WorldWideScience

Sample records for electric generating station

  1. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  2. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  3. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  4. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  5. US central station nuclear electric generating units: significant milestones

    International Nuclear Information System (INIS)

    1979-09-01

    Listings of US nuclear power plants include significant dates, reactor type, owners, and net generating capacity. Listings are made by state, region, and utility. Tabulations of status, schedules, and orders are also presented

  6. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  7. Energy and exergy analysis of electricity generation from natural gas pressure reducing stations

    International Nuclear Information System (INIS)

    Neseli, Mehmet Alparslan; Ozgener, Onder; Ozgener, Leyla

    2015-01-01

    Highlights: • Forecasting the recoverable energy from natural gas pressure reduction stations. • Electricity generation through pressure reduction stations via turboexpanders. • A thermodynamics analysis of PRS. - Abstract: Electricity generation or power recovery through pressure reduction stations (PRS) for general use has not been realized in Izmir. The main objective of the present study was to do a case study for calculating electricity to be recovered in one natural gas pressure reduction stations in Izmir. It is the first forecasting study to obtain energy from natural gas pressure-reducing stations in Izmir. Energy can be obtained from natural gas PRS with turbo-expanders instead of using throttle valves or regulators from the PRS. The exergy performance of PRS with TE is evaluated in this study. Exergetic efficiencies of the system and components are determined to assess their individual performances. Based upon pressure change and volumetric flow rate, it can be obtained by recovering average estimated installed capacity and annual energy 494.24 kW, 4113.03 MW h, respectively. In terms of estimated installed capacity power and annual energy, the highest level is 764.88 kW, approximately 6365.34 MW h, in Aliaga PRS. Also it can be seen that CO 2 emission factor average value is 295.45 kg/MW h

  8. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  9. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  10. Electric utilities deregulation and its impact on nuclear power generating stations

    International Nuclear Information System (INIS)

    Trehan, N.K.

    1998-01-01

    Under restructuring and deregulation, it is not clear as to who would have the responsibility, and what obligations the market participants would have to ensure that the electrical system reliability (stability) is maintained. Due to the dynamic nature of the electrical grid, especially with the implementation of restructuring and deregulation, vulnerabilities exist which may impact the reliability (stability) of the offsite electrical power system. In a nuclear power generating unit, an offsite electric power system and an onsite electric power system are required to permit the functioning of structures, systems, and components which are important to safety. The safety function for each system is to provide sufficient capacity and capability to assure that the containment integrity is maintained during power operation or in the event of a postulated accident. Analyses performed by the applicants must verify that the electrical grid remains stable in the event of a loss of the nuclear unit generator, the largest other unit on the grid or the most critical transmission line. The stability of the electric grid is assumed in the safety analyses and a change in it would impact those analyses. However, it may impact the availability of a stable electric power to the safety buses because of the limited number of available transmission lines. This paper discusses electrical power generation and demand, reserve margins, power transfer capability, development of new innovative technologies to compensate for lack of the construction of transmission lines, legislation for the formulation of a self regulation organization (SRO), grid disturbances that may lead to a voltage collapse, and the vulnerabilities which may impact the availability of a stable power to the nuclear power generating stations

  11. Process for improving the load factor of an electricity generating power station

    International Nuclear Information System (INIS)

    Rostaing, Michel.

    1974-01-01

    A description is given of a process for improving the load factor of an electricity generating power station feeding a supply network in which all or part of the power not required by the network during off-peak hours is used for producing hydrogen which is then stored. The stored hydrogen is then burned and the heat generated is employed for superheating the steam generated by the nuclear reactor of the power plant. This combustion is carried out permanently. The hydrogen is produced by water electrolysis. The oxygen also produced in this manner is used as a comburent in the combustion of the hydrogen. The reactor is of the pressurized water type [fr

  12. Risk impact of planned maintenance configuration at South Texas Project Electric Generating Station

    International Nuclear Information System (INIS)

    Loh, W.T.; Fleming, K.N.; Grantom, C.R.

    2004-01-01

    This paper is based on a study done for the Houston Lighting and Power Company. The purpose of this study is to estimate the risk impact of planned maintenance configurations at South Texas Project Electric Generating Station (STPEGS). To date, the focus of the STP probabilistic safety assessment (PSA) program has been to analyze risk in terms of estimates of accident frequencies that are expressed on a time-averaged basis. Thus, estimates of quantities such as severe core damage frequency have been made such that the temporal variations of this frequency with changing plant configurations are averaged out over time. The only condition that has been imposed on these estimates is that the plant is initially operating at full power when potential initiating events might occur. (author)

  13. The expected environmental consequences and hazards of laser-fusion electric generating stations

    International Nuclear Information System (INIS)

    Devaney, J.J.; Pendergrass, J.H.

    The operation of an expected early form of a laser-fusion electric power plant is described and the hazards and the environmental effects of such a station are estimated. Possible environmental impacts and hazards to mankind can occur from nuclear excursions or explosions, nuclear weapon proliferation, loss of coolant accident (LOCA), tritium releases, chemical fires and accompanying releases of radioactivity or chemicals, induced radioactivity releases (other than tritium), radioactive waste disposal, lasers, normal electrical generation and steam plant effects, external intrusions, natural disasters, land use, resource and transportation use, thermal pollution, and air and water pollution. We find the principle environmental effects to be those of a medium size chemical plant. Electric, magnetic, steam, and radioactive hazards are of a lower order. Indeed in the event of extraordinary success in getting high temperatures and densities so that more difficult nuclear species can be reacted, such as protons with boron-11, there will be no radioactivity at all and also enormously lower hazardous chemical inventories. In our plant designs, for any fusion fuels, nuclear explosions (or even excursions beyond design limits) are not possible. (author)

  14. On the legal nature of electricity supply contracts concluded by electricity companies and power stations generating electricity from renewable energy sources

    International Nuclear Information System (INIS)

    Herrmann, B.J.

    1998-01-01

    Section 2 of the German Act for enhanced use of electricity from renewable energy sources (StEG) defines the obligation to contract but not the contractual obligations, i.e. the conditions of performance of the contract (supply and purchase of electricity and the legal obligations of contractors). The analysis here shows that characterising this mandatory contract required by the act as an agreement of purchase and sale more appropriately describes the legal nature of the contract and the intent of the legislator than other contracts for supply and purchase of electricity, as for instance those concluded by electric utilities and their customers. One specific aspect elaborated by the author is that the StEG does not constitute an obligation to supply on the part of the renewable energy generating power station, so that the power station operator is not obliged to ensure availability of the electricity at any time or in terms of supplies that can be called off by the purchasing utility, whereas the electric utility is obliged by section 2 of the StEG to purchase the contractual amounts from the generating station. (orig./CB) [de

  15. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    International Nuclear Information System (INIS)

    Heath, Garvin A.; Nazaroff, William W.

    2007-01-01

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants - PM 2.5 , NO x and formaldehyde - directly emitted by five DG technologies - natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  16. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    Science.gov (United States)

    Heath, Garvin A.; Nazaroff, William W.

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  17. IEEE Std 317-1972: IEEE standard for electric penetration assemblies in containment structures for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard prescribes the mechanical, electrical, and test requirements for the design, construction, and installation of electric penetration assemblies in containment structures for stationary nuclear power generating stations. The electric conductor and insulation characteristics of external circuits which connect to penetration assemblies are beyond the scope of these criteria. If there should be any conflict between this standard and those documents referenced herein, this standard shall take precedence over the referenced documents

  18. S.I. 1987 No. 2182, The Electricity Generating Stations and Overhead Lines (Inquiries Procedure) Rules 1987

    International Nuclear Information System (INIS)

    1987-01-01

    These Rules, which came into force on 14 January 1988, make new provision for the procedure for any public inquiry held pursuant to Section 34 of the Electricity Act 1957 in relation to applications for consent to construct or extend a generating station (including nuclear stations). The Rules were made pursuant to Section 11 of the Tribunals and Inquiries Act 1971. They revoke the previous Electricity Generating Stations and Overhead Line (Inquiries Procedures) Rules 1981. These new Rules cover the same topics as the previous Rules but aim to shorten the potential length and thus cost of inquiries. They will apply to the Inquiry to be held into the application by the Central Electricity Generating Board to build a pressurised water reactor at Hinkley Point in Somerset. (NEA) [fr

  19. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  20. 1300MVA steam-turbine generators for Kansai Electric Power's Oi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, N; Amagasa, N; Ito, H; Yagi, K [Mitsubishi Electric Corp., Kobe (Japan). Kobe Works

    1977-06-01

    Mitsubishi Electric has completed two 1300 MVA generators, equipped with 5500kW brushless exciters, that will be the No. 1 and No. 2 generators of the Oi plant. They are among the largest anywhere, and incorporate such technological innovations as water cooling of the stator coil and asymmetrical arrangement of the rotor slots. The article discusses generator specifications and construction, the brushless exciter, and the results of factory tests.

  1. IEEE standard for type test of class 1E electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The Institute of Electrical and Electronics Engineers has generated this document to provide guidance for developing a program to type test cables, field splices, and connections and obtain specific type test data. It supplements IEEE Std 323-1974 Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations, which describes basic requirements for equipment qualification. It is the integrated performance of the structures, fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system, that limits the consequences of accidents. Seismic effects on installed cable systems are not within the scope of this document. Section 2 of this guide is an example of type tests. It is the purpose of this guide to deal with cable and connections; however, at the time of issue, detailed examples of tests for connections were not available

  2. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  3. The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2007-01-01

    Hydropower is the most widely used renewable energy source worldwide, contributing almost with 18.5% to the fulfillment of the planet electricity generation. However, most locations in Europe appropriate for the installation of large hydro power stations have already been exploited. Furthermore, there is a significant local communities' opposition towards new large power stations; hence, small hydro power stations remain one of the most attractive opportunities for further utilization of the available hydro potential. Greece and more precisely the country's mainland possesses a significant hydro-power potential which is up to now only partially exploited. In parallel, a large number of private investors have officially expressed their interest in creating small hydro power stations throughout the country, encouraged by the significant Greek State subsidy opportunities for renewable energy applications. However, up to now a relatively small number of projects have been realized, mainly due to decision-making problems, like the administrative bureaucracy, the absence of a rational national water resources management plan and the over-sizing of the proposed installations. Certainly, if the above problems are suitably treated, small hydro-power plants can be proved considerably profitable investments, contributing also remarkably to the national electricity balance and replacing heavy polluting lignite and imported oil. In the context of the above interesting issues, the present study reviews in detail the existing situation of small hydropower plants in Greece and investigates their future prospects as far as the energy, economic and environmental contribution are concerned

  4. Commercialization of new energy technologies. Appendix A. Case study 1: central station electric power generation technologies

    International Nuclear Information System (INIS)

    1976-06-01

    The results of a survey on Technologies for Central Power Generation are presented. The central power generation technologies selected for consideration were: fusion; breeder reactors; solar electric (thermal); geothermal; and magnetohydrodynamics. The responses of industry executives who make key investment decisions concerning new energy technologies and who to identify the problems faced in the development and commercialization of new energy systems are presented. Evaluation of these responses led to the following recommendations: increase industry input into the R, D and D planning process; establish and advocate priorities for new technologies based on detailed analysis of a technology's value in terms of overall national goals; create a mechanism for a joint ERDA/industry appraisal of priorities and programs; increase level of federal funding or subsidy of new technology demonstrations; and focus the activities of the national laboratories on basic research and very early product development; and emphasize industry involvement in systems development

  5. The costs of generating electricity in nuclear and coal fired power stations

    International Nuclear Information System (INIS)

    Petroll, M.

    1984-01-01

    An ad-hoc group of experts for international comparison of electricity generation cost was established in the OECD more than two years ago. This group of experts submitted their report of results in English at the end of last year. This paper publishes an abbreviated version making use of original quotations exclusively in order to keep true to the content of the study as much as possible. The study arrives at the following conclusion: ''There is no uniform set of input data for nuclear and coalfired power plants and assumptions concerning the base parameters of the reactor differ from country to country. Despite these differences, the outcome is that, nuclear energy is cheaper than coal in all countries concerned with the exception of some parts of the United States and Canada.'' (orig./UA) [de

  6. Floating nuclear power station of APWS-80 type for electricity generation and fresh water production

    International Nuclear Information System (INIS)

    Zverev, K.V.; Polunichev, V.I.; Sergeev, Yu.A.

    1997-01-01

    To solve the problem of seawater desalination and electric energy generation, the designing organizations of Russia have developed two variants of floating nuclear desalination plant. The KLT-40 type reactors, with maximum 160 MW thermal power, is used as the power source for such plant. Depending on the customer requirement one or two power unit could be installed in the floating desalination plant. There are APWS-80 with two reactors, producing 80,000 m 3 desalinated water per day and APWS-40 with one reactor, producing 40,000 m 3 desalinated water per day. The advantages of floating desalination plants are the possibility to build and test them at the ship-build plant of the supplier country and to hand them over on turnkey base. (author). 5 figs

  7. Projected costs of generating electricity from power stations for commissioning in the period 1995-2000

    International Nuclear Information System (INIS)

    1989-01-01

    The study reviews the projected electricity generation costs for the base load power generation options expected to be available in the medium term, using an agreed common economic methodology. Cost projections were obtained for nuclear and fossil fuelled plants that could in principle be commissioned in the mid-1990s, or shortly thereafter, although not all countries plan to commission plants at that time. The major changes in expectations compared with earlier studies, apart from those associated with changed perceptions of fossil fuel prices, include significantly lower nuclear investment costs for the United States, associated with an improved design and the expectation of achieving shorter construction periods than projected in the 1985 study, and generally lower nuclear fuel costs. Some countries project higher operation and maintenance costs for either coal-fired or nuclear plant or both. In the case of coal-fired plants these may be associated with the extra costs of operating desulphurisation equipment. The most marked change in nuclear operating and maintenance costs has taken place in the United States, where these costs are now expected to be twice as large as the projected nuclear fuel costs. There remain major differences in investment cost expectations between countries. The reasons for these differences have been examined in previous studies. They arise from differences in factor costs, regulatory approach, design and siting, and exchange rates which do not adequately reflect the differences in the capital investment costs between countries. In brief, most OECD countries continue to expect nuclear power to have a lower levelised generating cost than coal-fired generation when using their own technical and economic assumptions

  8. Assessment of the once-through cooling alternative for central steam-electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R. A.; Ditmars, J. D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments.

  9. Assessment of the once-through cooling alternative for central steam-electric generating stations

    International Nuclear Information System (INIS)

    Paddock, R.A.; Ditmars, J.D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments

  10. Point Lepreau generating station

    International Nuclear Information System (INIS)

    Ganong, G.H.D.; Strang, A.E.; Gunter, G.E.; Thompson, T.S.

    Point Lepreau-1 reactor is a 600 MWe generating station expected to be in service by October 1979. New Brunswick is suffering a 'catch up' phenomenon in load growth and needs to decrease dependence on foreign oil. The site is on salt water and extensive study has gone into corrosion control. Project management, financing and scheduling have unique aspects. (E.C.B.)

  11. Projected costs of generating electricity from nuclear and coal-fired power stations for commissioning in 1995

    International Nuclear Information System (INIS)

    1986-01-01

    This report updates and extends the previous NEA study, ''The Costs of Generating Electricity in Nuclear and Coal-fired Power Stations'', published by the OECD in late 1983. Despite the changed expectations concerning coal prices and the considerable movements in exchange rates since the first study was completed, the conclusions remain essentially the same. Nuclear Power is projected to be economically superior by a significant margin to coal-fired plants for base load electricity production in Europe, Japan and some regions of North America. In areas of North America in close proximity to supplies of cheap coal, this would be the more economic fuel, unless future nuclear investment costs can be reduced to match the best US and Canadian experience. In all regions considered, the economic advantage of both coal and nuclear over oil and gas-fired plants for commissioning in the mid-1990s is expected to be substantial. These conclusions are based on an analysis of cost projections for 900 MWe to 1400 MWe Light Water Reactors to be commissioned in 1995, operating at a levelised load factor of about 72 per cent over an assumed 25 years economic life and calculated with a 5 per cent (real) discount rate. This parallels the reference reactor selected for the NEA report ''The Economics of the Nuclear Fuel Cycle'', which was published by the OECD in June 1985, though it deviates somewhat from the reference conditions of the previous generation cost study. Contemporary coal-fired stations ranging in capacity from 330 MWe to 700 MWe with the same assumed economic life and load factor provide the basis for comparison. Some data are included on CANDU Pressurised Heavy Water Reactors, and a brief comment is annexed on the relevance of the comparisons for the smaller plants that may be of interest to countries with smaller electricity networks or where special circumstances apply

  12. Alternative central-station electric power generation technologies: a consistent engineering-economic framework of comparison

    International Nuclear Information System (INIS)

    Baughman, M.L.; Gordon, J.B.; Woodson, H.H.

    1983-01-01

    The electric utility sector is an intermediate processing sector of the economy that utilizes the factor inputs of labor, capital, and materials to process and convert chemical, nuclear, and other basic energy forms into electricity. The electricity is then delivered to and consumed by other intermediate or final users for purposes of heating, cooling, lighting, motive power, and materials processing. The economics of electricity supply encompass not only the selection of the basic energy form to be converted but also the selection of possible physical conversion processes to accomplish the conversion. The conversion processes can vary immensely in technical detail, physical configuration, and the basic scientific principle governing their operation. But whatever the design and technical detail, the basic purpose is to process some form of energy and manufacture electricity

  13. An aerial radiological survey of the South Texas Project Electric Generating Station and surrounding area, Bay City, Texas

    International Nuclear Information System (INIS)

    Thompson, J.M.

    1988-12-01

    An aerial radiological survey was conducted over the South Texas Project Electric Generating Station (STPEGS) near Bay City, Texas, during the period 25 March to 4 April 1988. The purpose of the 259-square-kilometer (100-square-mile) survey was to document the terrestrial gamma environment of the plant and surrounding area. An exposure rate contour map at 1 meter above ground level (AGL) was constructed from the gamma data and overlaid on an aerial photograph and map of the area. Exposure rates were observed up to 10μR/h over land. No areas of enhanced exposure rates were observed. Ground-based exposure rate measurements and soil samples were obtained to support the aerial data. Oblique aerial photographs of the plant were also acquired during the survey. 9 refs., 4 figs., 1 tab

  14. Electrical generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1976-01-01

    A nuclear heart pacer having a heat-to-electricity converter including a solid-state thermoelectric unit embedded in rubber which is compressed to impress hydrostatic precompression on the unit is described. The converter and the radioactive heat source are enclosed in a container which includes the electrical circuit components for producing and controlling the pulses; the converter and components being embedded in rubber. The portions of the rubber in the converter and in the container through which heat flows between the radioactive primary source and the hot junction and between the cold junction and the wall of the container are of thermally conducting silicone rubber. The 238 Pu primary radioactive source material is encapsuled in a refractory casing of WC-222 (T-222) which in turn is encapsuled in a corrosion-resistant casing of platinum rhodium, a diffusion barrier separating the WC-222 and the Pt--Rh casings. The Pt--Rh casing is in a closed basket of tantalum. The tantalum protects the Pt--Rh from reacting with other materials during cremation of the host, if any. The casings and basket suppress the transmission of hard x rays generated by the alpha particles from the 238 Pu. The outside casing of the pacer is typically of titanium but its surface is covered by an electrically insulating coating, typically epoxy resin, except over a relatively limited area for effective electrical grounding to the body of the host. It is contemplated that the pacer will be inserted in the host with the exposed titanium engaging a non-muscular region of the body

  15. Water-related constraints to the development of geothermal electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  16. Effects of pellet yield on electricity cost in laser fusion generating stations

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Booth, L.A.; Hafer, J.F.; Pendergrass, J.H.

    1978-01-01

    The dependence of capital and net electricity production costs on fuel pellet yield is investigated for laser fusion reactors based on the magnetically protected and the wetted wall reactor cavity concepts. It is determined that above a certain pellet yield, which depends on the cavity concept, diseconomies of scale occur and the costs per unit output increase with increasing fuel pellet yield. This behavior, determined with the trade-off and analysis computer code TROFAN, is explained through analytical examination of the scaling rules for the laser fusion reactor components

  17. IEEE Std 383-1974: IEEE standard for type test of Class IE electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class IE Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices. This guide does not cover cables for service within the reactor vessel

  18. Electrical Power Generated from Tidal Currents and Delivered to USCG Station Eastport, ME

    Science.gov (United States)

    2011-01-21

    35 Theory of Operation The ORPC Pre-Commercial Beta Turbine Generator Unit (“Beta TGU”) uses a hydrokinetic cross flow turbine based on Darrieus ...development in the wind turbine industry. The power coefficient (a measure of energy extraction effectiveness) is defined as follows: 31 2 turbine ...stream area of the device. Axial flow wind turbines have demonstrated power coefficients to an estimated 48% which approaches the theoretical “Betz

  19. Guide to the collection and presentation of electrical, electronic, and sensing component reliability data for nuclear-power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This Guide is intended to establish a method of collecting and presenting reliability data for quantitative systematic reliability analysis in nuclear power generating stations, as outlined in IEEE Std 351-1975. Appendix D, which is not a part of IEEE Std 500-1977 but which comprises the bulk of this publication, presents tables of reliability data for nuclear power generating stations, intended for use of nuclear systems reliability analysts or design engineers

  20. VT Data - Electric Charging Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Locations of Electric Charging Stations provided by the NREL national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy....

  1. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  2. IEEE No. 323, IEEE trial-use standard: General guide for qualifying Class I electric equipment for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes the basic requirements for the qualification of Class I electric equipment. This is equipment which is essential to the safe shutdown and isolation of the reactor or whose failure or damage could result in significant release of radioactive material. The purpose of this document is to provide guidance for demonstrating the qualifications of electrical equipment as required in the IEEE Std 279 -- Criteria for Nuclear Power Generating Station Protection Systems, and IEEE Std 308 -- Criteria for Class 1E Electric Systems for Nuclear Power Generating Stations. The qualification methods described may be used in conjunction with the Guides for qualifying specific types of equipment, (see Foreword), for updating qualification following modifications or for qualifying equipment for which no applicable Guide exists

  3. 78 FR 32278 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-05-29

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to Information in Tier 1, Table... Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe Power Corporation, Municipal... Table 3.3-1, ``Definition of Wall Thicknesses for Nuclear Island Buildings, Turbine Buildings, and Annex...

  4. Autonomous Electrical Vehicles’ Charging Station

    OpenAIRE

    Józef Paska; Mariusz Kłos; Łukasz Rosłaniec; Rafał Bielas; Magdalena Błędzińska

    2016-01-01

    This paper presents a model of an autonomous electrical vehicles’ charging station. It consists of renewable energy sources: wind turbine system, photovoltaic cells, as well as an energy storage, load, and EV charging station. In order to optimise the operating conditions, power electronic converters were added to the system. The model was implemented in the Homer Energy programme. The first part of the paper presents the design assumptions and technological solutions. Further in the paper...

  5. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  6. Inertial-confinement fusion central-station electric-power-generating plant. Final report, March 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1981-01-01

    This report contains a complete description of the subsystems of the power plant including driver, driver power supply, pellet fabrication, pellet injection and aiming, data handling and control, evacuation, tritium and radwaste handling, first wall protection, first wall and structure, heat removal, tritium breeding and neutron shielding, maintenance and repair and balance of plant. In addition, it contains analytic support for the conceptual designs developed for each subsystem. The emphasis of the effort was on designing a viable reactor cavity and on solving the problems of interfacing the driver systems with the reactor cavity. The reactors generate 3500 MWt by irradiating a pellet whose gain is 175 from two opposite sides with a total of 2 MJ driver energy at a 10 Hz repetition rate. Because the nominal laser driver efficiency is 10% and that for the heavy ion driver is 30%, the net electric power outputs are 1207 MWe and 1346 MWe; the net plant conversion efficiencies are 28.1% and 31.3%; and the recirculating fractions are 22.9% and 14.0% respectively. The increased power output is, however, only one of the factors considered by utilities in performing a cost minimization analysis of competing power sources for system expansion. These other factors include: capital costs, cost of construction time, operating costs, environmental and licensing costs and reliability cost

  7. Inertial-confinement fusion central-station electric-power-generating plant. Final report, March 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1981-01-01

    This report contains a complete description of the subsystems of the power plant including driver, driver power supply, pellet fabrication, pellet injection and aiming, data handling and control, evacuation, tritium and radwaste handling, first wall protection, first wall and structure, heat removal, tritium breeding and neutron shielding, maintenance and repair and balance of plant. In addition, it contains analytic support for the conceptual designs developed for each subsystem. The emphasis of the effort was on designing a viable reactor cavity and on solving the problems of interfacing the driver systems with the reactor cavity. The reactors generate 3500 NWt by irradiating a pellet whose gain is 175 from two opposite sides with a total of 2 MJ driver energy at a 10 Hz repetition rate. Because the nominal laser driver efficiency is 10% and that for the heavy ion driver is 30%, the net electric power outputs are 1207 MWe and 1346 MWe; the net plant conversion efficiencies are 28.1% and 31.3%; and the recirculating fractions are 22.9% and 14.0% respectively. The increased power output is, however, only one of the factors considered by utilities in performing a cost minimization analysis of competing power sources for system expansion. These other factors include: capital costs, cost of construction time, operating costs, environmental and licensing costs and reliability cost

  8. Seasonal distribution and abundance of Ohio River fishes at the J.M. Stuart Electric Generating Station

    International Nuclear Information System (INIS)

    Yoder, C.O.; Gammon, J.R.

    1976-01-01

    Distributions of Ohio River fishes were studied in the vicinity of a 2400-Mw coal-fired electric generating plant. Three thermally elevated zones, two ambient river zones, and a backwater zone were sampled intensively from June 1974 through February 1975 following the completion of all four units of the power plant. Less intensive collections were made preceding and during construction from 1970 to 1973. Overall variations in water temperature in 1974 to 1975 ranged from 6 to 40 0 C in the heated zones, 4 to 30 0 C in the ambient river zones, and 5 to 27 0 C in the backwater zone. Seasonal and spatial differences in abundance, diversity, and faunal associations were largely influenced by temperature. Notable changes in species populations from 1970 to 1975 were observed which were attributed to power-plant operation. Although seasonal definitions in terms of summer, fall, and winter were generally used, they were of very limited value, as demonstrated by annual fluctuations in community parameters. Apparently near-freezing temperatures in the ambient river zones, as well as high summer temperatures in the effluent canal, limit the time fish can spend in these areas and force them to seek more hospitable temperatures. This suggests that there are critical winter as well as summer months, with spring/fall transitional periods in between in the vicinity of thermal effluents

  9. Electric machinery and drives in thermal power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery. (TK) [de

  10. Analysis of licensee event reports related to nuclear generating station onsite electrical system malfunctions, 1976-1978

    International Nuclear Information System (INIS)

    Bickel, J.H.; Abbott, E.C.

    1981-07-01

    This report summarizes the evaluation requested by the ACRS of 1177 LERS, submitted over a three year period, which related to onsite electrical system malfunctions. The evaluation was carried out for the purposes of identifying specific failure modes and consequences, evaluating the assumptions used in WASH-1400 on the reliability of electrical equipment, and identifying specific sequences which are significant to plant safety. The analysis performed provides a more specific identification of onsite electrical system failure modes, sequences, and consequences than was established in WASH-1400

  11. The Staffing of Central Electricity Generating Board Nuclear Power Stations; Organigramme des centrales nucleaires du central electricity generating board; Politika v oblasti kadrov na atomnykh ehlektrostantsiyakh CEGB; El personal de las plantas nucleoelectricas de la central electricity generating board.

