind turbine were in favor of the facility. They were willing to pay an average of 2.56 a month to keep the turbine in its current location. Respondents living near the coal plant were opposed to the facility. They were willing to spend 1.82 a month to have the facility removed. The third study presents a cost effectiveness analysis of three of the main fuels used for electricity generation, namely coal, natural gas, and wind. This analysis adds social costs to the private costs traditionally utilized by investors making decisions. It utilizes previous research on visual and auditory amenity and disamenity values as well as recent published

  18. Assessment of health impacts in electricity generation and use

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.C.


    This paper describes the health effects of concern associated with electricity generation, information from which health effects can be estimated, and how the boundaries of analysis are determined. It also describes advances, new approaches, and trends in the risk assessment process. It discusses the application of these advances to comparative risk studies. Trends in the risk assessment process include more explicit characterization of quantitative uncertainty, the broader application and acceptance of Monte Carlo analysis and other numerical methods to the propagation of uncertainties through the analysis, greater realism in risk assessment, and the application of greatly increased computational capabilities.

  19. Theoretical aspects of electrical power generation from two-phase flow streaming potentials

    NARCIS (Netherlands)

    Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.

    A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby

  20. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells. (United States)

    Inoue, Kengo; Ito, Toshihiro; Kawano, Yoshihiro; Iguchi, Atsushi; Miyahara, Morio; Suzuki, Yoshihiro; Watanabe, Kazuya


    Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Towards Next Generation BI Systems

    DEFF Research Database (Denmark)

    Varga, Jovan; Romero, Oscar; Pedersen, Torben Bach


    Next generation Business Intelligence (BI) systems require integration of heterogeneous data sources and a strong user-centric orientation. Both needs entail machine-processable metadata to enable automation and allow end users to gain access to relevant data for their decision making processes....... Although evidently needed, there is no clear picture about the necessary metadata artifacts, especially considering user support requirements. Therefore, we propose a comprehensive metadata framework to support the user assistance activities and their automation in the context of next generation BI systems...

  2. Reliability Electrical Power System of Hospital as Cold Standby System

    Directory of Open Access Journals (Sweden)

    Grabski Franciszek


    Full Text Available The probabilistic model of a hospital electrical power system consisting of mains, an emergency power system and the automatic transfer switch with the generator starter are discussed in this paper. The reliability model is semi-Markov process describing two different units renewable cold standby system and switch. The embedded Semi-Markov processes concept is applied for description of the system evolution. Time to failure of the system is represented by a random variable denoting the first passage time of the process from the given state to the subset of states. The appropriate theorems of the Semi-Markov processes theory allow us to evaluate the reliability function and some reliability characteristics.

  3. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A


    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  4. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)


    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  5. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng


    Continuously expanding deployments of distrib¬uted power-generation systems (DPGSs) are transforming the conventional centralized power grid into a mixed distributed electrical network. The modern power grid requires flexible energy utilization but presents challenges in the case of a high...... penetration degree of renewable energy, among which wind and solar photovoltaics are typical sources. The integration level of the DPGS into the grid plays a critical role in developing sustainable and resilient power systems, especially with highly intermittent renewable energy resources. To address...... the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed...

  6. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob


    . At present, the research of dc microgrid has investigated and developed a series of advanced methods in control, management and objective-oriented optimization, which would found the technical interface enabling the future applications in multiple industrial areas, such as smart buildings, electric vehicles......In recent years, more and more evidence suggests that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emerging high-performance energy storage devices, as well as the ever increasing penetration of renewable energy...... in research interests and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely microgrid...

  7. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.


    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  8. An economic analysis of the electricity generation potential from biogas resources in the state of Indiana (United States)

    Giraldo, Juan S.

    Anaerobic digestion is a process that is a common part of organic waste management systems and is used in concentrated animal feeding operations (CAFOs), wastewater treatment plants (WWTPs), and municipal solid waste (MSW) landfills. The process produces biogas, which contains methane, and it can be burned to generate electricity. Previous reports have indicated that based on the availability of feedstocks there is a large potential for biogas production and use for electricity generation in the state of Indiana. However, these reports varied in their consideration of important factors that affect the technical and economic feasibility of being able to develop the resources available. The goal of this thesis is to make a more targeted assessment of the electricity generation potential from biogas resources at CAFOs, WWTPs, and MSW landfills in Indiana. A capital budgeting model is used to estimate the net present value (NPV) of biogas electricity projects at facilities that are identified as technically suitable. A statewide estimate of the potential generation capacity is made by estimating the number of facilities that could profitably undertake a biogas electricity project. In addition this thesis explored the impact that different incentive policies would have on the economic viability of these projects. The results indicated that the electricity generation potential is much smaller when technical and economic factors are taken into account in addition to feedstock availability. In particular it was found that projects at hog farms are unlikely to be economically feasible in the present even when financial incentives are considered. In total, 47.94 MW of potential generating capacity is estimated from biogas production at CAFOs, WWTPs, and MSW landfills. Though results indicated that 37.10 MW of capacity are economically feasible under current operating conditions, sensitivity analysis reveals that these projects are very sensitive to capital cost assumptions

  9. Submerged electricity generation plane with marine current-driven motors (United States)

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander


    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  10. Market Power and Investment in Renewable Electricity Generation

    DEFF Research Database (Denmark)

    Ernstsen, Rune Ramsdal; Misir, Nihat

    In this paper, we compare the investment timing and the optimal level of investment for a strategic firm and a social planner that have a one-time opportunity to invest in different types of electricity generators. Different technology choices entail different revenue streams and hence a different...... approach to evaluate the investment decisions. In our paper we do not only focus on the differences in costs for different technologies but also on the differences in operation of those technologies and how those differences impact the optimal investment decisions. In our model, the one-time investment...... while incurring lower investment costs. We additionally find that highly convex investment cost greatly diminishes the impact of market power on the investment decisions. Furthermore, for both the strategic firm and the social planner, fixed baseload generation is preferable during low installed...

