WorldWideScience

Sample records for elastomer substrates irradiated

  1. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  2. Evaluation of time-accelerated irradiation method of elastomer by modulus-ultimate elongation profile

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masayuki [Waseda University Faculty of Science and Engineering, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555 (Japan)], E-mail: masayuki@kurenai.waseda.jp; Oka, Toshitaka; Hama, Yosimasa [Waseda University Faculty of Science and Engineering, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2009-12-15

    'Generalized modulus-ultimate elongation profile' was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 {sup o}C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.

  3. Aging of Silicon Nanocrystals on Elastomer Substrates: Photoluminescence Effects.

    Science.gov (United States)

    Mandal, Rajib; Anthony, Rebecca J

    2016-12-28

    Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.

  4. Mechanical properties change of thermoplastic elastomer after using of different dosage of irradiation by beta rays

    Directory of Open Access Journals (Sweden)

    Mizera Ales

    2016-01-01

    Full Text Available Radiation processing of polymers is a well-established and economical commercial method of precisely modifying the properties of polymers. The industrial applications of the radiation processing of plastics and composites include polymerization, cross-linking, degradation and grafting. Radiation processing mainly involves the use of electron beams from electron accelerators. The Thermoplastic Elastomer (TPE was used in this research and the mechanical properties were investigated at the ambient temperature. Results demonstrate that TPE has higher values of tensile strength with the increased irradiation dose and it has decreased elongation at break. This behaviour leads to the expansion of these materials in the automotive and electrical industry.

  5. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); McElhinny, Kyle M.; Evans, Paul G. [Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin-Madison, WI 53706 (United States); Calcagno, Barbara O. [Department of General Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); Acevedo, Aldo, E-mail: aldo.acevedo@upr.edu [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico)

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  6. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling.

    Science.gov (United States)

    Nan, Kewang; Luan, Haiwen; Yan, Zheng; Ning, Xin; Wang, Yiqi; Wang, Ao; Wang, Juntong; Han, Mengdi; Chang, Matthew; Li, Kan; Zhang, Yutong; Huang, Wen; Xue, Yeguang; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2017-01-05

    Approaches capable of creating three-dimensional (3D) mesostructures in advanced materials (device-grade semiconductors, electroactive polymers etc.) are of increasing interest in modern materials research. A versatile set of approaches exploits transformation of planar precursors into 3D architectures through the action of compressive forces associated with release of prestrain in a supporting elastomer substrate. Although a diverse set of 3D structures can be realized in nearly any class of material in this way, all previously reported demonstrations lack the ability to vary the degree of compression imparted to different regions of the 2D precursor, thus constraining the diversity of 3D geometries. This paper presents a set of ideas in materials and mechanics in which elastomeric substrates with engineered distributions of thickness yield desired strain distributions for targeted control over resultant 3D mesostructures geometries. This approach is compatible with a broad range of advanced functional materials from device-grade semiconductors to commercially available thin films, over length scales from tens of microns to several millimeters. A wide range of 3D structures can be produced in this way, some of which have direct relevance to applications in tunable optics and stretchable electronics.

  7. Tribological behavior of plasma-polymerized aminopropyltriethoxysilane films deposited on thermoplastic elastomers substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Sainz-García, Elisa; González-Marcos, Ana [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Ordieres-Meré, Joaquín [ETSII, Polytechnic University of Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid (Spain)

    2013-07-01

    Thermoplastic elastomers (TPE) are multifunctional polymeric materials that are characterized by moderate cost, excellent mechanical properties (high elasticity, good flexibility, hardness, etc.), high tensile strength, oxidation and wettability. With an objective of reducing the superficial friction coefficient of TPE, this work analyzes the characteristics of coating films that are based on aminopropyltriethoxysilane (APTES) over a TPE substrate. Since this material is heat-sensitive, it is necessary to use a technology that permits the deposition of coatings at low temperatures without affecting the substrate integrity. Thus, an atmospheric-pressure plasma jet system (APPJ) with a dielectric barrier discharge (DBD) was used in this study. The coated samples were analyzed by Scanning Electron Microscopy, Atomic Force Microscopy, Fourier-Transform Infrared with Attenuated Total Reflectance Spectroscopy, X-ray Photoelectron Spectroscopy and tribological tests (friction coefficient and wear rate). The studies showed that the coated samples that contain a higher amount of forms of silicon (SiOSi) and nitrogen (amines, amides and imines) have lower friction coefficients. The sample coated at a specific plasma power of 550 W and an APTES flow rate of 1.5 slm had the highest values of SiOSi and nitrogen-containing groups peak intensity and atomic percentages of Si2p and SiO{sub 4}, and the lowest percentages of C1s and average friction coefficient. The results of this research permit one to conclude that APPJ with a DBD is a promising technique to use in coating SiO{sub x} and nitrogen-containing groups layers on polymeric materials. - Highlights: • SiO{sub x} thin films on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of plasma power and precursor flow rate on film's properties. • Friction coefficient is inversely related to the amount of SiOSi and N groups. • Nitrogen groups from the ionization gas (N{sub 2}) seem to

  8. Fillers influence on mechanical properties of elastomers during their ageing by irradiation; Influence des charges sur les proprietes mecaniques des elastomeres lors de leur vieillissement par irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Planes, E.; Chazeau, L.; Vigier, G. [Institut National des Sciences Appliquees (INSA), MATEIS, UMR CNRS 5510, 69 - Villeurbanne (France); Planes, E. [NEXANS Research Center, 69 - Lyon (France); Stevenson, I. [Laboratoire des Materiaux Polymeres et Biomateriaux (IMP/LMPB) UMR CNRS 5627, UCBL, 69 - Villeurbanne (France)

    2008-07-01

    This paper presents the study of ageing under irradiation of filled elastomers, particularly aluminium tri-hydrate ATH or nano-scopic silica filled EPDM. The materials have been physico-chemically, micro-structurally and mechanically characterised at various levels of ageing: here only results for physical and mechanical properties (at small (DMA) and large deformations) have been presented. From these analyses, the competition between crosslinking and chains scissions during irradiation was highlighted. Moreover, a strong influence of fillers on mechanical properties during ageing was observed. (authors)

  9. Secondary Sensitivity Control of Silver-Nanowire-Based Resistive-Type Strain Sensors by Geometric Modulation of the Elastomer Substrate.

    Science.gov (United States)

    Heo, Yunjeong; Hwang, Youngkyu; Jung, Hoon Sun; Choa, Sung-Hoon; Ko, Heung Cho

    2017-06-01

    A secondary method for modulation of the sensitivity in silver nanowire (AgNW) resistive-type strain sensors without the need to change the material or coating process in the sensory layer is demonstrated. Instead of using a planar elastomer (polydimethylsiloxane is used in this study) substrate, diverse relief structures are introduced to induce nonuniform and complex strain within the elastic substrate and thereby different distributions of the crack density of the AgNWs upon stretching, which plays an important role in the modulation of the gauge factor (GF). Analysis of the sensory layer and mechanical studies reveal that a lower height ratio and greater number of trenches enhance the sensor sensitivity, for example, reaching a GF of 926 at 9.6% in this study. The demonstration of wrist-motion sensors using the technology illustrates the feasibility of using relief structures for various types of sensors and sensitivity ranges using an identical sensor layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fixation mechanisms of nanoparticles on substrates by electron beam irradiation.

    Science.gov (United States)

    Morioka, Daichi; Nose, Tomohiro; Chikuta, Taiki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2017-01-01

    For applications such as the fabrication of plasmonic waveguides we developed a patterning technique to fabricate an array of nanoparticles on a substrate using focused electron beams (Noriki, T.; Abe, S.;.Kajikawa, K.; Shimojo, M. Beilstein J. Nanotechnol.2015,6, 1010-1015). This technique consists of three steps: Firstly, nanoparticles are placed over the entire surface of a substrate. Secondly, the nanoparticles are fixed on the substrate by focused electron beam irradiation. The electron beam decomposes the organic molecules located around the particle into amorphous carbon. The amorphous carbon immobilizes the particle on the substrate. Finally, the unfixed nanoparticles are removed. However, in this original technique, the area in which the nanoparticles were fixed was wider than the electron-probe size of a few nanometers. To understand this widening mechanisms, the effects of accelerating voltage, particle size and substrate material are investigated by means of both experiments and simulation. It is demonstrated that the fixing area is greatly affected by the electrons back-scattered by the substrate. The back-scattering leads to an increase in line width and thus reduces the resolution of this patterning technique.

  11. Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics.

    Science.gov (United States)

    Ma, Yinji; Pharr, Matt; Wang, Liang; Kim, Jeonghyun; Liu, Yuhao; Xue, Yeguang; Ning, Rui; Wang, Xiufeng; Chung, Ha Uk; Feng, Xue; Rogers, John A; Huang, Yonggang

    2017-03-01

    Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultralow modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain-isolation effect that enhances not only the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some nonnegligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain-isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid-filled cavity. Examples in skin-mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano-acoustic responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Elastomers Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Primary capabilities include: elastomer compounding in various sizes (micro, 3x5, 8x12, 8x15 rubber mills); elastomer curing and post curing (two 50-ton presses, one...

  13. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  14. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  15. New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate

    Science.gov (United States)

    Prévôt, Marianne E.; Bergquist, Leah E.; Sharma, Anshul; Mori, Taizo; Gao, Yungxiang; Bera, Tanmay; Zhu, Chenhui; Leslie, Michelle T.; Cukelj, Richard; Korley, LaShanda T. J.; Freeman, Ernest J.; McDonough, Jennifer A.; Clements, Robert J.; Hegmann, Elda

    2017-08-01

    We report here on cell growth and proliferation within a 3D architecture created using smectic liquid crystal elastomers (LCEs) leading to a responsive scaffold for tissue engineering. The investigated LCE scaffolds exhibit biocompatibility, controlled degradability, with mechanical properties and morphologies that can match development of the extracellular matrix. Moreover, the synthetic pathway and scaffold design offer a versatility of processing, allowing modifications of the surface such as adjusting the hydrophilic/hydrophobic balance and the mobility of the LC moieties to enhance the biomaterial performance. First, we succeeded in generating LCEs whose mechanical properties mimic muscle tissue. In films, our LCEs showed cell adhesion, proliferation, and alignment. We also achieved creating 3D LCE structures using either metallic template or microsphere scaffolds. Finally, we recorded a four times higher cell proliferation capability in comparison to conventional porous films and, most importantly, anisotropic cell growth that highlights the tremendous effect of liquid crystal moieties within LCEs on the cell environment.

  16. Film-substrate hydrodynamic interaction initiated by femtosecond laser irradiation

    Science.gov (United States)

    Khokhlov, V. A.; Inogamov, N. A.; Zhakhovsky, V. V.; Ilnitsky, D. K.; Migdal, K. P.; Shepelev, V. V.

    2017-01-01

    Action of an ultrashort single laser pulse onto a thin metal film is considered. Disruption of a plane freestanding film quickly heated by a laser is the simplest model of the laser thermomechanical spallation. There is a sharp spallation (ablation) threshold Fabl dividing dynamics of a freestanding film to two regimes: below or above the threshold Fabl. Problem of significant importance is: how this picture will change when a film is deposited onto a substrate? We have solved this problem. It is found that there are two thresholds Fdelam waves into substrate. For Fdelam wave achieves the film-substrate contact boundary and overcomes adhesion strength of a contact. The addition ΔF to the freestanding case is small in the case when the ratio η of the acoustic impedances of substrate to a film is small. This is the case of the gold or silver films on a glass. The third is the complicated regime with interacting delamination and spallation processes when F ≈ Fabl + ΔF. In the fourth regime Fabl + ΔF one remains on substrate.

  17. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    Science.gov (United States)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  18. Behavior of a SnLi liquid metal eutectic on D-irradiated, porous tungsten substrates

    Science.gov (United States)

    Lang, Eric; Kapat, Aveek; Allain, J. P.

    2016-10-01

    Tungsten (W) is a common PFC material in the divertor due to its beneficial thermomechanical properties and high sputter threshold. Under helium irradiation, W develops surface morphology such as fuzz. Liquid metals, such as tin-lithium eutectics, have been proposed as PFCs to combat W erosion and allow for a self-healing surface. Tin-dominant eutectics have lower evaporation rates than pure lithium due to increased binding energies, yet exhibit decreased D retention and Li surface segregation. In prior experiments of SnLi coatings on fuzzy W substrates, the SnLi layer has been shown to protect underlying fuzz. Additionally, the liquid metal better adhered to a fuzzy surface than a smooth one. Fuzzy W samples have been coated with a 95 at.% SnLi eutectic and exposed to 250eV D ions at elevated temperatures and fluences of 1017 cm-2 . Experiments will be conducted in the IGNIS facility, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. In-situ XPS will be used to elucidate irradiation-driven liquid metal behavior to identify surface chemistry changes. Additionally, ex-situSEM will be used to identify surface morphology changes. Work supported by US DOE Contract DE-SC0014267.

  19. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  20. Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Tae [Micro Systems Lab, SAIT, P.O. Box 111, Suwon 440-600 (Korea, Republic of)], E-mail: stchoi@kaist.ac.kr; Jeong, Su Jeong; Earmme, Youn Young [Department of Mechanical Engineering, KAIST, Science Town, Daejeon 305-701 (Korea, Republic of)

    2008-02-15

    We have developed a modified-creep experiment with nanoindenter to measure the viscoelastic properties of elastomer films. Load-controlled experiments on PDMS (polydimethylsiloxane) films were performed using the Nano Indenter XP with a flat-ended tip. By adapting the force-depth relation obtained by Choi et al. [S.T. Choi, S.R. Lee, Y.Y. Earmme, Acta Mater. (submitted for publication)], the indentation results were analyzed to obtain the relaxation modulus of the PDMS film as a function of time. Residual deformation on the indented PDMS film after unloading was measured with an atomic force microscope.

  1. Fabrication of isolated platinum nanowire gratings and nanoparticles on silica substrate by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasutaka [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shouse 72, Sofia 1784 (Bulgaria); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Takami, Akihiro [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Terakawa, Mitsuhiro, E-mail: terakawa@elec.keio.ac.jp [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2017-02-01

    Highlights: • Formation of HSFL with periodicities shorter than 100 nm. • Structural evolution from platinum nanowire gratings to platinum nanoparticles only by increasing the number of pulses. • Melting and fragmentation of the nanowire gratings would play a key role in structural evolution. - Abstract: We demonstrate the fabrication of isolated platinum nanostructures on a silica substrate by using femtosecond laser. Nanowire gratings which have short periodicities of approximately 50 nm were formed by irradiating a platinum thin film deposited on a fused silica substrate with 800-nm wavelength femtosecond laser pulses. The structural evolution from the nanowire gratings to nanoparticles was observed only by increasing the number of pulses. The periodicities or diameters of the structures showed good uniformity. Scanning electron microscopy of the surfaces and theoretical calculation of temperature profile using a two-temperature model revealed that the structural evolution can be attributed to the fragmentation of the formed nanowires. The presented method provides a simple and high-throughput technique for fabricating both metal nanowire gratings and nanoparticles, which have the potential to be used for the fabrication of optical, electrical and biomedical devices.