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, J. S.; Shepherd, G. T. [Central Electricity Generating Board, Western Division, Bristol (United Kingdom)

    1963-10-15

    An account is given of the staffing requirements and organization at a CEBG nuclear power station. The training of staff and licensing requirements for reactoroperating staff are discussed. Experience gained to data of the outcome of pre-operating training and detailed planning in the operational sphere is given. (author) [French] Le memoire donne un apercu de l'organigramme d'une centrale nucleaire du CEGB et des conditions auxquelles doit satisfaire le personnel (formation, qualifications requises pour la fonction d'operateur). Il rend compte egalement de l'experience acquise a ce jour quant a l'interet qu'il y a a former le personnel au prealable et a etablir des plans d'operation detailles. (author) [Spanish] La memoria informa sobre la organizacion de las centrales nucleoelectricas de la CEGB y sobre la plantilla de personal que estas requieren. Discute la formacion del personal y los requisitos para obtener la licencia de operador de reactores. Describe la experiencia adquirida hasta el presente en materia de formacion previa del personal y de organizacion detallada de las operaciones. (author) [Russian] Daetsya otchet o trebovaniyakh, pred{sup y}avlyaemykh k personalu, i organizatsiya nabora personala na atomnykh ehlektrostantsiyakh Tsentral'nogo upravleniya proizvodstva ehlektroehnergii (CEGB). Obsuzhdayutsya voprosy podgotovki personala i normativnykh trebovanij, pred{sup y}avlyaemykh k ehkspluatatsionnomu personalu. Izlagaetsya opyt, nakoplennyj k nastoyashchemu vremeni v rezul'tate osushchestvleniya predehkspluatatsionnoj podgotovki i podrobnogo planirovaniya v usloviyakh ehkspluatatsii. (author)

  12. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    International Nuclear Information System (INIS)

    1980-08-01

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor

  13. Limerick Nuclear Generating Station vibration monitoring system

    International Nuclear Information System (INIS)

    Mikulski, R.

    1988-01-01

    Philadelphia Electric Company utilizes a vibration monitoring computer system at its Limerick Nuclear Generating Station to evaluate machine performance. Performance can be evaluated through instantaneous sampling, online static and transient data. The system functions as an alarm monitor, displaying timely alarm data to the control area. The passage of time since the system's inception has been a learning period. Evaluation through continuous use has led to many enhancements in alarm handling and in the acquisition and display of machine data. Due to the system's sophistication, a routine maintenance program is a necessity. This paper describes the system's diagnostic tools and current utilization. System development and maintenance techniques will also be discussed

  14. Report on Darlington nuclear generating station

    International Nuclear Information System (INIS)

    1985-12-01

    The Select Committee on Energy was appointed on July 10, 1985 by the Legislative Assembly of the Province of Ontario in order to inquire into and report on Ontario Hydro affairs within ten months. Two sessions were planned the first of which was a review of the Darlington Nuclear Generating Station. Darlington is a large, 4 unit nuclear-powered electricity generating station currently under construction on the shore of Lake Ontario in the town of Newcastle. At the time the Committee met, construction had been underway for over four years. The first two units are scheduled to become operational in 1988 and 1989 with the second two scheduled to become operational in 1991 and 1992. The total estimated cost of the station is $10.895 billion of which $3.66 billion has been spent and $3.385 billion has been committed. Though the nuclear industry has been a major area of investment in Ontario over the past decade, the demand for electrical power from nuclear stations has been significantly decreased. This report focusses on the need for Darlington and public policy issues involved in planning and completing it. The Committee proposed the following recommendations: 1) The relationship between the Government of Ontario and Ontario Hydro and their individual responsibilities should be clarified. 2) An independent review of the Ontario Hydro demand/supply options should be carried out. 3) No further significant contracts for Darlington units 3 and 4 should be let for materials not required for construction during the next 6 months while the Committee studies demand and supply options

  15. Physical degradation assessment of generator station cables

    International Nuclear Information System (INIS)

    Stonkus, D.J.

    1988-01-01

    Preliminary studies of fossil-fired and nuclear generator station cables indicate that the low voltage PVC insulated cables are in relatively good condition. The insulation is flexible and in the case of nuclear cables can withstand a design basis event after nearly 15 years of service. Cables insulated with styrene butadiene rubber have been found embrittled and cables insulated with SBR should be closely inspected in any plant assurance program. Thermal analysis using oxidative induction technique shows promise to indicate cable insulation degradation. Long term reliability assurance and plant life extension studies are being actively pursued at Ontario Hydro. A major study is currently underway to extend the life of the oldest operating fossil-fuel station, the 8-unit, 2400 MW Lakeview TGS in operation since the 1960s. Plant life assurance programs have been initiated at the 2000 MW Lambton TGS in operation since 1969, and for the oldest operating nuclear plant, Pickering NGS A in operation since the early 1970s. As cables are considered one of the critical components in a generator station due to the extreme difficulty and cost of cable replacement, test programs have been initiated to evaluate the physical degradation of the cables and relate the results to electrical diagnostic tests and to chemical changes. The decommissioning of two small nuclear stations, the 20 MW Nuclear Power Demonstration (NPD) and the 200 MW Douglas Point NGS, which were placed in service in 1962 and 1967 respectively, will provide an opportunity to perform destructive electrical and physical evaluation on field aged cables

  16. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  17. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  18. Centralized electricity generation in Africa

    International Nuclear Information System (INIS)

    Jaujay, J.

    2000-01-01

    In Africa, over 90 per cent of the suburban and rural populations do not have access to electricity, even if it represents the engine and consequence of change on the continent. A global approach represents the best way to meet the extensive needs of the continent. The author briefly reviewed the recent projects implemented in Africa to meet the increasing demand. Diesel generators were used to satisfy demand in small electrical sectors (less than 1000 MW), hydroelectricity or combustion turbines were used for medium electrical sectors (1000 to 5000 MW). A discussion of the technologies followed, touching on diesel electric stations and combustion turbines. Both methods meet environmental standards as they apply to emission control and noise control. The choice between the two technologies must be based on required unit power, site isolation, access to gas, and the cost of available combustibles. Hydroelectric power has great potential in the sub-Sahara region, and the challenges faced by each project are similar: difficulty in finding the required financing, meeting the environmental constraints, and the distribution of the energy. A modular nuclear reactor project for the generation of electricity is being developed by ESKOM Enterprises, in association with the British Nuclear Fuel Limited and PECCO and progress will be closely monitored. Decision makers must ensure that appropriate decisions are made in a reasonable time frame to allow sufficient time to develop a project to implementation. Demand requirements must be examined closely, technology adequately selected in order to come up with a financing plan. 4 tabs

  19. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  20. Electrical Equipment of Electrical Stations and Substations,

    Science.gov (United States)

    1979-10-25

    flocronthoro ’roka "rNUSPONUS reuepa’rop Tpexzaamor TOKA 6C. so, iso ynpomxeuuoe 63aeg (O#cms1poHM reHepaTop C ObiBeleHnbumH WeCTblo KoimaUU itA3...currents during short circuit on the terminals/grippers: the turbogenerators 12): .I1’ 1.5; the hydraulic generators 0a:I. ,-0 (.PA >3) ISO ---01...330TATl 111-31500/110 BC- 17,5 (10,5) 6800 5600 7600 123 397 Bll - 10,5 (17) C11 - 6.3 (6) TJATI 11-000/I10 - 8583 5275 7700 129 474 TLI, 11’--I.U500/I 1o

  1. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  2. Electricity Generation Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aabakken, Jorn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ganda, Francesco [Argonne National Lab. (ANL), Argonne, IL (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tarka, Thomas [National Energy Technology Lab. (NETL), Albany, OR (United States); Brewer, John [National Energy Technology Lab. (NETL), Albany, OR (United States); Schultz, Travis [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-01-01

    This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.

  3. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  4. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  5. Electricity generation cost

    International Nuclear Information System (INIS)

    Bald, M.

    1984-01-01

    Also questions of efficiency play a part in the energy discussion. In this context, the economic evaluation of different energy supply variants is of importance. Especially with regard to the generation of electric power there have been discussions again and again during the last years on the advantage of the one or the other kind of electric power generation. In the meantime, a large number of scientific studies has been published on this topic which mainly deal with comparisons of the costs of electric power generated by hard coal or nuclear energy, i.e. of those energy forms which still have the possibilities of expansion. The following part shows a way for the evaluation of efficiency comparisons which starts from simplified assumptions and which works with arithmetical aids, which don't leave the area of the fundamental operations. The general comprehensibility is paid for with cuts on ultimate analytical and arithmetical precision. It will, however, turn out that the results achieved by this method don't differ very much from those which have been won by scientific targets. (orig./UA) [de

  6. Final Environmental Statement related to the operation of Wolf Creek Generating Station, Unit No. 1. Docket No. STN 50-482, Kansas Gas and Electric Company, et al

    International Nuclear Information System (INIS)

    1982-06-01

    This final environmental statement contains the second assessment of the environmental impact associated with operation of Wolf Creek Generating Station Unit 1 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, as amended, of the NRC's regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial- and aquatic-ecological impacts will be small. Air-quality impacts will also be small. However, steam fog from the station's cooling lake has the potential for reducing visibility over nearby roads and bridges. A fog-monitoring program for roads and bridges near the lake has been recommended. Impacts to historic and prehistoric sites will be negligible. Chemical discharges to the Neosho River are expected to have no appreciable impacts on water quality under normal conditions and will be required to meet conditions of the station's NPDES permit. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission line facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for the Wolf Creek Generating Station Unit 1

  7. Environmental assessment, proposed generating station for Darlington

    International Nuclear Information System (INIS)

    1975-04-01

    This document indicates the intention of Ontario Hydro to seek approval from the Provincial Government for its plan to construct and operate a 3400 MWe nuclear generating station at the Darlington site, west of Bowmanville. This preliminary proposal also contains the environmental assessment. The environmental section of this proposal describes and assesses the existing environment and the environmental influences which would occur due to the construction and operation of a nuclear generating station, consisting of four 850 MW units, at the Darlington site. This proposed station is similar to the Bruce GS A station presently under construction. (author)

  8. Final environmental statement related to the operation of Limerick Generating Station, Units 1 and 2, Docket Nos. 50-352 and 50-353, Philadelphia Electric Company

    International Nuclear Information System (INIS)

    1989-08-01

    In April 1984 the staff of the Nuclear Regulatory Commission issued its Final Environmental Statement (NUREG-0974) related to the operation of Limerick Generating Station, Units 1 and 2, (Docket Nos. 50-352 and 50-353), located on the Schuylkill River, near Pottstown, in Limerick Township, Montgomery and Chester Counties, Pennsylvania. The NRC has prepared this supplement to NUREG-0974 to present its evaluation of the alternative of facility operation with the installation of further severe accident mitigation design features. The NRC staff has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns nor significant new circumstances or information relevant to environmental concerns and bearing on the licensing of Limerick Generating Station, Units 1 and 2. 15 refs., 10 tabs

  9. ALGORITHM TO CHOOSE ENERGY GENERATION MULTIPLE ROLE STATION

    Directory of Open Access Journals (Sweden)

    Alexandru STĂNESCU

    2014-05-01

    Full Text Available This paper proposes an algorithm that is based on a complex analysis method that is used for choosing the configuration of a power station. The station generates electric energy and hydrogen, and serves a "green" highway. The elements that need to be considered are: energy efficiency, location, availability of primary energy sources in the area, investment cost, workforce, environmental impact, compatibility with existing systems, meantime between failure.

  10. Electricity supplies in a French nuclear power station

    International Nuclear Information System (INIS)

    2011-01-01

    As the operation of a nuclear power station requires a power supply system enabling this operation as well as the installation safety, this document describes how such systems are designed in the different French nuclear power stations to meet the requirements during a normal operation (when the station produces electricity) or when it is stopped, but also to ensure power supply to equipment ensuring safety functions during an incident or an accident occurring on the installation. More precisely, these safety functions are provided by two independent systems in the French nuclear power stations. Their operation is briefly described. Two different types of nuclear reactors are addressed: pressurised water reactors (PWR) of second generation, EPR (or PWR of third generation)

  11. FIND: Douglas Point Nuclear Generating Station, Units 1 and 2

    International Nuclear Information System (INIS)

    Moore, M.M.

    1975-12-01

    This index is presented as a guide to microfiche items 1 through 136 in Docket 50448, which was assigned to Potomac Electric Power Company's Application for Licenses to construct and operate Douglas Point Nuclear Generating Station, Units 1 and 2. Information received from August, 1973 through July, 1975 is included

  12. Gas in electricity generation [In New Zealand

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    Gas is New Zealand's major thermal fuel for electricity generation. This paper describes what influences the volumes of gas burnt by ECNZ, and forecasts future gas demands for electricity generation. It also reviews the uncertainties associated with these forecasts and likely competition in building new electricity generating stations and outlines the strategy now being formulated to accommodate them. Because ECNZ's generation system is hydro-based, relatively small rapid changes in hydrological conditions can significantly affect the amount of gas used. This situation will change over time with major increases in thermal generation likely to be needed over the next 20 years. However, there are considerable uncertainties on gas supply and electricity demand levels in the long run, which will complicate investment and fuel decisions. (Author)

  13. Generation of electrical power

    International Nuclear Information System (INIS)

    Hursen, T.F.; Kolenik, S.A.; Purdy, D.L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, the thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element

  14. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  15. Electric motorcycle charging station powered by solar energy

    Science.gov (United States)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  16. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  17. Gas turbine electric generator

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Yuhara, Tetsuo.

    1993-01-01

    When troubles are caused to a boundary of a gas turbine electric generator, there is a danger that water as an operation medium for secondary circuits leaks to primary circuits, to stop a plant and the plant itself can not resume. Then in the present invention, helium gases are used as the operation medium not only for the primary circuits but also for the secondary circuits, to provide so-called a direct cycle gas turbine system. Further, the operation media of the primary and secondary circuits are recycled by a compressor driven by a primary circuit gas turbine, and the turbine/compressor is supported by helium gas bearings. Then, problems of leakage of oil and water from the bearings or the secondary circuits can be solved, further, the cooling device in the secondary circuit is constituted as a triple-walled tube structure by way of helium gas, to prevent direct leakage of coolants into the reactor core even if cracks are formed to pipes. (N.H.)

  18. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  19. Alternative solutions for electricity generation

    International Nuclear Information System (INIS)

    Kuenstle, K.

    1976-01-01

    Ten illustrations - mainly comparitive ones - dealing with the possibilities of an economical energy conversion, in particular electricity generation, in the FRG are explained and commented upon. (UA) [de

  20. Method and device allowing a more rational exploitation of electrical power-stations. [energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Mascarello, J

    1974-04-12

    Description is given of a device permitting a more rational exploitation of electrical power stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, the hydrogen being stored in other tanks. Combustion of the stored hydrogen by the stored air is used for generating electric power during electric power consumption peak-periods.

  1. Resolution 369/012. It authorize to Vientos de Pastoral S.A. to generate a wind power electricity source by 150.0 MW generating station section, and their connection to National interconnected system

    International Nuclear Information System (INIS)

    2012-01-01

    It has been allowed the wind power generation electricity energy source as a the primary electricity source. This project was presented by the Vientos de Pastoral S.A company according to the opinion of the National Energy Regulatory Unit and the Energy and Water Services in relation with the requirements of the current rule

  2. Dose management programmes at Kaiga Generating Station

    International Nuclear Information System (INIS)

    Vijayan, P.; Prabhakaran, V.; Managavi, Sadashiv B.; Danannavar, Veerendra; Biju, P.; Manoj Kumar, M.; Shrikrishna, U.V.

    2001-01-01

    Kaiga Generating Station (KGS) has two units of pressurized heavy water reactors of 220 MWe each capacity. KGS-2 started power generation since 1999 and KGS-1 since 2000. Several programmes such as assessment of radioactive condition, training on radiological safety aspects, job planning in radioactive areas, etc. are conducted periodically to implement an effective dose control programmes in KGS. These efforts are briefly discussed in this report. Facilities and techniques to implement ALARA programs are also highlighted in this report. (author)

  3. The Misema generating station by CREC : the journey

    International Nuclear Information System (INIS)

    2003-01-01

    The Canadian Renewable Energy Corporation (CREC) was created in 2000 in response to the government's commitment to renewable energy. This publication presents a series of photographs illustrating the development of the Misema run-of-the river hydro generating station, including its 300 m long power tunnel from the intake to the powerhouse. The Misema project was the first in Ontario to run an underground tunnel to protect the river bank and reduce visual impact. It was also the first to have an underground power house that could withstand the 1 in 1,000 year flood. Connection to the grid is via a private 44,000 volt line. The station is fully automated to meet Ontario's power demand. Engineering and environmental approval for the project began in 2001, with construction starting in May 2001. The generating facility uses natural river flow to generate electricity, and is expected to play an important role in strengthening the electricity grid at its periphery and offer reliable power to thousands of customers. Small hydro also has minimal impact on the environment. CREC intends to make the site accessible to recreational canoeists, fishermen, geologists and tourists. The generating station was nearly completely constructed by local tradesmen and contractors, creating about 30,000 man-hours for the Englehart area. The Misema facility is contributing to Ontario's deregulated power market and has provided much needed electricity while reducing Ontario's greenhouse gas emissions. The facility was built to the highest international standards. figs

  4. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  5. Method for protecting an electric generator

    Science.gov (United States)

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  6. Performance assessment of Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Alikhan, S [Point Lepreau Generating Station, Lepreau, NB (Canada)

    1991-04-01

    The Point Lepreau Generating Station, a 680 MWe CANDU unit, is located about 40 km southwest of the city of Saint John, New Brunswick, Canada. It was declared in-service on 1 February, 1983 and, since then, has demonstrated an average cross capacity factor of over 93% up to the end of 1990. This paper compared the performance of the station with other sister CANDU units and the Light Water Reactors world-wide using the following ten performance indicators, as applicable: - gross capacity factor; - fuel burn-up; - heavy water upkeep; - unplanned reactor trips while critical; - forced outage rate; - fuel handling performance; - derived emission of radioactive effluents to environment; - personnel radiation dose; - industrial safety; - low-level solid radioactive wastes. The paper examines various areas of station activities including management and organization, operations and maintenance, technical support, fuel handling and health physics in order to highlight some of the 'good practices' which are believed to have made a significant contribution towards achieving the demonstrated performance of Point Lepreau G.S. In addition, several areas of potential improvement are discussed in order to maintain and enhance, where practicable, the safety, reliability and economic performance of the station. In this context, a careful review of the operating experiences, both in-house and at other stations, and a judicious application of lessons learned plays a significant role. (author)

  7. Performance assessment of Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Alikhan, S.

    1991-01-01

    The Point Lepreau Generating Station, a 680 MWe CANDU unit, is located about 40 km southwest of the city of Saint John, New Brunswick, Canada. It was declared in-service on 1 February, 1983 and, since then, has demonstrated an average cross capacity factor of over 93% up to the end of 1990. This paper compared the performance of the station with other sister CANDU units and the Light Water Reactors world-wide using the following ten performance indicators, as applicable: - gross capacity factor; - fuel burn-up; - heavy water upkeep; - unplanned reactor trips while critical; - forced outage rate; - fuel handling performance; - derived emission of radioactive effluents to environment; - personnel radiation dose; - industrial safety; - low-level solid radioactive wastes. The paper examines various areas of station activities including management and organization, operations and maintenance, technical support, fuel handling and health physics in order to highlight some of the 'good practices' which are believed to have made a significant contribution towards achieving the demonstrated performance of Point Lepreau G.S. In addition, several areas of potential improvement are discussed in order to maintain and enhance, where practicable, the safety, reliability and economic performance of the station. In this context, a careful review of the operating experiences, both in-house and at other stations, and a judicious application of lessons learned plays a significant role. (author)

  8. Electric machinery and drives in thermal power stations. Elektrische Maschinen und Antriebe in thermischen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery.

  9. THERMO-ELECTRIC GENERATOR

    Science.gov (United States)

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  10. Wolf Creek Generating Station containment model

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-01-01

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project

  11. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  12. Trends in the capital costs of CANDU generating stations

    International Nuclear Information System (INIS)

    Yu, A.M.

    1982-09-01

    This paper consolidates the actual cost experience gained by Atomic Energy of Canada Limited, Ontario Hydro, and other Canadian electric utlities in the planning, design and construction of CANDU-PHWR (CANada Deuterium Uranium-Pressurized Heavy Water Reactor) generating stations over the past 30 years. For each of the major CANDU-PHWR generating stations in operation and under construction in Canada, an analysis is made to trace the evolution of the capital cost estimates. Major technical, economic and other parameters that affect the cost trends of CANDU-PHWR generating stations are identified and their impacts assessed. An analysis of the real cost of CANDU generating stations is made by eliminating interest during construction and escalation, and the effects of planned deferment of in-service dates. An historical trend in the increase in the real cost of CANDU power plants is established. Based on the cost experience gained in the design and construction of CANDU-PHWR units in Canada, as well as on the assessment of parameters that influence the costs of such projects, the future costs of CANDU-PHWRs are presented

  13. Review of freeboard: Grand Rapids Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, J.L.; Harding, W.B.; Bonin, D.V.; Fuchs, D.M. [Acres Manitoba Ltd., Winnipeg, MB (Canada); Warner, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2001-10-01

    Constructed during the period 1960-1965, the Grand Rapids Generating Station is a 472 MW hydroelectric station located approximately 400 kilometres northwest of Winnipeg, Manitoba, on the Saskatchewan River. An intake structure, four penstocks, a four-unit plus house unit powerhouse, wing walls, extensive dyke structures and a four-bay spillway are the components of the generating station. A little over ten years ago, the Manitoba Hydro Dam Safety Program was initiated. The program included a detailed dam safety review of the Grand rapids Generating Station. A potential deficiency in the freeboard allowance for several of the earthen dykes was revealed by the review process. The dam safety guidelines sponsored by the Canadian Dam Association were not met. The occurrence of a 1:1000 year wind event from the critical direction when the reservoir was at or near its full supply level was compounded by the analysis. The establishment of a wind and wave monitoring program was included in the deficiency studies commissioned. The objective was to confirm the empirical estimates concerning wave height, the development and usage of a two dimensional numerical wave model, and additional freeboard analyses to refine estimates of the recurrence interval of the current level of protection. A statistical Monte Carlo analysis was performed in the case of the estimates of the recurrence interval to determine the joint probabilities of seasonal variations in wind direction, wind speed, and reservoir level. The estimate of the actual risk of overtopping was therefore refined, and the details pertaining to the methodology and the conclusions of the analysis are all included in the paper. 15 refs., 4 tabs., 9 figs.

  14. Electricity generation: a case study in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    1999-01-01

    Large-scale electricity generation provides versatile energy of the highest quality. Today, fossil fuels such as coal, oil, and natural gas are the primary sources of this energy. However, these fossil energy sources are limited and using fossil energy sources has the undesirable effect of releasing emissions that burden the environment and alter the climate. Therefore, governments and companies all over the world should find new and renewable energy sources. On the other hand, over the past two decades, power station construction programs in the developing countries accounted for nearly 30% of total public investment. In a large number of these countries, shortages of electricity have become a critical constraint to economic growth. In Turkey, from 1980 to 1995, the amount for electricity generated increased about fourfold from 23,275 Gwh to 86,247 Gwh, and annual growth rates were in the double digits. This is a good development, but not enough for Turkey. (author)

  15. Refurbishment of Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Thompson, P.D.; Jaitly, R.; Ichiyen, N.; Petrilli, M.A.

    2004-01-01

    NB Power is planning to conduct an 18-month maintenance outage of the Point Lepreau Generating Station (PLGS) beginning in April 2008. The major activity would be the replacement of all 380 Fuel Channel and Calandria Tube Assemblies and the connecting feeder pipes. This activity is referred to as Retube. NB Power would also take advantage of this outage to conduct a number of repairs, replacements, inspections and upgrades (such as rewinding or replacing the generator, replacement of shutdown system trip computers, replacement of certain valves and expansion joints, inspection of systems not normally accessible, etc). These collective activities are referred to as Refurbishment. This would allow the station to operate for an additional 25 to 30 years. The scope of the project was determined from the outcome of a two-year study involving a detailed condition assessment of the station that examined issues relating to ageing and obsolescence. The majority of the plant components were found to be capable of supporting extended operation without needing replacement or changes. In addition to the condition assessment, a detailed review of Safety and Licensing issues associated with extended operation was performed. This included a review of known regulatory and safety issues, comparison of the station against current codes and standards, and comparison of the station against safety related modifications made to more recent CANDU 6 units. Benefit cost analyses (BCA) were performed to assist the utility in determining which changes were appropriate to include in the project scope. As a Probabilistic Safety Assessment (PSA) for PLGS did not exist at the time, a risk baseline for the station had to be determined for use in the BCA. Extensive dialogue with the Canadian Nuclear Safety Commission staff was also undertaken during this phase. A comprehensive Licensing Framework was produced upon which the CNSC provided feedback to NB Power. This feedback was important in terms of

  16. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  17. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  18. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  19. Steam generator replacement at Surry Power Station

    International Nuclear Information System (INIS)

    McKay, H.S.

    1982-01-01

    The purposes of the steam generator repair program at Surry Power Station were to repair the tube degradation caused by corrosion-related phenomena and to restore the integrity of the steam generators to a level equivalent to new equipment. The repair program consisted of (1) replacing the existing lower-shell assemblies with new ones and (2) adding new moisture separation equipment to the upper-shell assemblies. These tasks required that several pieces of reactor coolant piping, feedwater piping, main steam piping, and the steam generator be cut and refurbished for reinstallation after the new lower shell was in place. The safety implications and other potential effects of the repair program both during the repair work and after the unit was returned to power were part of the design basis of the repair program. The repair program has been completed on Unit 2 without any adverse effects on the health and safety of the general public or to the personnel engaged in the repair work. Before the Unit 1 repair program began, a review of work procedures and field changes for the Unit 2 repair was conducted. Several major changes were made to avoid recurrence of problems and to streamline procedures. Steam generator replacements was completed on June 1, 1981, and the unit is presently in the startup phase of the outrage

  20. Electricity generation using electromagnetic radiation

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  1. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  2. Projected costs of generating electricity

    International Nuclear Information System (INIS)

    2005-01-01

    Previous editions of Projected Costs of Generating Electricity have served as the reference in this field for energy policy makers, electricity system analysts and energy economists. The study is particularly timely in the light of current discussions of energy policy in many countries. The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today and considered by participating countries as candidates for commissioning by 2010-2015 or earlier. Investors and other decision makers will also need to take the full range of other factors into account (such as security of supply, risks and carbon emissions) when selecting an electricity generation technology. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut ''winner''. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. An appendix to the report provides country statements on generation technologies and costs. Previous studies in the series were published in 1983, 1986, 1990, 1993 and 1998. (author)

  3. A method and device allowing a more rational exploitation of electrical power-stations

    International Nuclear Information System (INIS)

    Mascarello, Jean.

    1974-01-01

    Description is given of a device permitting a more rational exploitation of electrical power-stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the thus pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, said hydrogen being stored in other tanks, combustion of the stored hydrogen by the stored air being used for generating electric power during electric power consumption peak-periods [fr

  4. Electromechanically generating electricity with a gapped-graphene electric generator

    Science.gov (United States)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  5. Emissions from coal-fired electric stations : environmental health effects and reduction options

    International Nuclear Information System (INIS)

    Love, P.; Lourie, B.; Pengelly, D.; Labatt, S.; Ogilvie, K.; Kelly, B.

    1998-01-01

    Findings of a study on the environmental effects of current emissions from coal-fired electric stations were summarized. Current and projected emissions from coal-fired electric stations for five emission reduction scenarios were estimated for Ontario, Eastern Canada, Ohio Valley/Great Lakes, and the U.S. northeast regions. Coal-fired electric stations generate a wide range of environmentally significant air emissions. The five pollutants selected - sulphur dioxide, nitrogen oxides, particulate matter (less than 10 micrometres in size), mercury, and carbon dioxide - are considered to impact most on environmental health. This report focused on 312 coal-fired electric stations in the regions named above. They were selected based on the likelihood that long-range transport of the emissions from these coal-fired utilities would have an impact on human health and the environment. 55 refs., 10 tabs., 8 figs

  6. IEEE standard for qualifying class IE equipment for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The Institute of Electrical and Electrical Engineers, Inc. (IEEE) standards for electrical equipment (Class IE) for nuclear power generating stations are given. The standards are to provide guidance for demonstrating and documenting the adequacy of electric equipment used in all Class IE and interface systems. Representative in containment design basis event conditions for the principal reactor types are included in the appendixes for guidance in enviromental simulation

  7. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 86 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2016. These CDPs include data from retail stations only.