  11. Electrical generation of stationary light in random scattering media (United States)

    Redmond, S. M.; Armstrong, G. L.; Chan, H.-Y.; Mattson, E.; Mock, A.; Li, B.; Potts, J. R.; Cui, M.; Rand, S. C.; Oliveira, S. L.; Marchal, J.; Hinklin, T.; Laine, R. M.


    In recent years there has been great interest in controlling the speed of propagation of electromagnetic waves. In gases and crystals, coherent techniques have been applied to alter the speed of light without changing the physical or chemical structure of the medium. Also, light transmitted by highly disordered solids has exhibited signatures of Anderson localization, indicating the existence of a regime of ``stopped'' light that is mediated by random elastic scattering. However, to date, light has not been generated in a random medium as a pointlike excitation that is fixed in space from the outset. Here we report experimental evidence for the electrical generation and confinement of light within nanosized volumes of a random dielectric scattering medium in which a population inversion has been established, and discuss the properties of these novel light sources.

  12. Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

    Directory of Open Access Journals (Sweden)

    Jinlong Chen


    Full Text Available Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal (including geothermal power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using a thermoelectric generator (TEG, however, can directly transform thermal energy into electricity through the Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the biggest disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C TEG system. The output power of the system was improved significantly, about 34.6% greater; the instantaneous efficiency of the TEG system could reach about 6.5%. Laboratory experiments have been conducted to measure the output power at different conditions: different connection modes between TEG modules, different mechanical structures, and different temperature differences between hot and cold sides. The TEG apparatus has been tested and the data have been presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are coproduced.

  13. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte


    The western Danish power system is currently the grid area in the world that has the largest share of wind power in its generation profiles, with more than 20% of its annual consumption generated by wind turbines. In this paper, the western Danish power system, which may represent the future...

  14. Modelling and simulation of vehicle electric power system (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  15. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050 (United States)

    Macknick, J.; Sattler, S.; Averyt, K.; Clemmer, S.; Rogers, J.


    The power sector withdraws more freshwater annually than any other sector in the US. The current portfolio of electricity generating technologies in the US has highly regionalized and technology-specific requirements for water. Water availability differs widely throughout the nation. As a result, assessments of water impacts from the power sector must have a high geographic resolution and consider regional, basin-level differences. The US electricity portfolio is expected to evolve in coming years, shaped by various policy and economic drivers on the international, national and regional level; that evolution will impact power sector water demands. Analysis of future electricity scenarios that incorporate technology options and constraints can provide useful insights about water impacts related to changes to the technology mix. Utilizing outputs from the regional energy deployment system (ReEDS) model, a national electricity sector capacity expansion model with high geographical resolution, we explore potential changes in water use by the US electric sector over the next four decades under various low carbon energy scenarios, nationally and regionally.

  16. 29 CFR 1910.269 - Electric power generation, transmission, and distribution. (United States)


    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution... § 1910.269 Electric power generation, transmission, and distribution. Note: OSHA is staying the... the operation and maintenance of electric power generation, control, transformation, transmission, and...

  17. Stationary diesel engines for use with generators to supply electric power (United States)


    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  18. Electric Field Generation in the Magnetotail discovered by Intercosmos Bulgaria-1300 (United States)

    Podgorny, I. M.; Minami, S.; Podgorny, A. I.


    Measurements of the space craft IKB-1300 have shown that the generator of field-aligned currents of the Earth magnetosphere is located in the geomagnetic tail, where the earthward electric field is created. Two-fluid MHD analysis of the plasma behavior in the current sheet (CS) explains that this electric field generation is occurred by the Hall effect. Connection of the pair of opposite directed field-aligned currents occurs in the ionosphere, and the westward electrojet is located between this pair of field-aligned currents. It is pointed out here that the idea to explain the current generation in CS by the drift of particles in electric and magnetic fields of the tail, in which the origin is independent from the solar wind, cannot be justified. For such an approach, the magnetic field configuration represents the closed current system which does not depend on the solar wind, and the stable electric field exists due to the temperature gradient across the tail. Such temperature gradient existance contradicts to the assumption of the collisionless conditions. The generator of the current of the tail CS is localized at the interface between the solar wind plasma flow and the tail magnetic field. The generated current is closed in the tail CS.

  19. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. (United States)

    Kim, Jung Rae; Jung, Sok Hee; Regan, John M; Logan, Bruce E


    Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.

  20. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)


    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  1. Role of electric discharges in the generation of atmospheric vortices

    Energy Technology Data Exchange (ETDEWEB)

    Sinkevich, O. A., E-mail: [National Research University “MPEI,” (Russian Federation); Maslov, S. A., E-mail: [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Gusein-zade, N. G., E-mail: [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)


    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10{sup –3}–10{sup –2} s{sup –1} in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  2. The greenhouse impact of unconventional gas for electricity generation (United States)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher


    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  3. Electrical and Electronical Waste Generation in Turkey: Bursa Case Study

    Directory of Open Access Journals (Sweden)



    Full Text Available Electrical and electronical equipment that gradually take more place in our daily life, spend their service life in short times and become an e-waste problem to be solved.  Because of the hazardous components they contain, e-waste can cause environmental and human health threats if they are not properly managed. If they are managed properly, they can be a valuable raw material source, since they contain valuable metals such as copper, silver, gold, palladium and recyclable components such as plastics and metals. According to a research conducted in 2014, the global e-waste amount accounts to a source worth 52 billion $; however, only 16% of this source has been properly recycled. It is important to know the potential e-waste amount and the behaviors of people in the production of e-waste to realize a proper e-waste management in our country. The amount and property of electrical and electronic equipment and e-waste generation potential per person in Bursa was investigated in this study. A questionnaire was prepared and applied to a group of people including 31 families (100 person. The questions were to investigate the behaviors in the use, replacement, and management of electrical and electronical equipment. The findings showed that usage of lamps (fluorescent and others were higher than the other equipment, and usage of mobile phones were found to be highest in terms of devices. It was also found that when the mobiles become e-waste since the owners do not want to use them, they are not just thrown away and kept at homes instead. E-waste generation potential of a person from the families investigated was estimated to be 8.14 kg/year.