  2. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    elastomers were prepared by mixing different mass ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6) between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, as well...... as well as high electrical and mechanical breakdown strengths. [1] Most model elastomers are prepared by an end-linking process using a crosslinker with a certain functionality ƒ and a linear polymer with functional groups in both ends, and the resulting networks are so-called unimodal networks where...... as thermal stability. The bimodal elastomers reinforce themselves at large strain and the high electrical breakdown strength is obtained due both to the low extensibility of the short chains that attach strongly the long chains and to the extensibility of the last ones that retards the rupture process...

  3. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds

    Science.gov (United States)

    Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia

    2017-01-01

    The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.

  4. Elastomer genome: Reverse tissue engineering.

    Science.gov (United States)

    Sheiko, Sergei S.

    Soft elastic materials enable the creation of implants, substrates, and haptic robotic digits with mechanical properties matching those of biological tissues. Currently, polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa. However, the liquid fraction in the gels causes practical troubles including phase separation and solvent leakage on deformation. Herein, we have created bottlebrush and comb-like networks that are superelastic (λ = 1-12) and ultrasoft (G =102 - 105 Pa), even in the absence of solvent. The brush-like architecture causes an increase in the diameter of individual polymer molecules, but unlike typical filaments, the molecules remain flexible. This enables a significant decrease in the entanglement density, which reduces the limit of stiffness in dry polymer materials by 1000 times and has opened up new applications not available to stiffer materials or materials with liquid fractions. The comb-like architecture offers three independently controlled parameters - side-chain length, grafting density, and crosslink density - that allow for combinatorial variations of elastomer mechanical properties impossible for conventional linear chain elastomers, e.g. simultaneously increasing rigidity and elasticity. Based on this materials design platform, we have prepared elastomers that closely match the mechanical behaviour of biological tissue. Furthermore, this architecture affords many chain-ends that are amendable for chemical modifications and enhance molecular mobility, which directly affects vital physical properties ranging from glass transition and crystallization temperatures to adhesion and permeability. This work has been supported by the National Science Foundation (DMR-1407645 and DMR-1436201).

  5. A comparison on radiation tolerance of microstrip detectors built on <1 0 0> and <1 1 1> silicon substrates after proton irradiation

    CERN Document Server

    Creanza, D; De Palma, M; Fiore, L; My, S; Radicci, V; Selvaggi, G; Tempesta, P

    2002-01-01

    A comparative study on silicon microstrip detectors of the same geometry built on low resistivity and high resistivity substrates has been carried out. Leakage current, depletion voltage and interstrip capacitance have been measured before and after irradiation with 34 MeV protons at regular intervals during the beneficial annealing period. The samples were irradiated at four different fluences up to approx =2x10 sup 1 sup 4 n/cm sup 2. The measurements after irradiation show that leakage current does not depend on substrate resistivity and crystal orientation. Above type inversion also, the depletion voltage does not depend substantially on the initial resistivity. The interstrip capacitance is damaged both for and silicon substrates, even if in the first case the interstrip capacitance increase is lower, as expected from the known difference in charge trapping effects. The results of this work are compared with previous measurements performed on identical structures irradiated with neutrons.

  6. Smectic elastomer membranes

    OpenAIRE

    Stenull, Olaf

    2007-01-01

    We present a model for smectic elastomer membranes which includes elastic and liquid crystalline degrees of freedom. Based on our model, we determined the qualitative phase diagram of a smectic elastomer membrane using mean-field theory. This phase diagram is found to comprise five phases, viz. smectic-A--flat, smectic-A--crumpled, smectic-C--flat, smectic-C--crumpled and smectic-C--tubule, where in the latter phase, the membrane is flat in the direction of mesogenic tilt and crumpled in the ...

  7. Arrayed Force Sensors Made of Paper, Elastomer, and Hydrogel Particles

    Directory of Open Access Journals (Sweden)

    Xiyue Zou

    2017-12-01

    Full Text Available This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array of deformable, hemispherical elements/reliefs, facing down toward an array of interdigitated capacitive sensing units on patterned metallized paper. Each hemispherical element is 20 mm in diameter and 8 mm in height. When a user applied pressure to the elastomer-based layer, the contact area between the hemispherical elements and the interdigitated capacitive sensing units increased with the deformation of the hemispherical elements. To enhance the sensitivity of the sensors, embedded particles of hydrogel in the elastomer-based layer increased the measured electrical responses. The measured capacitance increased because the effective dielectric permittivity of the hydrogel was greater than that of air. Electromechanical characterization verified that the hydrogel-filled elastomer was more sensitive to force at a low range of loads (23.4 pF/N than elastomer alone without embedded hydrogel (3.4 pF/N, as the hydrogel reduced the effective elastic modulus of the composite material by a factor of seven. A simple demonstration suggests that the force-sensing array has the potential to contribute to wearable and soft robotic devices.

  8. Radio-oxidation of an EPDM elastomer under weak or strong ionising radiations: measurement and modelling of dioxygen consumption; Radio-oxydation d'un elastomere de type EPDM lors d'irradiations faiblement ou fortement ionisantes: mesure et modelisation de la consommation de dioxygene

    Energy Technology Data Exchange (ETDEWEB)

    Dely, N

    2005-10-15

    Usually, the irradiation of polymers under ionising radiations occurs in air that is in the presence of oxygen. This leads to a radio oxidation process and to oxygen consumption. Our material is an EPDM elastomer (ethylene propylene 1,4 hexadiene) used as insulator in control-command cables in nuclear plants (Pressurised Water Reactor). A specific device has been conceived and built up during this PhD work for measuring very small oxygen consumptions with an accuracy of around 10%. Ionising radiations used are electrons at 1 MeV and carbon ions at 11 MeV per nucleon. Under both electron and ion irradiations, the influence of oxygen pressure on oxygen consumption has been studied in a very large range: between 1 and 200 mbar. In both cases, the yield of oxygen consumption is constant in-between 200 and 5 mbar. Then, at lower pressures, it decreases appreciably. On the other hand, the oxygen consumption during ion irradiation is four times smaller than during electron irradiation. This emphasizes the role of the heterogeneity of the energy deposition at a nano-metric scale. The adjustment of the experimental results obtained during electron irradiation with the general homogeneous steady-state kinetic model has allowed extracting all the values of the kinetic parameters for the chosen mechanism of radio oxidation. The knowledge of these numbers will allow us to face our results obtained during ion irradiation with a heterogeneous kinetic model under development. (author)

  9. Elastomer-Modified Polyimides

    Science.gov (United States)

    Fohlen, G. M.; Parker, J.; Varma, I. K.

    1984-01-01

    New resins yield laminates with improved mechanical properties. Ingredients of Modified Polymer include bisimide of formula 1 and amine-terminated elastomer. Cure effected by heating to temperature suited to particular ingredients used, generally in range of 200 degrees to 300 degrees C. Solution of solvent and reactants used for fabricating fiber-reinforced structures or as adhesive.

  10. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    CERN Document Server

    Casse, G; Lozano, M; Martí i García, S; Turner, P R

    2004-01-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n- type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniatur...

  11. Thermal effects on zirconia substrate after Er,Cr:YSGG irradiation

    Directory of Open Access Journals (Sweden)

    Alessandra Cassoni

    Full Text Available OBJECTIVE: The objective of the present study was to investigate the thermal effects of Er,Cr:YSGG laser irradiation (1.5W/20Hz on yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP. MATERIAL AND METHOD: Fifteen disks of Y-TZP (AS Technology TitaniumFIX, São José dos Campos, Brazil with 5 mm diameter and 3 mm high standardized with CAD-CAM were used. The Y-TZP disks were randomized in three groups (n=5: Y-TZP-G1 = control (no laser treatment; Y-TZP-G2 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/25%; Y-TZP-G3 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/0%. A thermopar (SmartMether, Novus, Porto Alegre, RS, Brazil was attached to a digital thermometer (SmartMether, Novus, Porto Alegre, RS, Brazil fixed to the opposite irradiated surface. The temperature gradients (ΔT were calculated (ΔT = Final Temperature - Initial Temperature for each group. Values were statistically analyzed by one-way ANOVA at the 95% confidence level and compared by Tukey post-hoc test (α=0.05 for each material. One sample of each group was analyzed by confocal white light microscopy. RESULT: The ANOVA test showed significant differences for the factor "laser" (p<.001. The temperature gradients (ΔT value showed the following results: Y-TZP-G1 = 0 ºC; Y-TZP-G2 = -1.4 ºC and Y-TZP-G3 = 21.4 ºC. The ΔT values (ºC of the non-refrigerated group were higher than the refrigerated group. The roughness value (Ra ranged from 4.50 to -33.65 µm. CONCLUSION: The water refrigeration for Er,Cr:YSGG irradiation is essential to avoid thermal increase in the Y-TZP.

  12. Diffraction from relief gratings on a biomimetic elastomer cast

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Raphael A., E-mail: rguerrero@admu.edu.ph [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines); Aranas, Erika B. [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines)

    2010-10-12

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  13. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  14. Synergistic effects in the processes of crosslinking of elastomers

    Science.gov (United States)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-01-01

    Radiation crosslinking of elastomers is an example of the modification of polymers by ionizing radiation. In practice, often parallel both traditional crosslinking (with peroxide) and radiation treatment is applied (Bik et al., 2003, 2004). Elastomers can be irradiated both before and/or after vulcanization products. The aim of this study was to investigate the system of the mixed radiation/peroxide and peroxide/radiation crosslinking of selected elastomers (Engage 8200, HNBR). In particular, attention was directed to the influence of the protective effects of aromatic additives in elastomers (peroxides, thermal- and light stabilizers) on the phenomenon of crosslinking and postradiation oxidation. Aromatic peroxides may undergo modifications during the preirradiation, which affect the subsequent processes of vulcanization. In this way the method of gas chromatography (GC) was applied for determination of hydrogen and oxidation effects, never described before for Engage 8200. Using that approach, radiation efficiency of hydrogen evolution and oxygen absorption efficiency of the polymers has been identified. To describe the phenomena of postradiation oxidation of elastomers, the method of Diffuse Reflection Spectrophotometry (DRS) was also applied.

  15. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    Directory of Open Access Journals (Sweden)

    Mitsunori Saito

    2012-12-01

    Full Text Available Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  16. Silica Fillers for elastomer Reinforement

    Energy Technology Data Exchange (ETDEWEB)

    Kohls, D.J.; Schaefer, D.W. (UCIN)

    2012-09-10

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  17. Silica Fillers for elastomer Reinforement

    Energy Technology Data Exchange (ETDEWEB)

    Kohls, D.J.; Schaefer, D.W. (UCIN)

    2009-08-26

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  18. The influence of polychromic light on the surface of MDI based polyurethane elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Dan, E-mail: drosu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, Iasi, 700487 Romania (Romania); Ciobanu, Constantin; Rosu, Liliana; Teaca, Carmen-Alice [' Petru Poni' Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, Iasi, 700487 Romania (Romania)

    2009-09-15

    A polyurethane elastomer was synthesized starting from 4,4' diphenylmethane diisocyanate and poly(ethyleneadipate)diol. Butylene glycol was used as chain extender. Surface properties after photo-degradation of the elastomer under the action of the radiation with {lambda} > 300 nm was monitored by FT-IR spectroscopy and contact angle measurements. The quality of polymer surface was observed under optical microscope. The formation of photo-Fries rearrangement and Norrish II reaction products during irradiation was associated with the gloss loss (from 100% for non-irradiated sample to 27% after 200 h irradiation time) and modification of wettability. There were also found significant modifications with irradiation time of both the glass transition temperature (T{sub g} decreases from 64 deg. C for non-irradiated sample to 53 deg. C after 200 h irradiation) and the swelling coefficient (an increase from 1.2% up to 2.5% is observed after 200 h irradiation).

  19. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  20. Stress measurements of planar dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert [Biomaterials Science Center, University of Basel, Gewerbestrasse 14, 4123 Allschwil (Switzerland)

    2016-05-15

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.

  1. Degradation of elastomer by heat and/or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masayuki [Advanced Research Institute for Science and Engineering, Waseda University, 51-Goukan, 10F 08, 3-4-1 Ookubo, Shinjuku-Ku, Tokyo 169-8555 (Japan)], E-mail: masayuki@kurenai.waseda.jp

    2007-12-15

    This article studied various problems on the degradation of elastomers by heat and/or radiation. Three kinds of elastomers were irradiated and evaluated by the radiation resistant property using the measurement of tensile test. The fluorine containing elastomer, which has excellent heat resistant properties, was found to be less durable for irradiation than ethylene-propylene-diene (EPDM) elastomer. Ten kinds of different compounding formulas of EPDM were prepared to investigate whether the compounding for heat resistant has durability for irradiation. The thermal exposure was performed in an air oven. The duration of thermal exposure at 140 deg. C was 384 h. The irradiation condition was 5.0 kGy/h at 70 deg. C, and the total dose was 0.9 MGy. Elongation retained was taken for the evaluation of the stability. It was found that the formulas for improving the thermal stability did not bring radiation resistant of samples in the experiment. The rate constant of the increase in C=O concentration by heat and radiation was measured and defined as k{sub c}(h) and k{sub c}(r), respectively. The rate constant of that under the combined addition of the heat and the radiation is expressed as k{sub c}(h + r). Eq. was obtained by the experiment and it was found that there is a synergistic relationship between heat and radiation on the increase in C=O concentration (1)k{sub c}(h+r)>k{sub c}(h)+k(r). Similar relationship was observed on the rate of decrease in ultimate elongation of a certain EPDM.

  2. Sustainable Elastomers from Renewable Biomass.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were

  3. The Future of Swelling Elastomers: An Elastomer Manufacturer's View of Swelling Elastomer Developments and Market Trends

    Directory of Open Access Journals (Sweden)

    R Seyger

    2013-06-01

    Full Text Available Swelling elastomers have gained acceptance as very effective products for creating sealing in various industries, including those creating energy from fossil fuels and geothermal resources. This paper outlines the research and development work being conducted not only in the application of these elastomers but also in the development work required to create new generations of elastomers. It touches on fundamental research into the mechanics of swelling with the intent to create a better and more predictable sealing as well as more advanced elastomers. It lifts the veil on the direction of work being done on new elastomers being developed in order to enable a better control of swelling. By doing so, the research is opening up field of applications for new equipment designs and mechanical possibilities in the future. Additionally, it addresses the need for a better and more in-depth dialogue between both chemical and mechanical engineers, and the elastomer companies and their customers on the potential that both swelling and non-swelling elastomers can offer to the industry as a whole.

  4. Self-healing elastomer system

    Science.gov (United States)

    Keller, Michael W. (Inventor); Sottos, Nancy R. (Inventor); White, Scott R. (Inventor)

    2009-01-01

    A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.

  5. Ion implanted dielectric elastomer circuits

    OpenAIRE

    O’Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-01-01

    Starfish and octopuses control their infinite degree of- freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary dig...

  6. Indentation of a stretched elastomer

    Science.gov (United States)

    Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang

    2017-10-01

    Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.