  8. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 2 of 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Christopher D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-05

    This publication includes 92 composite data products (CDPs) produced for next generation hydrogen stations, with data through the second quarter of 2017. These CDPs include data from retail stations only.

  9. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  10. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  11. Coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    2001-03-01

    This report examines coal-fired electricity generation in Ontario and recommends actions to be taken by the provincial government to protect the environment. The recommendations are also designed to assist in making decisions about the environmental safeguards needed for a competitive electricity industry. The report examines air emissions from coal-fired generating plants in the larger context of air pollution in the province; summarizes background information on key air pollutants; provides an individual profile of all coal-fired power stations in the province; and benchmarks Ontario's emissions performance by comparing it with 19 nearby U.S. jurisdictions. Current and proposed environmental controls for fossil fuel power generation in the province are elaborated. Options for maximizing environmental performance and the framework for strengthening environmental protection are reviewed. The report also contains a series of findings and recommendations which are deemed necessary before the moratorium imposed on the sale of coal-fired electricity plants imposed in May 2000, can be lifted. tabs., figs

  12. Projected Costs of Generating Electricity

    International Nuclear Information System (INIS)

    Plante, J.

    1998-01-01

    Every 3 to 4 years, the NEA undertakes a study on projected costs of generating electricity in OECD countries. This started in 1983 and the last study (1997) has just be completed. All together 5 studies were performed, the first three dealing with nuclear and coal options, while the 1992 and 1997 included also the gas option. The goal of the study is to compare, country by country, generating costs of nuclear, coal-fired and gas-fired power plants that could be commissioned in the respondent countries by 2005-2010

  13. Projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.

    2010-01-01

    This paper describes the outcomes of a study on the projected costs of generating electricity. It presents the latest data available on electricity generating costs for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. The study reaches 2 key conclusions. First, at a 5% real interest rate, nuclear energy is the most competitive solution for base-load electricity generation followed by coal-fired plants without carbon capture and natural gas-fired combined plants. It should be noted that coal with carbon capture has not reached a commercial phase. Second, at a 10% interest rate, nuclear remains the most competitive in Asia and North America but in Europe, coal without carbon capture equipment, followed by coal with carbon capture equipment, and gas-fired combined cycle turbines are overall more competitive than nuclear energy. The results highlight the paramount importance of interest rates (this dependence is a direct consequence of the nuclear energy's high capital costs) and of the carbon price. For instance if we assume a 10% interest rate and a cost of 50 dollar per tonne of CO 2 , nuclear energy would become competitive against both coal and gas. (A.C.)

  14. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  15. Mini-biomass electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  16. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  17. Acquisition of wood fuel at the Joseph C. McNeil Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Kropelin, W. [Burlington Electric Dept., VT (United States)

    1993-12-31

    The Joseph C. McNeil Generating Station is the world`s largest single boiler, municipally-owned, wood-fired electrical generating plant. The 50 megawatt McNeil Station is located in Burlington, Vermont and is owned by several Vermont public and private electric utilities. The operator and majority owner is the City of Burlington Electric Department (BED). Wood fuel procurement for the McNeil Station has been conducted in an environmentally sensitive way. Harvesting is carried out in conformance with a comprehensive wood chip harvesting policy and monitored by professional foresters. Unpredictable levels of Station operation require rigid adherence to a wood storage plan that minimizes the risk of over heating and spontaneous combustion of stockpiled fuel.

  18. Reducing lighting electricity use in underground metro stations

    International Nuclear Information System (INIS)

    Casals, Miquel; Gangolells, Marta; Forcada, Núria; Macarulla, Marcel

    2016-01-01

    Highlights: • Lighting systems are big energy consumers in underground metro stations. • An adaptive lighting system strategy is developed for underground stations. • Dimming controls are based on station occupancy levels and maintenance cycles. • The k-means clustering technique is used to identify stations’ occupancy patterns. • Savings were found to amount to 255.47 MW h in 2 years for a case study metro network. - Abstract: Lighting systems are usually one of the largest electrical end-uses in underground metro stations. Taking into account that budget restrictions in publicly owned companies hinder energy efficiency retrofit projects that require high initial investments, affordable energy saving strategies are needed. This paper presents a low-cost approach for reducing lighting electricity use in underground stations, without affecting passengers’ comfort or the metro operator’s service. For this purpose, an adaptive lighting strategy of dimming the illuminance levels of artificial light sources has been developed. Dimming controls are based on the occupancy of the station, and the preventive maintenance and cleaning cycles of the luminaires. The stations’ monthly occupancy patterns are defined through the k-means clustering technique. To illustrate its effectiveness, the method was applied to 115 underground stations of the Barcelona metro network. The results revealed overall electricity savings of 255.47 MW h on a biannual basis, which represents 36.22% of the stations’ baseline lighting consumption. Individual energy savings were found to range from 25 to 87.5 MW h/year in the stations of the Barcelona metro network, depending on the number and profile of station users. The research findings will undoubtedly be useful for the future energy efficiency project plans of worldwide metro operators and managers of other underground spaces.

  19. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  20. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  1. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  2. Impact of Electric Vehicle Charging Station Load on Distribution Network

    Directory of Open Access Journals (Sweden)

    Sanchari Deb

    2018-01-01

    Full Text Available Recent concerns about environmental pollution and escalating energy consumption accompanied by the advancements in battery technology have initiated the electrification of the transportation sector. With the universal resurgence of Electric Vehicles (EVs the adverse impact of the EV charging loads on the operating parameters of the power system has been noticed. The detrimental impact of EV charging station loads on the electricity distribution network cannot be neglected. The high charging loads of the fast charging stations results in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. Further, the penalty paid by the utility for the degrading performance of the power system cannot be neglected. This work aims to investigate the impact of the EV charging station loads on the voltage stability, power losses, reliability indices, as well as economic losses of the distribution network. The entire analysis is performed on the IEEE 33 bus test system representing a standard radial distribution network for six different cases of EV charging station placement. It is observed that the system can withstand placement of fast charging stations at the strong buses up to a certain level, but the placement of fast charging stations at the weak buses of the system hampers the smooth operation of the power system. Further, a strategy for the placement of the EV charging stations on the distribution network is proposed based on a novel Voltage stability, Reliability, and Power loss (VRP index. The results obtained indicate the efficacy of the VRP index.

  3. Environmental qualification test of electrical penetration for nuclear power stations

    International Nuclear Information System (INIS)

    Kooziro, Tetsuya; Nakagawa, Akitoshi; Toyoda, Shigeru; Uno, Shunpei

    1979-01-01

    Environmental qualification test was conducted according to IEEE Std. 323-1974 in order to evaluate the safety and reliability of electrical penetration of PWR type nuclear power station. Electrical penetration is the assemblies of electric cables attached to the containment vessel and penetrate through the vessel. Since it is a part of the vessel, it is deemed to be one of the primary safety equipments that are important for the safety and reliability of nuclear power stations. Environmental tests were conducted continuously as to heat cycle, vibration and LOCA with the full size specimens of bushing type, pigtail type and triaxial cable type and at the same time thermal life and irradiation tests were conducted on the insulation materials used, in order to obtain the comprehensive evaluation of their electrical and mechanical characteristics. As the result, they all satisfied the requirements for the circuits for actual use during and after various environmental qualification tests according to IEEE Std. 323. (author)

  4. ANALYSIS OF SOLAR POWER STATION SCHEMES ON PHOTOELECTRIC MODULES FOR ELECTRIC CARS CHARGING STATIONS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2017-12-01

    Full Text Available The analysis of existing schemes for building solar power stations on photoelectric modules with the revealing of their operation principles and functionality has been conducted. The specified technical characteristics of each of the analyzed schemes are given. The structural scheme of the solar charging station for electric cars with determining its functional capabilities and operation features is proposed. The practical application of this scheme will help to reduce the dependence on the general electric power supply network and will create conditions for its total rejection.

  5. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  6. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  7. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2...-70, and DPR-75, issued to PSEG Nuclear LLC (PSEG, the licensee), for operation of the Hope Creek...

  8. Solar-Assisted Electric Vehicle Charging Station Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data

  9. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    1985-03-01

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  10. Activity transport in nuclear generating stations

    International Nuclear Information System (INIS)

    Mitchell, A.B.

    1975-01-01

    The objective of this paper is to give a basic understanding of the operational limitations caused by radiation fields in the present design of CANDU-PHW reactors. A simple model of activity transport is described, and the significance of various radioisotopes identified. The impact which radiation fields have at the Divisional, Station Manager and Operation levels, is outlined in the context of typical work situations. (author)

  11. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  12. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  13. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  14. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  15. Mattagami River Lake sturgeon entrainment : Little Long generating station facilities

    International Nuclear Information System (INIS)

    Seyler, J.; Evers, J.; McKinley, S.; Evans, R.R.; Prevost, G.; Carson, R.; Phoenix, D.

    1996-01-01

    This project and publication is the result of a collaborative effort by other Large River Ecosystem Unit of Northeast Science (NEST), Ontario Hydro in Kapuskasing, and the New Post First Nation in Cochrane, Ontario, designed to investigate potential solutions to minimize or eliminate the problem of trapped lake sturgeon in the Adam Creek Diversion. The Adam Creek Dam is used to divert excess water from the Mattagami River hydroelectric complex which consists of the Little Long, Smoky Falls, Harmon and Kipling generating stations. The lake sturgeon entrainment problem in the area was discovered in 1990. Potential solutions to the problem include the redirection of flows to mainstream, the placement of a rope barrier, electrical deterrents, physical/electrical guidance systems, sound deterrents, gate modifications, and the continued relocation of fish. The advantages and disadvantages of each of these potential solutions are discussed. Results of the analysis indicated that perceptual and physical barriers have the greatest potential to minimize lake sturgeon entrainment in Adam Creek. 25 refs., 2 tabs., 3 figs., 6 appendices

  16. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  17. Dam safety at Seven Sisters Generating Station

    International Nuclear Information System (INIS)

    Carson, R. W.; Gupta, R. C.

    1996-01-01

    A safety surveillance program for all hydraulic structures in Manitoba was first implemented in 1979, and updated in 1988. This contribution describes the current status of the program, and the nature of the issues that the program was designed to address. The Seven Sisters Station's dam on the Winnipeg River, about 90 km northeast of the City of Winnipeg, was used as an example. Extensive reviews of flood risks and downstream inundation potential at Seven Sisters' revealed a number of deficiencies; these findings will be incorporated into a corporate plan of overall remediation. Updating the program will also include efforts to ensure adherence to national dam safety guidelines. 5 figs

  18. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  19. Cables for nuclear power generating stations, (6)

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Asakawa, Naoki; Yamamoto, Tomotaka; Watanabe, Mikio; Shingo, Yoshioki.

    1981-01-01

    New inorganic material insulated flexible triaxial cables have been developed for the purpose of applying around the primary circuit of fast breeder reactor (FBR). These cables were tested at high temperature and high #betta#-ray radiation environment, and they showed good electrical properties. Other noted results were that they showed good fire proof and flame resistant properties. (author)

  20. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure

    Science.gov (United States)

    Chaudhry, Hina

    2013-01-01

    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  1. Bike-powered electricity generator

    Directory of Open Access Journals (Sweden)

    ŞTEFAN MOCANU

    2015-02-01

    Full Text Available Finding new energy sources is an important challenge of our times. A lot of research focuses on identifying such sources that can also be exploited with relatively simple and efficient systems. These sources can be either new materials that can be used to generate energy, or solutions to scavenge already existing forms of energy. Part of the latter class of solutions, the system presented in this paper converts the energy consumed by many people in gyms (or even at home, during exercise into electric energy. This energy exists anyway, because people want to be healthier or to look better. Currently, this significant (in our opinion amount of energy is actually wasted and transformed into heat. Instead, in this study, a prototype scavenging system (dedicated to fitness/stationary bikes to collect and (reuse this energy is presented. Specifically, we depict the design of a low-budget system that uses existing, discrete components and is able to scavenge some of the energy spent by the biker. The experimental results show that the system is functional, but its efficiency is limited by (mechanical losses before the collection.

  2. Cordova Lake dam hydroelectric generating station case study

    International Nuclear Information System (INIS)

    Kerr, D.; Huxley, J.

    1993-01-01

    The Ontario Ministry of Natural Resources released a Crown owned site to the private water power industry as part of the small hydro site release program initiated by the Ontario Government in the mid 1980's. The Cordova Lake Dam Hydroelectric Generating Station, built on this site, has been in operation since the first week of October, 1992. Since that time, the plant has been operating with less than 1 % down time and has generated over 2,400 MWh of electricity. Algonquin Power Systems is responsible for the management and operations of the plant which includes full time monitoring from the company's Mississauga office and a part time employee at Cordova Lake. Cordova Lake Dam is located on the Crowe River at the outlet of Cordova Lake, approximately 125 kilometers east of Toronto, Ontario. The total cost of the Cordova Lake Dam project was $1.6 million. Algonquin Power contributed 20% equity to the project. Algonquin Power was also responsible for all engineering and geotechnical work and for completing the construction and equipment contracts. 1 tab., 2 figs

  3. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  4. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  5. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  6. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  7. Electricity generation with natural gas or with uranium?

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2009-10-01

    The program of works and investments of electric sector that actualize each year the Federal Commission of Electricity, include to the projects of electric power generating stations that will begin its commercial operation inside the horizon of the next ten years, in order to satisfy opportunely with appropriate reservation margins the demand of power and energy in the national interconnected system that grows year to year. In spite of its inherent advantages, in the electric sector prospective 2008-2017 are not considered explicitly to the nuclear power plants, except for the small amplification of capacity of nuclear power plant of Laguna Verde, that already is executing. In this context, the objective of this work is to present and to discuss arguments to favor and against the combined cycle and nuclear technologies, to indicate the risks and disadvantages in that it incurs the electric sector when leaning on so disproportionately on the fossil fuels for the electricity generation, in particular the natural gas, deferring to an indefinite future the installation of nuclear plants whose proven technology is economic, sure, clean and reliable and it contributes decisively to the national energy security. To mitigate the harmful effects of excessive dependence on natural gas to generate electric power, was propose alternatives to the expansion program of electric sector to year 2017, which would have as benefits the decrease of the annual total cost of electric power supply for public service, the significant reduction of natural gas imports and emissions reduction of CO 2 to the atmosphere. (Author)

  8. Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-13

    Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

  9. AECB staff annual assessment of the Darlington Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of safety at the Darlington Nuclear Generating Station for 1996. Ontario Hydro operated the station in a safe manner in 1996. All four special safety systems were fully available 100 percent of the time. There were more problems that affected the safety support systems in 1996 than in the previous year

  10. China's CO2 emissions from power generating stations: A first exploration

    OpenAIRE

    Du, Limin; Hanley, Aoife; Rehdanz, Katrin

    2014-01-01

    Our analysis is the first of its kind to explore patterns of subsidization and CO2 emissions in China's electricity producing sector. Applying data for all power plants across China and controlling for the age, capacity and location of generating stations, we find that plants attracting a higher government subsidy are also worryingly the plants generating a disproportionate share of CO2 emissions. This distortion is incongruent with China's aspiration for a greener economy but may be eliminat...

  11. The paperclip and the nuclear generating station

    International Nuclear Information System (INIS)

    Mussard, J.A.

    1981-01-01

    The article presents some reflections upon the circumstances of the recent rejection by the Swiss Federal Government of a project for building a nuclear generating plant at Kaiseraugst. The following points are made: The use of conventional publicity and public relations techniques to try to convince the public of the desirability or at least of the harmlessness of such projects may very well be counter-productive, given the public's not altogether ill-founded suspicion of such types of pressure. Nor is it helpful to accuse opponents of nuclear developments of indulging in emotional reaction, emotion being entirely legitimate. The proponents of such schemes should confine themselves to objective discussion of the questions Where How Why and At what cost (cost being interpreted in the widest, not merely financial, sense). They should avoid the trap of appearing to be for (as distinct from against) nuclear energy. Finally both sides should abjure (and so far as possible the community should outlaw) methods of conducting disputes that border on lying, charlatanism, demagogy and above all, illegality, and confine themselves to serious discussion of the questions that arise, which are far from being confined to technology and economics. (C.J.O.G.)

  12. Electric power and the environment: An analysis of pollutant emissions at Argentine state-owned electric power stations

    Energy Technology Data Exchange (ETDEWEB)

    Carnevali, D; Suarez, C E [Instituto de Economia Energetica, San Carlos de Bariloche (Argentina)

    1991-08-01

    This paper describes the impact on particulate and 'greenhouse gases' emissions of substitution policies implemented by Argentine state-owned electric power stations. Those policies involve the substitution, on the one hand, of hydroelectric and nuclear energy for conventional thermal energy and, on the other hand, of natural gas for fuel oil, diesel oil and coal. As additional investments are required in conventional thermal power stations to prevent environmental pollution, the investment savings generated by substitution policies have been calculated. While the environmental impacts of hydroelectric, nuclear and natural gas facilities is locally significant and is experienced in geographical areas away from cities, there can be no doubt that the substitution policies implemented in the Argentine electricity sector have overall both ecological and economic benefits. (author). 1 ref., 8 figs, 2 tabs.

  13. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  14. Sun, wind and electric generation

    International Nuclear Information System (INIS)

    Huacuz V, J.M.

    1995-01-01

    The X-Calak hybrid system was totally implemented in March, 1993 trhough an agreement with Sandia Laboratories (US), the private enterprise Condumex and the Electrical Research Institute (IIE). About 5 0 variables are continuously measured by an electronic data acquisition system and are pre-processed each 15 minutes averages in to be stored. The information is retrieved by cellular phone to be analyzed in detail. (Author)

  15. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  16. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  17. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  18. Comparative risk assessment for electricity generation

    International Nuclear Information System (INIS)

    Thoene, E.; Kallenbach, U.

    1988-01-01

    The following conclusions are drawn: There is no 'zero-risk option' in electricity generation. Risk comparison meets with considerable problems relating to available data and methods. Taking into account the existing uncertainties, technology ranking in terms of risks involved cannot be done, but the major risk elements of the various electricity generating systems can be clearly identified. The risks defined cannot be interpreted so as to lead to an abolishment of certain techniques due to risks involved, particularly if one sees the risks from electricity generation in relation to other health hazards. The use of coal for electricity generation clearly ranks top with regard to occupational risks and hazards to public health. (orig./HP) [de

  19. Optimization Methodologies of Mixed Electrical Generators in ...

    African Journals Online (AJOL)

    This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. ... Have at one's the energetic and economic models, and simulation tools, we effected an optimization ...

  20. Naturalization of landscaped parkland at Ontario Hydro's Nanticoke generating station

    International Nuclear Information System (INIS)

    McKenna, G.R.

    1998-01-01

    The implementation of a program for the naturalization of Nanticoke Park, a 30 hectare area located on the property of Ontario Hydro's Nanticoke Generating Station was discussed. The station, which is located in southern Ontario very near to noted wildlife areas, is the largest coal-fired generating station in North America. Naturalization of Nanticoke Park began with passive naturalization of interior areas. An active naturalization program involving four to five hectare size areas annually was begun in 1997, to be completed over a five -year period. This presentation described the site preparation, planting methods, post-planting tending methods, survival assessment of planted areas, and scientific research initiatives including mulch trials with zebra mussel shells to increase soil moisture. The lessons learned from the two year experiment in determining the optimum planting strategy and methods were described. 7 refs., 1 tab

  1. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station B for 1996. It was concluded that Ontario Hydro operated Bruce B safely in 1996. Although the Bruce B plant is safe,it was noted that the number of outages and the number of secondary and tertiary equipment failures during reactor unit upsets increased. Ontario Hydro needs to pay special attention to prevent such a decrease in the safety performance at Bruce B

  2. AECB staff annual assessment of the Point Lepreau Nuclear Generating Station

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Point Lepreau Generating Station in 1996. Point Lepreau operated safely but the worsening trends in NB Power's safety performance leads to the conclusion that urgent action is required. NB Power is required to report formally to the AECB on progress with measures to improve safety management every six months. Further licensing action will be taken on NB Power if it fails to make the improvements

  3. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station A for 1996. Ontario Hydro operated Bruce A safely in 1996, maintaining the risk to workers and the public at an acceptably low level. Special safety system performance at Bruce A was adequate. Availability targets were all met. Improvement is needed to reduce the number of operating licence non-compliances

  4. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  5. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  6. Dispersion of chlorine at seven southern California coastal generating stations

    International Nuclear Information System (INIS)

    Grove, R.S.

    1983-01-01

    The objectives of this study were to (1) determine chlorine concentrations and exposure time gradients of chlorine through seven coastal generating stations and (2) assess the dispersion characteristics of chlorine in the receiving waters. Remarkable variability in chlorine injection concentrations, condenser outlet concentrations, outfall concentrations, and dissipation rates between generating stations and, to a lesser extent, between surveys at the same generating station was found in this chlorine monitoring study. Other than quite consistent low injection and correspondingly low outfall concentrations at San Onofre (a generating station that had one of the more rigorous chlorine control and minimization programs in effect at the time), no recognizable patterns of chlorination could be discerned in the data. Over half of the outfall chlorine surveys had chlorine concentrations below 0.08 mg/L, which is the accepted level of detection for the titrator being used in the surveys. The post-outfall dilution calculations further showed that the chlorine that does enter the receiving water is initially diluted with entrained ambient water at a ratio of 5.2:19.0

  7. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  8. Electricity market opening and electricity generation system's expansion in Slovenia

    International Nuclear Information System (INIS)

    Kosnjek, Z.; Vidmar, M.; Bregar, Z.

    2000-01-01

    Slovenia is rapidly adopting the European Union (EU) legislation to make itself ready to be admitted the fifteen EU member countries. In the area of energy or electricity supply industry, Slovenia has consequently enforced the Energy law, which in its essence follows the idea of the Directive 96/92/EC. Globally, the Directive defines common rules of the internal electricity market within EU. Any EU member country is responsible for assuring a competitive electricity market and implementing corresponding instruments as foreseen by the Directive. The share of the national market opening is calculated on the basis of eligible customers' consumption versus the overall consumption in a particular member country. Also, the Directive defines the rate of the electricity market opening. It is interesting to note that the EU member countries have been opening their national electricity markets at a greater speed than specified by the Directive. The overall Slovenian Electricity Supply Industry shall have to adapt itself to new imperatives, whereby the greatest changes will by all means take place in the area of electricity generation. As the reaction of eligible domestic market customers is quite unpredictable, the direct electricity import from foreign countries can only be estimated on a variant basis. EU countries that have deregulated their electricity market have been, step by step, gaining valuable experiences. The majority of them show a considerable pressure on having prices of the EPS generation sector reduced. A similar development can by all means be expected in Slovenia, too. it is expected that the major burden of the electricity market liberalisation and electric power interconnecting within EU will be carried by the EPS generation sector. The analyses of developed variants show that the burden, imposed by the transition onto the market economy, will be predominantly carried by the coal fired electricity supply industry. Further development of electricity

  9. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  10. Electricity prices and generator behaviour in gross pool electricity markets

    International Nuclear Information System (INIS)

    O'Mahoney, Amy; Denny, Eleanor

    2013-01-01

    Electricity market liberalisation has become common practice internationally. The justification for this process has been to enhance competition in a market traditionally characterised by statutory monopolies in an attempt to reduce costs to end-users. This paper endeavours to see whether a pool market achieves this goal of increasing competition and reducing electricity prices. Here the electricity market is set up as a sealed bid second price auction. Theory predicts that such markets should result with firms bidding their marginal cost, thereby resulting in an efficient outcome and lower costs to consumers. The Irish electricity system with a gross pool market experiences among the highest electricity prices in Europe. Thus, we analyse the Irish pool system econometrically in order to test if the high electricity prices seen there are due to participants bidding outside of market rules or out of line with theory. Overall we do not find any evidence that the interaction between generator and the pool in the Irish electricity market is not efficient. Thus, the pool element of the market structure does not explain the high electricity prices experienced in Ireland. - Highlights: • We consider whether a gross pool achieves competitive behaviour. • We analyse the Irish pool system econometrically. • Results indicate the Irish pool system appears to work efficiently. • Generators appear to be bidding appropriately

  11. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  12. Scenarios of Expansion to Electric Generation Capacity

    Directory of Open Access Journals (Sweden)

    José Somoza-Cabrera

    2017-06-01

    Full Text Available We show the building scenarios of expansion to electric generation capacity enough to supply the demand to 2050. We were using the LEAP facility (Long-range Energy Alternatives Planning System, to simulate dispatch of electricity at minimum cost. Finally, we show the cost-benefice analysis of the technologies availability, included externality and CO2 emission limited. However that we included the externals cost in this analysis, it results insufficient to closed gap between fossil and renewable technologies of electric generation. Nevertheless, in some opportunities the renewable options had very important participations in the minimal cost scenario of expansion.

  13. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  14. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  15. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  16. Computer functions in overall plant control of candu generating stations

    International Nuclear Information System (INIS)

    Chou, Q.B.; Stokes, H.W.

    1976-01-01

    System Planning Specifications form the basic requirements for the performance of the plant including its response to abnormal situations. The rules for the computer control programs are devised from these, taking into account limitations imposed by the reactor, heat transport and turbine-generator systems. The paper outlines these specifications and the limitations imposed by the major items of plant equipment. It describes the functions of each of the main programs, their interactions and the control modes used in the existing Ontario Hydro's nuclear station or proposed for future stations. Some simulation results showing the performance of the overall unit control system and plans for future studies are discussed. (orig.) [de

  17. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  18. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  19. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  20. Generating power stations and optimization energetic of processes; Centrales generadoras y optimacion energetica de procesos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Ramirez, Ranulfo; Fernandez Montiel, Manuel Francisco [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    Some recent experiences of the Management of Thermal Processes of the Instituto de Investigaciones Electricas (IIE) related to the works on generating power stations of electricity, plants of cogeneration and energy saving are presented. [Spanish] Se presentan algunas experiencias recientes de la Gerencia de Procesos Termicos del Instituto de Investigaciones Electricas (IIE) relacionadas con los trabajos sobre centrales generadoras de electricidad, plantas de cogeneracion y ahorro de energia.

  1. IEEE standard for qualification of class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, was developed to provide guidance for demonstrating and documenting the adequacy of electrical equipment used in all Class 1E and interface systems. This standard, IEEE Std 535-1979, was developed to provide specific methods and type test procedures for lead storage batteries in reference to IEEE Std 323-1974

  2. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  3. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid

    International Nuclear Information System (INIS)

    Nurre, Sarah G.; Bent, Russell; Pan, Feng; Sharkey, Thomas C.