  4. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William


    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  5. Solar thermal bowl concepts and economic comparisons for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.


    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  6. Development of smart controller model for dual fuel generator systems

    African Journals Online (AJOL)

    Application of dual fuel powered electric generators such as one of diesel and biogas has gained popularity locally both as emergency power supply units and in distributed power systems. Dual fuel generators use two fuel types simultaneously in their operations. This is however faced with challenges in control and fuel ...

  7. Electromagnetic interference filter for automotive electrical systems (United States)

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D


    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  8. Bus bar electrical feedthrough for electrorefiner system (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J


    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  9. Operation of Modern Distribution Power Systems in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao

    , DG units, loads and electricity price are studied. Further, the effect of energy storage systems will be considered, and an optimal operation strategy for energy storage devices in a large scale wind power system in the electricity market is proposed. The western Danish power system, which has large...... maximum profit of the BESS is proposed. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studied. Optimal operation strategies of PEV in the spot market are then proposed in order to decrease the energy cost for PEV owners. Furthermore......In this dissertation, the characteristics of a distribution system under a dynamic electricity-pricing, load management system and under a large number of power electronic interfaced distributed generation units are investigated. The operation characteristics of a power system with wind turbines...

  10. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A


    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  11. A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator (United States)

    Rahman, Ataur; Abdi, Yusuf


    Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.

  12. Utilisation of rice residues for decentralised electricity generation in Ghana

    DEFF Research Database (Denmark)

    Ramamurthi, Pooja Vijay; Fernandes, Maria Cristina; Nielsen, Per Sieverts


    Developing countries, especially in Sub-Saharan Africa, face large challenges to achieve universal electrification. Using the case of Ghana, this study explores the role that rice residues can play to help developing countries meet their electrification needs. In Ghana, Levelised Electricity Costs...... significantly (49-54%) to LEC of rice straw combustion.LEC of husk gasification mini-grids ranged between 5 and 53 UScents/kWh for rural populations between 3000 and 250 people. Husk gasification mini-grids can be a suitable electrification solution for these un-electrified populations, as its LEC is lower than...... the average LEC of grid extension diesel mini-grids and off-grid solar systems for remote communities in Ghana. Electricity produced from husk gasification has the potential to cater to 7% of the needs of un-electrified communities in Ghana. The methodology and analysis of this study can support policymakers...

  13. Planning model for the expansion of the electrical generation system with risk demarcation criteria; Modelo para la planificacion de la expansion del sistema electrico de generacion con criterios de acotamiento de riesgo

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Galicia, Julio Alberto; Nieva Gomez, Rolando [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)


    The general characteristics of a planning model for the electrical generation system expansion with risk demarcation criteria, as well as the main results of a representative study case of the Mexican Electrical System is presented. The model is based on a methodology of multiannual optimization for the generation expansion plans determination. In this context, every expansion plan defines the technology type to be installed, as well as the installation year, unit size and its location within a regional electric network. For this purpose, the model considers an interregional representation of the system identifying the necessary reinforcements to the capacity of the interregional connections. It also incorporates a Demarcation of Risk module that considers the uncertainty of the future scenarios of fuels prices to generate a set of expansion plans, among which includes the following: a) For every future of the fuel prices: the plan that diminishes the present value of the total cost (investment plus production). b) The plan that diminishes the economic risk derived from the uncertainty in the future of the fuel prices. c) A subgroup of expansion plans that are located in the efficient borders of decision, under the context of three criteria of interest: the economic risk, the investment cost of and the total cost in the future considered of greater relevance. [Spanish] Se presentan las caracteristicas generales de un modelo de planificacion de la expansion del sistema electrico de generacion con criterios de acotamiento de riesgo, asi como los principales resultados de un caso de estudio representativo del Sistema Electrico Mexicano. El modelo se basa en una metodologia de optimacion multi-anual para la determinacion de planes de expansion de la generacion. En este contexto, cada plan de expansion define el tipo de tecnologia que debera instalarse, asi como el ano de instalacion, el tamano de la unidad y su localizacion dentro de una red electrica regional. Para

  14. Drive for electric car by a generator. Antrieb fuer Elektroauto durch einen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, W.G.


    In order to avoid the limited capacity of conventional electrical drives for private cars, there are two high-capacity d-c batteries, one of which drives a d-c motor, which drives an a-c generator. The rectified current charges one of the battieries, while the other one is working and the rectified current is also used to drive the drive motor, a DC motor.

  15. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)


    Toyonaga, Kiyomi; Cingoski, VLATKO; Kaneda, Kazufumi; Yamashita, Hideo


    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  16. Reactive power management in electric power systems - A case ...

    African Journals Online (AJOL)

    The reactive power consumption by industrial plants and generation patterns in the Ethiopian Electric Light and Power Authority's (EELPA) system is critically evaluated. The flaws in the incentive mechanism for reactive power compensation are identified and recommendations made. Further, the voltage profile at the ...

  17. Electric Grid Expansion Planning with High Levels of Variable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); You, Shutang [Univ. of Tennessee, Knoxville, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind power across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance

  18. Control of cascaded induction generator systems (United States)

    Ortmeyer, T. H.