  7. To boost elastomer vulcanization through ionization; Pousser la vulcanisation des elastomeres par ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Rouif, S. [Ionisos, 01 - Dagneux (France); Noireaux, P. [Centre de Transfert de Technologies du Mans (CTTM), 72 - Le Mans (France)

    2006-07-01

    The beta and gamma irradiation of elastomers makes easier the handling of the reticulation process in room temperature conditions and in adequate depth inside the material. The irradiation generates free radicals along the polymer chains, these radicals by combining form new chemical bonds (reticulation reaction). The irradiation of an elastomer is featured by the formation of covalent carbon-carbon type bonds while sulfur vulcanization leads to chain bridging based on sulfur-sulfur bonds. The reticulation process entails a rise of the ramification rate of the polymer. These modifications confer to the irradiated material a higher dimensional stability in high temperature conditions and in aggressive environment that may lead, in certain conditions to no need for the usual extra coating. The gamma irradiation facilities of the Ionisos company allow the treatment of molded plastic materials directly in their packaging and in bulk quantity. (A.C.)

  8. Self-enhancement and suppression of optical pulses by use of photochromism in elastomer.

    Science.gov (United States)

    Saito, Mitsunori; Hamazaki, Takamasa

    2016-10-03

    When violet or green pulses were launched into an elastomer containing photochromic diarylethene, two competitive absorption bands emerged at around 400 and 520 nm. The violet pulses suppressed the former and enhanced the latter, whereas the green pulses induced the opposite reaction. Consequently, these signals self-formed their optical path in the elastomer (self-enhancement). By contrast, blue pulses exhibited either a self-enhancement or suppression characteristic depending on whether the elastomer had been irradiated by the violet or green signal before the blue signal transmission. Measurement of the transient spectra during the irradiation process revealed that the blue photons were absorbed by both 400 and 520 nm bands inducing two competitive photochromic isomerizations simultaneously.

  9. High Temperature Hybrid Elastomers

    Science.gov (United States)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  10. Synthesis and characterization of CdSe/ZnS core-shell quantum dots immobilized on solid substrates through laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, E. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Perez del Pino, A. [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Cientificas (ICMAB, CSIC), Bellaterra (Spain); Roqueta, J.; Ballesteros, B. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); Miguel, A.S.; Maycock, C.; Oliva, A.G. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa (ITQB-UNL), Oeiras (Portugal)

    2012-11-15

    CdSe/ZnS core-shell quantum dots (QDs) have been immobilized onto solid substrates by matrix assisted pulsed laser evaporation (MAPLE). An UV KrF* ({lambda} = 248 nm, {tau}{sub FWHM} {approx_equal} 25 ns) excimer laser source was used for irradiations of the composite MAPLE targets. The targets were prepared by the dispersion of the CdSe/ZnS QDs in a solvent with high absorption at the incident laser radiation. The dependence of the surface morphology, crystalline structure, chemical composition, and functional properties of the laser transferred CdSe/ZnS QDs on the processing conditions as incident laser fluence value and ambient atmosphere inside the irradiation chamber was investigated. The possible physical mechanisms implied in the laser ablation process were identified. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Applications of pressure-sensitive dielectric elastomer sensors

    Science.gov (United States)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  12. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... investigated but rarely discussed in the context of mechani-cal integrity and thus product reliability. Focus here is on long-term reliability of the dielectric elastomers and how to achieve this by means of careful elastomer design. This thesis presents methods and results of analyses acquired in the cross......-disciplinary, collaborative effort on dielectric elastomers funded by Innovationsfonden Denmark (formerly Advanced Technology Foundation) with the materials workgroup headed by the author. Main contributors to the work have been research scientists at Danfoss PolyPower, colleagues from the Danish Polymer Centre, as well as 7...

  13. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S., E-mail: tsand@fys.ku.dk [Center for Quantum Devices and Nano Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen 2100 (Denmark); Madsen, M. H. [Danish Fundamental Metrology, Matematiktorvet 307, Kgs. Lyngby 2800 (Denmark); Liao, Z.; Vosch, T. [Nano-Science Center, Department of Chemistry, University of Copenhagen, Copenhagen 2100 (Denmark)

    2015-12-14

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  14. Elastomer Spacers in Fire Conditions

    Directory of Open Access Journals (Sweden)

    Roszkowski Paweł

    2017-09-01

    Full Text Available In the paper, fire resistance of linear joints seal made of elastomer spacers under standard fire conditions, and thermal degradation range of EPDM elastomeric spacers are investigated. The geometry of elastomer spacer joints is important not only for their load capacity under normal conditions - thickness, width, and cavity depth can also influence fire resistance performance. Linear joints of different thicknesses and widths have been tested. The fire insulation and fire integrity were verified for various arrangements. Relatively low thermal degradation rates have been measured, given that EPDM is a combustible material.

  15. Elastomer Spacers in Fire Conditions

    Science.gov (United States)

    Roszkowski, Paweł; Sędłak, Bartłomiej; Sulik, Paweł

    2017-09-01

    In the paper, fire resistance of linear joints seal made of elastomer spacers under standard fire conditions, and thermal degradation range of EPDM elastomeric spacers are investigated. The geometry of elastomer spacer joints is important not only for their load capacity under normal conditions - thickness, width, and cavity depth can also influence fire resistance performance. Linear joints of different thicknesses and widths have been tested. The fire insulation and fire integrity were verified for various arrangements. Relatively low thermal degradation rates have been measured, given that EPDM is a combustible material.

  16. Effects Of Radiation On Elastomers

    Science.gov (United States)

    Bouquet, Frank L.

    1988-01-01

    Report provides data on effects of radiation on elastomers. Quantifies effects by giving minimum radiation levels to induce changes of 1 percent and 25 percent in given properties. Electrical, mechanical, and chemical properties included in data. Combined effects of heat and radiation briefly considered. Data summarized in graphic form useful to designers.

  17. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  18. Entirely soft dielectric elastomer robots

    Science.gov (United States)

    Henke, E.-F. Markus; Wilson, Katherine E.; Anderson, Iain A.

    2017-04-01

    Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot - a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.

  19. Tactile display with dielectric multilayer elastomer actuatorsq

    Science.gov (United States)

    Matysek, Marc; Lotz, Peter; Schlaak, Helmut F.

    2009-03-01

    Tactile perception is the human sensation of surface textures through the vibrations generated by stroking a finger over the surface. The skin responds to several distributed physical quantities. Perhaps the most important are high-frequency vibrations, pressure distributions (static shape) and thermal properties. The integration of tactile displays in man-machine interfaces promises a more intuitive handling. For this reason many tactile displays are developed using different technologies. We present several state-of-the-art tactile displays based on different types of dielectric elastomer actuators to clarify the advantages of our matrix display based on multilayer technology. Using this technology perpendicular and hexagonal arrays of actuator elements (tactile stimulators) can be integrated into a PDMS substrate. Element diameters down to 1 mm allow stimuli at the range of the human two-point-discrimination threshold. Driving the elements by column and row addressing enables various stimulation patterns with a reduced number of feeding lines. The transient analysis determines charging times of the capacitive actuators depending on actuator geometry and material parameters. This is very important to ensure an adequate dynamic characteristic of the actuators to stimulate the human skin by vibrations. The suitability of multilayer dielectric elastomer actuators for actuation in tactile displays has been determined. Beside the realization of a static tactile display - where multilayer DEA are integrated as drives for movable contact pins - we focus on the direct use of DEA as a vibrotactile display. Finally, we present the scenario and achieved results of a recognition threshold test. Even relative low voltages in the range of 800 V generate vibrations with 100% recognition ratio within the group of participants. Furthermore, the frequency dependent characteristic of the determined recognition threshold confirms with established literature.

  20. Novel silicone elastomer formulations for DEAPs

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Vudayagiri, Sindhu; Benslimane, Mohamed

    2013-01-01

    We demonstrate that the force output and work density of polydimethylsiloxane (PDMS) based dielectric elastomer transducers can be significantly enhanced by the addition of high permittivity titanium dioxide nanoparticles which was also shown by Stoyanov et al[1] for pre-stretched elastomers...... and by Carpi et al for RTV silicones[2]. Furthermore the elastomer matrix is optimized to give very high breakdown strengths. We obtain an increase in the dielectric permittivity of a factor of approximately 2 with a loading of 12% TiO2 particles compared to the pure modified silicone elastomer with breakdown...

  1. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    Science.gov (United States)

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  2. Dielectric Elastomer Actuators for Microfluidics

    OpenAIRE

    Maffli, Luc; Rosset, Samuel; Shea, Herbert

    2012-01-01

    One of the goals of microfluidics is to bring a whole laboratory processing chain on a few square centimeters, Lab-On-Chips (LOC). But current LOCs require many heavy and power-consuming off-chip controls like pneumatics, pumps and valves, which keep the small chip bound to the lab. Miniaturized Dielectric Elastomer Actuators (DEA) are excellent candidates to make LOC truly portable, since they combine electrical actuation, large stroke volumes and high output forces. We report on the use of ...

  3. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  4. Beam steering by liquid crystal elastomer fibres.

    Science.gov (United States)

    Nocentini, S; Martella, D; Wiersma, D S; Parmeggiani, C

    2017-11-22

    The problem of utilizing a laser beam as an information vehicle and dividing it into different channels is an open problem in the telecommunication field. The switching of a signal into different ports has been demonstrated, to date, by employing complex devices and mechanisms such as the electro optic effect, microelectromechanical system (MEMS) mirrors, or liquid crystal-based spatial light modulators (SLMs). We present here a simple device, namely a mirror held by a liquid crystal elastomer (LCE) fibre, as an optically and remotely driven beam steerer. In fact, a considered signal (laser beam) can be addressed in every in-plane direction by controlling the fibre and mirror rotation, i.e., the deflected probe beam angle. Such movement is possible due to the preparation of LCE fibres able to rotate and contract under a selective light stimulus. By adjusting the irradiation stimulus power, elastic fibres are able to rotate with a specific angle, performing more than one complete revolution around their axis. The described movement is perfectly reversible as soon as the stimulus is removed.

  5. Finite element analysis and validation of dielectric elastomer actuators used for active origami

    Science.gov (United States)

    McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida

    2014-09-01

    The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.

  6. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2016-01-01

    Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they consti- tute an interesting...... driving voltages. In this review, the current state of sili- cone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects...... of the elastomer are taken into account, namely dielectric losses, life- time and the very often ignored polymer network integrity and stability....

  7. Dielectric elastomer pump for artificial organisms

    Science.gov (United States)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  8. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....

  9. Modeling of a Dielectric Elastomer Bender Actuator

    Directory of Open Access Journals (Sweden)

    Paul White

    2014-07-01

    Full Text Available The current smallest self-contained modular robot uses a shape memory alloy, which is inherently inefficient, slow and difficult to control. We present the design, fabrication and demonstration of a module based on dielectric elastomer actuation. The module uses a pair of bowtie dielectric elastomer actuators in an agonist-antagonist configuration and is seven times smaller than previously demonstrated. In addition, we present an intuitive model for the bowtie configuration that predicts the performance with experimental verification. Based on this model and the experimental analysis, we address the theoretical limitations and advantages of this antagonistic bender design relative to other dielectric elastomer actuators.

  10. Porous nC-Si/SiOx nanostructured layer on Si substrate with tunable photoluminescent properties fabricated by direct, precursor-free microplasma irradiation in air

    Science.gov (United States)

    Wang, Tao; Hu, Mingshan; Yang, Bin; Wang, Xiaolin; Liu, Jingquan

    2018-03-01

    Porous nC-Si/SiOx photoluminescent nanostructured layer is fabricated by direct, precursor-free microplasma irradiation on Si substrate in air. It is confirmed that the deposited layer has porous and cluster-like structures by scanning electron microscopy (SEM) and profile scanning. Fourier transform infrared transmission (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) results indicate the produced layer is actually composed of nanocrystalline silicon (nC-Si) embedded in SiOx matrix. Transmission electron microscopy (TEM) and Raman results show the mean particle size of nC-Si is mainly between 2 and 4 nm and the highest crystalline volume fraction reaches 86.9%. The photoluminescence (PL) measurement of nC-Si/SiOx layer exhibited a broad band centered at 1.7-1.9 eV, ranging from 1.2-2.4 eV, and could be tuned by varying the applied voltage. The synthetical mechanisms are discussed to explain the PL properties of the layers. We propose that the energetic ions bombing induced by high compressed electric field near the Si surface is the main reason for porous nC-Si/SiOx formation. Maskless deposition of the line pattern of nC-Si/SiOx layer was also successfully fabricated. This simple, maskless, vacuum-free and precursor-free technique could be used in various potential optoelectronics and biological applications in the future.

  11. Polymer-dispersed liquid crystal elastomers

    Science.gov (United States)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  12. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are used to evaluate the elastomers...... before and after electrical breakdown. It was shown the chemically very similar silicone elastomers broke down electrically in very different ways. These observations emphasize that the modification of the silicone backbone may open up for completely new possibilities for stabilizing the silicone...

  13. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  14. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, CRG demonstrated the feasibility of a novel approach to prepare cyanate ester based elastomers. This approach polymerizes in-situ siloxane within a...

  15. Model FORC diagrams for hybrid magnetic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Vaganov, M.V., E-mail: mikhail.vaganov.sci@gmail.com.ru [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm, 614013 (Russian Federation); Linke, J.; Odenbach, S. [Technische Universität Dresden, Dresden, 01062 Germany (Germany); Raikher, Yu.L. [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm, 614013 (Russian Federation); Ural Federal University, Ekaterinburg, 620083 (Russian Federation)

    2017-06-01

    We propose a model of hybrid magnetic elastomers filled with a mixture of magnetically soft and magnetically hard microparticles. The magnetically hard particles are described by the Stoner–Wohlfarth model, the magnetically soft phase obeys the Fröhlich–Kennelly equation. The interaction between the two types of particles is described by the mean-field approach. First-order reversal curve (FORC) diagrams were calculated for different values of the elastomer matrix elasticity. We demonstrate that the diagrams display specific new features, which identify the presence of both a deformable matrix and the two types of magnetic particles. - Highlights: • A model of hybrid magnetic elastomers is proposed. • The magnetically hard particles are described by the Stoner–Wohlfarth model. • The magnetically soft phase obeys the Fröhlich–Kennelly equation. The interaction between the phases is described by the mean-field approach. • FORC diagrams are calculated for different values of the elastomer matrix elasticity.

  16. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) proposes to design and develop a space-qualifiable cyanate ester elastomer for application in self-deployable space structures...

  17. High-strain actuator materials based on dielectric elastomers

    DEFF Research Database (Denmark)

    Pelrine, R.; Kornbluh, R.; Kofod, G.

    2000-01-01

    Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patt......Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black...

  18. Polymer-dispersed liquid crystal elastomers

    OpenAIRE

    Resetic, A; Milavec, J; B Zupancic; Domenici, V; Zalar, B.

    2016-01-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically siz...

  19. Toxicity of Pyrolysis Gases from Elastomers

    Science.gov (United States)

    Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.