    2014-01-01

    We consider a deterministic integer programming model for determining the optimal operations of multiple plug-in hybrid electric vehicle (PHEV) battery exchange stations over time. The operations include the number of batteries to charge, discharge, and exchange at each point in time over a set time horizon. We allow discharging of batteries back to the power grid, through vehicle-to-grid technology. We incorporate the exchange station's dependence on the power network, transportation network, and other exchange stations. The charging and discharging at these exchange stations lead to a greater amount of variability which creates a less predictable and flat power generation curve. We introduce and test three policies to smooth the power generation curve by balancing its load. Further, tests are conducted evaluating these policies while factoring wind energy into the power generation curve. These computational tests use realistic data and analysis of the results suggest general operating procedures for exchange stations and evaluate the effectiveness of these power flattening policies. - Highlights: • Model the operations of plug-in hybrid electric vehicle battery exchange stations. • Determine the optimal and general charging, discharging, and exchange operations. • Conclude that forced customer service levels are unnecessary with proper pricing. • Examine policies to reduce variability in power generation from PHEVs and wind. • Observe that strict constraints on exchange stations best reduce variability

  4. The competitive economics of a middle aged multi unit nuclear generating station

    International Nuclear Information System (INIS)

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  5. IEEE standard criteria for type tests of class 1E modules used in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Institute of Electrical and Electronics Engineers has generated this document to provide direction for type testing Class 1E modules and obtaining specific type test data. It supplements IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, which describes the basic requirements for Class 1E equipment qualification. Adherence to this document alone may not suffice for assuring public health and safety because it is the integrated performance of the structures, the fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system of which these modules are a part that prevents accidents or limits the consequences of accidents. Each applicant to the Nuclear Regulatory Commission for a license to operate a nuclear power generating station has the responsibility to assure himself and others that this document, if used, is pertinent to his application and that the integrated performance of his station is adequate

  6. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  7. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  8. Radioactive waste management at nuclear electric power stations

    International Nuclear Information System (INIS)

    Gordelier, S.C.

    1993-01-01

    After suitable treatment, gaseous and liquid wastes are routinely discharged from Nuclear Electric's stations and are diluted and dispersed in the environment. The discharges are controlled and authorized under UK legislation and the environmental impact is minimal. Most solid wastes were originally accumulated at the site of origin, but since 1978 low level wastes (LLW) have been send to the UK's main disposal site at Drigg. Recent changes at Drigg have resulted in changed arrangements for the transport and disposal of low-level wastes, including volume reduction by supercompaction. Small amounts of intermediate-level waste (ILW) have been conditioned and disposed of in the sea but this route is now effectively closed and there is currently no disposal route for ILW in the UK. Spent ion exchange resins at one power station have been conditioned and are stored pending the availability of a disposal route. Most ILW will continue to be stored in retrievable form on the site of origin until a mobile waste treatment plant can be brought into use. The timing of this will be subject to agreement with the regulators. In the case of Magnox fuel element debris, a demonstration dissolution plant has been constructed and this will significantly reduce the volume of waste being stored while retaining the bulk of the activity on site for later treatment. A further development has been the construction of a new facility which will hold Magnox fuel element debris in 500 liter drums

  9. Electricity trade: Generating benefits for British Columbians

    International Nuclear Information System (INIS)

    1994-01-01

    Electricity has been traded in British Columbia since the turn of the century. In 1988, the provincial government established the British Columbia Power Exchange Corporation (Powerex) to conduct electricity trade activities in order to make the most efficient use of the electrial system and generate benefits for British Columbians. The trade is made possible by an interconnected system linking producers and consumers in western Canada and the USA. Provincial participants in the trade include British Columbia Hydro, independent power producers, and cogenerators. Benefits of the electricity trade include generation of revenue from sale of surplus power, being able to buy electricity when the mainly hydroelectric provincial system is in a drought condition or when major shutdowns occur, and enabling postponement of development of new power projects. Powerex conducts its trade under provincial and federal permits and licenses. Different types of trade contracts are negotiated depending on the amount and availability of electricity and the kind of trade being conducted. Exchanges and coordination agreements allow transfer and return between utilities with no net export occurring, allowing balancing of loads between different reigons. Surplus electricity is bought or sold on a short- or long-term basis and on firm or non-firm terms. Electricity exports are not subsidized and are only allowed if the electricity is surplus to provincial needs and can be sold at a profit. A new provincial policy allows private industry to export long-term firm electricity; this involves construction of new private-sector generating facilities solely for the purpose of export. 1 fig

  10. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  11. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  12. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  13. Natural gas and electricity generation in Queensland

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    The focus of this article is on electricity generation in Queensland. Black coal accounted for 97 percent, while natural gas made up only 1 percent of the fuel used in thermal power generation in 1997-98. The share of natural gas in thermal electricity generation is expected to rise to 21 percent by 2014-2015, because of the emphasis on natural gas in Queensland's new energy policy. Since 1973-1974, Queensland has led the way in electricity consumption, with an average annual growth rate of 6.8 percent but the average thermal efficiency has fallen from 38.0 percent in 1991-1992, to 36.6 percent in 1997-1998

  14. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Properties of Douglas Point Generating Station heat transport corrosion products

    International Nuclear Information System (INIS)

    Montford, B.; Rummery, T.E.

    1975-09-01

    Chemical, radiochemical and structural properties of circulating and fixed corrosion products from the Douglas Point Generating Station are documented. Interaction of Monel-400 and carbon steel corrosion products is described, and the mechanisms of Monel-400 surface deposit release, and activity buildup in the coolant system, are briefly discussed. Efficiencies of filters and ion-exchangers for the removal of released radionuclides are given. (author)

  16. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  17. Multi-Unit Aspects of the Pickering Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Morison, W. G. [Atomic Energy of Canada Ltd, Sheridan Park, ON (Canada)

    1968-04-15

    The Pickering nuclear generating station is located on the north shore of Lake Ontario, about 20 miles east of the city of Toronto, Canada. The station has been planned and laid out on an eight-unit station, four units of which have now been authorized for construction. Each of these four units consists of a single heavy-water moderated and cooled CANDU-type reactor and auxiliaries coupled to a single tandem compound turbine generator with a net output of approximately 500 MW(e). The units are identical and are scheduled to come into operation at intervals of one year from 1970 to 1973. The station has been planned with central facilities for: administration maintenance laboratories, stores, change rooms, decontamination and waste management services. A common control centre, cooling water intake and discharge system, and spent fuel storage bay for four units has been arranged. A feature of the multi-unit station is a common containment system. Cost savings in building a number of identical units on the same site result from a single exclusion area, shared engineering costs, equipment purchase contracts for four identical components, and efficient use of construction plant. Operating cost savings are anticipated in the use of a common operating and maintenance staff and spare parts inventory. The plant has been arranged to minimize problems of operating, commissioning and constructing units at the same time on the same site. The layout and construction sequence have been arranged so that the first unit can be commissioned and operated with little or no interference from the construction forces working on succeeding units. During the construction phase barriers will be erected in the common control centre between operating control equipment and that being installed. Operations and construction personnel will enter the plant by separate routes and work in areas separated by physical barriers. (author)

  18. Electricity generation from landfill gas: a commercial view revisited

    International Nuclear Information System (INIS)

    Limbrick, A.J.

    1992-01-01

    Wapsey's Wood power station has been generating electricity from landfill gas since 1987. Despite a good technical track record, the project did not secure a fair price for the electricity it sold until it was included in the 1991 Non-Fossil Fuel Obligation (NFFO). The NFFO has served to bring forward approximately 560 MW of renewable energy generating capacity, of which 15 per cent is fuelled by landfill gas. However, case histories such as that of Wapsey's Wood highlight the weaknesses of the current arrangements. To secure the continued steady growth of commercially robust renewable energy projects, there is a need to boost the business confidence of potential developers. The paper proposes two ways to remove the present uncertainty: simplify the application procedures, and remove the December 1998 expiry date that currently applies to power purchase agreements under the NFFO. (author)

  19. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  20. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  1. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  2. Water use/reuse and wastewater management practices at selected Canadian coal fired generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.

    1984-08-01

    Recommended Codes of Practice are currently being developed by Environment Canada aimed at ensuring that the aquatic environment is not significantly impacted upon by wastewater discharges from steam electric generating stations. A study was carried out to: develop a reliable data base of the physical and chemical characteristics of water and wastewater streams at representative generating stations; study advanced water reuse/recirculation and wastewater management to evaluate their potential future use in power generating stations; and to examine and evaluate the relevant aspects of best practical technology as proposed by Environment Canada in the Recommended Codes of Practice. Studies were carried out at Dalhousie Generating Station (GS), New Brunswick, Poplar River GS, Saskatchewan, Battle River GS, Alberta, and Milner GS, Alberta. The studies included on-site flow monitoring and sampling, chemical analyses, treatability studies and engineering analyses of water and wastewater systems. Extensive chemical characterizations of the water and wastewater streams were completed. Some problems were identified with the recirculating bottom ash system at Dalhousie which was a significant wastewater producer, coal pile runoff which caused significant wastewater, and iron which was the principal discharge criteria metal. 14 refs., 41 figs., 2 tabs.

  3. Risk limitation, safety and environmental compatibility in electricity generation

    International Nuclear Information System (INIS)

    Angelini, A.M.

    1981-01-01

    The purpose of this paper is to present the problem of meeting future electricity needs while at the same time reducing to a minimum the risks, the pollution of air and water and the environmental effects of power stations. The first resource to exploit is the ''virtual source'' represented by energy saving pursued to the limit of the possible. The second, in order of priority, is that of renewable resources as yet unused and under development. Unfortunately, in most countries these latter resources are far from sufficient: it is then necessary to choose between the use of conventional fossil fuels and nuclear fuels. In this paper it is shown that, of all the possible fossil fuels, only coal can be considered for electricity production. As a result, in meeting new electricity needs, the choice will have to be made between coal and nuclear power. Attention is directed to factors having a significant influence on this choice, particularly the risks and safety problems in the widest sense, with a view to making a global evaluation comprising not just generating stations but the entire production cycle, from the search for the primary source to the supplying of electricity to the user. The most important problems that arise in this connection are briefly analysed in the paper, which concludes with an appeal for more objectivity in providing information on energy, such information being at present very ''polluted'' and exerting a major influence on the views of experts. (author)

  4. New electricity generating installations - Czech experience

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Zdarek, J.

    2004-01-01

    Economically and technically are analysed alternatives for new electricity generation installations (GEN 111+ NPPs, finalization of NPPs under construction, lifetime extension of existing NPPs, coal plants and gas plants). Described are experienced with NPP Temelin (lessons learned from its design, construction, start-up and resent operation and service experience) and new Czech Energy Policy, where the nuclear energy is an important source for electricity generation. Discussed is also impact of potential trading with CO 2 limits and strategy on minimization of dependence on energy from politically unstable regions. Underlined is important role of preparation of young generation for safe and reliable long term operation of NPPs. General recommendation is to orient on finalization of NPPs under construction, lifetime extension of existing NPPs and long term orientation on new generation of NPPs (GEN III+ and GEN IV). (author)

  5. Conceptual design of a DOT farm generator station

    NARCIS (Netherlands)

    Michailidis, D.; Diepeveen, N.F.B.

    2011-01-01

    The Delft Offshore Turbine (DOT) is a DUWIND research project that focuses on reducing the cost of offshore wind energy by bringing a radical change in offshore wind turbine technology. The main concept is to centralize electricity generation by having individual wind turbines create a flow of

  6. Power generation investment in electricity markets

    International Nuclear Information System (INIS)

    2003-01-01

    Most IEA countries are liberalizing their electricity markets, shifting the responsibility for financing new investment in power generation to private investors. No longer able to automatically pass on costs to consumers, and with future prices of electricity uncertain, investors face a much riskier environment for investment in electricity infrastructure. This report looks at how investors have responded to the need to internalize investment risk in power generation. While capital and total costs remain the parameters shaping investment choices, the value of technologies which can be installed quickly and operated flexibly is increasingly appreciated. Investors are also managing risk by greater use of contracting, by acquiring retail businesses, and through mergers with natural gas suppliers. While liberalization was supposed to limit government intervention in the electricity market, volatile electricity prices have put pressure on governments to intervene and limit such prices. This study looks at several cases of volatile prices in IEA countries' electricity markets, and finds that while market prices can be a sufficient incentive for new investment in peak capacity, government intervention into the market to limit prices may undermine such investment

  7. Dispersed generation: impact on the electricity system

    International Nuclear Information System (INIS)

    Delfanti, M.; Merlo, M.; Silvestri, A.

    2009-01-01

    The paper deals with the impact of Dispersed Generation (D G) on the national electricity system, by proposing a practical approach for determining the current capacity of the networks to accepts this form of generation (hosting capacity). With the prospect of an increasing intake of D G, we finally draft a possible evolution of distribution networks based on the integration of energy and information networks. [it

  8. The projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2010-10-01

    This paper describes the outcomes from the joint report between the Nuclear Energy Agency and the International Energy Agency of the OECD on the projected costs of generating electricity. The study contains data on electricity generating costs for almost 200 power plants provided by 17 OECD member countries, 4 non-OECD countries and 4 industrial companies or industry organisations. The paper presents the projected costs of generating electricity calculated according to common methodological rules on the basis of the data provided by participating countries and organisations. Data were received for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. Cost estimates were also provided for combined heat and power plants, as well as for coal plants that include carbon capture. As in previous studies of the same series, all costs and benefits were discounted or capitalised to the date of commissioning in order to calculate the state of the electricity costs per MWh, based on plant operating lifetime data. In addition, the paper contains a discussion of a number of factors affecting the cost of capital, the outlook for carbon capture and storage and the working of electricity markets. (Author)

  9. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  10. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  11. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  12. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  13. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  14. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  15. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  16. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  17. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  18. Insulation co-ordination aspects for power stations with generator circuit-breakers

    International Nuclear Information System (INIS)

    Sanders, M.; Koeppl, G.; Kreuzer, J.

    1995-01-01

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerning expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer

  19. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  20. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  1. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  2. The System of Fast Charging Station for Electric Vehicles with Minimal Impact on the Electrical Grid

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2016-01-01

    Full Text Available The searching and utilization of new energy sources and technologies is a current trend. The effort to increase the share of electricity production from renewable energy sources is characteristic for economically developed countries. The use of accumulation of electrical energy with a large number of decentralized storage units is most preferred, as well as the focus on the production of energy at the point of its consumption. Modern cogeneration units are a good example. This paper describes the accumulation of electrical energy for equalizing the power balance of electric charging stations with high instantaneous power. The possibility of re-utilization of electrical energy from the charged vehicle in the case of lack of electricity in the power grid is solved at the same time. This paper also deals with the selection of appropriate concept of accumulation system and its cooperation with both renewable and distribution networks. Details of the main power components including the results obtained from the system implementation are also described in this paper.

  3. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....

  4. Operating Experience with Indian Point Nuclear Electric Generating Station; Experience d'exploitation de la centrale nucleaire d'Indian point; Opyt ehkspluatatsii Indian-pojntskoj yadernoj ehlektrostantsii; Experiencia adquirida con la explotacion de la central nucleoelectrica de Indian point

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, W. C.; Freyberg, R. H. [Consolidated Edison Company of New York, Inc., New York, NY (United States)

    1963-10-15

    Indian Point Station Unit No. 1 consists of a 585 MW(t) pressurized-water reactor, four primary coolant loops with horizontal heat exchanger boilers, two 1.1 million lb/h oil-fired superheaters and a 275 000 kW turbine generator. The reactor fuel is a mixture of fully enriched U{sup 235} oxide and Th{sup 232} oxide. The station is located on the Hudson River about 24 miles north of New York City. Because of this proximity to New York, exceptional safeguards against the occurrence of a reactivity excursion as well as against the radiation effects of such an excursion were incorporated into the station design. Construction was completed in May 1962. Fuel loading was accomplished in June and the reactor was taken critical for the first time on 2 August 1962. Low power testing up to 5 MW(t) at ambient and at elevated temperatures was done during August, and the turbine generator was first phased into the Consolidated Edison system on 16 September 1962. Testing at reactor power levels up to 50% extended into November and was marked by frequent automatic shut-downs, alarge number of which were initiated inthe conventional plant. Control-rod-drive control system difficulties were the heaviest contributor from the nuclear plant to automatic rod insertion operations and to delays in recovery from automatic trips. On 14 November 1962 the station was shut down for scheduled piping changes in the conventional plant and for modifications and additions to the control-rod-drive system. The latter included the installation of a dry nitrogen purging system for the control-rod-drive housings designed to minimize the effects of seal water leakage into the rod-drive housings. This appears to have been the major cause of the false indications encountered with the reactor control system. The unit was returned to service on 1 January 1963. Testing at reactor power levels up to 100% under steady load conditions was completed on 27 January 1963. Test results have followed closely the

  5. Sustainability evaluation of decentralized electricity generation

    International Nuclear Information System (INIS)

    Karger, Cornelia R.; Hennings, Wilfried

    2009-01-01

    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  6. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  7. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  8. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  9. Adaptive Modeling of the International Space Station Electrical Power System

    Science.gov (United States)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  10. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  11. Online control loop tuning in Pickering Nuclear Generating Stations

    International Nuclear Information System (INIS)

    Yu, K.X.; Harrington, S.

    2008-01-01

    Most analog controllers in the Pickering B Nuclear Generating Stations adopted PID control scheme. In replacing the analog controllers with digital controllers, the PID control strategies, including the original tuning parameters were retained. The replacement strategy resulted in minimum effort on control loop tuning. In a few cases, however, it was found during commissioning that control loop tuning was required as a result of poor control loop performance, typically due to slow response and controlled process oscillation. Several factors are accounted for the necessities of control loop re-tuning. Our experience in commissioning the digital controllers showed that online control tuning posted some challenges in nuclear power plant. (author)

  12. Probabilistic tsunami hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau (Canada); Alcinov, T.; Roussel, P.; Lavine, A.; Arcos, M.E.M.; Hanson, K.; Youngs, R., E-mail: trajce.alcinov@amecfw.com, E-mail: patrick.roussel@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure, Dartmouth, NS (Canada)

    2015-07-01

    In 2012 the Geological Survey of Canada published a preliminary probabilistic tsunami hazard assessment in Open File 7201 that presents the most up-to-date information on all potential tsunami sources in a probabilistic framework on a national level, thus providing the underlying basis for conducting site-specific tsunami hazard assessments. However, the assessment identified a poorly constrained hazard for the Atlantic Coastline and recommended further evaluation. As a result, NB Power has embarked on performing a Probabilistic Tsunami Hazard Assessment (PTHA) for Point Lepreau Generating Station. This paper provides the methodology and progress or hazard evaluation results for Point Lepreau G.S. (author)

  13. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D. [New Brunswick Power Corp., Point Lepreau Generating Station, Lepreau, New Brunswick (Canada); Lavine, A. [AMEC Foster Wheeler Environment and Infrastructure Americas, Oakland, California (United States); Egan, J. [SAGE Engineers, Oakland, California (United States)

    2015-09-15

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components-a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  14. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau, NB (Canada); Lavine, A., E-mail: alexis.lavine@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure Americas, Oakland, CA (United States); Egan, J., E-mail: jegan@sageengineers.com [SAGE Engineers, Oakland, CA (United States)

    2015-07-01

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components--a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  15. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  16. Optimal Allocation of Changing Station for Electric Vehicle Based on Queuing Theory

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2016-11-01

    Full Text Available Electric vehicle as the main development direction of the future automotive industry, has gained attention worldwide. The rationality of the planning and construction of the power station, as the foundation of energy supply, is an important premise for the development of electric vehicles. In full consideration of the electric demand and electricity consumption, this paper proposes a new construction mode in which charging station and centralized charging station are appropriately combined and presents a location optimization model. Not only can this model be applied to determine the appropriate location for the power station, but it can use the queuing theory to determine the optimal number of power equipment, with which we can achieve the minimum costs. Finally, taking a certain city as an example, the optimum plan for power station is calculated by using this model, which provides an important reference for the study of electric vehicle infrastructure planning.

  17. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  18. Experimental research of variable rotation speed ICE-based electric power station

    Directory of Open Access Journals (Sweden)

    Dar’enkov Andrey

    2017-01-01

    Full Text Available Developing variable rotation speed ICE-based stand-alone electric power stations which can supply distant regions and autonomous objects with electricity are of scientific interest due to the insufficient study. The relevance of developing such electric power stations is determined by their usage is to provide a significant fuel saving as well as increase ICE motor service life. The article describes the electric station of autonomous objects with improved fuel economy. The article describes multivariate characteristic. Multivariate characteristic shows the optimal frequency of rotation of the internal combustion engine. At this rotational speed there is the greatest fuel economy.

  19. Electrical-Generation Scenarios for China

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Krakowski, R.A.

    2002-03-01

    The China Energy Technology Program (CETP) used both optimizing and simulation energy- economic-environmental (E3) models to assess tradeoffs in the electricity-generation sector for a range of fuel, transport, generation, and distribution options. The CETP is composed of a range of technical tasks or activities, including Energy Economics Modeling (EEM, optimizations), Electric Sector Simulation (ESS, simulations), Life Cycle Analyses (LCA, externalization) of energy systems, and Multi-Criteria Decision Analyses (MCDA, integration). The scope of CETP is limited to one province (Shandong), to one economic sector (electricity), and to one energy sector (electricity). This document describes the methods, approaches, limitations, sample results, and future/needed work for the EEM ( optimization-based modeling) task that supports the overall goal of CETP. An important tool used by the EEM task is based on a Linear Programming (LP) optimization model that considers 17 electricity-generation technologies utilizing 14 fuel forms (type, composition, source) in a 7-region transportation model of China's electricity demand and supply system over the period 2000-2030; Shandong is one of the seven regions modeled. The China Regional Electricity Trade Model (CRETM) is used to examine a set of energy-environment-economy E3-driven scenarios to quantify related policy implications. The development of electricity production mixes that are optimized under realistically E3 constraints is determined through regional demands for electricity that respond to exogenous assumptions on income (GDP) and electricity prices through respective time-dependent elasticities. Constraints are applied to fuel prices, transportation limits, resource availability, introduction (penetration) rates of specific technology, and (where applicable) to local, regional, and countrywide emission rates of CO{sub 2}, SO{sub 2} and NO{sub x}. Importantly, future inter- regional energy flows are optimized with

  20. Environmental effects of the electric power generation

    International Nuclear Information System (INIS)

    Velez Ocon, C.

    1991-01-01

    Every manner to generate electricity has effects on environment and on the way of life of human society. Nevertheless electricity is a way of secondary energy handy and clean and is also frequently the more efficient, and for its reason its use is growing in countries with a rate superior to the increase in national gross product. This is particularly remarkable in Mexico where still exist population sectors without electricity services and where the demand per capita is left behind with respect to other economic indicators. In the last years, preoccupation for environmental effects in human activities, especially that related with the production and use of energy, has been increasing. 'Acid rain', air and water pollution, destruction of stratospheric ozone layer, global heating, radioactive wastes storage, land use, destruction of tropical forest, inundation of archaeological ruins, extintion of animal and vegetable species, are examples of problems daily expound to society (Author)

  1. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  2. Automation of steam generator services at public service electric & gas

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, H.; Wray, J.; Scull, D. [Public Service Electric & Gas, Hancock`s Bridge, NJ (United States)

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was due to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.

  3. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  4. Importance of hard coal in electricity generation in Poland

    Science.gov (United States)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  5. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  6. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  7. The SEPnet coil demonstrates electricity generation

    Science.gov (United States)

    Harvey, Clare; Hare, Jonathan

    2009-11-01

    The South East Physics Network (SEPnet) (www.sepnet.ac.uk/gcse.php) is exploring various ways to enhance physics learning and A-level uptake, including a series of interactive GCSE revision events. The first event, which includes talks and various physics exhibits by leading teachers and educators, is on energy and the exhibition—called 'Who will keep the lights on?'—is travelling around southern UK venues. Here we describe the demonstration that shows how electricity is generated.

  8. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  9. Generation of electricity using liquid metal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Goodwin, F.E.

    1992-01-01

    With liquid metal magnetohydrodynamics, a column of molten lead is passed through a magnetic field, thereby generating a voltage potential according to Faraday's law. The molten lead is propelled through a closed loop by steam from water injected just above where the lead is heated at the bottom of the loop. This water in turn boils explosively, propelling the lead upward through the loop and past the point where the steam escapes through a separator. Electricity can be generated more efficiently from steam with LMMHD than with conventional turbines. With the DC current generated by LMMHD, industriell cogeneration is seen as the most likely application, where the byproduct steam still has enough pressure to also power other steam-driven machinery. Furthermore, the byproduct steam is essentially lead-free since the operating temperature of the LMMHD generator is well below the temperature where lead could dissolve into the steam. (orig.) [de

  10. Projected costs of generating electricity - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This joint report by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) is the seventh in a series of studies on electricity generating costs. It presents the latest data available for a wide variety of fuels and technologies, including coal and gas (with and without carbon capture), nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal as well as combined heat and power (CHP). It provides levelised costs of electricity (LCOE) per MWh for almost 200 plants, based on data covering 21 countries (including four major non-OECD countries), and several industrial companies and organisations. For the first time, the report contains an extensive sensitivity analysis of the impact of variations in key parameters such as discount rates, fuel prices and carbon costs on LCOE. Additional issues affecting power generation choices are also examined. The study shows that the cost competitiveness of electricity generating technologies depends on a number of factors which may vary nationally and regionally. Readers will find full details and analyses, supported by over 130 figures and tables, in this report which is expected to constitute a valuable tool for decision makers and researchers concerned with energy policies and climate change

  11. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Pickering Nuclear Generating Station (PNGS) is located on the north shore of Lake Ontario, about 32 km east of downtown Toronto. It consists of two stations, PNGS-A and PNGS-B. Each station contains four reactor units. PNGS-A consists of Units 1 to 4, while PNGS-B consists of Units 5 to 8. Each unit can generate about 540 megawatts of electricity. All eight units are located within a single enclosure. Ontario Hydro`s Pickering Nuclear Division has assigned one Station Director with authority over both stations, but each station has its own organization. AECB issue a separate operating licence for each station. This report presents the Atomic Energy Control Board staff assessment of the Pickering stations` safety performance in 1994 and other aspects that they consider to have significant impact on nuclear safety. AECB based their conclusions on their observations, audits, inspections and review of information that Ontario Hydro submits to them as required by the station Operating Licences. 11 tabs., 8 figs.

  12. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1994

    International Nuclear Information System (INIS)

    1995-06-01

    The Pickering Nuclear Generating Station (PNGS) is located on the north shore of Lake Ontario, about 32 km east of downtown Toronto. It consists of two stations, PNGS-A and PNGS-B. Each station contains four reactor units. PNGS-A consists of Units 1 to 4, while PNGS-B consists of Units 5 to 8. Each unit can generate about 540 megawatts of electricity. All eight units are located within a single enclosure. Ontario Hydro's Pickering Nuclear Division has assigned one Station Director with authority over both stations, but each station has its own organization. AECB issue a separate operating licence for each station. This report presents the Atomic Energy Control Board staff assessment of the Pickering stations' safety performance in 1994 and other aspects that they consider to have significant impact on nuclear safety. AECB based their conclusions on their observations, audits, inspections and review of information that Ontario Hydro submits to them as required by the station Operating Licences. 11 tabs., 8 figs

  13. Models for the transient stability of conventional power generating stations connected to low inertia systems

    Science.gov (United States)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  14. Economical evaluation of electricity generation considering externalities

    International Nuclear Information System (INIS)

    El-Kordy, M.N.; Badr, M.A.; Abed, K.A.; Ibrahim, Said M.A.

    2002-01-01

    The economics of renewable energy are the largest barrier to renewable penetration. Nevertheless, the strong desire to reduce environmental emissions is considered a great support for renewable energy sources. In this paper, a full analysis for the cost of the kWh of electricity generated from different systems actually used in Egypt is presented. Also renewable energy systems are proposed and their costs are analyzed. The analysis considers the external cost of emissions from different generating systems. A proposed large scale PV plant of 3.3 MW, and a wind farm 11.25 MW grid connected at different sites are investigated. A life cycle cost analysis for each system was performed using the present value criterion. The comparison results showed that wind energy generation has the lowest cost, followed by a combined cycle-natural gas fired system. A photovoltaic system still uses comparatively expensive technology for electricity generation; even when external costs are considered the capital cost of photovoltaic needs to be reduced by about 60% in order to be economically competitive. (Author)

  15. Internal fire analysis screening methodology for the Salem Nuclear Generating Station

    International Nuclear Information System (INIS)

    Eide, S.; Bertucio, R.; Quilici, M.; Bearden, R.