    This report documents an investigation of the stability and control of cascaded doubly fed machines (CDFM). These machines are brushless variable speed constant frequency electric power generators with potential for application in aircraft. A previous analytical study indicated the CDFM system would be controllable in the subsynchronous operating mode with a passive RL load. The present study contains two steps. First is an investigation of the machine operation in the supersynchronous mode. The second step is an investigation of machine operation with output capacitors providing excitation VARs for the machine and load. Step 1 results show that the machines exhibit stability characteristics in the supersynchronous mode similar to those observed in the subsynchronous mode. Step 2 results show that output capacitors degrade the system performance, particularly at light loads. The results show that output current feedback can be employed to improve the system performance.

  19. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China. (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang


    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  20. Exomars 2016 Mission Electrical Power System

    Directory of Open Access Journals (Sweden)

    Ciancetta Ezio


    This paper outlines the Exomars 2016 Electrical Power System (EPS design, providing a description of the major design drivers and resulting configuration, with a view to highlight aspects that could be considered for future designs.

  1. Electricity generation from eucalyptus and bagasse by sugar mills in Nicaragua: A comparison with fuel oil electricity generation on the basis of costs, macroeconomic impacts and environmental emissions

    NARCIS (Netherlands)

    van den Broek, Richard; van der Burg, Tsjalle; van Wijk, Ad; Turkenburg, Wim


    Two sugar mills in Nicaragua plan to generate electricity from bagasse during the sugarcane season and eucalyptus during the rest of the year, and to sell it to the national grid. This study compared this concept with the most logical alternative at the moment, which is electricity generated from

  2. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla


    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...... will be correlated between the systems, because both demands in part depend on the climate. The analysis in the paper is based on a numerical model which simulates the operation of a CHP plant with heat storage. The conditions for the operation of the plant are assumed to be consistent with the conditions...


    Directory of Open Access Journals (Sweden)

    Chimezie Jason Ogugbue


    Full Text Available Electricity generation from swine wastewater using microbial fuel cell (MFC was investigated. Swine wastewater was collected into dual-chambered (aerobic and anaerobic fuel cell. The maximum power output using copper and carbon electrodes were 250.54 and 52.33 µW, while 10.0 and 5.0 cm salt bridge length between the cathode and anode were 279.50 and 355.26 µW, respectively. Potassium permanganate and ordinal water gave a maximum power output of 1287.8 and 13 9.18 µW. MFCs utilize microbial communities to degrade organic materials found within wastewater and converted stored chemical energy to electrical energy in a single step. The initial bacterial and fungal counts were 7.4×106 and 1.1×103 CFU ml-1. Bacterial counts steadily increased with time to 1.40×107 CFU ml-1 while fungal count declined to 4.4×106 CFU ml-1 after day 60. The declined in microbial counts may be attributed to the time necessary for acclimatization of microbes to the anode. The genera identified were Bacillus, Citrobacter, Pseudomonas, Lactobacillus, Escherichia coli, Aspergillus and Rhizopus. These microbes acted as primary and secondary utilizers, utilizing carbon and other organics of the wastewater. Chemical parameters indicated that the biochemical oxygen demand ranged from 91.4–23.2 mg/L, giving 75% while the chemical oxygen demand ranged from 243.1–235.2 mg/L, representing 3.3%. Although, the metabolic activities of microbes were responsible for the observed degradation, leading to electricity, the overall power output depended on the distance between the anode and cathode compartment, types of electrode materials and mediators and oxygen reaction at the cathode.

  4. CdTe Photovoltaics for Sustainable Electricity Generation (United States)

    Munshi, Amit; Sampath, Walajabad


    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  5. Control and Protection in Low Voltage Grid with Large Scale Renewable Electricity Generation

    DEFF Research Database (Denmark)

    Mustafa, Ghullam

    (s). Islanding is a situation where electrical system becomes electrically isolated from the rest of the power network and yet continues to be energized by the DG units connected to it. With the increased penetration of DG units, islanded operation of the distribution network is used to improve the reliability...... or voltage in MG decreases or increases respectively. It requires the significant amount of energy available in the power source with very fast response. A VF control cannot be used for wind and solar power generations because they are unpredictable and depend on the weather conditions (i.e. wind speed...

  6. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. (United States)

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A


    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.


    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  8. Solar salt pond potential site survey for electrical power generation (United States)

    Hurick, M. G.


    A solar salt gradient pond acts as a passive heat sink or thermal battery in which energy can be recovered through the conversion of thermal energy into electrical energy. Here, a condensation of a larger report that focused on the identification of potential salt gradient pond sites in the United States using in-situ resources is presented. It is shown that there are at least 24 states that lie in a primary or secondary potential site category. Fourteen states are assigned as primary states and ten are assigned as secondary. The division is subjectively based on the severity of winter weather. The most promising states are those that lie in the southern half of the country. When the primary and secondary category states are combined with the other states that may be able to support a pond, a total of 38 states exhibit the possibility of supporting power generation sites of various size.

  9. Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources (United States)

    Szabó, Sándor; Moner-Girona, Magda; Kougias, Ioannis; Bailis, Rob; Bódis, Katalin


    Pioneering approaches are needed to accelerate universal access to electricity while simultaneously transitioning to reliable, sustainable and affordable energy systems. In sub-Saharan Africa (SSA), the challenges lie in attracting the private sector to complement public investments. Here, we present an integrated ‘low-hanging-fruit’ approach aimed at boosting private investment and speeding up the deployment of renewable energy systems in SSA. We analyse the potential of existing energy infrastructure, where a significant upfront investment has already been made, to be exploited for electricity generation. We develop a comprehensive methodology to identify and select suitable locations in SSA and estimate their potential for exploitation. These locations have been further analysed in terms of power capacity potential, electricity output, investments needed and population to be benefited. This strategy to attract additional finance can easily be reproduced, engaging private investors while simultaneously helping to achieve the United Nations (UN) Sustainable Development Goals on energy.

  10. Simplest AB-Thermonuclear Space Propulsion and Electric Generator


    Bolonkin, Alexander


    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful elect...