    1977-01-01

    The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  20. Operation tools with dielectric elastomer pressure sensors

    Science.gov (United States)

    Böse, Holger; Müller, Dominik; Ehrlich, Johannes

    2017-04-01

    New sensors based on dielectric elastomers have recently been shown to exhibit high sensitivity for compression loads. The basic design of these sensors exhibits two profiled surfaces coated with electrode layers between which an elastomer film with the counter-electrode is confined. All components of the sensor are prepared with silicone whose stiffness can be varied in a wide range. Depending on the details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression, the elastomer profiles are deformed and the electrode layers on the elastomer profiles and in the elastomer film approach each other. Beside the detection of pressure, such sensors can also be used for operation tools in human-machine interfaces. To demonstrate this potential, a touch pad with six pressure-sensitive fields is presented. The corresponding sensors integrated in the touch fields detect the exerted forces of the finger, show them on a display and control the brightness of some LEDs. As a second example, the integration of sensor-based control fields on an automotive steering wheel is shown. Finally, the sensors can also be used in fabrics to control arbitrary functions of wearable electronic devices.

  1. Fracture of elastomers by cavitation

    KAUST Repository

    Hamdi, Adel

    2014-01-01

    Cavitation phenomenon is studied in rubber-like materials by combining experimental, theoretical and numerical approaches. Specific tests are carried out on a Styrene Butadiene Rubber to point out main characteristics of cavitation phenomenon. Hydrostatic depression is numerically modelled using finite element method. Numerical results are compared to Ball\\'s and Hou & Abeyaratne\\'s models with regard to cavity nucleation in the material. Both models well fit experimental observations suggesting that the cavitation nucleation in elastomers depends on the confinement degree of the specimen. Finally, critical hydrostatic pressure and critical global deformation are proved to govern cavitation nucleation in the studied material. Critical loadings are identified by comparing experimental and numerical load-displacement curves. © 2013 Elsevier Ltd.

  2. Role of catalysis in sustainable production of synthetic elastomers

    Indian Academy of Sciences (India)

    Elastomer business plays a significant role in the transportation industry. In fact, elastomers make the world move. ... productions, the impact of synthetic elastomer business cannot be overlooked. The need of synthetic elas- ...... Major global producers of 1,4-cis-polybutadiene rubber. Manufacturer. Country. JSR. Japan.

  3. Energy conversion in magneto-rheological elastomers.

    Science.gov (United States)

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-01-01

    Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm -3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.

  4. Magnetostrictive effect of magnetorheological elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xinchun [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China)], E-mail: guanxch@hit.edu.cn; Dong Xufeng [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Ou Jinping [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Civil Engineering, Dalian University of Technology, Dalian 116024 (China)

    2008-02-15

    Magnetorheological elastomer (MRE) has been known for its magnetic field-dependent stiffness, but only a few works study its magnetostrictive property. The aim of this paper is to present results of studies on magnetostriction of the MRE consisting of carbonyl iron particles displaced in the matrix made of a silicone rubber. The MRE samples were placed in the magnetic field that varied from 0 to 636 kA/m, which was produced by the PEM-1022LS magnetic system. The longitudinal magnetostriction of the samples was measured by strain gauge. Three different tests were performed: (1) increased and decreased magnetic fields on four different volume fraction MREs with particles randomly dispersed, namely, 0%, 15%, 20% and 27%, (2) increased and decreased magnetic fields on three different MREs, with the same volume fraction of particles but varied orientation, namely, randomly, vertically and parallelly; (3) increased and decreased magnetic field three times continuously on the MRE with particles randomly oriented. Results indicated that (1) magnetostrictive effect increases with increase in volume fraction of particles and magnetostriction generally increases with increasing magnetic field, (2) orientation of particles influences the magnetostrictive performance significantly, (3) with increase of times of tests, saturation strain decayed and some remnant magnetostriction existed after switching off the magnetic field in each cycle. The mechanism of magnetostrictive effect of the composite was proposed to explain the phenomenon.

  5. Transverse vibration of nematic elastomer Timoshenko beams.

    Science.gov (United States)

    Zhao, Dong; Liu, Ying; Liu, Chuang

    2017-01-01

    Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.

  6. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    elastomers with high relative permittivity and low Young’s modulus in order to increase the actuation performance at a given voltage, but the optimised elastomers often possess relatively low electrical breakdown strength. On the other hand, increasing the electrical breakdown strength of DEs allows...... modifications. In order to increase the electrical breakdown strength of polymers for e.g. the cable industry, additives like aromatic voltage stabilizers are used. Earlier works on using voltage stabilizers in polymers have mainly focused on polyethylene with the purpose of reducing power loss for high voltage...... insulation cables.3–5 As an alternative to utilise additives as voltage stabilizers, grafting aromatic compounds to silicone backbones may overcome the common problem of insolubility of the aromatic voltage stabilizer in the silicone elastomers due to phase separation. Preventing phase separation during...

  7. Deformation and instabilities in dielectric elastomer composites

    Science.gov (United States)

    Li, Wenyuan; Landis, Chad M.

    2012-09-01

    The deformation behavior in dielectric elastomer composites due to applied mechanical and electrical loadings is investigated using finite element methods. The composite structure consists of a dielectric elastomer matrix with a regular square array of cylindrical holes or rigid conducting inclusions. The dielectric elastomer material is represented with either a compressible Neo-Hookean model for the elasticity or a compressible Gent model. Following previous work, the dielectric constant relating the true electric displacement to the true electric field is taken to be independent of the deformation. The finite element method is used to analyze the electromechanical behavior of representative unit cells of the composite material structure. Results are presented for the stress-strain, electric field-electric displacement and coupled electromechanical responses of the different composite types.

  8. Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors

    Directory of Open Access Journals (Sweden)

    Xiaowei Yu

    2016-12-01

    Full Text Available Stretchable electronics represent a new generation of electronics that utilize soft, deformable elastomers as the substrate or matrix instead of the traditional rigid printed circuit boards. As the most essential component of stretchable electronics, the conductors should meet the requirements for both high conductivity and the capability to maintain conductive under large deformations such as bending, twisting, stretching, and compressing. This review summarizes recent progresses in various aspects of this fascinating and challenging area, including materials for supporting elastomers and electrical conductors, unique designs and stretching mechanics, and the subtractive and additive patterning techniques. The applications are discussed along with functional devices based on these conductors. Finally, the review is concluded with the current limitations, challenges, and future directions of stretchable conductors.

  9. Performance of bolted closure joint elastomers under cask aging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daugherty, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperature and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.

  10. Inorganic Islands on a Highly Stretchable Polyimide Substrate

    OpenAIRE

    Vlassak, Joost J.; Sun, Jeong-Yun; Lu, Nanshu; Yoon, Juil; Oh, Kyu-Hwan; Suo, Zhigang

    2009-01-01

    For a flexible electronic device integrating inorganic materials on a polymer substrate, the polymer can deform substantially, but the inorganic materials usually fracture at small strains. This paper describes an approach to make such a device highly stretchable. A polyimide substrate is first coated with a thin layer of an elastomer, on top of which SiNx islands are fabricated. When the substrate is stretched to a large strain, the SiNx islands remain intact. Calculations confirm that th...

  11. Behavior of magnetorheological elastomers with coated particles

    Science.gov (United States)

    Behrooz, Majid; Sutrisno, Joko; Zhang, Lingyue; Fuchs, Alan; Gordaninejad, Faramarz

    2015-03-01

    Iron particle coating can improve the behavior of magnetorheological elastomers (MREs) by inhibiting iron particle rusting; however, such a process can change physical properties of MREs such as oxidation resistance, shear modulus, and stiffness change due to an applied magnetic field. In this study, MRE samples are fabricated with regular and polymerized iron particles. To investigate the possibility and extent of these changes, polymerized particle MRE samples are made using a combination of reversible addition fragmentation chain transfer and click chemistry. Shear test sample MREs with pure elastomer and 50 wt% MRE with and without polymerization are fabricated. To observe the effect of oxidation on shear properties of MREs, pure elastomer and 50 wt% coated and non-coated samples are oxidized using accelerated oxidation procedure. Experimental results show that oxidation significantly reduces the shear modulus of the elastomer matrix. The coating process of iron particles does not significantly change the shear modulus of resulting MREs but reduces the loss of shear modulus due to oxidation.

  12. Use of elastomers in regenerative braking systems

    Science.gov (United States)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  13. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improve...

  14. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...

  15. Molecular Models of Liquid Crystal Elastomers

    Science.gov (United States)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  16. Rheological properties of olefinic thermoplastic elastomer blends

    NARCIS (Netherlands)

    Sengers, W.G.F.

    2005-01-01

    Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized,

  17. Conductive elastomers by a new latex process

    Science.gov (United States)

    Electrically conductive polymers such as polyaniline can be used to in production of light-emitting diodes, printed circuit board components, antistatic materials, etc. Highly filled elastomers, such as those filled with metallic powders, can also conduct electricity. However, limitations due to co...

  18. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  19. Constitutive modeling of Radiation effects on the Permanent Set in a silicone elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Gee, R; Weisgraber, T; Chinn, S; Maxwell, R

    2008-03-10

    When a networked polymeric composite under high stress is subjected to irradiation, the resulting chemical changes like chain scissioning and cross-link formation can lead to permanent set and altered elastic modulus. Using a commercial silicone elastomer as a specific example we show that a simple 2-stage Tobolsky model in conjunction with Fricker's stress-transfer function can quantitatively reproduce all experimental data as a function of radiation dosage and the static strain at which radiation is turned on, including permanent set, stress-strain response, and net cross-linking density.

  20. Elastomers in mud motors for oil field applications

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik, J. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Results of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.

  1. Types and properties of elastomer materials used in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    Properties and kinds of elastomer materials used in a CANDU power plant have been described. The elastomer materials have been used as a sealing material in the components f nuclear power plant since they have many excellent properties that can not be seen in other materials. It is very important to select proper elastomer materials used in the nuclear power plant are required to have resistance to temperature as well as radiation. According to the experimental results performed at some laboratories including the Chalk River Laboratory of AECL, elastomer materials with high resistance to temperature and radiation are Nitrile, Ethylene, Propylene and Butyl. These materials have been used in a lot of components of Wolsong unit 1 and Wolsong 2, 3 and 4 which are under elastomer material. Therefore, the studies on the standardization are currently under way to limit about 10 different kinds of elastomer materials to be used in the plant. 16 tabs., 1 fig., 12 refs. (Author) .new.

  2. Effect of temperature on electromechanical instability of dielectric elastomers

    Science.gov (United States)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Wang, Yongquan; Qiang, Junhua

    2012-04-01

    The electromechanical behavior of dielectric elastomer is strongly affected by the temperature. Very few models accounting for the effects of temperature exist in the literature. A recent experiment showed that the variation of dielectric constant of the most widely used dielectric elastomer (VHB 4910, 3M) according to temperature is relatively significant. In this paper, we develop a thermodynamic model to study the influence of temperature on the instability in dielectric elastomer by involving deformation and temperature-dependent dielectric constant. The results indicate that the increase of temperature could improve the actuation stress and the electromechanical instability of the elastomer.

  3. High stress actuation by dielectric elastomer with oil capsules

    Science.gov (United States)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Though capable of generating a large strain, dielectric elastomer actuators (DEAs) generate only a moderate actuation stress not more than 200kPa, which seriously limits its use as artificial muscles for robotic arm. Enhancement of dielectric strength (greater than 500MV/m) by dielectric oil immersion could possibly enable it a larger force generation. Previously, the immersion was done in an oil bath, which limits portability together with DEAs. In this study, we developed portable capsules to enclose oil over the DEA substrate (VHB 4905). The capsules is made of a thinner soft acrylic membrane and they seals dielectric liquid oil (Dow Corning Fluid 200 50cSt). The DEA substrate is a graphiteclad VHB membrane, which is pre-stretched with pure-shear boundary condition for axial actuation. When activated under isotonic condition, the oil-capsule DEA can sustain a very high dielectric field up to 903 MV/m and does not fail; whereas, the dry DEA breaks down at a lower electric field at 570 MV/m. Furthermore, the oil-capsule DEA can produces higher isometric stress change up to 1.05MPa, which is 70% more than the maximum produced by the dry DEA. This study confirmed that oil capping helps DEA achieve very high dielectric strength and generate more stress change for work.

  4. Controlled synthesis of SBR elastomers

    Science.gov (United States)

    Zhou, Jin-Ping

    to a great extent on the amount of block styrene. With constant styrene and vinyl contents, the copolymer with the larger and longer blocky styrene gave a lower Tg value but produced a higher loss tangent, tan delta, and thus higher hysteresis loss. The second objective of this research was to synthesize well-defmed, tin-linked, star-branched elastomers. It was found that the tetraallyltin could be used as a reversible chain transfer agent in alkyllithium-initiated diene polymerization, as a consequence of lithium/tin exchange reactions. The polymers produced had very different combinations of linear and star branched polymer, depending on the [Sn]/[Li] ratio and the polymerization procedures. Hydrolysis of these polymer mixtures by HCl in THF resulted in a single peak with a narrow molecular weight distribution, which indicates that the exchange reaction is fast and reversible. In general, the presence of alkyl-tin compounds has little, if any, effect on the polybutadiene microstructures. The linking reaction of poly(dienyl)lithium with Tin(IV) chloride proceeds as a "living" reaction because the coupled polymer chain ends can still grow when more monomer is added. Kinetic study of the interaction of poly(dienyl)lithium with tin-linked polybutadiene showed redistribution of arms and linear polymers. The mechanism of transmetallation is proposed to occur via a stable penta-coordinated alkyl-tin lithium intermediate.

  5. Geometry of Thin Nematic Elastomer Sheets

    Science.gov (United States)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    2014-12-01

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this Letter, we describe the intrinsic geometry of such a sheet and derive an expression for the metric induced by general nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit recipe for how to construct any surface of revolution using this method. Finally, we show that by inscribing a director field gradient across the sheet's thickness, one can obtain a nontrivial hyperbolic reference curvature tensor, which together with the prescription of a reference metric allows dictation of actual configurations for a thin sheet of nematic elastomer.

  6. Carbon nanotubes dispersed in liquid crystal elastomers

    Science.gov (United States)

    Yang, Yang; Ji, Yan

    Liquid crystal elastomers (LCEs), as the name indicates, unite the anisotropic order of liquid crystals and rubber elasticity of elastomers into polymer networks. One of the most notable features of LCEs is that properly aligned LCEs exhibit dramatic and reversible shape deformation (e.g. elongation-contraction) in response to various stimuli. In recent years, carbon nanotubes (CNTs) were introduced into LCEs. Besides enabling remote and spatial control of the actuation via light and electronic field, CNTs are also utilized to align mesogens as well as to improve the mechanical and electronic property of the composites. Some potential applications of CNT-LCE nanocomposites have been demonstrated. This chapter describes the preparation of CNT dispersed LCEs, new physical properties resulted from CNTs, their actuation and their proposed applications.

  7. Structural phase transitions in isotropic magnetic elastomers

    Science.gov (United States)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2016-06-01

    Magnetic elastomers represent a new type of materials that are "soft" matrices with "hard" magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granules randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.