    1989-01-01

    This paper reports on an internal fire analysis screening methodology that has been utilized for the Salem Nuclear Generating Station (SNGS) Probabilistic Risk Assessment (PRA). The methodology was first developed and applied in the Brunswick Steam Electric Plant (BSEP) PRA. The SNGS application includes several improvements and extensions to the original methodology. The SNGS approach differs significantly from traditional fire analysis methodologies by providing a much more detailed treatment of transient combustibles. This level of detail results in a model which is more usable for assisting in the management of fire risk at the plant

  16. Steam generator maintenance and life management at Embalse Nuclear Station

    International Nuclear Information System (INIS)

    Sainz, R.; Diaz, G.; Sveruga, H.; Ramakrishnan, T.K.; Azeez, S.

    2004-01-01

    The Embalse Nuclear Station has four steam generators (SGs) with inverted vertical U tubes manufactured by Babcock and Wilcox Canada (B and W). These are main components, both from the operative point of view as the heat transfer from the Primary Heat Transport System (PHTS) to the Secondary System, and from the point of view of safety, as they are the part of the PHTS and its radioactive inventory pressure barrier. In addition, they are one of the most important cost-related elements for potential life extensions. Maintenance and inspections are carried out in order to maintain a high availability of the SGs, as they have had a positive impact on the operational availability of the plant, and to reduce the tube failure probabilities, thus minimizing the amount of radioactive effluents and taking care of the condition of the main components in order to enable the plant life management and the planning of the plant life extension. The most relevant maintenance activities performed have been the inspections performed on 100% of the tubes every 3 years. the mechanical cleaning of the inside of the tubes, the sludge removal from the secondary side tubesheet, the divider plate replacement, and the inspection of internals of the secondary side.Thanks to the latter and to the eddy current inspections, the degradation in the U-bend supports was detected early and every effort is being made to repair them shortly. Besides, a life management program has been started covering the entire plant starting with this important component. The Embalse Nuclear Station's SGs show a low percentage of plugged tubes compared to other stations in similar conditions, but they must be monitored continually and systematically if a life extension is intended. (author)

  17. Insufficient incentives for investment in electricity generations

    Energy Technology Data Exchange (ETDEWEB)

    Neuhoff, K. [Cambridge University (United Kingdom). Dept. of Applied Economics; De Vries, L. [Delft University of Technology (Netherlands). Faculty of Technology, Policy and Management

    2004-12-01

    In theory, competitive electricity markets provide incentives for efficient investment in generation capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generation capacity can sign long-term contracts with consumers. Otherwise the uncovered price risk increases financing costs, reduces equilibrium investment levels, distorts technology choice towards less capital-intensive generation and reduces consumer utility. We observe insufficient levels of long-term contracts in existing markets, possibly because retail companies are not credible counter-parties if their final customers can switch easily between them. With a consumer franchise, retailers can sign long-term contracts, but this solution comes at the expense of retail competition. Alternative capacity mechanisms to stimulate investment are discussed. (author)

  18. Electricity generation in a sustainable development perspective

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saradhi, I.V.

    2003-01-01

    The increasing impact of energy technologies on the environment and possible effects on future generations has been a cause of concern in recent years. This has resulted in an awareness regarding the need for viewing the role of electricity production by different methods, using different fuels/sources, in a sustainable development perspective, which calls for the needs of the present generation to be met without compromising the ability of future generations to meet their own needs. This papers deals with some of the relevant issues in this regard. The world and the Indian energy scenarios are presented, followed by the data on the consequent carbon-dioxide emissions. The green house effect and the possible means of carbon sequestration are explained briefly. The important role nuclear energy can play in a sustainable development perspective is discussed, considering the various aspects such as resources, safety, radiological protection, cost externalities and environment impact. (author)

  19. Mini hydro electric power stations Lukar 1,2,3,4: Public enterprise (JP) Komunalec

    International Nuclear Information System (INIS)

    Stojanova, Blagica

    2004-01-01

    The role of the Public enterprises in improving entire living conditions of the citizens, not only by its services towards the citizenship such as: water supplying and public hygiene but the opportunity to produce the electric power by the Mini hydro electric-power stations built on the main city water supply pipes. The paper presents experiences of building the mini hydro electric power stations Lukar 1,2,3,4. The successful completion of this project should be a motivation for building more electric power stations because there are great water potential in the Republic of Macedonia i.e. there have been recorded more than a hundred places suitable for construction of power electric stations. This will contribute not only for clean ecological energy but will have a direct influence on the total economic development of the Republic of Macedonia. (Author)

  20. Locating replenishment stations for electric vehicles: Application to Danish traffic data

    DEFF Research Database (Denmark)

    Wen, Min; Laporte, Gilbert; Madsen, Oli B.G.

    2012-01-01

    for electric vehicles on a traffic network with flow-based demand. The objective is to optimize the network performance, for example to maximize the flow covered by a prefixed number of stations, or to minimize the number of stations needed to cover traffic flows. Two mixed integer linear programming......Environment-friendly electric vehicles have gained substantial attention in governments, industry and universities. The deployment of a network of recharging stations is essential given their limited travel range. This paper considers the problem of locating electronic replenishment stations...

  1. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    Science.gov (United States)

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  2. Inspection maintenance and planning of shutdown in thermal electric generating plants

    International Nuclear Information System (INIS)

    Dezordi, W.L.; Correa, D.A.; Kina, M.

    1984-01-01

    The schedule shutdown of an industrial plant and, more specifically, of an electrical generating station, is becoming increasingly important. The major parameters to be taken into account for the planning of such a shutdown are basically of economic-financial nature such as costs of the related services (materials, equipment, manpower, etc), loss of revenue caused by the station's shutdown as well as by the station availability, and other requirements expected from it by the Load Dispatch and consumers. Improving the equipment's performances and the station's availability are the fundamental objectives to be strived for. The authors present in this paper, in an abridged form, the planning tools used for thermal electric generating plants shutdowns for inspections, maintenance and design changes implementation. (Author) [pt

  3. Electricity generation from digitally printed cyanobacteria.

    Science.gov (United States)

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  4. Hydraulic turbines uses for rural electric generation

    International Nuclear Information System (INIS)

    Genta, J.; Nunes, V.

    1994-01-01

    The micro turbines use for electric generation either in autonomous systems or in connection to the national net is presented like an alternative whose viability has been studied in the Agreement taken place between the UTE Administracion Nacional de Usinas y transmisiones Electricas y la Facultad de Ingenieria. The Agreement S tudy for the Installation of Micro turbines that initially considered areas far from the national electric net it extended then to near areas to the same one to analyze the cogeneration alternative. They were considered smaller and bigger powers than 1 MW and up to 5MW. For the whole study range a methodology is described of calculate primary, starting from a minimum of field information that allows a first estimate of viability of a certain place and the selection of the turbine type, for a later detailed study

  5. Restructuring and generation of electrical energy in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Dominguez, E. Fernandez; Bernat, J. Xiberta

    2007-01-01

    Portugal and Spain are on the threshold of the creation of an Iberian electricity market. In order to help its development, the power of the electric interconnection between the countries has been increased and market mechanisms designed to resolve congestion, should it arise. A system of joint supply for the Iberian Peninsula will lead to single price for the whole area except at times when the interconnection is saturated, in which case prices will be somewhat higher in the importing zone. In the medium term, the hope is that both systems will have very similar generating equipment and that their variable costs will equalize due to the substitution of the most obsolete equipment with combined cycle power stations, and to the increase of exchange capacity. The coming into effect of this market will bring about improvements in the security and efficiency of supply in both countries. There will also be some obstacles to overcome, such as, for example, the current regulatory frame deficiencies on power generation, the contacts which exist at present in Portugal between the producers and the National Electricity Network, the asymmetry of the distribution channels in each country, the differences in rates and the limited capacity for exchange. (author)

  6. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    The authors examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response

  7. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    We examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response. (author)

  8. Public response to the Diablo Canyon Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Pijawka, K D [Arizona State Univ., Tempe (USA)

    1982-08-01

    We examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response.

  9. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  10. Emerging technologies in electricity generation : an energy market assessment

    International Nuclear Information System (INIS)

    2006-03-01

    Canada's National Energy Board (NEB) monitors the supply of electricity as well as its demand in both domestic and export markets. It monitors the main drivers affecting current trends in generation, demand, prices, infrastructure additions, and inter-regional and international trade. This document presented an assessment of renewable and other emerging technologies that are considered to have significant promise and increased application in Canada over the longer term. It provided comprehensive information on the status and prospects for these technologies, related issues and regional perspectives. Alternative and renewable resources and demand management are becoming more important in addressing air quality issues and supply adequacy. In preparation of this report, staff at the NEB participated in a series of informal meetings with electric utilities, independent power producers, provincial energy regulators, power system operators and those engaged in technology development. The report involved on-site information gathering at wind farms, small hydro facilities, biomass, solar and geothermal operations and other facilities associated with emerging energy technologies such as fuel cells and ocean energy. Clean coal technologies that refer to methods by which emissions from coal-fired generation can be reduced were also evaluated. It was noted that the prospects for emerging technologies vary among the provinces and territories depending on regional resources, provincial government policies and strategies regarding fuel preferences. It was noted that currently in Canada, only 3 per cent of the installed generating capacity consists of emerging technologies. This low penetration is due to the low cost of electricity derived from conventional sources and to the structure of the industry in which large publicly owned utilities have historically opted for large central generating stations. It was suggested that the large increase in fossil fuel prices, public concern

  11. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  12. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  13. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    Aumonier, S.

    1998-01-01

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  14. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  15. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  16. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available This presentation reflects on photovoltaic (PV) generated electricity in South Africa, and whether it is a cheaper alternative to current generated electricity in the country. It is projected that by 2019 the installed capacity of PV could...

  17. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  18. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  19. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  20. Electricity generation: options for reduction in carbon emissions.

    Science.gov (United States)

    Whittington, H W

    2002-08-15

    largest developed source of renewable electricity, but future large-scale projects will probably be limited to the less-developed world: the best schemes in the developed countries have already been exploited. Wave and tidal can be looked on as medium- to long-term generators of electricity, as their respective industries are not as mature as competing renewable resources. Municipal solid-waste combustion and landfill gas technologies can also be seen as short term, as can their rural equivalents, agriculture and forestry waste. Any widespread exploitation of renewable energy will depend on being able to transmit the energy from source to point of use, so the implications for the electrical network from the penetration of substantial levels of renewable energy are presented. Effective management of renewable energy installations will require technical assessment of the range of exploitation strategies, to compare local production of, say, hydrogen and the more traditional transmission of electricity. Such resources will have to compete with others in any national, or grid, system and detailed economic analysis will be necessary to determine the deployment that best fits the trading regime under which the energy will be sold. Consideration will also be necessary to determine how best to control the introduction of this radically new resource such that it does not attract punitive cost overheads until it is mature enough to cope. Finally, it is inescapable that nuclear power is a proven technology that could take its place in any future generation portfolio. Unfortunately, suspicion and mistrust surround waste management and radioactivity release. Unless this is overcome, the lack of confidence engendered by this public mistrust may result in few, if any, new nuclear power stations being built. In the event of that decision, it is difficult to see how CO(2) levels can be significantly reduced: the irony is that nuclear energy may emerge as environmentally essential.

  1. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    Science.gov (United States)

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  2. Optimal recharging strategy for battery-switch stations for electric vehicles in France

    International Nuclear Information System (INIS)

    Armstrong, M.; El Hajj Moussa, C.; Adnot, J.; Galli, A.; Riviere, P.

    2013-01-01

    Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010

  3. Thermophotovoltaic Arrays for Electrical Power Generation

    International Nuclear Information System (INIS)

    Sarnoff Corporation

    2003-01-01

    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible

  4. Projected costs of generating electricity - 2005 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut 'winner'. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. 24 figs., 38 tabs., 11 apps.

  5. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  6. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  7. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  8. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  9. Matching of renewable source of energy generation graphs and electrical load in local energy system

    Science.gov (United States)

    Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav

    2017-08-01

    The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.

  10. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  11. Service hall in Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc

    International Nuclear Information System (INIS)

    Tawara, Shigesuke

    1979-01-01

    There are six BWR type nuclear power plants in the Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc. The service hall of the station is located near the entrance of the station. In the center of this service hall, there is the model of a nuclear reactor of full scale. This mock-up shows the core region in the reactor pressure vessel for the number one plant. The diameter and the thickness of the pressure vessel are about 5 m and 16 cm, respectively. The fuel assemblies and control rods are set just like the actual reactor, and the start-up operation of the reactor is shown colorfully and dynamically by pushing a button. When the control rods are pulled out, the boiling of water is demonstrated. The 1/50 scale model of the sixth plant with the power generating capacity of 1100 MWe is set, and this model is linked to the mock-up of reactor written above. The operations of a recirculating loop, a turbine and a condenser are shown by switching on and off lamps. The other exhibitions are shielding concrete wall, ECCS model, and many kinds of panels and models. This service hall is incorporated in the course of study and observation of civics. The good environmental effects to fishes and shells are explained in this service hall. Official buildings and schools are built near the service hall utilizing the tax and grant concerning power generation. This service hall contributes to give much freedom from anxiety to the public by the tour. (Nakai, Y.)

  12. Safety design of next generation SUI of CANDU stations

    International Nuclear Information System (INIS)

    Nasimi, Elnara; Gabbar, Hossam A.

    2013-01-01

    Highlights: ► Review of current SUI technologies and challenges. ► Propose a new type of SUI detectors. ► Propose a new SUI system architecture and layout. ► Propose implementation procedure for SUI with reduced risks. - Abstract: Due to the age and operating experience of Nuclear Power Plants, equipment ageing and obsolescence has become one of the main challenges that need to be resolved for all systems, structures and components in order to ensure a safe and reliable production of energy. This paper summarizes the research into a methodology for modernization of Start-Up Instrumentation (SUI), both in-core and Control Room equipment, using a new generation of detectors and cables in order to manage obsolescence. The main objective of this research is to develop a new systematic approach to SUI installation/replacement procedure development and optimization. Although some additional features, such as real-time data monitoring and storage/archiving solutions for SUI systems are also examined to take full advantage of today's digital technology, the objectives of this study do not include detailed parametrical studies of detector or system performance. Instead, a number of technological, operational and maintenance issues associated with Start-Up Instrumentation systems at Nuclear Power Plants (NPPs) will be identified and a structured approach for developing a replacement/installation procedure that can be standardized and used across all of the domestic CANDU (Canadian Deuterium Uranium) stations is proposed.

  13. Environmental emissions control programs at Lambton TGS [Thermal Generating Station

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1992-01-01

    Ontario Hydro's air emissions control programs at Lambton thermal generating station, both committed and planned, are reviewed, and their potential impacts on emissions, effluents and wastes are discussed. Control technologies examined include flue gas conditioning, wet limestone scrubbing, combustion process modifications, urea injection, and selective catalytic reduction. The implementation of these technologies has the potential to create new solid and liquid waste disposal problems, the full extent of which is often not realized at the process selection stage. For example, selective noncatalytic reduction using urea injection can lead to increased CO emissions, escape of unreacted ammonia from the stack at levels of 5-50 ppM, increase in N 2 O emissions, contamination of fly ash, gypsum and waste water with ammonia, and an increase in CO 2 emissions of less than 0.4% due to increased power consumption. Optimum performance of the air emissions control systems, with minimum negative impact on the environment, requires consideration of the impact of these systems on all waste streams. 11 refs., 3 figs., 1 tab

  14. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    External costs of nuclear power include: future financial liabilities arising from decommissioning and dismantling of nuclear facilities, health and environmental impacts of radioactivity releases in routine operation, radioactive waste disposal and effects of severe accidents. The nuclear energy industry operates under regulations that impose stringent limits to atmospheric emissions and liquid effluents from nuclear facilities as well as requiring the containment and confinement of solid radioactive waste to ensure its isolation from the biosphere as long as it may be harmful for human health and the environment. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The externality related to potential health and environmental impacts of radioactive releases during routine operations have been assessed in a large number of comprehensive studies, in particular the ExternE project that was created in the framework of the European Commission. With regard to effects of severe nuclear accidents, a special legal regime, the third-party liability system, has been implemented to provide limited third party liability coverage in the event of a nuclear accident. The nuclear plant owners are held liable for some specified first substantial part of damages to third parties, and must secure insurance coverage adequate to cover this part. The Government provides coverage for some specified substantial second part of the damages, with any remaining damages to be considered by the national legislation. Thus, the costs of an incident or accident are fully internalized in the costs borne by the nuclear plant owners. Externalities of energy are not limited to environmental and health related impacts, but may result also from macro-economic, policy or strategic factors not reflected

  15. Performance study of thermo-electric generator

    Science.gov (United States)

    Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.

    2017-07-01

    Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.

  16. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  17. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  18. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  19. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  20. Chemistry control experiences at Kaiga Generating Station (KGS), NPCIL

    International Nuclear Information System (INIS)

    Harikrishna, K.; Somasundaram, K.M.; Sanathkumar, V.V.; Nageswara Rao, G.

    2006-01-01

    The Chemistry control section at Kaiga Generating Station (KGS), NPCIL had keenly pursued many developmental works and projects which had not only improved the system performance and reliability but also largely benefited the Station by many ways. The highlights of some of the major developmental works that have contributed significantly are: 1. Studies on frequent and sharp rise in dew point values of AGMS: In the Annulus Gas Monitoring Systems (AGMS) of KGS units, it was observed that the system dew points were rising very sharply and abruptly. The systematic studies revealed the presence of Hydrogen impurity in CO 2 gas cylinders, hence emphasized the need to ensure the gaseous contents before injecting the media from the cylinders to the system. 2. a. Studies on frequent tube failures of TG auxiliary coolers: The detailed studies and investigation revealed that under deposit corrosion contributed by microbiological attack was the main cause for frequent failures of 90/10 Cupro Nickel cooler tubes which could be minimized either by resorting to periodical mechanical/chemical cleaning of cooler tubes or by regular chemical treatment with a suitable chemical formulation. b. Development of suitable chemical formulation for chemical cleaning of TG auxiliary coolers: A series of in-house experiments at site resulted in developing a suitable chemical formulation for effective cleaning of 90/10 Cupro Nickel cooler tubes. The formulation with 1 % w/w Citric acid with pH adjusted to 8.0 by Ammonia in first step followed by 1 % w/w EDTA with pH adjusted to 9.0 by Hydrazine in the second step could yield more than 90 % cleanliness. 3. Chemical cleaning of cooling circuits of AHUs: An in-house formulation was developed and used for chemical cleaning of cooling circuits (with copper tubes) of AHUs. Post chemical cleaning, the room temperatures decreased by 3-4 degC, hence resulted in better cooling. 4. Enhancement in service period of BBD IX columns: The service period of

  1. Aerial radiological survey of the Rancho Seco Nuclear Generating Station, Clay Station, California, 18 January 1980 to 1 February 1980

    International Nuclear Information System (INIS)

    1980-11-01

    An airborne radiological survey of 260 km 2 area centered over the Rancho Seco Nuclear Generating Station was made 18 January through 1 February 1980. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except directly over the station. Count rates observed at 90 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map

  2. Distributed Generation of Electricity and its Environmental Impacts

    Science.gov (United States)

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  3. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  4. International comparison of electricity generating costs

    International Nuclear Information System (INIS)

    Jones, P.M.S.; Stevens, G.H.; Wigley, K.

    1989-01-01

    The paper reviews the principal findings of successive studies of projected comparative generation costs for base-load electricity production conducted by Nuclear Energy Agency working groups, including a current study jointly sponsored by the International Energy Agency. It concludes that over the six years 1983-1989 nuclear generation costs have remained steady or slightly declined in the majority of OECD countries. This represents an excellent result in view of the difficulties that have arisen in many countries during the period. Nuclear power is projected to maintain a significant advantage in most OECD countries on an assessment basis reflecting utility experience and discount rates employed by the majority of participants. However, nuclear's projected advantage has declined due to a significant fall in projected coal prices which have decreased by 50% since 1983. This decline is only slightly offset by increased capital and operating costs for coal-fired plant. If rates of return sought by utilities were higher or if coal prices prove lower than utilities project then the economic balance between nuclear and coal-fired power would be further reduced and could in some instances be reversed. To improve on its competitiveness nuclear power will have to continue to control capital costs through replication and reduced construction schedules and to improve plant availability to maximise output

  5. Recruiting, Training, Retaining, and Promoting the Workforce of the Future at Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Sunseri, M.

    1999-01-01

    TXU Electric expects to encounter a relatively high turnover in the workforce in the coming years. To prepare for this challenge and to maintain a high level of performance, a number of approaches are being implemented. These approaches involve recruiting experienced personnel, recruiting and developing local nonexperienced personnel, and developing current employees. Through these approaches, TXU Electric expects to maintain a high-quality workforce for the continued support of Comanche Peak Steam Electric Station

  6. Safety Evaluation Report related to the operation of Hope Creek Generation Station (Docket No. 50-354). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-07-01

    Supplement No. 6 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company on its own behalf as co-owner and as agent for the other co-owner, the Atlantic City Electric Company, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that has not been resolved at the time of the publication of the Safety Evaluation Report. This supplement supports the issuance of a full-power license to operate Hope Creek Generating Station

  7. Chemistry technician performance evaluation program Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Shawver, J.M.

    1992-01-01

    The Arizona Nuclear Power Project (ANPP), a three-reactor site located 50 miles west of Phoenix, Arizona, has developed and implemented a program for evaluating individual chemistry technician analytical performance on a routine basis. About 45 chemistry technicians are employed at the site, 15 at each operating unit. The technicians routinely perform trace level analyses for impurities of concern to PWRs. Each month a set of blind samples is provided by an outside vendor. The blind samples contain 16 parameters which are matrixed to approximate the PWR's primary and secondary cycles. Nine technicians receive the samples, three from each operating unit, and perform the required analyses. Acceptance criteria for successful performance on the blind parameters is based on the values found in the Institute of Nuclear Power Operations (INPO) Document 83-016, Revision 2, August 1989, Chemistry Quality Control Program. The goal of the program is to have each technician demonstrate acceptable performance on each of 16 analytical parameters. On completion of each monthly set, a summary report of all of the analytical results for the sample set is prepared. From the summary report, analytical bias can be detected, technician performance is documented, and overall laboratory performance can be evaluated. The program has been very successful at satisfying the INPO requirement that the analytical performance of each individual technician should be checked on at least a six-month frequency for all important parameters measured. This paper describes the program as implemented at the Palo Verde Nuclear Generating Station and provides a summary report and trend and bias graphs for illustrative purposes

  8. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  9. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  10. Nuclear Power's Role in Generating Electricity

    National Research Council Canada - National Science Library

    Falk, Justin

    2008-01-01

    This study assesses the commercial viability of advanced nuclear technology as a means of meeting future demand for electricity by comparing the costs of producing electricity from different sources...

  11. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  12. Risk and cost comparison of energy technologies for central electric power generation

    International Nuclear Information System (INIS)

    Sterrett, D.H.

    1980-01-01

    An evaluation of nuclear energy as it relates to alternative sources of electric power generation is presented. Citing Duke Power Company's Oconee Nuclear Station, the nuclear option in the past was the obvious choice. Today it is still the preferred alternative both economically and because of increasing environmental concerns over other energy alternatives. Public acceptance of nuclear generation, following Three Mile Island, remains a significant hurdle in its path

  13. Big Rock Point: 35 years of electrical generation

    International Nuclear Information System (INIS)

    Petrosky, T.D.

    1998-01-01

    On September 27, 1962, the 75 MWe boiling water reactor, designed and built by General Electric, of the Big Rock Point Nuclear Power Station went critical for the first time. The US Atomic Energy Commission (AEC) and the plant operator, Consumers Power, had designed the plant also as a research reactor. The first studies were devoted to fuel behavior, higher burnup, and materials research. The reactor was also used for medical technology: Co-60 radiation sources were produced for the treatment of more than 120,000 cancer patients. After the accident at the Three Mile Island-2 nuclear generating unit in 1979, Big Rock Point went through an extensive backfitting phase. Personnel from numerous other American nuclear power plants were trained at the simulator of Big Rock Point. The plant was decommissioned permanently on August 29, 1997 after more than 35 years of operation and a cumulated electric power production of 13,291 GWh. A period of five to seven years is estimated for decommissioning and demolition work up to the 'green field' stage. (orig.) [de

  14. Electricity generation using microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Y.; Manoj Muthu Kumar, S.; Das, D. [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2008-01-15

    Conversion of biomass into electricity is possible using microbial fuel cells (MFCs). The present paper deals with the studies of a two-chambered salt bridge MFC using Enterobacter cloacae IIT-BT 08 in MYG medium. The effect of different electron mediators, concentration of the mediator, ionic strength (salt concentration) of the medium and the surface area of the salt-bridge in contact with the anode and cathode chambers on the power generation in MFCs are reported. In the case of methyl viologen (MV) (0.1 mM) as the electron mediator, the voltage generation was 0.4 V but no current was detected. Different concentrations of methylene blue (MB) were also studied as the mediator. A maximum voltage of 0.37 V was seen at 0.05 mM MB, whereas a maximum current and power of 56.7{mu} A and 19.2{mu} W, respectively, were observed in the case of 0.03 mM MB with a voltage of 0.34 V. The corresponding power density and current density of 9.3mW/m{sup 2} and 27.6mA/m{sup 2}, respectively, were obtained. When the surface area of the salt bridge in contact with the anode and cathode chambers was increased, a proportionate improvement in the power output from 19.2 to 708{mu} W was detected. The maximum power density and current density of 236mW/m{sup 2} and 666.7mA/m{sup 2}, respectively, which are found to be very promising for a salt bridge MFC were observed. (author)

  15. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  16. International cost relations in electric power generation

    International Nuclear Information System (INIS)

    Schmitt, D.; Duengen, H.; Wilhelm, M.

    1986-01-01

    In spite of the fact that analyses of the cost of electric power generation as the result of international comparative evaluations are indisputably relevant, problems pending in connection with the costs of representative power plant technologies are of the methodological bind. German authors have hitherto also been failing to clear up and consider all aspects connected with the problems of data acquisition and the adequate interpretation of results. The analysis presented by the paper abstracted therefore aims at the following: 1) Systematization of the different categories of cost relevant in connection with international comparative evaluation. Classification into different categories of decision making and development of standards meeting the requirements of international comparative evaluation. 2) Calculation of relevant average financial costs of Western German, America and French fossil-fuel and nuclear power plants by means of adequate calculation models, that is the assessment of costs with regard to countries and power plant technologies which are relevant to the Federal Republic of Germany. 3) Analysis of the resulting differences and determinantal interpretation. (orig./UA) [de

  17. Using sewerage system to generate electricity

    International Nuclear Information System (INIS)

    Asghar, J.

    2005-01-01

    The development of the sanitary engineering has paralleled and contributed to the growth of the city. Without an adequate supply of safe water, the great city could not exist and life in it would be both unpleasant and dangerous unless human and other waste were promptly removed. The concentration of population in relatively small areas has made the task of sanitary engineer more complex. The cities, towns and villages are being polluted ground water and surface water. Industries also demand more and better water from all available sources. The rivers receive ever-increasing amount of sewage and industrial wastes and thus resulting more attention to the water treatment, stream pollution and complicated phenomena of self-purification. In many developing countries there is no such treatment plants for the sewerage water. Rivers receive large amount of polluted water and resulting many diseases. Thus self-purification and treatment plants playa vital role in sanitation. The other benefit is now introducing as Generating electricity from Sewerage System. (author)

  18. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  19. Analysis of steam generator tube sections removed from Gentilly-2 nuclear generating station

    International Nuclear Information System (INIS)

    Semmler, J.; Lockley, A.J.; Doyon, D.