  11. Co-benefits and trade-offs between future electricity generation and water use on a global scale (United States)

    Ando, N.; Yoshikawa, S.; Kanae, S.


    Water is essential to electricity generation. Power plant cooling water is responsible for 40-50% of total freshwater withdrawals in Europe (Rübbelke et al., 2011) and the United States (Kenny et al., 2009). In accordance with growing demands for electricity generation, water demands could be increased. There is concern that the water demands for electricity generation could compete with other major water users. Additionally, many countries are required reviewing energy policies to mitigate climate change. Thermal power replaced low carbon power like renewable energy, nuclear power, Carbon Capture and Storage as a mitigation technology. However, influences of such climate change mitigation technologies on water demands are still uncertain. In this study, we calculated freshwater demands for electricity generation by using the data set of future electricity generation in the twenty-first century which estimated by the Asia-Pacific Integrated Model, and assessed the overall effects of electricity generation on water demands under the Shared Socio-Economic Pathways and the Representative Concentration Pathways which were adopted by IPCC AR5. Water demands for electricity generation depends on cooling types, such as once-through cooling and recirculating cooling. We also took into account cooling system pathways. The result might be useful for deciding energy policies which aim for reduction of water demands, especially in regions experiencing water scarcity.

  12. Photovoltaic systems connected to electric power like distributed generators: the recent situation at the PVPS-IEA and at the Brazilian scenario; Sistemas fotovoltaicos conectados a rede eletrica como geradores distribuidos: a situacao recente no PVPS-IEA e no cenario brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Quaglia, Renato Brito; Oliveira, Sergio Henrique Ferreira de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas. Programa de Pos-Graduacao em Energia], email:


    In this paper it is considered the use of Distributed Generation (GD) as a further option to centralized generation of electricity and treats its photovoltaic systems connected to power network (SFCR's) technology as an option in this interesting 'new' model to plan the expansion of the brazilian electrical energy matrix, mainly in urban centres. For this reason, it was necessary to mention the main characteristics of this technology as distributed generators, and the profile of his generation when connected in homes and commercial buildings. Moreover, it presents the benefits that these systems can offer the electricity sector, society and the economy. In the study of Photovoltaic Power Systems Programme (PVPS), specifically the situation of this technology in Germany, realized that the creation of mechanisms of financial incentives provided to implement some of the main barriers associated with the integration of photovoltaic systems as distributed generators. In assessing the Brazilian context, there was the incipient photovoltaic market in the country, even taking some systems already installed, note that the vast majority are intended for studies of Research and Development. There is also the exploitation of photovoltaic systems connected to the network for use in homes, businesses or industries, probably because of the lack of incentive programs for SFCR's. Although there is a programme of incentives to Alternative Sources of Electricity - Proinfa, it does not consider the SFCR's in its guidelines for qualification, only the wind systems, small hydroelectric plants and systems powered by biomass. Point is, therefore, the need for the creation of an energy policy that encourages the Brazilian market photovoltaic, more precisely a policy of offering incentives conditions of maturity of this technology when connected to the network - technical standards, decrease costs, creation of hand of specialized work, installation of manufacturers

  13. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen


    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  14. An Adaptive Multivariable Control System for Hydroelectric Generating Units

    Directory of Open Access Journals (Sweden)

    Gunne J. Hegglid


    Full Text Available This paper describes an adaptive multivariable control system for hydroelectric generating units. The system is based on a detailed mathematical model of the synchronous generator, the water turbine, the exiter system and turbine control servo. The models of the water penstock and the connected power system are static. These assumptions are not considered crucial. The system uses a Kalman filter for optimal estimation of the state variables and the parameters of the electric grid equivalent. The multivariable control law is computed from a Riccatti equation and is made adaptive to the generators running condition by means of a least square technique.

  15. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues


    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  16. Assessing Climate Change Impacts on Electric Power Generation in the Western Interconnection (United States)

    Bartos, M. D.; Chester, M.


    In recent years, concerns have grown over the potential impacts of climate change on electricity generation. Water resources are integral to the production of thermoelectric and hydroelectric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. Many generation technologies—including gas turbines and solar cells—are also vulnerable to changes in local climatic conditions like ambient air temperature. As extreme weather becomes more common, methods are needed to assess the impacts of climate change on regional power systems. However, these methods must also account for (1) heterogeneity in generation technologies, and (2) local variation in climatic conditions. This study uses a physically-based modeling system to assess the vulnerability of electric power infrastructure in the Western Interconnection. Climatic and hydrologic parameters relevant to power generation are identified for six generation technologies. Downscaled climate forcings are then used as inputs to a physically-based modeling system, consisting of the Variable Infiltration Capacity (VIC) hydrological model and the RBM one-dimensional stream temperature model. Impacts to generating capacity are estimated directly from changes in modeled climatic and hydrologic parameters, using functional relationships unique to each generating technology. A preliminary analysis of 1,302 power stations in the Western Interconnection reveals decreases in summertime generating capacity of 8-22%, with the largest impacts occurring at thermoelectric and hydroelectric facilities in the Pacific Northwest and California. Impacts to base-load thermoelectric plants are mitigated by recirculating cooling systems, which reduce the performance penalty of low flows and high water temperatures. Climate impacts on solar and wind capacity are relatively small, indicating that these energy sources may play a more prominent role as conventional generation

  17. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)


    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... is applied to a new introduced 14-busbar test system which comprises two wind turbine (WT) generators, one small power plant, and two EV-plug-in stations connected at two PQ buses. The results demonstrate the excellent performance of the HLAS for PCLF problem. New formulae to facilitate the optimal...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  18. Impacts of environmental degradation and climate change on electricity generation in Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Kaunda, Chiyembekezo S. [Department of Energy and Process Engineering – WaterPower Laboratory, Norway University of Science and Technology, Trondheim NO-7491 (Norway); Mtalo, Felix [Department of Water Resources Engineering, University of Dar es Salaam, P.O. Box 35031, Dar es Salaam (Tanzania, United Republic of)