  8. A Coating-Free Nonfouling Polymeric Elastomer.

    Science.gov (United States)

    Hung, Hsiang-Chieh; Jain, Priyesh; Zhang, Peng; Sun, Fang; Sinclair, Andrew; Bai, Tao; Li, Bowen; Wu, Kan; Tsao, Caroline; Liu, Erik J; Sundaram, Harihara S; Lin, Xiaojie; Farahani, Payam; Fujihara, Timothy; Jiang, Shaoyi

    2017-08-01

    Medical devices face nonspecific biofouling from proteins, cells, and microorganisms, which significantly contributes to complications and device failure. Imparting these devices with nonfouling capabilities remains a major challenge, particularly for those made from elastomeric polymers. Current strategies, including surface coating and copolymerization/physical blending, necessitate compromise among nonfouling properties, durability, and mechanical strength. Here, a new strategy is reported to achieve both high bulk mechanical strength and excellent surface nonfouling properties, which are typically contradictory, in one material. This is realized through a nonfouling polymeric elastomer based on zwitterionic polycarboxybetaine derivatives. By hiding both charged moieties of the zwitterionic compounds with hydrocarbon ester and tertiary amine groups, the bulk polymer itself is elastomeric and hydrophobic while its superhydrophilic surface properties are restored upon hydrolysis. This coating-free nonfouling elastomer is a highly promising biomaterial for biomedical and engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel electrode-elastomer combinations for improved performance and application of dielectric elastomers

    Science.gov (United States)

    Yuan, Wei

    Dielectric elastomers are the most promising technology for mimicking human muscles in terms of strain, stress, and work density, etc. Actuators have been fabricated based on different design concepts and configurations for applications in robotics, prosthetic devices, medical implants, pumps, and valves. However, to date these actuators have experienced high rates of failure caused by electrical shorting of the compliant electrodes through the elastomer film during electrical breakdown, which has prevented their practical application. In this thesis, single walled carbon nanotube (SWNT) thin films were employed as compliant electrodes for dielectric elastomers to reduce the rate of failure. Thanks to the high aspect ratio of the SWNTs, the electrodes maintain substantial conductance at high biaxial strains. 3M VHB acrylics can be actuated up to 200% area strain with SWNT electrodes, this matches the performance of actuators with carbon grease electrodes. During uni-directional stretching, SWNT electrodes can maintain surface conductivity up to 700% linear strain. SWNT electrodes can experience a self-clearing process under high voltage discharging and electrically isolate the electrodes around the breakdown sites when breakdown events happen. With conventional dielectric elastomer electrode materials such as carbon grease and carbon black, a single breakdown event results in a permanent loss in the actuator's functionality. In contrast, for SWNT electrodes, the SWNTs around the breakdown site will be degraded and become non-conductive. The non-conductive area expands outward until the high voltage discharging stops. As such, the opposing electrodes are prevented from coming into contact with each other and forming an electrical short and the breakdown site is electrically isolated from the remainder of the active area. Despite the existence of the breakdown sites, the dielectric elastomer will resume its functionality and avoid permanent failure. Thus, dielectric

  10. Dielectric elastomer generators that stack up

    Science.gov (United States)

    McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.

    2015-01-01

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  11. Temperature tunable optical gratings in nematic elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sungur, Emel; Mager, Loic; Boeglin, Alex; Dorkenoo, Kokou D. [IPCMS-CNRS UMR 7504, 23 rue du Loess, BP 43, Strasbourg Cedex 2 (France); Li, Min-Hui; Keller, Patrick [Institut Curie, CNRS 168, Paris Cedex 5 (France)

    2010-01-15

    We have investigated the behaviour of temperature dependent periodic-index gratings fabricated in a nematic elastomer. The gratings have been obtained by photopolymerisation under a microscopy apparatus. Contraction properties, as well as diffraction properties, have been studied as a function of temperature. Unidirectional contraction has been demonstrated by means of circular figure deformation and the polarisation dependency of the diffraction by the gratings has been determined. (orig.)

  12. Nanoparticle-Liquid Crystalline Elastomer Composites

    OpenAIRE

    Yan Ji; Terentjev, Eugene M.; Marshall, Jean E.

    2012-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat and the resulting thermal actuation act by promoting entropic disorder, as does the addition of solvents. Photo-isomerization is another mechanism of actuation, reducing th...

  13. Dielectric Elastomer Based "Grippers" for Soft Robotics.

    Science.gov (United States)

    Shian, Samuel; Bertoldi, Katia; Clarke, David R

    2015-11-18

    The use of few stiff fibers to control the deformation of dielectric elastomer actuators, in particular to break the symmetry of equi-biaxial lateral strain in the absence of prestretch, is demonstrated. Actuators with patterned fibers are shown to evolve into unique shapes upon electrical actuation, enabling novel designs of gripping actuators for soft robotics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Toward a predictive model for elastomer seals

    Science.gov (United States)

    Molinari, Nicola; Khawaja, Musab; Sutton, Adrian; Mostofi, Arash

    Nitrile butadiene rubber (NBR) and hydrogenated-NBR (HNBR) are widely used elastomers, especially as seals in oil and gas applications. During exposure to well-hole conditions, ingress of gases causes degradation of performance, including mechanical failure. We use computer simulations to investigate this problem at two different length and time-scales. First, we study the solubility of gases in the elastomer using a chemically-inspired description of HNBR based on the OPLS all-atom force-field. Starting with a model of NBR, C=C double bonds are saturated with either hydrogen or intramolecular cross-links, mimicking the hydrogenation of NBR to form HNBR. We validate against trends for the mass density and glass transition temperature for HNBR as a function of cross-link density, and for NBR as a function of the fraction of acrylonitrile in the copolymer. Second, we study mechanical behaviour using a coarse-grained model that overcomes some of the length and time-scale limitations of an all-atom approach. Nanoparticle fillers added to the elastomer matrix to enhance mechanical response are also included. Our initial focus is on understanding the mechanical properties at the elevated temperatures and pressures experienced in well-hole conditions.

  15. Analytical and experimental analysis of magnetorheological elastomers

    Science.gov (United States)

    Trabia, Sarah

    Many engineering applications ranging from robotic joints to shock and vibration mitigation can benefit by incorporating components with variable stiffness. In addition, variable stiffness structures can provide haptic feedback (the sense of touch) to the user. In this work, it is proposed to study Magnetorheological Elastomers (MRE), where iron particles within the elastomer compound develop a dipole interaction energy, to be used in a device for haptic feedback. A novel feature of this MRE device is to introduce a field-induced variable shear modulus bias via a permanent magnet and using a current input to the electromagnetic control coil to change the modulus of the elastomer in both directions (softer or harder). In this preliminary work, both computational and experimental results of the proposed MRE design are presented. The design is created in COMSOL to verify that the magnetic field is in the desired direction. MRE was fabricated and characterized using a Bose Dynamic Mechanical Analyzer for the shear modulus. Using this information, it is possible to know how the MRE will react in magnetic fields within the haptic feedback device. Additionally, a model for an MRE is developed in a multi-physics COMSOL program that is linked to a MATLAB function that predicts the shear modulus and incorporates it into the material properties to best simulate the MRE's ability to change shear modulus.

  16. Spontaneous thermal expansion of nematic elastomers

    Science.gov (United States)

    Tajbakhsh, A. R.; Terentjev, E. M.

    2001-10-01

    We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the uniaxial equilibrium thermal expansion on cooling from the isotropic phase. At higher concentration of main chains their behaviour dominates the elastomer properties. At low concentration of main-chain material, we detect two distinct transitions at different temperatures, one attributed to the main-chain, the other to the side-chain component. The effective uniaxial anisotropy of nematic rubber, r(T)=ell_{allel}/ell_{bot} proportional to the effective nematic order parameter Q(T), is given by an average of the two components and thus reflects the two-transition nature of thermal expansion. The experimental data is compared with the theoretical model of ideal nematic elastomers; applications in high-amplitude thermal actuators are discussed in the end.

  17. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates

    Science.gov (United States)

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. The yeast Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-p...

  18. Elastomer-metal laminate armor

    OpenAIRE

    Gamache, R.M.; Giller, C.B.; Montella, G.; Fragiadakis, D.; Roland, C. M.

    2016-01-01

    The article of record as published may be found at http://dx.doi.org/10.1016/j.matdes.2016.08.072 A study was carried out of pressure wave transmission and the ballistic penetration of steel substrates incorporating a front-face laminate, the latter consisting of alternating layers of thin metal and a soft polymer; the latter undergoes a viscoelastic phase transition on impact. The ballistic properties of laminate/steel structures are substantially better than conventional military armor. ...

  19. Role of catalysis in sustainable production of synthetic elastomers

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 2 ... Due to limited availability of natural rubber, synthetic elastomers bridge the gap between demand and supply in today's growing tyre and automobile industry. ... The need of synthetic elastomers for tyre and automobile industries is stringently specific.

  20. Stretchable Conductive Elastomers for Soldier Biosensing Applications: Final Report

    Science.gov (United States)

    2016-03-01

    interfacing to the human body to collect brain electroencephalographic (EEG) signals. We present a carbon-nanofiber-filled polydimethylsiloxane...Research Initiative (DRI), stretchable conductors, conductive elastomers, biosensing, electroencephalography, human- machine interface 16. SECURITY...collection system with integrated conductive elastomer electrodes as the human-computer bioelectronic interface . We have engineered a comfortable

  1. An evaluation of Fluorescent elastomer for marking killifish ...

    African Journals Online (AJOL)

    We evaluated the subdermal injection of fluorescent elastomer for tagging two sympatric aplocheilids, Epiplatys bifasciatus and E. spilargyreius, in pond and stream conditions. The smallest size that could be injected without mortality was 28 mm TL. The Visible Implant Elastomer (VIE) tag did not affect the growth or survival ...

  2. Acrylic interpenetrating polymer network dielectric elastomers for energy harvesting

    Science.gov (United States)

    Brochu, Paul; Niu, Xiaofan; Pei, Qibing

    2011-04-01

    Dielectric elastomer energy harvesters are an emerging technology that promise high power density, low cost, scalability, and the capability of fitting niche markets that have yet to be exploited. To date, materials issues that limit their overall performance have hampered the full potential of these devices. In order to supplant existing technologies, even in niche markets, dielectric elastomer generators must increase their reliability and energy density. Previous work has indicated that stiffer elastomers should be capable of higher energy densities; the increased stiffness of the elastomer films should results in lower Maxwell pressure induced strains, and thus allow the elastomer to relax further, resulting in a larger swing in capacitance and larger energy gains. In this paper we examine the use of VHB-based acrylic interpenetrating polymer network dielectric elastomers with a trimethylolpropane trimethacrylate additive network for energy harvesting purposes. We test films with varying additive content and compare their performance with highly prestrained VHB acrylic elastomers. We show that by increasing additive content, Maxwell induced strains can be suppressed and larger energy gains can be achieved at higher bias fields. Moreover, the introduction of the additive network stabilizes the highly prestrained acrylic elastomers mechanically, thereby increasing their mechanical robustness. However, the interpenetrating polymer network films suffer from an increase in viscoelastic behavior that hinders their overall performance.

  3. Silicone elastomers with covalently incorporated aromatic voltage stabilisers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    2017-01-01

    When optimising dielectric elastomers (DEs) a conflict exists, namely that for large achievable actuationstrains softness is required, but with increased softness electrical breakdown strength decreases. Herein,soft dielectric silicone elastomers with increased electrical breakdown strength, due...... forhomogeneity. Concentrations of the voltage stabiliser were varied by changing the molecular weights ofthe PPMS in the copolymer. The developed elastomers were inherently soft with enhanced electricalbreakdown strengths, due to delocalisedp-electrons of the aromatic constituent. An optimumconcentration...... was found for the voltage stabilisation effect. The relative permittivities of thePDMS–PPMS elastomers varied from 3.4 to 3.9 and therefore were also improved from pure PDMSelastomers. The elastomers were furthermore non-conductive and possessed low dielectric losses.These properties are evaluated...

  4. Dielectric elastomer actuators used for pneumatic valve technology

    Science.gov (United States)

    Giousouf, Metin; Kovacs, Gabor

    2013-10-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.

  5. Amorphous carbon interlayers for gold on elastomer stretchable conductors

    Energy Technology Data Exchange (ETDEWEB)

    Manzoor, M U; Tuinea-Bobe, C L; McKavanagh, F; Byrne, C P; Dixon, D; Maguire, P D; Lemoine, P, E-mail: Manzoor-m@email.ulster.ac.uk [NIBEC, University of Ulster at Jordanstown, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland (United Kingdom)

    2011-06-22

    Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4-6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 x 10{sup -6} {Omega} cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.

  6. Monitoring diver kinematics with dielectric elastomer sensors

    Science.gov (United States)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  7. Ir-192 Plesiocurietherapy using silicone elastomer plates

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Langlet, P.; Housset, M.; Alapetite, C.; Boisserie, G.; Dessard-Diana, B.; Baillet, F.

    1989-01-01

    Corrective treatment of certain superficial lesions (permeation nodules, budding or ulcerated tumor recurrences, etc.) is sometimes difficult and may, in certain cases, benefit from plesiocurietherapy. A device intended for this purpose which is easy to handle, easy to use and inexpensive is presented: it consists of silicone elastomer plates in which are inserted vector plastic tubes which, like any type of curietherapy, can be used with estimated dosimetry and delayed loading (Ir 192). These flexible plates can be adapted to all anatomical variations and very accurately inserted.

  8. Modeling of dielectric elastomer as electromechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing; Jia, Shuhai [School of Mechanical Engineering, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China); State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China); Zhang, Junshi [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China); School of Aerospace Engineering, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China); Li, Dichen [School of Mechanical Engineering, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China)

    2014-09-28

    Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.

  9. Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sairom; Kim, Dooman [Korea Aerospace Univ., Goyang (Korea, Republic of); Ju, Jaehyung [Univ. of North Texas, Houston (United States); Choi, Seok-Ju [R and Center, Hnakook Tire Co. Ltd., Daejeon (Korea, Republic of)

    2016-04-15

    An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20-80%, and frequencies of 0.02-0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

  10. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  11. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    Currently used dielectric elastomers do not have the ability to self-heal after detrimental events such as tearing or electrical breakdown, which are critical issues in relation to product reliability and lifetime. In this paper, we present a self-healing dielectric elastomer that additionally...... possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...

  12. The dielectric breakdown limit of silicone dielectric elastomer actuators

    Science.gov (United States)

    Gatti, Davide; Haus, Henry; Matysek, Marc; Frohnapfel, Bettina; Tropea, Cameron; Schlaak, Helmut F.

    2014-02-01

    Soft silicone elastomers are used in a generation of dielectric elastomer actuators (DEAs) with improved actuation speed and durability compared to the commonly used, highly viscoelastic polyacrylate 3M VHB™ films. The maximum voltage-induced stretch of DEAs is ultimately limited by their dielectric breakdown field strength. We measure the dependence of dielectric breakdown field strength on thickness and stretch for a silicone elastomer, when voltage-induced deformation is prevented. The experimental results are combined with an analytic model of equi-biaxial actuation to show that accounting for variable dielectric field strength results in different values of optimal pre-stretch and thickness that maximize the DEA actuation.