    2010-01-01

    deposition rate in the steam generators from 2001 to 2009 were estimated and compared to the estimated values from 1983 (station commissioning) to 2001. This paper presents a summary of steam generator tube characterization results and describes how the data on the oxide deposition rate were correlated to the changes in station operating practices. These data demonstrate the benefits that resulted from recent changes to station chemistry and operational practices. (author)

  20. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  1. Optimization and Economic Analysis of Grid-Photovoltaic Electric Boat Charging Station in Kuala Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N.A. S.

    2016-01-01

    Full Text Available This study evaluates the feasibility of developing grid-photovoltaic electric boat charging station in Kuala Terengganu using simulation-based method. The main focus is on reducing the dependency on subsidy spent by the government in fisheries sector and encouraging green technology in commercial sector. All data such as solar radiation, amount of subsidy received by fishermen, and fishing activities were collected for the selected area. Economic analyses of the proposed system are discussed based on payback period and net present cost (NPC. The comparison between the proposed system and the grid-only system is done based on the production and consumption of electricity per year, the NPC and emission of pollutant. The system also generates high income from selling energy to the grid with tariff rates RM 1.49/kWh. It is concluded that the proposed system is feasible to be developed in the selected area with the payback period and the NPC are 8.2 years and RM 759,098, respectively. The results also show that the performance of the proposed system is better than grid-only system in all the interested parameters.

  2. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  3. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Science.gov (United States)

    2010-08-24

    ... Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde... Statement for the Palo Verde Nuclear Generating Station, NUREG-0841, dated February 1982. Agencies and...

  4. 76 FR 1197 - Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of...

    Science.gov (United States)

    2011-01-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-528, 50-529, 50-530; NRC-2009-0012] Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of the Final Supplement 43... of operation for the Palo Verde Nuclear Generating Station (PVNGS). Possible alternatives to the...

  5. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  6. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  7. Expanding exports, increasing smog : Ontario Power Generation's and Hydro One's strategies to continue coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    Gibbons, J.

    2002-06-01

    The production of coal-fired electricity increased by approximately 150 per cent in Ontario between 1995 and 2000. As a result, the smog-causing emissions generated by the five coal-fired power plants operated by Ontario Power Generation caused an increase in smog and worsened air quality in the province as well as affecting air quality as far afield as the Atlantic provinces. Between 2002 and 2005, it is expected that the Pickering and Bruce nuclear plants will be returned to service, making the electricity generated by the coal plants surplus to Ontario's needs. Increasing this surplus are the planned natural gas generating stations. Ontario Power Generation is planning on using this surplus to export it to the United States rather than phasing out its reliance on coal. The increase in exports to the United States Northeast and Midwest is planned with Hydro One, already busy increasing its transmission capacity to the United States by 1,000 megawatt (MW). This plan involves laying 975 MW submarine cable from the Nanticoke Generating Station (operated by Ontario Power Generation) under Lake Erie to Pennsylvania, Ohio, or both states. At the moment, the exports are constrained by the government emissions limits imposed by the Ontario government on sulphur dioxide and nitrogen oxides. This constraint could be removed if Ontario Power Generation decides to pay further for pollution controls for sulphur dioxide and nitrogen oxides at its coal stations. Unfortunately, increasing the exports would also result in emissions increases for 28 other uncapped pollutants such as lead, mercury and arsenic. The author recommended that the Ontario government ban non-emergency coal-fired electricity exports to improve air quality in the province. refs., 8 figs

  8. Safety Evaluation Report related to the operation of Hope Creek Generating Station (Docket No. 50-354). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement No. 1 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company as applicant for itself and Atlantic City Electric Company, as owners, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  9. Safety Evaluation Report related to the operation of Hope Creek Generating Station (Docket No. 50-354). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company on its own behalf as co-owner and as agent for the other co-owner, the Atlantic City Electric Company, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  10. Safety Evaluation Report related to the operation of Hope Creek Generating Station (Docket No. 50-354)

    International Nuclear Information System (INIS)

    1985-10-01

    Supplement No. 3 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company on its own behalf as co-owner and as agent for the other co-owner, the Atlantic City Electric Company, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report. 6 tabs

  11. Safety evaluation report related to the operation of Hope Creek Generation Station (Docket No. 50-354). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-04-01

    Supplement No. 5 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company on its own behalf as co-owner and as agent for the other co-owner, the Atlantic City Electric Company, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that had not been resolved at the time of the publication of the Safety Evaluation Report

  12. Safety evaluation report related to the operation of Hope Creek Generating Station (Docket No. 50-354). Supplement 2

    International Nuclear Information System (INIS)

    1985-08-01

    Supplement No. 2 to the Safety Evaluation Report on the application filed by Public Service Electric and Gas Company as applicant for itself and Atlantic City Electric Company, as owners, for a license to operate Hope Creek Generating Station has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lower Alloways Creek Township in Salem County, New Jersey. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  13. Review insights on the probabilistic risk assessment for the Limerick Generating Station

    International Nuclear Information System (INIS)

    1984-08-01

    In recognition of the high population density around the Limerick Generating Station site and the proposed power level, the Philadelphia Electric Company, in response to NRC staff requests, conducted and submitted between March 1981 and November 1983 a probabilistic risk assessment (PRA) on internal event contributors and a severe accident risk assessment on external event contributors to assess risks posed by operation of the plant. The applicant has developed perspectives using PRA models on the safety profile of the Limerick plant and has altered the plant design to reduce accident vulnerabilities identified in these PRAs. The staff's review of the Limerick PRA has particularly emphasized the dominant accident sequences and the resulting insights into demonstration of compliance with regulatory requirments, unique design features and major plant vulnerabilities to assess the need for any additional measures to further improve the safety of the LGS. The staff's review insights and PRA safety review conclusions are presented in this report

  14. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-02-26

    ... eastern Montana, and western and central North Dakota. The need for additional generating capacity is...). Any action by RUS related to the proposed Project will be subject to, and contingent upon, compliance...

  15. Monitoring and managing component fatigue at Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Stevens, G.L.; Yetisir, M.; Scovil, A.; Slade, J.

    2008-01-01

    Many CANDU plants are now approaching the end of their design lives and are being considered for extended operation beyond their design life. The Canadian Nuclear Safety Commission (CNSC) has asked utilities to address component fatigue issues in plant life extension (PLEX) applications. In particular, environmental effects on fatigue was identified as an issue that needs to be addressed, similar to being addressed for license renewal for U.S. nuclear power plants. To address CNSC concerns, the CANDU Owners Group (COG) has initiated a program to help utilities develop component fatigue management programs for PLEX operation. A summary of a pilot study that was conducted at the Point Lepreau Generating Station (PLGS) is provided below: A plant-specific Recommendation Study provided a comprehensive review of the existing plant-specific systems, cycle counting procedures, and other fatigue-related requirements, and made some general recommendations on how best to implement a fatigue management system for PLEX. The plant-specific study determined that only 10 to 15% of the design transients have been used after 25 effective full power years (EFPY) of operation. Hence, a significant amount of original design margin for fatigue usage margin remains available for PLEX operation. Environmental fatigue considerations in heavy water (D 2 O) were included in the plant-specific assessment. Only warm-up transients were assessed to have dissolved oxygen concentrations that can result in a significant environmental effect for the ferritic steels used in the CANDU primary systems. Due to the low accumulation of transients and the absence of known thermal stratification mechanisms, thermal fatigue is not as significant an issue in CANDU plants as in pressurized water reactor (PWR) and boiling water reactor (BWR) plants. The needs for implementing a comprehensive Fatigue Management Program for PLGS to satisfy PLEX requirements were defined, and specific direction and strategy for

  16. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  17. Probabilistic modeling of nodal electric vehicle load due to fast charging stations

    DEFF Research Database (Denmark)

    Tang, Difei; Wang, Peng; Wu, Qiuwei

    2016-01-01

    In order to reduce greenhouse gas emission and fossil fuel dependence, Electric Vehicle (EV) has drawn increasing attention due to its zero emission and high efficiency. However, new problems such as range anxiety, long charging duration and high charging power may threaten the safe and efficient...... station into consideration. Fuzzy logic inference system is applied to simulate the charging decision of EV drivers at fast charging station. Due to increasing EV loads in power system, the potential traffic congestion in fast charging stations is modeled and evaluated by queuing theory with spatial...

  18. Clean coal technology project to Polk Power Station, Tampa Electric Company, Florida, Volume 1: Report

    International Nuclear Information System (INIS)

    1994-06-01

    Tampa Electric Company proposes to construct and operate a 1,150-MW power station in southwestern Polk County, Florida. The proposed Polk Power Station would require an EPA NPDES permit for a new source and would include a 260-MW IGCC unit as a DOE Clean Coal Technology demonstration project. This EIS document assesses the proposed project and alternatives with respect to environmental impacts. Mitigative measures are also evaluated for the preferred alternative. Included in this Volume I are the following: alternatives including Tampa Electric Companies proposed project (preferred alternative with DOE financial assistance); affected environment; environmental consequences of the alternatives

  19. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  20. Generation capacity adequacy in interdependent electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2011-01-01

    This paper deals with the practical problems related to long-term security of supply in regional electricity markets with transmission constraints. Differences between regulatory policies and market designs in terms of generation adequacy policies may distort the normal functioning of the neighboring markets, as well as the reliability of supply. We test the effect of heterogeneous regulatory design between two interdependent markets: energy-only market, price-capped market without capacity mechanisms and price-capped markets with forward capacity contracts obligation. We rely on a long-term market simulation model in system dynamics that characterizes expansion decision in a competitive regime. The results show that differences in market designs affect both price and reliability of supply in the two markets. We examine both the short and long terms effect, and how free-riding may occur where capacity adequacy policies are adopted in one market but not the other. The main finding is that the lack of harmonization between local markets in policies to ensure capacity adequacy may lead to undesirable side effects. - Research highlights: → We model the long-term dynamic of two interdependent markets. → We examine both the short and long terms effect of heterogeneous regulatory design: energy-only market, price-capped market without capacity mechanisms and price-capped markets with forward capacity contracts obligation. → Differences in market designs affect both price and reliability of supply in the two markets. → Lack of harmonization between local markets in policies to ensure capacity adequacy may lead to undesirable side effects. → Free-riding may occur where capacity adequacy policies are adopted in one market but not the other.

  1. Nuclear generating station and heavy water plant cost estimates for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-07-01

    Nuclear generating station capital, operating and maintenance costs are basic input data for strategy analyses of alternate nuclear fuel cycles. This report presents estimates of these costs for natural uranium CANDU stations, CANDU stations operating on advanced fuel cycles, and liquid metal fast breeder reactors. Cost estimates for heavy water plants are also presented. The results show that station capital costs for advanced fuel cycles are not expected to be significantly greater than those for natural uranium stations. LMFBR capital costs are expected to be 25-30 percent greater than for CANDU's. (auth)

  2. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  3. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  4. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  5. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes...... detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...

  6. Experimental study of camel powered electricity generation unit

    Science.gov (United States)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  7. Analysis and quality of service evaluation of a fast charging station for electric vehicles

    International Nuclear Information System (INIS)

    Zenginis, Ioannis; Vardakas, John S.; Zorba, Nizar; Verikoukis, Christos V.

    2016-01-01

    Electrification of transportation is considered as one of the most promising ways to mitigate climate change and reduce national security risks from oil and gasoline imports. Fast charging stations that provide high quality of service will facilitate the wide market penetration of electric vehicles. In this paper, the operation of a fast charging station is analyzed by employing a novel queuing model. The proposed analysis considers that the various electric vehicle models are classified by their battery size, and computes the customers' mean waiting time in the queue by taking into account the available charging spots, as well as the stochastic arrival process and the stochastic recharging needs of the various electric vehicle classes. Furthermore, a charging strategy is proposed according to which the drivers are motivated to limit their energy demands. The implementation of the proposed strategy allows the charging station to serve more customers without any increase in the queue waiting time. The high precision of the present analytical model is confirmed through simulations. Therefore, it may be utilized by existing fast charging station operators that need to provide high quality of service, or by future investors that need to design an efficient installation. - Highlights: • A fast charging station for multiple classes of electric vehicles is presented and analyzed. • A novel multiclass queuing model is presented for the mean queue waiting time derivation. • The system's arrival rate capacity is derived given a maximum tolerable waiting time limit. • A charging strategy is proposed aiming at increasing the system's arrival rate capacity. • The charging station operator's revenue is calculated based on the energy drawn by the electric vehicles.

  8. Design of electric vehicle charging station based on wind and solar complementary power supply

    Science.gov (United States)

    Wang, Li

    2018-05-01

    Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.

  9. AECB staff annual assessment of the Pickering A and B Nuclear Generating Stations for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Pickering A and B Generating Stations for 1996. PNGS-A and PNGS-B operated safely during 1996. Although the risk to the workers and the public is low, major safety related changes are necessary at the stations and the sustainability of those changes needs to be demonstrated. Improvement is needed by Ontario Hydro in meeting the time limits for reporting reportable events. Ontario Hydro's follow up to events and causal factor analyses continue to need improvements. Improvements are needed to operational safety and reactor maintenance at both A and B. There are signs of improvement through Ontario Hydro's plan for recovery, and in station management changes. There also appears to be commitment to safety expressed at the highest level of the utility

  10. Electricity Self-Generation Costs for Industrial Companies in Cameroon

    Directory of Open Access Journals (Sweden)

    Diboma Benjamin Salomon

    2010-07-01

    Full Text Available Industrial production in developing countries (DC is frequently perturbed by electric energy supply difficulties. To overcome this problem, generators are used in self-generation of energy, but this leads to an increase of electricity-related expenses. This article assesses the impact of electricity self-generation on Cameroonian industrial companies. The model described in this article is based on data collected through a survey of a representative sample of industrial companies and from numerous previous thematic and statistical studies. The results of our analyses show that expenses related to electricity in industrial companies in Cameroon have increased five times due to electricity rationing and untimely power cuts. The article also suggests some solutions to improve the electricity self-generation capacity of industrial companies.

  11. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made...

  12. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  13. Concepts of investment risks and strategies in electricity generation

    International Nuclear Information System (INIS)

    De Joode, J.; Boots, M.G.

    2005-06-01

    This report deals with the specific investment risks in electricity generation and discusses the problems associated with energy investments in general and focus on the additional or changing risks resulting from electricity market liberalisation. The focus is on (1) risks under the control of the electricity company, and on (2) market risks, such as the risk of price changes. Ultimately, some of the approaches and strategies that enable electricity producers to counter or mitigate these risks are discussed

  14. Electric potential differences across auroral generator interfaces

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-02-01

    Full Text Available Strong localized high-altitude auroral electric fields, such as those observed by Cluster, are often associated with magnetospheric interfaces. The type of high-altitude electric field profile (monopolar, bipolar, or more complicated depends on the properties of the plasmas on either side of the interface, as well as on the total electric potential difference across the structure. The present paper explores the role of this cross-field electric potential difference in the situation where the interface is a tangential discontinuity. A self-consistent Vlasov description is used to determine the equilibrium configuration for different values of the transverse potential difference. A major observation is that there exist limits to the potential difference, beyond which no equilibrium configuration of the interface can be sustained. It is further demonstrated how the plasma densities and temperatures affect the type of electric field profile in the transition, with monopolar electric fields appearing primarily when the temperature contrast is large. These findings strongly support the observed association of monopolar fields with the plasma sheet boundary. The role of shear flow tangent to the interface is also examined.

  15. Papers of 4. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1997-01-01

    The research on the materials commonly used in electric power stations and energetics have been summarized in the course of the seminar. Especially a different kinds of steels have been investigated from the view point of their desirable mechanical and corrosion properties

  16. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  17. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  18. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    International Nuclear Information System (INIS)

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant's electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant's protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well

  19. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  20. Applied risk analysis to the future Brazilian electricity generation matrix

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair; Fernandez, Eloi; Correa, Antonio

    2010-09-15

    This study compares energy conversion systems for the generation of electrical power, with an emphasis on the Brazilian energy matrix. The financial model applied in this comparison is based on the Portfolio Theory, developed by Harry Markowitz. The risk-return ratio related to the electrical generation mix predicted in the National Energy Plan - 2030, published in 2006 by the Brazilian Energy Research Office, is evaluated. The increase of non-traditional renewable energy in this expected electrical generating mix, specifically, residues of sugar cane plantations and wind energy, reduce not only the risk but also the average cost of the kilowatt-hour generated.

  1. Radio-location of mobile stations in third generation networks

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-06-01

    Full Text Available Mobile station localization in mobile networks started with simple methods (e.g. Cell-ID method which required only slight modifications of network infrastructures. Principally, it was about network localization by which a localization service became available to all types of mobile phones. Due to low precision, the initiated development of more sophisticated methods has not been finished yet. Among the advanced location-based methods are those based on the measurement of location parameters in the time domain. In this paper the general consideration of radio location methods in 3G (UMTS radio networks is presented. The use of time based measurement methods was analysed in detail. Due to the limited article length, the use of other locating methods in 3G networks (based on power measurements, on radio direction measurement, and on cells identification – Cell ID and global positioning system - GPS are not described. Introduction Mobile station localization within modern cellular networks increases the level of user security and opens wide opportunities for commercial operators who provide this service. The major obstacle for the implementation of this service, which also prevents its practical usage, is the modification of the existing network infrastructure. In general, depending on the infrastructure used, positioning methods can be divided into two groups: integrated and independent. Integrated methods are primarily created for communication networks. A possibility to locate users represents just an additional service within a radio network. Independent methods are totally detached from the communication network in which the user whose location is being determined is. Radio location methods Determining the location of a mobile radio station is performed by determining the intersection of two or more lines of position. These lines represent the position of the set of points at which the mobile station may be located. These lines can be: (a

  2. Cooling of superconducting electric generators by liquid helium

    International Nuclear Information System (INIS)

    Nakayama, W.; Ogata, H.

    1987-01-01

    Superconducting generators have a great potential in future electric supply systems in increasing the efficiency of generators and in enhancing the stability of power network systems. Recognition of possible advantages over gas-cooled and water-cooled generators has led research institutes and manufacturers in several countries to wage substantial research and development efforts. The authors show the electric power capacities of the test generators already built, under construction, or in the planning stage. Since earlier attempts, steady improvements in the design of generators have been made, and experience of generator operation has been accumulated

  3. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  4. A New Generation of Electrical Power Supply for Telecom Satellites

    Science.gov (United States)

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent

    2014-08-01

    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  5. Inspiring the Next Generation: The International Space Station Education Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.; Hasbrook, Pete; Knowles, Carolyn; Chicoine, Ruth Ann; Miyagawa, Yayoi; Koyama, Masato; Savage, Nigel; Zell, Martin; Biryukova, Nataliya; Pinchuk, Vladimir; hide

    2014-01-01

    The International Space Station (ISS) has a unique ability to capture the imagination of both students and teachers worldwide. Since 2000, the presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students around the world have participated in ISS-related educational activities. Projects such as YouTube Space Lab, Sally Ride Earth Knowledge-based Acquired by Middle Schools (EarthKAM), SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) Zero-Robotics, Tomatosphere, and MAI-75 events among others have allowed for global student, teacher and public access to space through student classroom investigations and real-time audio and video contacts with crewmembers. Educational activities are not limited to STEM but encompass all aspects of the human condition. This is well illustrated in the Uchu Renshi project, a chain poem initiated by an astronaut while in space and continued and completed by people on Earth. With ISS operations now extended to 2024, projects like these and their accompanying educational materials are available to more students around the world. From very early on in the program's history, students have been provided with a unique opportunity to get involved and participate in science and engineering projects. Many of these projects support inquiry-based learning that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence and identify solutions or explanations. This approach to learning is well-published as one of the most effective ways to inspire students to pursue careers in scientific and technology fields. Ever since the first space station element was launched, a wide range of student experiments and educational activities have been performed, both individually and collaboratively, by all the

  6. Field testing of behavioral barriers for cooling water intake structures -test site 1 - Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Patrick, P.H.; McKinley, R.S.; Micheletti, W.C.

    1988-01-01

    A multi-year research program was developed by the Electric Power Research Institute to evaluate the effectiveness of selected behavioral systems for fish exclusion at sites representative of different aquatic environments. The first test site was the Pickering Nuclear Generating Station (NGS) located on Lake Ontario which represented the Great Lakes environment. A single pneumatic popper, a low frequency, high amplitude sound deterrent, was found to effectively exclude adult alewife, the principal species impinged at Pickering NGS. An air bubble curtain, used either alone or combined with strobe lights, was not a consistent deterrent. Effectiveness of air bubbles was only enhanced when used in association with a popper. Strobe lights were the least effective of the three devices tested. Operation of all three devices together did not surpass the effectiveness of the popper when used alone. Sound deterrents show promise for fish exclusion at generating stations located on the Great Lakes

  7. Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.

  8. Considering the dynamic refueling behavior in locating electric vehicle charging stations

    Science.gov (United States)

    Liu, K.; Sun, X. H.

    2014-11-01

    Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum waiting time and maximum service accessibility for locating EV charging stations - named as Time-Spatial Location Model (TSLM). The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging stations.

  9. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  10. Assesment of Carbon Credits for Power Generation Systems at GSM Base Station Site

    OpenAIRE

    Ani, Vincent Anayochukwu; Ani, Emmanuel Onyeka

    2016-01-01

    Electricity production is often a source of CO2 emissions, for instance when fossil fuel is combusted in power plants. Therefore the root cause of pollution coming from telecommunication industry is the source of energy (diesel genset) the network operators used in running their Base station sites. Energy consumption of using diesel to power base station by telecom networks is a contributor to global greenhouse gas (GHG) emissions. This paper presents the comparative carbon credits of hybrid ...

  11. Socio-economic impacts of nuclear generating stations

    International Nuclear Information System (INIS)

    Weisiger, M.L.; Pijawka, K.D.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the St. Lucie nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  12. Electrically nonconductive shield for electric equipment generating ionizing radiation

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    As a radiation protection shield there is proposed a nonconductive shield fabricated from epoxides or other plastics material and containing finely dispersed radiation absorbing metal. It is to be designed in such a way that it lies in the range of a high electric gradient in the equipment, close to the radiation-producing component. As suitable metals there are mentioned tin, tungsten, and lead resp. their oxides. As an example there is used an X-ray shielding. (RW) 891 RW/RW 892 MKO [de

  13. Socio-economic impacts of nuclear generating stations: Arkansas Nuclear One Station case study

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Arkansas Nuclear One nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  14. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1983-01-01

    A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed to 1 kGy for a price of $5.98/ton

  15. Comparison of costs of electricity generation based on nuclear energy and pit coal

    International Nuclear Information System (INIS)

    1981-01-01

    Despite of a meanwhile considerable increase in costs of installation, especially of nuclear power stations, the differences in costs have increased in favour of nuclear electricity generation. The cost advantages are estimated 4 German Pfennig per kilowatt-hour in the base-load field for plants coming into operation at the end of this decade compared with the most profitable variant of pit coal utilization on which this investigation is based; compared to the use of German hard coal, assuming a relatively optimistic development of prices for domestic hard coal in the future, the cost advantage is estimated 8 German Pfennig per kilowatt-hour. The main reason is that in the past years the price for German hard coal as well as for imported coal considerably rose and for the future further increases have to be expected whereas the largest share of the costs of nuclear electricity generation doesn't increase, after the plant is completed. Considering the importance of the fuel costs within the total costs of electricity generation in coal power stations this must have its effects on the total result. These results also prove to be valid for a variation of important cost parameters. Only if the unlikely assumption that considerable variations of influences on costs - each unfavourable effecting nuclear electricity generation - would come together would prove to be true the economic efficiency of nuclear energy would be reduced or questioned. (UA) [de

  16. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  17. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper presents a case history of the diagnosis of a hydroelectric generator problem and the corrections implemented. The problem involved an excessive rotor imbalance coupled with a static air gap imbalance that cause severe load-sensitive vibrations. The problem constrained the plant from operating the generator unit throughout the range of its nameplate rating and caused periodic failure of the generator guide and thrust bearing. The paper describes the vibration survey and mechanical survey of the generator rotor, the pre-overhaul diagnosis, the repairs undertaken to the rotor, and the generator performance after the repair, with comparison to the pre-repair condition. The paper concludes with a discussion of the economic, operational, and logistic issues involved in the overhaul.

  18. Results of evaluation of periodic safety review for No. 1 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Mihama Power Station started the commercial power generation in November, 1970, and has continued the operation for more than 23 years. During this period, the counter measures to troubles, periodic inspections and the maintenance by the electric power company have been carried out. These states of No. 1 plant in Mihama Power Station for more than 23 years are to be recollected from the view-points of the comprehensive evaluation of operation experiences and the reflection of latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Mihama Power Station made by Kansai Electric Power Co., and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor is 43.3% on the average of about 23 years, but in the last 10 years, it was improved to 69.4%. In the last five years, the rate of occurrence of unexpected shutoff was 0.6 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, and radioactive waste management have been carried out properly. The work plan for preventing disasters was established, and the experience of troubles and the latest technological knowledge were well reflected to improve the safety. (K.I.)

  19. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  20. Analysis of the energy portfolio for electricity generation

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J.

    2016-09-01

    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  1. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  2. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time computer systems. In the past twenty years, the control systems now operating in 21 plants have achieved an availability of 99.8%, making significant contributions to high CANDU plant capacity factors. This paper describes some of the features that ensure the high degree of system fault tolerance and hence high plant availability. The emphasis will be placed on the fault tolerant features of the computer systems included in the latest reactor design - the CANDU 3 (450MWe). (author)

  3. Determination of reliability criteria for standby diesel generators at a nuclear power station

    International Nuclear Information System (INIS)

    Evans, M.G.K.

    1987-01-01

    The requirement for standby diesel generators at nuclear power stations is developed and a probabilistic approach used to define the reliability parameters. The present criteria used when ordering a diesel generator are compared with the testing required by the regulatory body and the most likely requirement following an accident. The impact of this on the diesels at a particular station and the root cause of failures are discussed. (orig.)

  4. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, R.; Epple, W.; Stevenson, D. [Great Lakes Power Ltd., Sault Ste. Marie, ON (Canada); Brotherton, L.; Crahan, M.; Ghate, A.

    1995-12-31

    A case history of the diagnosis and corrections implemented to resolve vibration problems in a 22,222 kVA hydroelectric generator was presented. The problem prevented the utility from operating the unit throughout the range of its nameplate rating and caused periodic failures of the generator`s guide and thrust bearing. Tests identified that the rim assembly was fastened onto the spider in a manner that resulted in tilting of the rim with respect to the axis of rotation, consequently, there was an unbalanced generator static air gap. A unique repair was implemented to fully restore the rim assembly to its proper position. Problems associated with carrying out such major in-situ repairs in a remote environment and within a scheduled maintenance outage were discussed. Economic benefits and costs associated with the repair were also discussed.

  5. An electricity generation planning model incorporating demand response

    International Nuclear Information System (INIS)

    Choi, Dong Gu; Thomas, Valerie M.

    2012-01-01

    Energy policies that aim to reduce carbon emissions and change the mix of electricity generation sources, such as carbon cap-and-trade systems and renewable electricity standards, can affect not only the source of electricity generation, but also the price of electricity and, consequently, demand. We develop an optimization model to determine the lowest cost investment and operation plan for the generating capacity of an electric power system. The model incorporates demand response to price change. In a case study for a U.S. state, we show the price, demand, and generation mix implications of a renewable electricity standard, and of a carbon cap-and-trade policy with and without initial free allocation of carbon allowances. This study shows that both the demand moderating effects and the generation mix changing effects of the policies can be the sources of carbon emissions reductions, and also shows that the share of the sources could differ with different policy designs. The case study provides different results when demand elasticity is excluded, underscoring the importance of incorporating demand response in the evaluation of electricity generation policies. - Highlights: ► We develop an electric power system optimization model including demand elasticity. ► Both renewable electricity and carbon cap-and-trade policies can moderate demand. ► Both policies affect the generation mix, price, and demand for electricity. ► Moderated demand can be a significant source of carbon emission reduction. ► For cap-and-trade policies, initial free allowances change outcomes significantly.