    Hydropower is an important energy source in Malawi because it provides almost all of the country’s electricity generation capacity. This paper has reviewed the impacts of environmental degradation and climate change on hydropower generation in Malawi. Energy scenario and other issues that contribute towards the current state of environment have been discussed. All of Malawi’s hydropower stations are run-of-river schemes cascaded along the Shire River with an installed capacity of nearly 280 MW. The generation is impacted negatively by floods, siltation, droughts and aquatic weeds infestation. The way how these challenges are being exacerbated by the poor state of the environment, especially within the Shire River basin in particular is also discussed in the paper. Measures taken by the national electricity utility company on how to manage the impacts are discussed as well. The paper concludes that hydropower generation system in a highly environmental degraded area is difficult to manage both technically and economically. In the case of Malawi, diversifying to other energy sources of generating electricity is considered to be a viable option. Some mitigation measures concerning environment degradation and climate change challenges have been suggested in the paper.

  19. High slot utilization systems for electric machines (United States)

    Hsu, John S


    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  20. Integrated control of next generation power system

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  1. Technical and economic feasibility of distributed generation of electricity; Viabilidade tecnica e economica de geracao distribuida de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Frederico Augusto Ornelas; Espirito Santo, Marcos Vinicius do; Leite, Leonardo Henrique de Melo; Silva, Arlete Vieira da [Centro Universitario de Belo Horizonte (UnBH), MG (Brazil)], e-mails:,,,


    This article focuses on the technical and economic feasibility of the design and implementation of energy micro nets distributed generation (GD). For this, a study was conducted in a rural area to assess the potential of generating electricity from renewable sources, and this has assisted the Brazilian network of conventional energy. We studied the renewable energy village, considered the conventional system of generation, transmission, distribution of electricity in this region and the technical and economic feasibility of implementing distributed generation and its interconnection to the basic network or not. The methodological procedures were used bibliographic and documentary research, interviews with standardized forms, and Case Study. This study was conducted in Minas Gerais assessing the current conditions of the electrification of the area surveyed and deployment of the types of electricity sources - biomass (biogas and burning eucalyptus), wind, solar photovoltaic. The calculations were made from it with companies and budgets. It is conceived, then, models of generating electricity through renewable sources constitutes a GD. Finally, they estimated the costs of implementation of the models studied in the community where they were cost estimates for electric power production through private investment, considering some possible scenarios to be created, namely: generation for own consumption, generation the sale of surplus and possible expansions. In this way demonstrated the high value of the investments required for the use of renewable sources in electricity generation small, given the current scenario. (author)

  2. Electric machine and current source inverter drive system (United States)

    Hsu, John S


    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  3. On the possibility of generation of cold and additional electric energy at thermal power stations (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.


    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.


    Directory of Open Access Journals (Sweden)

    М. М. Оlеshkеvich


    Full Text Available The paper considers a helicoid vertically axial windmill geared to synchronous magneto-electric generator which operates for a power system or an independent resistive load. In order to optimize operational modes of a wind power unit a mathematical model and software have been developed and a number of calculative experiments have been carried out. The obtained law of wind unit control makes it possible to ensure maximum power output and stability in a wind unit operation.

  5. Demonstrations of electric heating systems. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M.; Laitila, R.; Ruska, T.


    In 1991, Imatran Voima launched the Demonstration Project of Electric Heating Systems. The project investigated in detail the energy consumption, housing comfort and electric power output rates of approximately one hundred electrically heated single-family houses and updated the investment cost information of heating systems. The project implemented and monitored quality electric heating concepts that guarantee a high standard of housing comfort. The targets in the project provided with combinations of floor, ceiling and window heating systems totalled 33. Furthermore, the project included 42 targets provided with water-circulated floor or radiator heating systems and 22 houses that had moved from oil or district heating systems into electric heating. The number of metering years received in the energy consumption measurements totalled 339. During the course of the project, six partial reports, one master's thesis and three summary reports were published. This is the final report of the project. It deals in brief with the major results. The best electric heating concept, in terms of housing comfort, is a floor heating system using cables supplemented by ceiling and window heating. Thanks to the heating units installed in the structures, the operative temperature grows by about one degree in comparison with a corresponding target heated with radiators. A typical, room-specifically-heated 140 m{sup 2} house consumes a total of 24,000 kWh of energy per year. Of this amount, electric space heating accounts for 11,500 kWh, heating with wood for 1,500 kWh, heating of tap water for 4,000 kWh and household electricity for 7,000 kWh. In a house provided with a water-circulated electric heating system the total energy consumption is, owing to the adjustment and storage losses, about 10 % higher. Of the energy consumption in the house, most part takes place during the period of nighttime electricity. The nighttime load in a 24-hour period with very low temperatures

  6. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda


    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  7. A Rotative Electrical Impedance Tomography Reconstruction System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F-M [St. John' s and St. Mary' s Institute of Technology, Department of computer science and information Engineering, 499, Sec. 4, Tam King Road Tamsui, Taipei, Taiwan (China); Huang, C-N [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chang, F-W [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chung, H-Y [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China)


    Electrical impedance tomography (EIT) is a powerful tool for mapping the conductivity distribution of estimated objects. The EIT system is entirely implemented by electrical technique, so it is a relatively cheap system and data can be collected very rapidly. But it has few commercially medical EIT systems available. This is because impedance image unable to achieve the essential spatial resolution and this technique has an intrinsically poor signal to noise ratio. In this paper, we have developed a high performance rotative EIT system (REIT) for expanding the independent measurements. By rotate the electrodes successive, REIT could change the position of electrodes and acquire more measurement data. This rotative measurement method not only can increase the resolution of impedance images, but also reduce the complexity of measurement system. We hope the improvement of REIT will bring some help in electrical impedance tomography.