  13. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  14. Lifetime of dielectric elastomer stack actuators

    Science.gov (United States)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

  15. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  16. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.

    Science.gov (United States)

    Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A

    2017-12-01

    Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.

  17. EB—crosslinking of elastomers, how does it compare with radiation crosslinking of other polymers?

    Science.gov (United States)

    Zagórski, Z. P.

    2004-09-01

    Electron beam crosslinking of polyethylene (PE) is a well-established technology, applied commercially for decades. After successes with PE, our efforts have been directed towards the crosslinking of elastomers. As the representative elastomer, hydrogenated acrylonitrile-butadiene rubbers (HNBR) was chosen. It is the high technology material, rather expensive, and therefore excellent object of successful commercial radiation processing. Radiation chemistry of crosslinking of any polymer is governed by similar rules. Most important are steric effects that can prevent efficient crosslinking, second next are additives present in irradiated commercial material. Additive's role is visible in the function of increasing doses, on radiation yield of hydrogen, and the yield of crosslinking. Basics of mechanisms, common to all condensed phases, and therefore to different polymers, are interpreted as phenomena of single ionization spurs (80% of energy deposited) and multi-ionization spurs. Small spurs generate crosslinks of the X type, formed between neighboring macromolecules, whereas multi-ionization spurs, energy rich, cause chain scission. Some fragments of the chains form crosslinks, this time of the Y type, by reacting with their active end with undamaged chains present in the neighborhood. Similarity of mechanisms in PE and HNBR is illustrated by the diagram in Charlesby—Pinner coordinates.

  18. EB--crosslinking of elastomers, how does it compare with radiation crosslinking of other polymers?

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P. E-mail: zagorski@ichtj.waw.pl

    2004-10-01

    Electron beam crosslinking of polyethylene (PE) is a well-established technology, applied commercially for decades. After successes with PE, our efforts have been directed towards the crosslinking of elastomers. As the representative elastomer, hydrogenated acrylonitrile-butadiene rubbers (HNBR) was chosen. It is the high technology material, rather expensive, and therefore excellent object of successful commercial radiation processing. Radiation chemistry of crosslinking of any polymer is governed by similar rules. Most important are steric effects that can prevent efficient crosslinking, second next are additives present in irradiated commercial material. Additive's role is visible in the function of increasing doses, on radiation yield of hydrogen, and the yield of crosslinking. Basics of mechanisms, common to all condensed phases, and therefore to different polymers, are interpreted as phenomena of single ionization spurs (80% of energy deposited) and multi-ionization spurs. Small spurs generate crosslinks of the X type, formed between neighboring macromolecules, whereas multi-ionization spurs, energy rich, cause chain scission. Some fragments of the chains form crosslinks, this time of the Y type, by reacting with their active end with undamaged chains present in the neighborhood. Similarity of mechanisms in PE and HNBR is illustrated by the diagram in Charlesby-Pinner coordinates.

  19. Functional silicone elastomers via novel siloxane copolymers and chain extenders

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    Functional silicone polymers and elastomers with altered/improved bulk and/or surface properties are highly desired to expand the application range even further. Novel functional silicone polymers and elastomers were prepared via two different methods. One method was through the synthesis......, as several parameters can be varied during the preparation phase. As an example, the space between the functional groups can be varied, by using different dimethylsiloxane spacer units between the functional molecules. Furthermore, the degree of functionalisation of the copolymers can be varied accurately...... by changing the feed of functional molecules. As a result, a completely tuneable elastomer system, with respect to functionalisation, is achieved. The second method of functionalising silicone elastomers involves the synthesis of a so-called ‘chain extender’ that allows for chemical modifications such as Cu...

  20. Mechanical modeling of interpenetrating polymer network reinforced acrylic elastomer

    Science.gov (United States)

    Schmidt, Arne; Bergamini, Andrea; Kovacs, Gabor; Mazza, Edoardo

    2010-04-01

    Interpenetrating polymer network reinforced acrylic elastomers (IPN) offer outstanding performance in free-standing contractile dielectric elastomer actuators. This work presents the verification of a recently proposed material model for a VHB 4910 based IPN [1]. The 3D large strain material model was determined from extensive data of multiaxial mechanical experiments and allows to account for the variations in material composition of IPN-membranes. We employed inflation tests to membranes of different material composition to study the materials response in a stress state different from the one that was used to extract the material parameters. By applying the material model to finite element models we successfully validated the material model in a range of material compositions typically used for dielectric elastomer actuator applications. In combination with a characterization of electro-mechanical coupling, this 3D large strain model can be used to model IPN-based dielectric elastomer actuators.

  1. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers

    NARCIS (Netherlands)

    Wisse, Eva; Spiering, A. J. H.; van Leeuwen, Ellen N. M.; Renken, Raymond A. E.; Dankers, Patricia Y. W.; Brouwer, Linda A.; van Luyn, Marja J. A.; Harmsen, Martin C.; Sommerdijk, Nico A. J. M.; Meijer, E. W.

    2006-01-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in

  2. 21 CFR 177.2400 - Perfluorocarbon cured elastomers.

    Science.gov (United States)

    2010-04-01

    ... components of articles intended for repeated use in contact with nonacid food (pH above 5.0), subject to the..._locations.html. (2) Thermogravimetry. Perfluorocarbon cured elastomers have a major decomposition peak...

  3. Dielectric Elastomers for Actuation and Energy Harvesting

    Science.gov (United States)

    Brochu, Paul A.

    The first part of this work focuses on free-standing linear soft silicone actuators as this configuration is the most relevant for real applications. A particular soft silicone has been isolated a good candidate and was extensively tested in a free-standing linear actuator configuration to determine the effects of pre-stretch and the application of mechanical loads on its actuation performance. It is shown that when the mechanical loads are properly applied, large linear actuation strains of 120% and work density of 0.5 J/cm3 can be obtained. Furthermore, we demonstrate that when coupled with single wall carbon nanotube (SWNT) compliant electrodes, fault-tolerance is introduced via self-clearing leading to significantly improved operational reliability. Driven at moderate electric fields, the actuators display relatively high linear actuation strain (25%) without degradation of the electromechanical performance even after 85,000 cycles. The high performance of the aforementioned soft silicone actuators requires the application of rather large levels of prestrain. In order to eliminate this requirement a novel all-silicone prestrain-locked interpenetrating polymer network (S-IPN) elastomer was developed. The elastomer is fabricated using a combination of two silicones: a soft room temperature vulcanizing silicone that serves as the host elastomer matrix, and a more rigid high temperature vulcanizing silicone that acts to preserve the prestrain in the host network. The free-standing prestrain-locked silicones show a more than twofold performance improvement over standard free-standing silicone films, with a linear strain of 25% and an area strain of 45% when tested in a diaphragm configuration. The S-IPN procedure was leveraged to improve electrode adhesion and stability as well as improve the interlayer adhesion in multilayer actuators. It is demonstrated that strongly bonded SWNT electrodes are capable of fault tolerance through self-clearing, even in multilayer

  4. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.

    Science.gov (United States)

    Hoshian, S; Jokinen, V; Franssila, S

    2016-08-21

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.

  5. Frictional behaviour of some sealing elastomers in lubricated sliding

    OpenAIRE

    M Mofidi; Prakash, Braham

    2012-01-01

    Frictional behaviour of four sealing elastomers, including an acrylonitrile butadienerubber (NBR), a hydrogenated acrylonitrile butadiene rubber (HNBR), an acrylate rubber(ACM) and a fluoroelastomer (FKM), sliding against a steel surface under unidirectionallubricated conditions have been studied. The lubricant used in this study was paraffinic oilwith no additive and the experiments were conducted under a block-on-ring testconfiguration. The friction coefficients of the elastomers have been ...

  6. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin

    ’s modulus and increasing the dielectric permittivity of silicone elastomers. One such prominent method of modifying the properties is by adding suitable additives.[1] The major drawbacks for adding solid fillers are agglomeration and increasing stiffness which is often accompanied by the decrease...... were determined by NMR and morphology structures were investigated by optical microscopy. The resulting elastomers were evaluated with respect to their dielectric permittivity, viscoelasticity and tensile strengths, as well as electrical breakdown....

  7. Treatment to Control Adhesion of Silicone-Based Elastomers

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  8. Mechanical and morphological characterization of polypropylene toughened with olefinic elastomer

    Directory of Open Access Journals (Sweden)

    Lotti Cybele

    2000-01-01

    Full Text Available The effect of incorporating (C2-C8 ethylene-octene elastomer on the mechanical properties and morphology of polypropylene copolymers has been investigated employing two types of PP copolymer, with and without nucleating agent. The results were compared to the ones presented by a commercial PP heterophase (reactor impact modified PP/EPR. The addition of the elastomer increases the toughness of the blends but reduces their stiffness. PP blends in the low elastomer content region (< 20% show low values of the Izod impact strength and both, elastomer content and impact strength, are directly proportional to the area under the beta damping peak or its maximum intensity of the elastomer. The morphology is a continuous pattern of segregate elastomeric particles with average particle size in the range of 0.27 mum to 0.39 mum. The average particle size and particle size distribution plotted in log-normal distribution curves, increases slightly with the increase in the elastomer content. The reactor modified PP heterophase has a broader particle size distribution and an average particle size of 0.56 mum, at the lower limit but inside the range for good impact performance, as observed.

  9. Polyurethane elastomers from morphology to mechanical aspects

    CERN Document Server

    Prisacariu, Cristina

    2011-01-01

    A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU´s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, g...

  10. Microfabrication of stacked dielectric elastomer actuator fibers

    Science.gov (United States)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  11. A Recipe for Soft Fluidic Elastomer Robots

    Science.gov (United States)

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913

  12. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-01-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel–elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm−2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel–elastomer hybrids including anti-dehydration hydrogel–elastomer hybrids, stretchable and reactive hydrogel–elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer. PMID:27345380

  13. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  14. Bottlebrush elastomers: a promising molecular engineering route to tunable, prestrain-free dielectric elastomers (Conference Presentation)

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.

    2017-04-01

    Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (technologies (e.g., robotics). The molecular design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that

  15. Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro, J.

    2011-01-01

    Thermal tuning of the transmission of an elastomer infilled photonic crystal cavity is studied. An elastomer has a thermal expansion-induced negative thermo-optic coefficient that leads to a strong decrease of the refractive index upon heating. This property makes elastomer highly suitable for

  16. A stretchable polysiloxane elastomer with self-healing capacity at room temperature and solvatochromic properties.

    Science.gov (United States)

    Liu, Lili; Liang, Shuai; Huang, Yawen; Hu, Chengyao; Yang, Junxiao

    2017-11-07

    A stretchable silicon elastomer comprising cobalt ions in pyridine pendant polydimethylsiloxane (PDMS) was prepared. Different from previously reported cobalt-coordinated elastomers, these elastomers are self-healable at room temperature with a high healing efficiency of over 90%. Besides, they exhibit tailored solvatochromic properties over a wide range without sacrificing its self-healing ability at room-temperature.

  17. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis...

  18. Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P; Janowski, B; Todd, D; Liggat, J J

    2010-03-05

    Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.

  19. Ageing by UV radiation of an elastomer modified bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Virginie Mouillet; Fabienne Farcas; Stanislas Besson [CETE Mediterranee Pole d' activite, Aix-en-Provence (France). Laboratoire Regional des Ponts et Chaussees d' Aix-en-Provence

    2008-09-15

    Laboratory methods to simulate the short- and long-term ageing occurring during the service life of pure and polymer modified bitumens in a pavement are standardized but none of them takes into account the influence of UV radiations. If the impact of thermal ageing on the degradation of SBS elastomers in bitumens has been extensively studied, there is not study dealing with the photo-oxidation of these copolymers in a bituminous matrix. So, the aim of our study was to investigate, by FTIR spectrometry and SEC chromatography, whether the architecture of elastomers (linear or radial) might have any influence on their ageing by UV radiation in a bituminous matrix. The results show that the elastomers oxidation kinetic, unlike the disappearance kinetic of trans-butadiene double bond, does not depend on their architecture. But, when putted into the same base bitumen, the two copolymers show exactly the same oxidation kinetic and the same decreasing kinetic of trans-butadiene double bond. So, this study has revealed that inside the bituminous matrix, on the one hand, the elastomers architecture does not influence on its degradation when submitted to UV radiation and, on the other hand, there is a 'protection' of the elastomers by the studied bitumen towards UV radiation. 46 refs., 13 figs., 2 tabs.

  20. Micromechanical properties of biomedical hydrogel for application as microchannel elastomer.

    Science.gov (United States)

    Ige, Ebenezer O; Raj, M Kiran; Dare, Ademola A; Chakraborty, Suman

    2018-01-01

    Polymers are believed to be the building blocks for the creation of the next generation of materials and devices in practically all areas of biomedical research. There are a number of polymers that are being employed in varied applications in microfluidic platform due to the tremendous possibilities for soft matter based elastomers especially in biomedical applications. Polymeric hydrogels have been used as building block in micro-confinements and for specified function such as flow control. The need exists to suitably determine the mechanical characteristics of gel-based materials for possible use as a microchannel elastomer. In this investigation, we describe synthesis procedure, morphological, wettability characterization of hydrogel elastomer synthesized by free-radical polymerization crosslinked over varying acrylamide composition for 10% w/v: 25% w/w, 15% w/v: 25% w/w, 20% w/v: 25% w/w and 25% w/v: 25% w/w respectively. Micromechanical properties such as surface morphology, wettability, and micro-rheological behaviour of hydrogel elastomer using standard protocols was undertaken to determine roughness, contact angle, loss modulus and storage modulus over varied cross-linking of the constituent monomers. The impact of these parameters on flow transport and microchannel structural stability is well delineated in this report. We established that polymeric hydrogel could be a candidate for whole microchannel elastomer with suitable application in areas of tissues and biomedical engineering to mimic native biological transport conduits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    Science.gov (United States)

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  2. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications

    Science.gov (United States)

    Jinno, Hiroaki; Fukuda, Kenjiro; Xu, Xiaomin; Park, Sungjun; Suzuki, Yasuhito; Koizumi, Mari; Yokota, Tomoyuki; Osaka, Itaru; Takimiya, Kazuo; Someya, Takao

    2017-10-01

    Textile-compatible photovoltaics play a crucial role as a continuous source of energy in wearable devices. In contrast to other types of energy harvester, they can harvest sufficient electricity (on the order of milliwatts) for wearable devices by utilizing the cloth itself as the platform for photovoltaics. Three features are important for textile-compatible photovoltaics, namely environmental stability, sufficient energy efficiency and mechanical robustness. However, achieving these simultaneously remains difficult because of the low gas barrier properties of ultrathin superstrates and substrates. Here, we report on ultraflexible organic photovoltaics coated on both sides with elastomer that simultaneously realize stretchability and stability in water whilst maintaining a high efficiency of 7.9%. The efficiency of double-side-coated devices decreases only by 5.4% after immersion in water for 120 min. Furthermore, the efficiency of the devices remains at 80% of the initial value even after 52% mechanical compression for 20 cycles with 100 min of water exposure.