  6. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  7. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Science.gov (United States)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  8. IEEE guide for planning of pre-operational testing programs for class 1E power systems for nuclear-power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) guide for pre-operational testing of Class 1E power systems for nuclear-power generating stations is presented. The guidelines apply to power systems both ac and dc supplies but not to the equipment which utilizes the ac and dc power. The pre-operational tests are performed after appropriate construction tests

  9. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 2

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. This supplement addresses further issues that require resolution and closes them out

  10. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  11. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Science.gov (United States)

    2011-04-29

    ... Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice of Issuance of Renewed... Company (licensee), the operator of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS... Plants: Supplement 43, Regarding Palo Verde Nuclear Generating Station,'' issued January 2011, discusses...

  12. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  13. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei; Zheng, Junrong

    2017-01-01

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel

  14. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  15. Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty

    DEFF Research Database (Denmark)

    Conejo, Antonio J.; Baringo, Luis; Kazempour, Jalal

    This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment...... undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here....

  16. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1985-01-01

    Economic constraints require that a food irradiation processing facility have a throughput of approximately 1 MGy ton/day (0.91 MGy m.t./day) requiring 3 MegaCuries (MCi) of cobalt-60 at each site. This requirement means that the total world amount of cobalt-60 would have to be increased by about 60 percent just to handle the California almond and raisin crop during peak season. It is doubtful that public opinion would allow the increased distribution of radioactive isotopes, with the resultant burden upon the transportation networks, as a price to be paid to eat irradiated food. Electric sources have characteristics that allow the production of more penetrating, uniform, and efficient radiation that is available from nuclear isotopes. The heart of the electric radiation source is the electron accelerator. At present, there are no accelerators commercially available that can meet the requirements for food irradiation processing. However, the U.S. Department of Defense-funded beam weapons programs have provided a very promising accelerator technology at the Lawrence Livermore National Laboratory. If this technology were to be commercialized, it appears that the required accelerators would be available for US$1.5 million apiece, and quite possibly for less than this amount. A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost, assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed for 1 kGy for a price of $5.98/ton ($6.59/m.t.)

  17. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  18. Foreign Material Exclusion Program at CNE Cernavoda Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Urjan, Daniel [S.N. ' Nuclearelectrica' SA, CNE Cernavoda Nuclear Power Plant, Medgidiei 2 Street, 905200 Cernavoda, Constanta (Romania)

    2008-07-01

    In the face of a continuing attention to operations and maintenance costs at nuclear power plants, the future of the industry depends largely upon increasing plant availability and improving operating efficiency. The success in achieving these objectives is dependent upon the success of each plant's equipment maintenance program. Preventing the introduction of foreign materials into a nuclear power plant system or component requires a careful, thoughtful, and professional approach by all site personnel. This paper describes a proactive approach to prevent the introduction of foreign material into systems and components, by providing an overview of technical considerations required to develop, implement, and manage a foreign material exclusion program at CNE Cernavoda Unit 1 and 2 Nuclear Power Station. It is also described an example of Foreign Material Intrusion which happened during the 2003 planned maintenance outage at Cernavoda Unit no.1. This paper also defines personnel responsibilities and key nomenclature and a means for evaluating prospective work tasks and activities against standardized criteria, in order to identify the appropriate level of the required FME controls. (author)

  19. Foreign Material Exclusion Program at CNE Cernavoda Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Urjan, Daniel [S.N. ' Nuclearelectrica' SA, CNE Cernavoda Nuclear Power Plant, Medgidiei 2 Street, 905200 Cernavoda, Constanta (Romania)

    2008-07-01

    In the face of a continuing attention to operations and maintenance costs at nuclear power plants, the future of the industry depends largely upon increasing plant availability and improving operating efficiency. The success in achieving these objectives is dependent upon the success of each plant's equipment maintenance program. Preventing the introduction of foreign materials into a nuclear power plant system or component requires a careful, thoughtful, and professional approach by all site personnel. This paper describes a proactive approach to prevent the introduction of foreign material into systems and components, by providing an overview of technical considerations required to develop, implement, and manage a foreign material exclusion program at CNE Cernavoda Unit 1 and 2 Nuclear Power Station. It is also described an example of Foreign Material Intrusion which happened during the 2003 planned maintenance outage at Cernavoda Unit no.1. This paper also defines personnel responsibilities and key nomenclature and a means for evaluating prospective work tasks and activities against standardized criteria, in order to identify the appropriate level of the required FME controls. (author)

  20. Foreign Material Exclusion Program at CNE Cernavoda Nuclear Generating Station

    International Nuclear Information System (INIS)

    Urjan, Daniel

    2008-01-01

    In the face of a continuing attention to operations and maintenance costs at nuclear power plants, the future of the industry depends largely upon increasing plant availability and improving operating efficiency. The success in achieving these objectives is dependent upon the success of each plant's equipment maintenance program. Preventing the introduction of foreign materials into a nuclear power plant system or component requires a careful, thoughtful, and professional approach by all site personnel. This paper describes a proactive approach to prevent the introduction of foreign material into systems and components, by providing an overview of technical considerations required to develop, implement, and manage a foreign material exclusion program at CNE Cernavoda Unit 1 and 2 Nuclear Power Station. It is also described an example of Foreign Material Intrusion which happened during the 2003 planned maintenance outage at Cernavoda Unit no.1. This paper also defines personnel responsibilities and key nomenclature and a means for evaluating prospective work tasks and activities against standardized criteria, in order to identify the appropriate level of the required FME controls. (author)

  1. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  2. Geothermal electric power generation in Iceland for the proposed Iceland/United Kingdom HVDC power link

    International Nuclear Information System (INIS)

    Hammons, T.J.; Palmason, G.; Thorhallsson, S.

    1991-01-01

    The paper reviews geothermal electric power potential in Iceland which could economically be developed to supplement hydro power for the proposed HVDC Power Link to the United Kingdom, and power intensive industries in Iceland, which are envisaged for development at this time. Technically harnessable energy for electricity generation taking account of geothermal resources down to an assumed base depth, temperature distribution in the crust, probable geothermal recovery factor, and accessibility of the field, has been assessed. Nineteen known high-temperature fields and 9 probable fields have been identified. Technically harnessable geo-heat for various areas is indicated. Data on high temperature fields suitable for geothermal electric power generation, and on harnessable energy for electric power generation within volcanic zones, is stated, and overall assessments are made. The paper then reviews how the potential might be developed, discussing preference of possible sites, and cost of the developments at todays prices. Cost of geothermal electric power generation with comparative costs for hydro generation are given. Possible transmission system developments to feed the power to the proposed HVDC Link converter stations are also discussed

  3. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  4. optimization methodologies of mixed electrical generators in algeria ...

    African Journals Online (AJOL)

    ABSTRACT. This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. The principals' interests of this system are the independence production, and the supplying of electric energy in isolated localities. Have at one's the energetic and economic ...

  5. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  6. AIR POLLUTION: Emissions from Older Electricity Generating Units

    National Research Council Canada - National Science Library

    2002-01-01

    .... While fossil fuels-coal, natural gas, and oil-account for more than two thirds of our electricity, generating units that burn these fuels are major sources of airborne emissions that pose human...

  7. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  8. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    OpenAIRE

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    The on-site generation of electricity can offer building owners and occupiers financial benefits as well as social benefits such as reduced grid congestion, improved energy efficiency, and reduced greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use of the waste heat from the generator for site heating needs. Real-time optimal dispatch of CHP systems is difficult to determine because of complicated electricity tariffs and uncertainty in CHP equipment...

  9. Economies of scale in electricity generation and transmission since 1945

    International Nuclear Information System (INIS)

    Tombs, F.

    1978-01-01

    Progress in the electricity supply industry since 1945 is reviewed with particular reference to increased ratings of plant and transmission. The contribution of nuclear energy is emphasised. Developments which have taken place, and policy within the nuclear industry since the construction of Calder Hall, are examined. The performance of the Magnox stations, difficulties with AGRs, and the debate on the choice of reactors are discussed. (U.K.)

  10. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  11. Main feedwater valve diagnostics at Waterford 3 nuclear generating station

    International Nuclear Information System (INIS)

    Fitzgerald, W.V.

    1991-01-01

    Pneumatically-operated control valves are coming under increasing scrutiny in nuclear power plants because of their relatively high incident rate. The theory behind a device that could make performance evaluation of these valves simpler and more effective was first described at the original EPRI Power Plant Valve Symposium. The development of this Diagnostic System was completed in 1989, and it was recently used to troubleshoot two main feedwater valves at Louisiana Power and Light's Waterford 3 Power Station. During a cold snap last December, these valves failed to respond to the input signal and, as a result, the plant came off line. An incident report had to be filed, and the plant chose to contact the original equipment manufacturer (OEM) for assistance. This paper describes the original incident involving these valves and then gives a brief description of the diagnostic system and how it works. The balance of the paper then reviews how the OEM and plant personnel utilized the system to evaluate each component of the control valve assembly (I/P transducer, positioner, volume boosters, actuator, and valve body assembly). By simply stroking the valve and monitoring pneumatic signals and valve position, the problem was traced to a malfunctioning positioner and a volume booster that was leaking. The problems were corrected and new performance signatures run for the valves using the system to document their improved operation. This case study demonstrates how new Diagnostic Technology along with OEM involvement can effectively address problems with pneumatically-operated control valves so that root-cause solutions can be implemented

  12. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  13. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei

    2017-06-22

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel cell power.

  14. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992

    International Nuclear Information System (INIS)

    Hebdon, F.J.

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility's actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities

  15. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, F.J. [Institute of Nuclear Power Operations, Atlanta, GA (United States)

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

  16. Safety Evaluation Report related to the operation of Hope Creek Generating Station (Docket No. 50-354)

    International Nuclear Information System (INIS)

    1984-10-01

    The Safety Evaluation Report for the application filed by Public Service Electric and Gas Company, as applicant, for a license to operate the Hope Creek Generating Station (Docket No. 50-354), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Salem County, New Jersey. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  17. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  18. Assessment of environmental effects on Space Station Freedom Electrical Power System

    Science.gov (United States)

    Lu, Cheng-Yi; Nahra, Henry K.

    1991-01-01

    Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.

  19. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    Science.gov (United States)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  20. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  1. Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2018-05-01

    Full Text Available The electric vehicle fast-charging station is an important guarantee for the popularity of electric vehicle. As the fast-charging piles are voltage source converters, stability issues will occur in the grid-connected fast-charging station. Since the dynamic input admittance of the fast-charging pile and the dynamic output impedance play an important role in the interaction system stability, the station and grid interaction system is regarded as load-side and source-side sub-systems to build the dynamic impedance model. The dynamic input admittance in matrix form is derived from the fast-charging pile current control loop considering the influence of the LC filter. Similarly, the dynamic output impedance can be obtained similarly by considering the regional power grid capacity, transformer capacity, and feed line length. On this basis, a modified forbidden region-based stability criterion is used for the fast-charging station stability analysis. The frequency-domain case studies and time-domain simulations are presented next to show the influence of factors from both the power grid side and fast-charging pile side. The simulation results validated the effectiveness of the dq frame impedance model and the stability analysis method.

  2. San Onofre Nuclear Generating Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Gross electrical energy generated was 2,610,000 MWH with the generator on line 6,162.9 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, steam generator tube inspections, primary coolant chemistry, containment penetration leak tests, and radiological environmental monitoring

  3. Outlook for gas sales for electricity generation in the Northeast

    International Nuclear Information System (INIS)

    Linderman, C.W.

    1998-01-01

    Issues regarding future supply and demand of natural gas as opposed to coal in the electric power generation sector, generation performance standards of coal plants, new combined cycle applications, distributed generation, and the advantages of natural gas over coal are discussed. The electricity demand and supply situation in the Northeast, present and future, and the growing movement toward green power, green power certification programs, the need and demand for disclosure of emissions and fuel source of supply, price and other customer information were summarized. Nuclear power generation and the chances of it being replaced by natural gas-fuelled generation are assessed. Some pipeline siting issues and the need for careful coordination with the electric system to minimize new corridors, are also reviewed. The advantages of natural gas in terms of technology and reduced pollution, hence cleaner air, were cited as the reasons why natural gas has almost unlimited potential as the fuel of choice well into the 21. century

  4. Comparison of two biomass-electricity generation technologies in Peninsular Malaysia using linear programming method

    International Nuclear Information System (INIS)

    Kumaran, P.; Hari, Z.; Boosroh, M.H.

    2006-01-01

    Two technologies have been considered to generate electricity using palm oil mill waste, the Empty Fruit Bunch (EFB) as power plant fuel. One technology is to build new 100% EFB fired power plants, located in the vicinity of the palm oil mill, in which the produced electricity would be connected to the national electricity grid system. The other technology is to transport all the available EFB fuel to an existing coal power station in which the EFB fuel would be blended with coal and co-fired in conventional coal power plant to produce electricity. A study intended to compare the difference between these two technologies, to obtain the same electricity generation, has been done. Linear programming software was used simulate the two technologies to generate 5% of Peninsular Malaysia's electricity demand in the year 2005. The study indicated that the co firing technology total cost is 43.7% cheaper than EFB technology and the fuel coat is competitive until transport cost reaches 78 RM/tone

  5. Natural gas and electricity generation in New South Wales

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    In its Profile of the Australian Electricity Industry, ABARE noted that NSW was the first State in Australia to unbundle the operations of its State owned electricity industry. The process commenced in 1991, when the Electricity Commission of NSW was renamed Pacific Power and reorganised into six generation and transmission sectors. The power generation fuel mix for NSW in 1999-2000 was as follows: black coal, 97 percent and natural gas, 3 percent. NSW has also imported some brown coal generated electricity from Victoria in recent years. The import of cheap brown coal power from this State due to a marked increase in the availability of brown coal base-load generators in the Latrobe Valley forced some surplus black coal generating capacity in NSW to be withdrawn from the marketplace. Four generating units were closed down in 1998 two 500 MW units at Liddell and two 300 MW units at Munmorah. Further prospects for natural gas are reported to be good; its share in the thermal electricity generation market is forecasted to rise from 3 percent in 1999-2000 to 12 percent in 2014-1015

  6. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  7. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  8. Analysis methodology of power generation/cogeneration designs in VNG (Vehicular Natural Gas) stations; Metodologia de analise de projetos de geracao/cogeracao em postos GNV (Gas Natural Veicular)

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Rafael Reami [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2008-07-01

    This work presents the methodology for analysis of generation/cogeneration projects in NGV filling stations, determining the influence of critical parameters in its technical-economic viability. To achieve this methodology, it was necessary to define parameters that influence directly or indirectly the size of a generating system, as the total electric demand of the filling station, ratio (power of the compressor) / (total installed power), load factor, factor of simultaneity, technical data of major equipment, among others. The methodology has been validated by comparing with data measured in a NGV filling station and allows screening and identifying customers with technical feasibility to evolve in a generation or cogeneration project. The cogeneration with NG generators was highlighted during the analysis of the NGV filling stations and was feasible for establishments which have large thermal demand, as filling stations along the road with large amounts of electric showers in changing rooms. (author)

  9. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    induction generator, the cage rotor induction generator, and the synchronous generator with DC or permanent magnet excitation. The operating principle, performance, optimal design, and the modeling and control of the machine-side converter for each kind of generator are adressed and evaluated. In view......The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...... of the fact that individual power rating of WTs has increased to around 10 MW, generator design and control technologies required to reach this power rating are discussed....

  10. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  11. A technological review on electric vehicle DC charging stations using photovoltaic sources

    Science.gov (United States)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  12. The production of wind-generated electricity

    International Nuclear Information System (INIS)

    2013-11-01

    After some key data on installed wind power and its evolution in the World (notably in China and in the USA), in European countries and in France, an overview of the sector economic evolution in France in terms of jobs in different fields (fabrication, electricity production, studies and installations), this publication comments the various benefits of wind energy and its necessary framework for a sane development. Strengths are discussed: a local and clean energy source, a predictable and manageable energy source, an increasing competitiveness. Issues to be considered are also discussed: control of acoustic and landscape impacts, protection of biodiversity, management of interactions with military, meteorological and civil aviation radars, a necessary more steady and coherent regulation. After a discussion of the possibilities offered by small wind energy installations (between 1 and 36 kW), actions undertaken by the ADEME are overviewed. A conclusion outlines the role of wind energy on the supply-demand balance in the French power system, its contribution to the reduction of greenhouse gas emissions, the positive environmental impact, the importance of societal appropriation, and the importance of developing this sector while keeping on reducing consumptions

  13. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  14. Steam turbine generators for Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Hesketh, J.A.; Muscroft, J.

    1990-01-01

    The thermodynamic cycle of the modern 3000 r/min steam turbine as applied at Sizewell 'B' is presented. Review is made of the factors affecting thermal efficiency including the special nature of the wet steam cycle and the use of moisture separation and steam reheating. Consideration is given to the optimization of the machine and cycle parameters, including particular attention to reheating and to the provision of feedheating, in order to achieve a high overall level of performance. A modular design approach has made available a family of machines suitable for the output range 600-1300 MW. The constructional features of the 630 MW Sizewell 'B' turbine generators from this range are described in detail. The importance of service experience with wet steam turbines and its influence on the design of modern turbines for pressurized water reactor (PWR) applications is discussed. (author)

  15. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  16. IEEE standard for design qualification of safety systems equipment used in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This standard is written to serve as a general standard for qualification of all types of safety systems equipment, mechanical and instrumentation as well as electrical. It also establishes principles and procedures to be followed in preparing specific safety systems equipment standards. Guidance for qualifying specific safety systems equipment may be found in various specific equipment qualification standards that are now available or are being prepared. It is required that safety systems equipment in nuclear power generating stations meet or exceed its performance requirements throughout its installed life. This is accomplished by a disciplined program of design qualification and quality assurance of design, production, installation, maintenance and surveillance. This standard is for the design qualification section of the program only. Design qualification is intended to demonstrate the capability of the equipment design to perform its safety function(s) over the expected range of normal, abnormal, design basis event, post design basis event, and in-service test conditions. Inherent to design qualification is the requirement for demonstration, within limitations afforded by established technical state-of-the-art, that in-service aging throughout the qualified life established for the equipment will not degrade safety systems equipment from its original design condition to the point where it cannot perform its required safety function(s), upon demand. The above requirement reflects the primary role of design qualification to provide reasonable assurance that design- and age-related common failure modes will not occur during performance of safety function(s) under postulated service conditions

  17. Navajo Generating Station and Federal Resource Planning; Volume 1: Sectoral, Technical, and Economic Trends

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, David; Haase, Scott; Barrows, Clayton; Bird, Lori; Brinkman, Greg; Cook, Jeff; Day, Megan; Diakov, Victor; Hale, Elaine; Keyser, David; Lopez, Anthony; Mai, Trieu; McLaren, Joyce; Reiter, Emerson; Stoll, Brady; Tian, Tian; Cutler, Harvey; Bain, Dominique; Acker, Tom

    2016-11-01

    This study for the U.S. Bureau of Reclamation examines conditions in the electricity sector that are likely to affect federal decisions with respect to Navajo Generating Station (NGS), the largest coal-fired power plant operating in the western United States. The federal government owns 24.3% of the 2.25-gigawatt plant, which amounts to 547 megawatts (MW) of capacity. By focusing on the unique public interests that depend on the federal share of NGS, this baseline study can help the federal government develop a road map for meeting all of its goals with respect to water delivery, clean energy, emission reduction, and economic development. There is no recommendation for action in this report. Rather, its aim is to provide a credible, thorough description of baseline conditions that might affect federal decisions regarding NGS. It describes facts and trends embedded in current data, but there are no conclusions about how Reclamation or DOI should respond to the trends. The interdependencies among the many sectoral trends and federal goals are complex, and the aim of this study is to provide a foundation from which options can be tested in a deliberate manner.

  18. Proposal of electric power generation from generators to water edge in the region of Sarapiqui

    International Nuclear Information System (INIS)

    Rodriguez Fallas, Cindy Veronica

    2013-01-01

    A proposed electric power generation is developed from generators to water edge in the region of Sarapiqui. The environmental characteristics, such as the hydrological network, hydrogeology, soil type, life zones, climatology, precipitation, temperature, evapotranspiration and water supply and demand, of rivers crossed by basin in the region of Sarapiqui, are determined by bibliographic consultations to implement the proposal. The most recent production statistics of the electric subsector of Costa Rica are described to reveal the growing annual demand and need for satisfaction. The zone of Sarapiqui is diagnosed as the right place to allow the generation of electric power from generators to water edge [es

  19. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  20. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  1. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  2. Volume reduction of filter media at Susquehanna steam and electric station

    International Nuclear Information System (INIS)

    Boris, G.F.; Hettinger, J.

    1990-01-01

    This paper describes the joint efforts between Pennsylvania Power ampersand Light (PPQL) and Scientific Ecology Group, Inc. (SEG) to reduce the volume of waste shipped to the burial site by the Susquehanna Steam and Electric Station (SSES) and the resulting savings realized as a result. The filter media used at SSES for its radwaste filters is composed of a mix of anion and cation powered resins, powered carbon, diatomaceous earth and a fibrous overlay. Due to the nature of this waste stream, dewatering was difficult using systems previously available in the industry. Thus, processing was accomplished by decanting (to concentrate the waste) and solidification. In the continuing effort to dewater wastes of this nature, SEG developed a new fabric filter dewatering system (RDU). To investigate its potential use in large containers, this dewatering system was installed in drum-size high integrity containers and used to test its dewatering capabilities on actual SSES waste. Promising results from these tests warranted a full-scale test. This proved successful and implementation of this processing scheme was immediate. Cost savings were substantial in transportation, burial and processing costs as well as personnel exposure. Also, additional waste volume reduction was found due to the volume reduction capability of the dewatering system (equivalent volume of new filter media approximately 1.2 times that of dewatered product volume). Additional savings resulted from SSES's continuing effort to minimize radwaste generation. Combined, these have reduced the number of shipments of filter media in 1989 to sixty percent of the number made in 1988 and have reduced costs by approximately fifty percent. 4 figs., 1 tab

  3. Electrical Power System Design and Station Blackout (SBO) Management in Indian Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Vijaya, N. M.; Theivarajan, N.; Madhusoodanan, K.

    2015-01-01

    In the nuclear new builds and projects in design stage SBO management measures have significant role. Depending on the onsite and offsite power supply configurations, deterministic SBO duration is established. Design of systems with adequately sized battery capacities for SBO duration, special SBO Diesel Generator Sets, structured load shedding strategy to conserve battery availability to cope with SBO and to monitor the plant safety beyond SBO duration are considered as part of electrical system design now. In the design of PFBR, SBO is given due importance right from conceptual design stage. Both deterministic SBO duration and probabilistic SBO duration versus frequency were established by detailed analysis. Dedicated DC power supply systems and additional SBO DG back-up systems are in place to cope with normal and extended SBO. After the Fukushima event, there is greater requirement to demonstrate plant safety during SBO for a long duration extended over several days. In light of this accident, thermal hydraulic synthesis of PFBR has been carried out to ascertain the capability of the plant to manage a prolonged station blackout event. This has brought out the robustness of the design. Safety design features of PFBR ensure comfortable management of extended SBO. In the design of future FBR projects, current trends in the new nuclear builds and recommendations of international bodies considering Fukushima are duly considered. SBO measures by means of alternate AC power sources, redundant emergency power supply sources with less dependence on other auxiliary systems and dedicated DC power systems are considered to cope with normal and extended SBO beyond design basis. Right from the conceptual design, the system robustness to manage normal and extended SBO will be taken care with the related thermal hydraulic and associated analysis. The paper highlights these SBO management strategies in PFBR and future FBRs. (author)

  4. Outline of Noto Nuclear Power Station, Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1988-01-01

    The location of the power station is in Shiga-cho, Hakui-gun, Ishikawa-ken. One BWR of about 1,600 MWt (540 MWe) capacity is installed. The area of the site is about 1.6 million m 2 , which is on the gentle slope of hilly land at the elevation of about 50 m, and faces Japan Sea. The nuclear reactor proper is installed at the position about 400 m eastward from the coastline. The height of the exhaust stack is about 100 m above the ground. The shortest distance from the center of the reactor core to the boundary of the site is about 450 m in the direction of south and southwest. The objective of use in commercial electric power generation. The start of operation is scheduled in March, 1993. The total cost of construction is about 235 billion yen, which is equivalent to about 435,000 yen-kW. The fuel assemblies are 8 x 8 type, the fuel material is uranium dioxide sintered pellets, and the average degree of enrichment of the initially charged fuel is about 1.6 wt.% in type 1, 2.4 wt.% in type 2 and 3.0 wt.% in type 3 (about 2.3 wt.% on the average). The highest burnup of fuel assemblies is 40,000 MWd-t. The total amount of fuel charged in the core is about 64 t of uranium. The main steam temperature at the reactor exit is 286 deg C, and the feedwater pressure at the reactor entrance is 72 kg-cm 2 g. The steam turbine is a tandem four-flow exhaust condensing turbine of 540 MW output. (Kako, I.)

  5. Generation Companies’ Operative Strategies in the Spot Electricity Market

    Directory of Open Access Journals (Sweden)

    Tovar-Hernández J.H.

    2012-07-01

    Full Text Available In traditional regulation the obligation to meet the consumer demand was assumed, this guaranteed to generation companies the full recovery of their costs. However, in order to achieve greater efficiency, reduce the price of electricity, meet the continuously growing electricity consumption, and equalize prices in different regions, a new structure of the electricity industry has been created, where electric energy is traded through a market. Generation company’s future cash flows depend on day to day market participation, in order to satisfy all of their financial and economic requirements. In this paper, future cash flows required to fulfill with economic and financial commitments by a generation company immerse in this new market structure are studied. For this purpose, future cash flows are considered to be dependent on a single asset: electricity. Several scenarios with different fuel prices are generated in order to estimate the generation company’s future cash flows. The response of the competing generation companies is taken into account at each scenario. The fuel price changes are modelled using a concurrent binary tree.

  6. Strategy for success in maintenance management at Point Lepreau nuclear generating station

    International Nuclear Information System (INIS)

    White, R.M.

    1987-01-01

    Improvements in availability of the station and in productivity of workers were achieved at Point Lepreau Nuclear Generating Station through implementation of a Maintenance Management System, which incorporates work planning and outage management techniques. Eight software systems on a VAX 11/70 minicomputer control work orders, temporary and permanent design changes, parts and material inventories, time keeping, and project management. All maintenance is coordinated through a regular planning meeting

  7. Environmental radiation monitoring data for Point Lepreau Generating Station, 1988. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1989-01-01

    Annual report presenting a compilation of the 1988 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,700 analyses were made on 1,200 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and lichen. Background radiation is measured by thermoluminescence dosimetry.

  8. Environmental radiation monitoring data for Point Lepreau Generating Station, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1988-01-01

    Annual report presenting a compilation of the 1987 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,800 analyses were made on 1,300 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and periwinkles. Background radiation is measured by thermoluminescence dosimetry.

  9. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    Energy Technology Data Exchange (ETDEWEB)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  10. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  11. Steam generator management at Ontario Hydro Nuclear Stations

    International Nuclear Information System (INIS)

    Nickerson, J.; Maruska, C.C.