  8. Solar Power System Source Versus Generator/PHCN Energy ...

    African Journals Online (AJOL)

    This work focused on investigation of the efficacy of solar system source in comparison to the generator/PHCN source commonly employed in Nigeria. The investigation involved a 152-unit housing estate in Warri, Delta state. The electrical load estimate for the estate was made, used to size and cost system components and ...

  9. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M


    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  10. Potential of Electricity Generation on the Western Coast of Mediterranean Sea in Egypt (United States)

    Ahmed Shata, A. S.; Abdelaty, S. M.; Hanitsch, R.


    A technical and economic assessment has been made of the electricity generation by wind turbines located at three promising potential wind sites: Sidi Barrani, Mersa Matruh and El Dabaa in the extreme northwest of Egypt along the Mediterranean Sea. These contiguous stations along the coast have an annual mean wind speed greater than 5.0 m/s at a height of 10 m. Weibull's parameters and the power law coefficient for all seasons have been estimated and used to describe the distribution and behavior of seasonal winds at these stations. The annual values of wind potential at the heights of 70-100 m above the ground level were obtained by extrapolation of the 10 m data from the results of our previous work using the power law. The three stations have a high wind power density, ranging from 340-425 to 450-555 W/m2 at the heights of 70-100 m, respectively. In this paper, an analysis of the cost per kWh of electricity generated by two different systems has been made: one using a relatively large single 2 MW wind turbine and the other - 25 small wind turbines (80 kW, total 2 MW) arranged in a wind farm. The yearly energy output of each system at each site was determined, and the electricity generation costs in each case were also calculated and compared with those at using diesel oil, natural gas and photovoltaic systems furnished by the Egyptian Electricity Authority. The single 2 MW wind turbine was found to be more efficient than the wind farm. For all the three considered stations the electricity production cost was found to be less than 2 ɛ cent/kWh, which is about half the specific cost of the wind farm.


    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri


    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  12. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao


    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  13. Electrical energy generation with differently oriented photovoltaic modules as façade elements

    Directory of Open Access Journals (Sweden)

    Pantić Lana S.


    Full Text Available In this paper the results of theoretical and experimental investigation of electrical energy generated with differently oriented PV modules used as facade elements, are presented. It was found that in 2013, optimally oriented monocristalline solar module of 60 Wp generated 62.9 kWh; horizontal module 58.1 kWh; vertical module oriented toward the South 43.9 kWh; vertical module oriented toward the East 25.7 kWh, and vertical module oriented toward the West 22.9 kWh of electrical energy. Also it was found that optimally oriented Building Integrated PV system (BIPV of 1.2 kWp can produce 1081.6 kWh/year; horizontal, vertical oriented toward the South, vertical oriented toward the East and vertical oriented toward the West can generate 7.6%, 30.2%, 59.2% and 63.6 less electrical energy, respectively. The greenhouse-gas payback periods (GPBP for the optimally oriented and horizontal BIPV systems were estimated to be 7.8 and 8.5 years, respectively. The obtained results can be applied in designing residential, commercial and other buildings with BIPV systems in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR 33009

  14. Next generation sensors and systems

    CERN Document Server


    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  15. Advanced electric propulsion system concept for electric vehicles (United States)

    Raynard, A. E.; Forbes, F. E.


    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  16. Electric Power Generation from Low to Intermediate Temperature Resourcces

    Energy Technology Data Exchange (ETDEWEB)

    Gosnold, William [Univ. of North Dakota, Grand Forks, ND (United States); Mann, Michael [Chemical Engineering Department, University of North Dakota, Grand Forks, ND (United States); Salehfar, Hossein [Univ. of North Dakota, Grand Forks, ND (United States)


    The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowing at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the

  17. Electric Propulsion System Characterization through Experiments


    Hattenberger, Gautier; Drouin, Antoine; Bronz, Murat


    International audience; Electrical propulsion system characteristics are very important in UAV design, operation and control. This article presents the characterization of electric propulsion sets through experiments. A motor test bench have been build based on previous experience in order to improve the quality of the measurements. Moreover, the bench fits in a wind tunnel, allowing to perform a complete characterization over the full airspeed range of the considered mini and micro-UAVs. Aft...

  18. Application of Bioelectrochemical Process (BES) for Electricity Generation and Sustainable Wastewater Treatment (United States)

    Kim, Jung Rae

    Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.

  19. Perspectives of the electric power industry amid the transforming global power generation markets (United States)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.


    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  20. Ubicación óptima de generación distribuida en sistemas de energía eléctrica Optimal placement of distributed generation in electric power system

    Directory of Open Access Journals (Sweden)

    Jesús María López–Lezama


    Full Text Available En este artículo se presenta una metodología para la ubicación óptima de generación distribuida en sistemas de energía eléctrica. Las barras candidatas para ubicar la generación distribuida son identificadas basándose en los precios marginales locales. Estos precios son obtenidos al resolver un flujo de potencia óptimo (OPF y corresponden a los multiplicadores de Lagrange de las ecuaciones de balance de potencia activa en cada una de las barras del sistema. Para incluir la generación distribuida en el OPF, ésta se ha modelado como una inyección negativa de potencia activa. La metodología consiste en un proceso no lineal iterativo en donde la generación distribuida es ubicada en la barra con el mayor precio marginal. Se consideraron tres tipos de generación distribuida: 1 motores de combustión interna, 2 turbinas a gas y 3 microturbinas. La metodología propuesta es evaluada en el sistema IEEE de 30 barras. Los resultados obtenidos muestran que la generación distribuida contribuye a la disminución de los precios nodales y puede ayudar a solucionar problemas de congestión en la red de transmisión.This paper presents a methodology for optimal placement of distributed generation (DG in electric power system. The candidate buses for DG placementare identified on the bases of locational marginal prices. These prices are obtained by solving an optimal power flow (OPF and correspond to the Lagrange multipliers of the active power balance equations in every bus of the system.In order to consider the distributed generation in the OPF model, the DG was modeled as a negative injection of active power. The methodology consists ofa nonlinear iterative process in which DG is allocated in the bus with the highest locational marginal price. Three types of DG were considered in the model: 1 internal combustion engines, 2 gas turbines and 3 microturbines.The proposed methodology is tested on the IEEE 30 bus test system. The results obtained

  1. RESTRUCTURED ELECTRICITY MARKETS: Three States' Experiences in Adding Generating Capacity

    National Research Council Canada - National Science Library


    ...., restructured electricity markets by shifting from service provided through a regulated monopoly-the local electric utility-to service provided through open competition among the local utility and its competitors...