  3. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators

    Science.gov (United States)

    McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert

    2017-12-01

    Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm‑1 and also up to 130 V μm‑1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.

  4. Partial discharge analysis of prestretched and unstretched acrylic elastomers for Dielectric Elastomer Actuators (DEA)

    Science.gov (United States)

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2012-04-01

    Partial discharges (PD) occur in solid insulating materials when the insulating material is partially bridged by an electrical discharge in response to an applied voltage stress. PDs typically occur at localized points of high field stresses or at voids and other inhomogeneities within the insulator. The applied field's effect on the frequency of occurrence and intensity of PDs can be used to assess the electrical breakdown strength and aging characteristics of insulating materials. PD testing is therefore a promising characterization method to understand the insulating properties of the elastomers and geometries commonly used in DEAs. Prestretched (~100% and ~230% biaxial) and unstretched acrylic elastomers (3M VHB tapes) with solid metal electrodes have been tested. We have found the number and intensity of PDs increase with applied field, and that a significant number of PDs are detected before any actuation was visibly observed, implying that the fields required for actuation will cause material aging and degradation over time. Most interestingly, the number of PDs steadily increase as the applied voltage increases up to a sufficiently high voltage, where the PDs suddenly cease. Since internal voids can cause PDs, this may indicate that the Maxwell stress minimized the thickness of or eliminated these voids, which could explain how prestretching improves performance.

  5. The Thickness And Stretch Dependence Of The Electrical Breakdown Strength Of An Acrylic Dielectric Elastomer

    Science.gov (United States)

    Huang, Jiangshui; Suo, Zhigang; Clarke, David

    2013-03-01

    The performance of dielectric elastomer actuators is limited by electrical breakdown. Attempts to measure this are confounded by the voltage-induced thinning of the elastomer. A test configuration is introduced that avoids this problem: A thin sheet of elastomer is stretched, crossed-wire electrodes attached, and then embedded in a stiff polymer. The applied electric field at breakdown EB is found to depend on both the deformed thickness, h, and the stretch applied, λ. For the acrylic elastomer investigated, the breakdown field scales as EB = 51h - 0 . 25λ 0 . 63 . The test configuration allows multiple individual tests to be made on the same sheet of elastomer.

  6. An integrated dielectric elastomer generator model

    Science.gov (United States)

    McKay, Thomas; O'Brien, Benjamin; Calius, Emilio; Anderson, Iain

    2010-04-01

    Dielectric Elastomer Generator(s) (DEG), are essentially variable capacitor power generators formed by hyper-elastic dielectric materials sandwiched between flexible electrodes. Electrical energy can be produced from a stretched, charged DEG by relaxing the mechanical deformation whilst maintaining the amount of charge on its electrodes. This increases the distance between opposite charges and packs likecharges more densely, increasing the amount of electrical energy. DEG show promise for harvesting energy from environmental sources such as wind and ocean waves. DEG can undergo large inhomogeneous deformations and electric fields during operation, meaning it can be difficult to experimentally determine optimal designs. Also, the circuit that is used for harnessing DEG energy influences the DEG output by controlling the amount of charge on the DEG. In this paper an integrated DEG model was developed where an ABAQUS finite element model is used to model the DEG and data from this model is input to a system level LT-Spice circuit simulation. As a case-study, the model was used as a design tool for analysing a diaphragm DEG connected to a self-priming circuit. That is, a circuit capable of overcoming electrical losses by using some of the DEG energy to boost the charge in the system. Our ABAQUS model was experimentally validated to predict the varying capacitance of a diaphragm DEG deformed inhomogeneously to within 6% error.

  7. Realizing the potential of dielectric elastomer generators

    Science.gov (United States)

    McKay, Thomas; O'Brien, Benjamin; Calius, Emilio; Anderson, Iain

    2011-04-01

    The global demand for renewable energy is growing, and ocean waves and wind are renewable energy sources that can provide large amounts of power. A class of variable capacitor power generators called Dielectric Elastomer Generators (DEG), show considerable promise for harvesting this energy because they can be directly coupled to large broadband motions without gearing while maintaining a high energy density, have few moving parts, and are highly flexible. At the system level DEG cannot currently realize their full potential for flexibility, simplicity and low mass because they require rigid and bulky external circuitry. This is because a typical generation cycle requires high voltage charge to be supplied or drained from the DEG as it is mechanically deformed. Recently we presented the double Integrated Self-Priming Circuit (ISPC) generator that minimized external circuitry. This was done by using the inherent capacitance of DEG to store excess energy. The DEG were electrically configured to form a pair of charge pumps. When the DEG were cyclically deformed, the charge pumps produced energy and converted it to a higher charge form. In this paper we present the single ISPC generator that contains just one charge pump. The ability of the new generator to increase its voltage through the accumulation of generated energy did not compare favourably with that of the double ISPC generator. However the single ISPC generator can operate in a wider range of operating conditions and the mass of its external circuitry is 50% that of the double ISPC generator.

  8. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  9. Numerical analysis of helical dielectric elastomer actuator

    Science.gov (United States)

    Park, Jang Ho; Nair, Saurabh; Kim, Daewon

    2017-04-01

    Dielectric elastomer actuators (DEA) are known for its capability of experiencing extreme strains, as it can expand and contract based on specific actuation voltage applied. On contrary, helical DEA (HDEA) with its unique configuration does not only provide the contractile and extendable capabilities, but also can aid in attaining results for bending and torsion. The concept of HDEA embraces many new techniques and can be applied in multiple disciplines. Thus, this paper focuses on the simulation of HDEA with helical compliant electrodes that is a major factor prior to its application. The attributes of the material used to build the structure plays a vital role in the behavior of the system. For numerical analysis of HDEA, the material characteristics are input into a commercial grade software, and then the appropriate analysis is performed to retrieve its outcome. Applying the material characteristics into numerical analysis modeling, the functionality of HDEA for various activations can be achieved, which is used to test and comply with the fabricated final product.

  10. Continuum vibration analysis of dielectric elastomer membranes

    Science.gov (United States)

    Nalbach, S.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomer (DE) transducers are well known for the possibility of responding to an applied voltage with relatively large actuation strains, often larger than 100%, and for their relatively high actuation bandwidth (order of several kHz). However, up to date there are relatively few applications which use the dynamic behavior of DEs. Some relevant examples include loudspeakers and fluid dispensers. Motivated by the potentialities of DEs in high-frequency applications, the aim of this work is the investigation of the continuous vibrations observed when DE membranes are actuated electrically. The system under analysis consists of a circular DE membrane pre-loaded with a spring. While exciting the DE membrane actuator with high-voltage, high-frequency signals, the motion of the membrane is detected with a 3D laser vibrometer which uses Doppler effect to reconstruct the system spectrum and vibration modes. An extensive experimental investigation is performed to study the influence of system parameters, such as membrane geometry and pre-stress, on the membrane frequency spectrum and vibrational modes.

  11. Nanoparticle-Liquid Crystalline Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Yan Ji

    2012-01-01

    Full Text Available Liquid crystalline elastomers (LCEs exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat and the resulting thermal actuation act by promoting entropic disorder, as does the addition of solvents. Photo-isomerization is another mechanism of actuation, reducing the orientational order by diminishing the fraction of active rod-like mesogenic units, mostly studied for azobenzene derivatives incorporated into the LCE composition. Embedding nanoparticles provides a new, promising strategy to add functionality to LCEs and ultimately enhance their performance as sensors and actuators. The motivation for the combination of nanoparticles with LCEs is to provide better-controlled actuation stimuli, such as electric and magnetic fields, and broad-spectrum light, by selecting and configuring the appropriate nanoparticles in the LCE matrix. Here we give an overview of recent advances in this area with a focus on preparation, physical properties and actuation performance of the resultant nanocomposites.

  12. Artificial muscles based on liquid crystal elastomers.

    Science.gov (United States)

    Li, Min-Hui; Keller, Patrick

    2006-10-15

    This paper presents our results on liquid crystal (LC) elastomers as artificial muscle, based on the ideas proposed by de Gennes. In the theoretical model, the material consists of a repeated series of main-chain nematic LC polymer blocks, N, and conventional rubber blocks, R, based on the lamellar phase of a triblock copolymer RNR. The motor for the contraction is the reversible macromolecular shape change of the chain, from stretched to spherical, that occurs at the nematic-to-isotropic phase transition in the main-chain nematic LC polymers. We first developed a new kind of muscle-like material based on a network of side-on nematic LC homopolymers. Side-on LC polymers were used instead of main-chain LC polymers for synthetic reasons. The first example of these materials was thermo-responsive, with a typical contraction of around 35-45% and a generated force of around 210 kPa. Subsequently, a photo-responsive material was developed, with a fast photochemically induced contraction of around 20%, triggered by UV light. We then succeeded in preparing a thermo-responsive artificial muscle, RNR, with lamellar structure, using a side-on nematic LC polymer as N block.Micrometre-sized artificial muscles were also prepared. This paper illustrates the bottom-up design of stimuli-responsive materials, in which the overall material response reflects the individual macromolecular response, using LC polymer as building block.

  13. Hysteretic behavior of soft magnetic elastomer composites

    Energy Technology Data Exchange (ETDEWEB)

    Krautz, Maria; Werner, David [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schrödner, Mario [Thuringian Institute of Textile and Plastics Research e.V., Breitscheidstraße 97, D-07407 Rudolstadt (Germany); Funk, Alexander [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Jantz, Alexander; Popp, Jana [Thuringian Institute of Textile and Plastics Research e.V., Breitscheidstraße 97, D-07407 Rudolstadt (Germany); Eckert, Jürgen [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben (Austria); Department of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria); Waske, Anja [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-03-15

    Composites of polymer and micron-sized particles of carbonyl-iron were investigated in terms of their magnetization behavior. Thermoplastic elastomers with varying Young's modulus (E{sub Polymer}=0.14–14.6 MPa) were used as matrix material. Field dependent magnetization curves reveal that the hysteretic behavior of the composites strongly depends on both the particle fraction (7, 10, 14, 21, 31 vol%) and on the mechanical properties of the polymer. It is shown that hysteresis only appears above a certain fraction of magnetic particles which can be accounted to the magnetic exchange between the particles. However, hysteresis is suppressed in the composite with largest Young's modulus of the polymer matrix, even at largest particle fraction. - Highlights: • Composites with soft magnetic Iron Particles show hysteretic magnetization behavior. • Origin of the hysteresis is the alignment of particles along field direction. • Hysteresis depends on both, mechanical properties of matrix and particle fraction.

  14. Electrical resistivity mechanism in magnetorheological elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Kchit, N; Bossis, G [LPMC UMR-CNRS 6622, University of Nice Sophia Antipolis, 06108 Nice cedex 2 (France)], E-mail: bossis@unice.fr

    2009-05-21

    Magnetorheological elastomers (MREs) are smart materials made by aligning magnetic microparticles inside a liquid polymer. Once the polymer is cured, this anisotropic structure is kept, giving to the composite new properties such as a large change in electrical resistivity with applied pressure. In order to understand the conduction mechanism in such composites, the influence of pressure on the electrical resistivity of metal powders without polymer was first investigated. It was found that the initial resistivity of metal powder at zero pressure is about 10{sup 8} {omega} cm for pure nickel powder and 10{sup 6} {omega} cm for silver coated nickel particles. The piezoresistivity of the powders follows a power law with a coefficient close to (-1) at high compression, which allows the thickness of the oxide layer to be determined. The change in resistance with pressure was found to be an order of magnitude larger for a MRE composite than for the same volume fraction of fillers dispersed randomly in the polymer. The filler particles have a high surface roughness, and when particles are brought into contact under pressure, the electric current takes place via microcontacts between asperities. The model of tunnel resistance developed in this study includes the roughness parameters and the thickness of the oxide layer found with the powder and introduces the thickness of the polymer layer as a new parameter. This model well reproduces experimental curves for piezoresistivity of composites allowing the thickness of the insulating polymer layer strongly adsorbed on the surface of particles to be determined.

  15. Shear Stress Sensing using Elastomer Micropillar Arrays

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.

    2013-01-01

    The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.

  16. Exploring dielectric elastomers as actuators for hand tremor suppression

    Science.gov (United States)

    Kelley, Christopher R.; Kauffman, Jeffrey L.

    2017-04-01

    Pathological tremor results in undesired motion of body parts, with the greatest effect typically occurring in the hands. Since common treatment methods are ineffective in some patients or have risks associated with surgery or side effects, researchers are investigating mechanical means of tremor suppression. This work explores the viability of dielectric elastomers as the actuators in a tremor suppression control system. Dielectric elastomers have many properties similar to human muscle, making them a natural fit for integration into the human biomechanical system. This investigation develops a model of the integrated wrist-actuator system to determine actuator parameters that produce the necessary control authority without significantly affecting voluntary motion. Furthermore, this paper develops a control law for the actuator voltage to increase the effective viscous damping of the system. Simulations show excellent theoretical tremor suppression, demonstrating the potential for dielectric elastomers to suppress tremor while maximizing compatibility between the actuator and the human body.

  17. Fracture Behavior of Dielectric Elastomer under Pure Shear Loading

    Science.gov (United States)

    Ahmad, D.; Patra, K.

    2017-09-01

    Dielectric elastomer has become a very important material for many emerging applications areas like optics, micro fluidics, sensors, actuators and energy harvesting. However, these elastomer components are prone to fracture or catastrophic failure because of defects likes notches, flaws, and fatigue crack, impurities which occur during production or during service. To make better use of this material, it is important to investigate fracture characteristics under different operating conditions. This study experimentally investigated the effects of notch length and strain rate on the fracture toughness, failure stretch and failure stress of acrylic elastomer under pure shear deformation mode. It is observed that failure stretch depends on notch length and independent of strain rate, but failure stress decreases with increasing notch length and increases with increasing strain rate. It is also found that fracture toughness is independent of notch lengths. However, fracture toughness is found to increase with strain rate.

  18. Self-assembly of nematic liquid crystal elastomer filaments

    Science.gov (United States)

    Wei, Wei-Shao; Xia, Yu; Yang, Shu; Yodh, A. G.

    In this work we investigate the self-assembly of nematic liquid crystal polymer (NLCP) filaments and their corresponding cross-linked elastomer structures. Specifically, by fine-tuning surfactant concentration, prepolymer chain length, and temperature within a background aqueous phase we can generate filaments composed of oligomerized LC monomers. Filaments with narrowly dispersed diameters ranging from one hundred nanometers to a few micrometers can be obtained. Using polarization optical microscopy, we show that the nematic LCs within the filaments have an escaped radial structure. After photo-cross-linking, nematic liquid crystal elastomer filaments are obtained with well-maintained directors and smooth surface structure. Since these materials are elastomers, the size and mechanical and optical response of the filaments can be ''tuned'' near the nematic to isotropic phase transition temperature. This work is supported by NSF DMR16-07378, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  19. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    , thereby forming a capacitor [1]. Silicone elastomers are one of the most used materials for DEs due to their high efficiency, fast response times and low viscous losses. The major disadvantage of silicone elastomers is that they possess relatively low dielectric permittivity, which means that a high......(pentafluorophenyl)borane catalysed Piers-Rubinsztajn reaction [3] and have a high degree of chemical freedom, as several parameters can be varied during the preparation phase. Thus, the space between the functional groups can be varied, by using different dimethylsiloxane spacer units between the high dielectric permittivity...... molecules. Furthermore, the degree of functionalization of the copolymers can be varied accurately by changing the feed of the high dielectric permittivity molecules. As a result, a completely tuneable elastomer system, with respect to functionalization, is achieved....