    1998-01-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities and in terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  12. Steam generator management at Ontario Hydro Nuclear Stations

    Energy Technology Data Exchange (ETDEWEB)

    Nickerson, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Maruska, C.C. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities andin terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  13. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

    Directory of Open Access Journals (Sweden)

    Bin Ye

    2015-11-01

    Full Text Available In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy. An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

  14. Novel wind powered electric vehicle charging station with vehicle-to-grid (V2G) connection capability

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2017-01-01

    Highlights: • The only wind powered EV charging station reported in the literature. • The charging station maximally converts wind energy into electric energy. • Novel fast and highly accurate MPPT technique implemented in the EV charging station. • The charging station is grid-connected type with vehicle-to-grid (V2G) technology. • The charging station balances load demand in the grid connected to it. - Abstract: In this study, a novel grid-connected wind powered electric vehicle (EV) charging station with vehicle-to-grid (V2G) technology is designed and constructed. The wind powered EV charging station consists of a wind energy conversion system (WECS), a unidirectional DC/DC converter connected to the WECS, a maximum power point tracking (MPPT) controller, 15 bidirectional DC/DC converters dedicated to 15 charging stations provided for charging EVs, and a three-phase bidirectional DC/AC inverter connected to the grid. The contribution of this work is that the grid-connected wind powered EV charging station presented in this work is the only constructed EV charging station reported in the literature that uses wind energy as a renewable resource to produce electric energy for charging EVs, and moreover, it maximally converts wind energy into electric energy because it uses a novel fast and highly accurate MPPT technique proposed in this study. Other works are only simulated models without any new MPPT consideration. It is demonstrated that the constructed wind powered EV charging station is a perfect charging station that not only produces electric energy to charge EVs but also balances load demand in the grid connected to it.

  15. Liberalization of power generation sector in the Croatian electricity market

    International Nuclear Information System (INIS)

    Viskovic, Alfredo

    2005-01-01

    The electricity market liberalization and the restructuring of power utilities eventually leads to the establishment of a single electricity market in Europe, which is especially important for efficiency gains in electricity generation coupled with increased security of supply, economic competitiveness and fulfillment of environmental requirements. The European electricity market Directives as well as the Energy Community Treaty for South East Europe (legislative Menu) have remarkable impact on the restructuring of the Croatian power sector and the development of electricity generation. The Croatian model of restructuring includes legal un bundling (in the ownership of one holding company - Hrvatska Elektroprivreda (HEP)). The operation of HEP Group and its subsidiaries in the conditions of partially opened electricity market in an important element that shapes the interactions of competitive activities and regulated activities in the environment influenced by exogenous factors a thirteen percent electricity are controlled by the Energy Market Operator (MO), the Transmission System Operator (TSO) and the Energy Regulatory Agency (CERA). The introduction of eligible procedures and newly created operative procedures for power system operation, are creating completely new conditions for competition in the power generation sector, where almost all power plants are owned by HEP. New generating capacities in Croatia can be built through tendering and licensing procedures carried out by the Regulator. Electricity prices are still regulated by the Government (below the cost reflective level), there is a small share of industrial consumers and the annual electricity production is 12 TWh, with relatively large share of hydro plants. All these have implications on the development of the power generation sector in Croatia as well as on electricity market operation. The subject matter of this paper is an impact of power system restructuring and electricity market opening on the

  16. The Estimation of Externalities Resulting from the Electricity Generation

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-01

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation

  17. The Estimation of Externalities Resulting from the Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-15

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation.

  18. Achieving 33% renewable electricity generation by 2020 in California

    International Nuclear Information System (INIS)

    Walmsley, Michael R.W.; Walmsley, Timothy G.; Atkins, Martin J.

    2015-01-01

    This paper investigates the impacts of California, USA reaching its renewable electricity target of 33%, excluding large hydro, by 2020, which is set out in the state's RPS (Renewable Portfolio Standard). The emerging renewable electricity mix in California and surrounding states which form the WECC (Western Electricity Coordination Council) is analysed using the CEPA (Carbon Emission Pinch Analysis) and EROI (Energy Return on Energy Invested) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. Results demonstrate that wind and solar PV collectively form an integral part of California reaching the 33% renewables target by 2020. Government interventions of tax rebates and subsidies, net electricity metering and a four tiered electricity price have accelerated the uptake of electricity generation from wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels. - Highlights: • CA (California, USA) aims to achieve 33% renewable electricity sales by 2020. • Carbon Emission Pinch Analysis is applied to the case study of CA. • Energy Return on Energy Invested analysis shows impacts of renewable energy uptake. • Solar PV and wind are the most cost and energy efficiency renewable resources in CA. • State government intervention is needed to reach the 33% renewable electricity goal.

  19. Design of laser source for electricity generation

    International Nuclear Information System (INIS)

    Nasrullah, K.; Mariun, N.; Yeak, J.

    2000-01-01

    New sources of energy are being investigated to meet socioeconomic needs and other trivialities. Systems employing nuclear, thermal, hydro, solar, volcano, tidal and wind power generation techniques already exist. This work describes our attempt to utilize the off-planet charge to store in super electrolytic batteries or super capacitors. The electrostatic charge on clouds can be shifted to earth through a conductive air plasma channel created by appropriate high power Q-switched and mode-locked laser. The pulsed laser may create a conducting path consisting of ionised air particles from earth to some upper atmosphere. An antenna connected to anode of the super cell or positive terminal of the super capacitor will accumulate and store this charge for future use. The cathode of the battery or negative terminal of the super capacitor may be connected to earth to complete the circuit. A large number of such series and parallel units constitute a super battery or super capacitor bank system that can be connected to the national grid through DC to AC converters (DAC) and step-up transformers. According to published data, the lightning strokes may consist of 10 - 40 strokes of 2 - 80 pts duration separated in time by 6 - 530 ms intervals. The total time elapsed in lightning strike may last as long as 1 second. Due to tropical dependence, further detailed work is required to be done on lightning regarding its temporal and spatial profiles to develop a reasonable model to explore transient charging characteristics of storage devices. Experimental work in respect of laser-inducted charge-shifting, transient charging capabilities of super storage batteries or super capacitors is underway. (Author)

  20. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  1. Rancho Seco Nuclear Generating Station, Unit 1. Annual report for 1976

    International Nuclear Information System (INIS)

    1977-03-01

    Net electrical energy generated was 2,205,091 MWH with the generator on line 2,662 hrs. Information is presented concerning operations, changes, tests, maintenance, fuel performance, refueling, shutdowns and outages, containment local leak rate testing, and power generation

  2. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  3. Characterization of solid radwaste generated at Virginia Power's Surry and North Anna stations

    International Nuclear Information System (INIS)

    Lippard, D.W.; Elguindy, H.; Nelson, R.A.

    1987-01-01

    This paper describes the results of a study on characterization of the major constituents of the solid radwaste generated at Virginia Power's North Anna and Surry Power Stations. The characterization consisted of identifying the individual constituents of the dry active waste (DAW) and estimating the fraction of the total DAW (both weight and volume) made up by each constituent. The analysis of the characterization of solid waste streams generated at both North Anna and Surry stations has lead to recommending techniques for both source minimization and waste volume reduction

  4. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  5. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  6. Environmental compliance audits of electric generating facilities - a practical approach

    International Nuclear Information System (INIS)

    Staker, R.D.

    1992-01-01

    As environmental regulations expand in complexity and number, and as regulatory agencies place more emphasis on enforcing regulations, it is increasingly important that electric utilities perform periodic environmental compliance audits to determine if their facilities are in compliance with federal, state, and local environmental regulations. Explicit commitment by the utility's top management and careful planning and execution of an audit are key elements in the effectiveness of an audit. This paper is directed to electric utility environmental managers and company management. The paper presents a practical approach for planning and performing a multi-media environmental compliance of an electric generating facility

  7. Production inefficiency of electricity markets with hydro generation

    International Nuclear Information System (INIS)

    Philpott, Andy; Guan, Ziming; Khazaei, Javad; Zakeri, Golbon

    2010-01-01

    Electricity market designs that decentralize decision making for participants can lead to inefficiencies in the presence of nonconvexity or missing markets. This has been shown in the case of unit-commitment problems that can make a decentralized market equilibrium less efficient than a centrally planned solution. Less attention has been focused on systems with large amounts of hydro-electric generation. We describe the results of an empirical study of the New Zealand wholesale electricity market that attempts to quantify production efficiency losses by comparing market outcomes with a counterfactual central plan. (author)

  8. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    The re-emergence of nuclear power as a leading contender for new base-load electrical generation is not an occurrence of happenstance. The nuclear industry, in general, and Westinghouse, specifically, have worked diligently with the U.S. power companies and other nuclear industry participants around the world to develop future plant designs and project implementation models that address prior problem areas that led to reduced support for nuclear power. In no particular order, the issues that Westinghouse, as an engineering and equipment supply company, focused on were: safety, plant capital costs, construction schedule reductions, plant availability, and electric generation costs. An examination of the above criteria quickly led to the conclusion that as long as safety is not compromised, simplifying plant designs can lead to positive progress of the desired endpoints for the next and later generations of nuclear units. The distinction between next and later generations relates to the readiness of the plant design for construction implementation. In setting requirement priorities, one axiom is inviolate: There is no exception, nor will there be, to the Golden Rule of business. In the electric power generation industry, once safety goals are met, low generation cost is the requirement that rules, without exception. The emphasis in this paper on distinguishing between next and later generation reactors is based on the recognition that many designs have been purposed for future application, but few have been able to attain the design pedigree required to successfully meet the requirements for next generation nuclear units. One fact is evident: Another generation of noncompetitive nuclear plants will cripple the potential for nuclear to take its place as a major contributor to new electrical generation. Only two plant designs effectively meet the economic tests and demonstrate both unparalleled safety and design credibility due to extensive progress toward engineering

  9. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  10. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    Energy Technology Data Exchange (ETDEWEB)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen; Chu, Peter; Gadh, Rajit; Pota, Hemanshu R.

    2014-07-31

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for the cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.

  11. Engineering of electrical systems of nuclear power stations for improved reliability

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Ramanathan, K.; Choudhary, N.N.

    1977-01-01

    Operational problems experienced in electrical systems/equipment of the Tarapur Atomic Power Station (TAPS) and the Rajasthan Atomic Power Station (RAPS) and their solutions are dealt in detail. This experience has led to new design concepts which are being introduced for improved reliability in design of the Madras Atomic Power Project (MAPP) and the Narora Atomic Power Project (NAPP). Saline pollution on switchyard equipments was the major problem of the TAPS due to its coastal location. Saline pollution resulted in flash over of insulators and failure of clamps. The problem was solved by suitable changes in insulators, conductors, transformers, switches and arranging portable live line washing of the switchyard equipment. In MAPP which is also located on coast, an indoor switchyard is built. NAPP is located in a seismic zone, therefore, all equipment is specified for appropriate seismic duty. Various other improvements are described. (M.G.B.)

  12. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    Science.gov (United States)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  13. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    International Nuclear Information System (INIS)

    Jidin, Razali; Othman, Bahari

    2013-01-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  14. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  15. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  16. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Levels of electric field strength within the immediate vicinity of FM radio stations in Accra, Ghana.

    Science.gov (United States)

    Azah, C K; Amoako, J K; Fletcher, J J

    2013-10-01

    Heightened awareness of the ever-expanding use of radiofrequency (RF) techniques and technology has led to mounting concerns from the general public and the scientific community regarding the possible health effects that may arise as a consequence of exposure to RF radiations and has drawn the attention of many researchers the world over. A survey of the RF electromagnetic radiation at public access points in the vicinity of 20 frequency-modulated (FM) radio stations has been made in Accra, Ghana. The fundamental object was to determine the levels of RF fields from FM broadcast antennae within 10-200 m radius about the foot of the FM base station and at a height of 1.5 m above the ground at selected locations. A spectrum analyser and a bi-conical antenna element sensitive and effective within the frequency band of 30-300 MHz were used. Results obtained indicated that the levels of electric field strength ranged from 5.4E-04 V m(-1) at FM station 'O' to 7.4E-08 V m(-1) at FM station 'D'. At a transmission frequency range of 88-108 MHz, the variation of power densities is from 2.5E-10 to 1.5E-17 Wm(-2). These values are very low and are far below the reference level set by the International Commission on Non-Ionizing Radiation Protection and therefore do not pose any known hazard to the inhabitants of Accra, Ghana. The electric field levels presented in this work are comparable with those reported from epidemiological studies conducted elsewhere.

  18. High efficiency particulate air filter technology from 1980 to 1985 in the Central Electricity Generating Board

    International Nuclear Information System (INIS)

    Skledon, R.; Taylor, S.; Fern, C.; Stead, M.

    1986-01-01

    This paper examines at the Central Electricity Generating Board's methods of High Efficiency Particulate Air (1,700 m 3 /hr) filter testing from conception to the present day. The choice of the test and the early results are looked at followed by the development using new test equipment for checking ladderframe systems. The need for the drawing up of the Central Electricity Generating Board 743401 Standard for filter manufacture and its effect on full implementation is looked into. The advantages and disadvantages of our test procedures are reflected upon and the future developments in test methods and filters for use by the C.E.G.B. in their power stations are discussed. (author)

  19. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  20. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 2 of 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-05

    This publication includes 95 composite data products (CDPs) produced for next generation hydrogen stations with data through the second quarter of 2017. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  1. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 90 composite data products (CDPs) produced for next generation hydrogen stations with data through the fourth quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  2. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 3 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-06

    This publication includes 87 composite data products (CDPs) produced for next generation hydrogen stations with data through the third quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  3. Criteria for the design of the control room complex for a nuclear power generating station

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This Standard addresses the central control room of a nuclear power generating station and the overall complex in which this room is housed. It is not intended to cover special or normally unattended control rooms, such as those provided for radioactive waste handling or for emergency shutdown operations. The nuclear power generating station control room complex provides a protective envelope for plant operating personnel and for instrument and control equipment vital to the operation of the plant during normal and abnormal conditions. In this capacity, the control room complex must be designed and constructed to meet the following criteria contained in Appendix A of 10CFR50, General Design criteria for Nuclear Power Plants: (1) Criterion 2: design bases for protection against natural phenomena; (2) Criterion 3: fire protection; (3) Criterion 4: environmental and missile design bases; (4) Criterion 5: sharing of structures, systems and components (multiunit stations only); and (5) Criterion 19: control room

  4. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  5. Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications

    International Nuclear Information System (INIS)

    Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-01-01

    Access to clean and stable electricity is essential in actualizing Nigeria's quest for joining the league of twenty most industrious nations by the year 2020 (vision 20:2020). No country can develop and sustain it development without having a minimum access to electricity for it larger percentage of its population. At present, Nigeria depends petroleum reserves and its aged hydro plant instalments for electricity generation to feed the 40% of its total population that are connected to the national grid. This paper summarizes literature on the current energy issues in Nigeria and introduces the difficulty of the issues involved. The paper also analyses the current (2010) electricity generation as well as the future expansion plans of the Government in 20 years period. The plan includes the introduction of new electrify generation technologies that have not been in used in the base year (2010). The electricity generation system of (including the future expansion plan) was simulated using the LEAP System (Long-range Energy Alternative and Planning). We also investigated the potential environmental impact of siting a nuclear power plant in one of the potential sites based on the site's specific micro-meteorology (land use) and meteorology using the US EPA (Environmental Protection Agency) models; AERMOD 12345. - Highlights: • This paper scrutinizes literature on Nigeria's energy crisis and presents the policies of the clean technology as solutions. • Only 40% of Nigeria's population is connected to the grid; and this population faces power problems 60% of the time. • Simulation of Nigeria electricity generation system was done. • Air dispersion modellingmodelling for radiological health risk from NPP was done

  6. Project finance and its limitations in terms of difficult political and structural horizons - the case of electricity generation

    International Nuclear Information System (INIS)

    Fiancette, Georges; Penz, Philippe

    1994-01-01

    Illustrations are given of the kinds of difficulties attendant on the project financing of electricity generation in some developing countries and former socialist countries of Eastern Europe. There are risks due to the instability of the legal framework because of political considerations and also because the organization and regulation of the electricity supply industry is still being developed. Problems may arise because of the gap between the relatively short term of the repayable debt (10 to 12 years) and the lifetime of a typical project (of the order of 30 years). Project investment is usually entrusted to an independent body which often relies on the local electricity company to operate the power station. In this situation, the two bodies involved cannot mutually insure the risks. Exchange rates generate problems associated with convertibility on the one hand and fluctuations on the other. The particular problems which occur in the project financing of power station restoration are discussed. (UK)

  7. The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Ozaveshe Oviroh

    2018-03-01

    Full Text Available As more locations gain access to telecommunication, there is a growing demand to provide energy in a reliable, efficient and environmentally friendly manner while effectively addressing growing energy needs. Erratic power supply and rising operation costs (OPEX in Nigeria have increased the need to harness local renewable energy sources. Thus, identifying the right generator schedule with the renewable system to reduce OPEX is a priority for operators and vendors. This study evaluates the energy costs of hybrid systems with different generator schedules in powering base transceiver stations in Nigeria using the Hybrid Optimization Model for Electric Renewable (HOMER. A load range of 4 kW to 8 kW was considered using: (i an optimised generator schedule; (ii forced-on generator schedule and (iii the generator-only schedule. The results showed an optimal LCOE range between averages of USD 0.156/kWh to 0.172/kWh for the 8 kW load. The percent energy contribution by generator ranges from 52.80% to 60.90%, and by the solar PV system, 39.10% to 47.20%. Excess energy ranges from 0.03% to 14.98%. The optimised generator schedule has the highest solar PV penetration of 56.8%. The OPEX savings on fuel ranges from 41.68% to 47% for the different load schedules and carbon emission savings of 4222 kg to 31,428.36 kg. The simulation results shows that powering base stations using the optimised hybrid system schedule would be a better option for the telecom industry.

  8. Impacts of environmental degradation and climate change on electricity generation in Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Kaunda, Chiyembekezo S. [Department of Energy and Process Engineering – WaterPower Laboratory, Norway University of Science and Technology, Trondheim NO-7491 (Norway); Mtalo, Felix [Department of Water Resources Engineering, University of Dar es Salaam, P.O. Box 35031, Dar es Salaam (Tanzania, United Republic of)

    2013-07-01

    Hydropower is an important energy source in Malawi because it provides almost all of the country’s electricity generation capacity. This paper has reviewed the impacts of environmental degradation and climate change on hydropower generation in Malawi. Energy scenario and other issues that contribute towards the current state of environment have been discussed. All of Malawi’s hydropower stations are run-of-river schemes cascaded along the Shire River with an installed capacity of nearly 280 MW. The generation is impacted negatively by floods, siltation, droughts and aquatic weeds infestation. The way how these challenges are being exacerbated by the poor state of the environment, especially within the Shire River basin in particular is also discussed in the paper. Measures taken by the national electricity utility company on how to manage the impacts are discussed as well. The paper concludes that hydropower generation system in a highly environmental degraded area is difficult to manage both technically and economically. In the case of Malawi, diversifying to other energy sources of generating electricity is considered to be a viable option. Some mitigation measures concerning environment degradation and climate change challenges have been suggested in the paper.

  9. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  10. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2017-03-01

    Full Text Available Energy harvesting has become a promising and alternative solution to conventional energy generation patterns to overcome the problem of supplying autonomous electrical systems. More particularly, thermal energy harvesting technologies have drawn a major interest in both research and industry. Thermoelectric Generators (TEGs can be used in two different operating conditions, under constant temperature gradient or constant heat flow. The commonly used TEG electrical model, based on a voltage source in series with an electrical resistance, shows its limitations especially under constant heat flow conditions. Here, the analytical electrical modeling, taking into consideration the internal and contact thermal resistances of a TEG under constant temperature gradient and constant heat flow conditions, is first given. To give further insight into the electrical behavior of a TEG module in different operating conditions, we propose a new and original way of emulating the above analytical expressions with usual electronics components (voltage source, resistors, diode, whose values are determined with the TEG’s parameters. Note that such a TEG emulation is particularly suited when designing the electronic circuitry commonly associated to the TEG, to realize both Maximum Power Point Tracking and output voltage regulation. First, the proposed equivalent electrical circuits are validated through simulation with a SPICE environment in static operating conditions using only one value of either temperature gradient or heat flow. Then, they are also analyzed in dynamic operating conditions where both temperature gradient and heat flow are considered as time-varying functions.

  11. Electric Generator in the System for Damping Oscillations of Vehicles

    OpenAIRE

    Serebryakov A.; Kamolins E.; Levin N.

    2017-01-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...

  12. Improvements to feed water system of vapor generators of nuclear power stations

    International Nuclear Information System (INIS)

    Byerlex, W.M.

    1976-01-01

    The description is given of a feed water system related to the steam generators for nuclear power stations and which have a water feed ring around their upper part. This water intake system enables water hammer to be avoided even during operation under low load [fr

  13. Manufacture of the 300 MW steam generator and pressure stabilizer for Qinshan Nuclear Power Station

    International Nuclear Information System (INIS)

    Qian Yi; Miao Deming.

    1989-01-01

    A brief description of the manufacturing process of the steam generator and pressure stabilizer for 300 MWe Qinshan Nuclear Power Station in Shanghai Boiler Works is presented, with special emphasis on fabrication facilities, test procedures and technological evaluations during the manufaturing process-imcluding deep driling of tubesheets, welding of tubes to tube-sheets and tube rolling tests

  14. Radioactive release data from Canadian nuclear generating stations 1872-1987

    International Nuclear Information System (INIS)

    1989-03-01

    All nuclear generating stations emit small quantities of radioactive effluent both into the atmosphere and in the form of liquid effluent, into the adjoining water body, be it river, lake or sea. The purpose of this document is to report on the magnitude of these emissions for each nuclear generating station in Canada and to indicate how these emissions compare with the relevant limitations imposed by the Atomic Energy Control Board as part of its regulatory and licensing program. This report incorporates histograms indicating the annual releases of tritium in air, noble gases, iodine-131, airborne particulates, tritium in water and waterborne gross beta activity for each nuclear generating station. In addition, for Pickering NGS 'A', annual released of carbon-14 are depicted for the years 1986 and 1987. In each case the emission data are compared to the Derived Emission Limit (DEL) in order that the data may be placed in perspective. At present, only Pickering NGS 'A' is required to monitor and report carbon-14 emissions. Environmental monitoring for C-14 is conducted around the Bruce site to determine the environmental impact of its emission and whether effluent monitoring will be necessary in future years. Three nuclear generating stations have been permanently taken out of service during the last few years (Gentilly NGS-1, Douglas Point NGS and NPD NGS). Some small emissions from these sites do still occur, however, due to decontamination and decommissioning operations. (11 tabs., 26 figs.)

  15. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 1

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Cannon, J.B.; Christensen, S.G.

    1977-07-01

    A comprehensive study of the effects of power plant operation on the Hudson River was conducted. The study included thermal, biological, and air quality effects of existing and planned electrical generating stations. This section on thermal impacts presents a comprehensive mathematical modeling and computer simulation study of the effects of heat rejection from the plants. The overall study consisted of three major parts: near-field analysis; far-field analysis; and zone-matched near-field/far-field analysis. Near-field analyses were completed for Roseton, Danskammer, and Bowline Point Generating Stations, and near-field dilution ratios range from a low of about 2 for Bowline Point and 3 for Roseton to a maximum of 6 for both plants. The far-field analysis included a critical review of existing studies and a parametric review of operating plants. The maximum thermal load case, based on hypothetical 1974 river conditions, gives the daily maximum cross-section-averaged and 2-mile-segment-averaged water temperatures as 83.80 0 F in the vicinity of the Indian Point Station and 83.25 0 F in the vicinity of the Bowline Station. This maximum case will be significantly modified if cooling towers are used at certain units. A full analysis and discussion of these cases is presented. A study of the Hudson River striped bass population is divided into the following eight subsections: distribution of striped bass eggs, larvae, and juveniles in the Hudson River; entrainment mortality factor; intake factor; impingement; effects of discharges; compensation; model estimates of percent reduction; and Hudson River striped bass stock

  16. Jet Streams as Power Generating Electrical Energy in Libya

    International Nuclear Information System (INIS)

    Shibani, Abdelfatah H.

    2014-01-01

    The supreme wind sources are extremely huge, and according to estimations, these winds can supply Libya with great quantity of electrical energy. Among the examples of contemporary engineering technologies in this field, is to create a new generation of Airborne Wind Turbines. Scientists realized that winds near the Earth's surface are too weak to provide a regular source of energy due to the presence of aerobic swirls and obstacles, which represent a source of ground friction being the cause of weakening wind power. Some consider that the Earth's surface is a totally inappropriate place for investing wind energy. As an alternative solution, we start to think about the establishment of wind farms in another place away from the Earth's surface by developing a new type that can run within the upper-air layers, precisely at jet streams areas. In comparison with fluctuating winds blowing gently near the Earth's surface, scientists estimate that the energy of jet streams increases a thousand times than that can be gathered from the most powerful winds on high hills. To be able to provide a clear picture of the possibility of energy investment of jet streams, we shall present, across the pages of this paper, an explanation of the topic through the following aspects: How do Airborne Wind Turbines' trip start, their advantages and difficulties faced, benefits and economic feasibility, General Atmospheric Circulation and jet streams. Since Libya is among the fortunate countries in the world, through which subtropical jet streams pass, we made an analysis and follow-up of daily synoptic charts, which show jet winds' speed, direction and their altitudes for a period of 60 consecutive months starting from January 1, 2003 until December 31, 2007. Also, an analysis was made of daily observational data of jet winds recorded by Tripoli Upper-air Station during the period from the beginning of March 1987 until the end of February 1989. The paper's results summarized that jet

  17. Heuristic Storage System Sizing for Optimal Operation of Electric Vehicles Powered by Photovoltaic Charging Station

    Directory of Open Access Journals (Sweden)

    Erik Blasius

    2016-01-01

    Full Text Available This paper discusses the utilisation of PV systems for electric vehicles charging for transportation requirements of smart cities. The gap between PV power output and vehicles charging demand is highly variable. Therefore, there is a need for additional support from a public distribution grid or a storage device in order to handle the residual power. Long term measurement data retrieved from a charging station for 15 vehicles equipped with a PV system were used in the research. Low and high irradiation seasons influenced the PV output. The charging demand of electric vehicles varied over the course of a year and was correlated to weather conditions. Therefore, the sizing and performance of a supportive storage device should be evaluated in a statistical manner using long period observations.

  18. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  19. Present situation and future prospects of electricity generation in Aegean Archipelago islands

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Zafirakis, D.

    2007-01-01

    The Aegean Archipelago is a remote Hellenic area, including several hundreds of scattered islands of various sizes. In these islands more than 600,000 people are living mainly in small remote communities. The main economical activities of the islanders are apart from tourism, seafaring, fishery, agriculture and stock farming. One of the major problems of the area is the insufficient infrastructure, strongly related with the absence of an integrated and cost-effective electrification plan. In this context, the present work is concentrated on analyzing the present situation and demonstrating the future prospects of electricity generation in the Aegean Archipelago islands. For this purpose, one should first investigate the time evolution of the corresponding electricity generation parameters (i.e. annual electricity consumption, peak power demand, capacity factor, specific fuel consumption) for the last 30 years. Subsequently, the corresponding diesel and heavy-oil consumption along with the electricity production cost for every specific autonomous power station of the area are investigated. Special attention is paid in order to estimate the contribution of renewable energy sources (RES) in the energy balance of each island. Finally, an attempt is made to describe in brief the most realistic electricity production solutions available, including the operation of hybrid RES-based power plants in collaboration with appropriate energy storage facilities. Additionally, the idea of connecting the islands of the area with the mainland and interconnecting them is also taken into consideration

  20. The role of nuclear energy in electric power generation

    International Nuclear Information System (INIS)

    Horvath, G.; Marothy, L.; Tallosy, J.

    1980-01-01

    The brief history of nuclear power production is given, with special regard to the energy demand in Hungary. The design and operation of the Paks Nuclear Power Station are described. The first four units will be WWER-440 type pressurized water reactors. The main components of the nuclear steam-producing apparatus and the process of fuel handling are presented. The secondary circuit and the main electric systems are shortly described. The safety of the plant is analysed. The safeguard engineering systems are discussed. The operation of the reactor control system, the emergency cooling and the pressure supression systems are analysed for the case of a design base accident (DBA). The DBA consists in an internal fracture of the main primary cooling pipeline. Based on the stations safety report and the Basmussen report the environmental risk of the station is estimated. It is concluded that even in the case of the DBA, the radiation burden of the population is under the permissable limits. (R.J.)