  2. Electrical overstress (EOS) devices, circuits and systems

    CERN Document Server

    Voldman, Steven H


    Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics.  This bookteaches the fundamentals of electrical overstress  and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design.  It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in spe

  3. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER


    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  4. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants. (United States)

    Gingerich, Daniel Beryl; Mauter, Meagan S


    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the US and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.26 billion USD in 2012, with 83% of these damages attributed to electricity consumption by treatment processes. An additional 9.8 million tons of biogenic CO2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.8% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $205 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially-resolved marginal damage estimates when designing sustainable infrastructure systems.

  5. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures. (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu


    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  6. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu


    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  7. 76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation (United States)


    ... Application to Export Electric Energy; Ontario Power Generation AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Ontario Power Generation Inc. (OPG) has..., Ontario Power Generation Inc., ] 700 University Ave., Toronto, Ontario M5G 1XG and Jerry L. Pfeffer...

  8. A Solar Thermophotovoltaic Electric Generator for Remote Power Applications (United States)

    Fatemi, Navid S.


    We have successfully demonstrated that a solar thermophotovoltaic (TPV) system with a SiC graybody emitter and the monolithic interconnected module device technology can be realized. A custom-designed solar cavity was made to house the SiC emitter and the MIM strings for testing in a Stirling dish solar concentrator. Five 1x1-cm MIMs, with a bandgap of 0.74 eV,were mounted on a specially designed water-cooled heatsink and were electrically connected in series to form a string. Two such strings were fabricated and tested, as well as high-performance 2x2-cm MIMs with a bandgap of 0.74 eV. Very high output power density values between 0.82 and 0.90 W/sq cm were observed for an average emitter temperature of 1501 K.

  9. Economic evaluation of photovoltaic electric power generation connected to the grid in deregulated electric power markets; Avaliacao economica da geracao de energia eletrica fotovoltaica conectada a rede em mercados eletricos desregulados

    Energy Technology Data Exchange (ETDEWEB)

    Zumaran, David Richard Orosco


    This work presents an analysis of economic, tariff and regulating issues related to the introduction of Grid Connected Photovoltaic Systems in a deregulated electric market context; a case study for the peruvian electric market is realized. Based on the pricing system of the electric market, it is developed an economic assessment model that can be used by institutions interested in promoting this technology for generating electricity. (author)

  10. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields. (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken


    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dust-Tolerant Intelligent Electrical Connection System (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro


    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  12. Statistical analysis of regional capital and operating costs for electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, L.R.; Myers, M.G.; Herrman, J.A.; Provanizano, A.J.


    This report presents the results of a three and one-half-month study conducted for Brookhaven National Lab. to develop capital and operating cost relationships for seven electric power generating technologies: oil-, coal-, gas-, and nuclear-fired steam-electric plants, hydroelectric plants, and gas-turbine plants. The methodology is based primarily on statistical analysis of Federal Power Commission data for plant construction and annual operating costs. The development of cost-output relationships for electric power generation is emphasized, considering the effects of scale, technology, and location on each of the generating processes investigated. The regional effects on cost are measured at the Census Region level to be consistent with the Brookhaven Multi-Regional Energy and Interindustry Regional Model of the United States. Preliminary cost relationships for system-wide costs - transmission, distribution, and general expenses - were also derived. These preliminary results cover the demand for transmission and distribution capacity and operating and maintenance costs in terms of system-service characteristics. 15 references, 6 figures, 23 tables.

  13. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath


    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  14. Decentralized energy systems for clean electricity access (United States)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.


    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  15. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles (United States)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.


    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  16. A New Generation of Electrical Power Supply for Telecom Satellites (United States)

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent


    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  17. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.


    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  18. Restructured electric power systems analysis of electricity markets with equilibrium models

    CERN Document Server


    Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets.

  19. CFD modeling of artificial vortex air generator for green electric power

    Directory of Open Access Journals (Sweden)

    Ismaeel Ali A.


    Full Text Available This paper presents and discusses a Computational Fluid Dynamics (CFD simulation of artificial vortex air generator as part of the preliminary of Solar Vortex Power Generator for an electrical power generation. A vortex air generator system was built, consisting of concentric cylinders. The inner cylinder was fitted with stationary air guide vanes and covered at the top by a transparent plate to capture the solar radiation and create swirling updraft flow which is able to rotate wind turbine and produces power. The influence of inlet air velocity and temperature on the swirling strength and mass flow generated has been evaluated by validated CFD simulation. ANSYS Fluent software was adopted to solve the 3-D, steady state of Navier-Stokes and energy equations in cylindrical coordinate system integrated with discrete ordinates (DO radiation model. For the preliminary vortex generator design, the CFD results were validated first with previous experimental measurements. Then the variable operation parameters were carried out on the proposed model. The simulation result demonstrated that inflow velocity is a key parameter for enhancing the system performance. By increasing the inflow velocity from 0.4 m/s to 0.6 m/s and inflow temperature 323°k the enhancement rate of the mass air flow generated reached to 26% compared with 7% when increase the inflow temperature to 328°k and inflow velocity 0.4 m/s.

  20. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)


    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.