  20. Dynamic self-stiffening in liquid crystal elastomers

    Science.gov (United States)

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.; Verduzco, Rafael

    2013-04-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials that respond to external stresses through a permanent increase in stiffness are uncommon. Here we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a mobile nematic director, which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement.

  1. Study Of The Mechanical Behavior Of Elastomer Protective Materials

    Directory of Open Access Journals (Sweden)

    Lotfi Harrabi

    2017-07-01

    Full Text Available In order to study the mechanical behaviour of elastomers at large deformations a theoretical description was developed for the loading-unloading hysteresis loop at large deformations and as a function of the strain rate. Bergstrm and Boyces proposition that the elastomer behaviour is controlled by two contributions the first one corresponding to the equilibrium state and the second one to a non-linear rate-dependent deviation from that equilibrium state and their use of Zeners rheological model were applied to an uniaxial tension configuration. A validation of the description was performed with nitrile rubber. A good agreement of the theoretical description with experimental results was obtained. This simple description of the hysteresis behaviour of elastomers as a function of the strain rate provides a useful tool for estimating the mechanical behaviour at various strain rates with potential application in the design of protective gloves.

  2. Ankle-foot orthosis using elastomer-embedded flexible joint.

    Science.gov (United States)

    Abe, Isao; Ishiya, Kohei; Oshimoto, Taiki; Kikuchi, Takehito; Tanida, Sosuke; Yasuda, Takashi

    2017-07-01

    We proposed a new ankle-foot orthosis using elastomer-embedded flexible joints (EEFJ), composed of C-shaped springs and 3D-printed circular elastomer. This orthosis was designed to reduce burden on the tibialis anterior muscle (TA) and to achieve clearance between the tip of the toe and the ground. Strength testing, and gait analysis were conducted for the orthosis. According to the results of strength testing, the combination of the C-spring with 0.3 mm and 0.5 mm thickness and the elastomer with 30% and 60% filling density performs a supporting torque of 0.7-2.3 Nm to plantarflexion. In contrast, torques in the other directions were relatively small. According to the results of gait experiments in seven healthy young subjects, the proposed orthosis successfully reduced the TA activation on initial contact and in the swing phase, and range of motion on initial contact.

  3. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei [Xi' an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an (China); Xi' an Jiaotong University, School of Mechanical Engineering, Xi' an (China)

    2013-02-15

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. (orig.)

  4. Novel ankle orthosis with elastomer-embedded flexible joint.

    Science.gov (United States)

    Kikuchi, Takehito; Ishiya, Kohei; Abe, Isao; Tanida, Sosuke; Yasuda, Takashi

    2017-07-01

    In this study, we propose a new ankle orthosis with elastomer-embedded flexible joints (EEFJ), composed of C-shaped springs and 3D-printed circular elastomer. This orthosis was designed to reduce burden on the tibialis anterior muscle (TA) and to achieve clearance between the tip of the toe and the ground. Fabrication method, strength testing, and gait analysis were conducted. According to the results of strength testing, the combination of the C-spring with 0.3 mm and 0.5 mm thickness and the elastomer with 30% and 60% filling density performs a supporting torque of 0.7-2.3 Nm to plantarflexion. In contrast, torques in the other directions were relatively small. According to the results of gait experiments in seven healthy young subjects, the proposed orthosis successfully reduced activation of TA on initial contact and in the swing phase, and range of motion on initial contact.

  5. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Science.gov (United States)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei

    2013-02-01

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers.

  6. Effect of environmental stress on Sylgard 170 silicone elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Buckalew, W.H.; Wyant, F.J.

    1985-05-01

    Dow Corning Sylgard 170 Silicone Elastomer has been investigated to characterize its response to accelerated thermal aging, radiation exposure, and its behavior under applied compressive forces. Sylgard 170 response to accelerated thermal aging suggests the material properties are not particularly age dependent. Radiation exposures, however, produce significant, monotonic changes in both elongation and hardness with increasing absorbed radiation dose. Elastomer response to an applied compressive force was strongly dependent on environment temperature and degree of material confinement. Variations in temperature produced large changes in compressive forces applied to confined samples. Attempts to mitigate force fluctuations by means of pressure relief paths resulted in total loss of the applied compressive force. Thus, seal applications employing this elastomer in Class 1E equipment required to function during or following an accident should consider the potential loss of compressive force from long-term aging and potential LOCA-temperature transient conditions.

  7. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-28

    A brief article examines the controversy over food irradiation regarding the wholesomeness of irradiated food, its microbiological safety, loss of vitamins and changes in flavour. The benefits of food irradiation are also outlined including the destruction of certain food-borne pathogens and the prolongation of the shelf-life of food by killing pests and delaying the deterioration process.

  8. Optimization Techniques for Improving the Performance of Silicone-Based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Yu, Liyun

    2017-01-01

    Dielectric elastomers are possible candidates for realizing products that are in high demand by society, such as soft robotics and prosthetics, tactile displays, and smart wearables. Diverse and advanced products based on dielectric elastomers are available; however, no elastomer has proven ideal...... the electro-mechanical performance of dielectric elastomers are highlighted. Various optimization methods for improved energy transduction are investigated and discussed, with special emphasis placed on the promise each method holds. The compositing and blending of elastomers are shown to be simple, versatile...... that there is not a single optimization technique that will lead to the universal optimization of dielectric elastomer films, though each method may lead to elastomers with certain features, and thus certain potentials....

  9. Hemispherical breathing mode speaker using a dielectric elastomer actuator.

    Science.gov (United States)

    Hosoya, Naoki; Baba, Shun; Maeda, Shingo

    2015-10-01

    Although indoor acoustic characteristics should ideally be assessed by measuring the reverberation time using a point sound source, a regular polyhedron loudspeaker, which has multiple loudspeakers on a chassis, is typically used. However, such a configuration is not a point sound source if the size of the loudspeaker is large relative to the target sound field. This study investigates a small lightweight loudspeaker using a dielectric elastomer actuator vibrating in the breathing mode (the pulsating mode such as the expansion and contraction of a balloon). Acoustic testing with regard to repeatability, sound pressure, vibration mode profiles, and acoustic radiation patterns indicate that dielectric elastomer loudspeakers may be feasible.

  10. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    -linker for silicone polymer networks. The silicone compatible cross-linker allowed for copper-catalysed azide-alkyne cycloadditions (CuAAC) and thereby the attachment of functional groups to the network crosslinking point. The functional groups were very well-distributed in the silicone elastomer matrix, and various...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  11. A Molecular View of Liquid Crystalline Elastomers and Gels

    Science.gov (United States)

    de Pablo, Juan

    2011-03-01

    A combination of Monte Carlo and molecular dynamics simulations is used to examine the order-disorder transitions that arise in model liquid crystalline elastomers and colloidal gels as a function of concentration and strain, respectively. Two models are considered. In the first, a lattice model is used to represent a colloidal gel of nematogens and nanoparticles. In the second, a cross-linked elastomer of Gay-Berne mesogens is adopted to examine the order-disroder transition that arises as a function of strain. The results of simulations are compared to those of recent experiments for these two classes of systems.

  12. Development of dielectric elastomer nanocomposites as stretchable actuating materials

    Science.gov (United States)

    Wang, Yu; Sun, L. Z.

    2017-10-01

    Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.

  13. Research Update: Platinum-elastomer mesocomposite as neural electrode coating

    Directory of Open Access Journals (Sweden)

    Ivan R. Minev

    2015-01-01

    Full Text Available Platinum is electrochemically stable and biocompatible, and remains the preferred material for the fabrication of implantable neural electrodes. In a foil or film format, platinum is mechanically stiff compared to interfaced biological tissue. We report a soft, highly stable platinum-elastomer composite that offers both mechanical compliance and the electrochemical properties of platinum. We demonstrate the high-performance of the novel mesocomposite printed on stretchable microelectrodes both in vitro and in vivo. The platinum-elastomer composite is a new promising coating for chronic neural interfaces.

  14. Improved electromechanical behavior in castable dielectric elastomer actuators

    Science.gov (United States)

    Akbari, Samin; Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Non-viscoelastic castable elastomers are replacing the polyacrylate VHB films in the new generations of dielectric elastomer actuators (DEAs) to achieve fast and reliable actuation. We introduce the optimum prestretch conditions to enhance the electromechanical behavior of the castable DEAs resulting in large actuation strain. For castable actuator in which the thickness is selected independent of the prestretch, uniaxial prestretch mode offers the highest actuation strain in the transverse direction compared to biaxial and pure shear. We experimentally demonstrate that miniaturization hinders the loss of tension and up to 85% linear actuation strain is generated with a 300 × 300 μm2 polydimethylsiloxanes-based DEA.

  15. Microstructure property relationships of urethane magnetorheological elastomers

    Science.gov (United States)

    Boczkowska, Anna; Awietjan, Stefan F.; Wroblewski, Rafal

    2007-10-01

    Studies on the structure of urethane magnetorheological elastomers (MREs), with respect to their magnetic and mechanical properties, are reported. MREs were obtained from a mixture of polyurethane gel and carbonyl-iron particles cured in a magnetic field of 100 and 300 mT. Samples with different numbers of particles (1.5, 11.5 and 33 vol%) were produced. The microstructure and magnetic properties of the obtained MREs were studied. Also, the displacement of the samples in an external magnetic field was examined using a specially designed experimental set-up. The influences of the number of ferromagnetic particles and their arrangement in relation to the external magnetic field were investigated. It was found that the microstructure of the MREs depends on the number of ferrous particles and the fabrication conditions. The orientation of the iron particles into aligned chains is possible for a lower volume content of the ferromagnetic fillers. The high carbonyl-iron volume content in the matrix leads to the formation of more complex microstructures, similar to three-dimensional lattices. The magnetic measurements also confirmed the existence of the microstructure anisotropy for the MREs with 1.5 and 11.5 vol% of iron particles. The structural and magnetic anisotropy has not been found in the MREs with 33 vol% of Fe. To evaluate the effect of the external magnetic field on the magnetorheological properties, the displacement under magnetic field, the compressive strength, and the rheological properties were measured. The experiments showed that both the particle content and the field strength used during curing have a significant effect on the microstructure of the MREs and, in consequence, on their properties.

  16. Printing low-voltage dielectric elastomer actuators

    Science.gov (United States)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert R.

    2015-12-01

    We demonstrate the fabrication of fully printed thin dielectric elastomer actuators (DEAs), reducing the operation voltage below 300 V while keeping good actuation strain. DEAs are soft actuators capable of strains greater than 100% and response times below 1 ms, but they require driving voltage in the kV range, limiting the possible applications. One way to reduce the driving voltage of DEAs is to decrease the dielectric membrane thickness, which is typically in the 20-100 μm range, as reliable fabrication becomes challenging below this thickness. We report here the use of pad-printing to produce μm thick silicone membranes, on which we pad-print μm thick compliant electrodes to create DEAs. We achieve a lateral actuation strain of 7.5% at only 245 V on a 3 μm thick pad-printed membrane. This corresponds to a ratio of 125%/kV2, by far the highest reported value for DEAs. To quantify the increasing stiffening impact of the electrodes on DEA performance as the membrane thickness decreases, we compare two circular actuators, one with 3 μm- and one with 30 μm-thick membranes. Our experimental measurements show that the strain uniformity of the 3 μm-DEA is indeed affected by the mechanical impact of the electrodes. We developed a simple DEA model that includes realistic electrodes of finite stiffness, rather than assuming zero stiffness electrodes as is commonly done. The simulation results confirm that the stiffening impact of the electrodes is an important parameter that should not be neglected in the design of thin-DEAs. This work presents a practical approach towards low-voltage DEAs, a critical step for the development of real world applications.

  17. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    Science.gov (United States)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  18. Bioinspired actuated adhesive patterns of liquid crystalline elastomers.

    Science.gov (United States)

    Cui, Jiaxi; Drotlef, Dirk-Michael; Larraza, Iñigo; Fernández-Blázquez, Juan P; Boesel, Luciano F; Ohm, Christian; Mezger, Markus; Zentel, Rudolf; del Campo, Aránzazu

    2012-09-04

    Gecko-inspired arrays of micropillars made of a liquid crystalline elastomer display thermoswitchable adhesive behavior as a consequence of elongation changes caused by reorientation of the mesogens at the nematic-isotropic (N-I) phase transition. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin

    Dielectric elastomers (DEs) change their shape and size under a high voltage or reversibly generate a high voltage when deformed. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s ...

  20. Key value propositions in applications for dielectric elastomer actuators

    DEFF Research Database (Denmark)

    Lautrop, Asger; Elena, Maria; Poole, Alan

    2015-01-01

    This work identifies and clarifies tendencies in the performance metrics of dielectric elastomer actuators with respect to different application requirements. The study is based on real proposed applications and therefore not only highlights the properties in which DEA provides value, but also...

  1. Reversible large amplitude planar extension of soft elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of the new fixture is to elongate an annulus by keeping the perimeter constant. The deformation...

  2. Use of VUV Radiation to Control Elastomer Seal Adhesion

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in(exp2) after about 1 J/cm(exp2) of VUV exposure for seal-to-metal configurations and after 2 J/cm(exp2) for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates.

  3. Silicone elastomer sling for rectal prolapse in cats

    Science.gov (United States)

    Corgozinho, Katia Barão; Belchior, Cristiane; de Souza, Heloisa Justen Moreira; Ferreira, Ana Maria; Resende, Carolina; Damico, Brandão; Cunha, Simone

    2010-01-01

    This study reports 2 cases of recurrent rectal prolapse secondary to anal abnormality in cats. In both cases the anus was wide, leading to a rectal mucosal prolapse during defecation. A silicone elastomer sling was introduced around the anus, and the rectal prolapse was definitively resolved. PMID:20676293

  4. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  5. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  6. On the interface trap density and series resistance of tin oxide film prepared on n-type Si (1 1 1) substrate: Frequency dependent effects before and after {sup 60}Co {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, S. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)]. E-mail: serdar@taek.gov.tr; Selcuk, A. Birkan [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Tugluoglu, N. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Ocak, S. Bilge [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)

    2007-06-15

    We report the first investigation of the frequency dependent effects of gamma irradiation on interface state density and series resistance determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in SnO{sub 2}/n-Si structures prepared by spray deposition method. The samples were irradiated using a {sup 60}Co {gamma}-ray source at 500 kGy at room temperature. The C-V and G-V measurements of the samples were performed in the voltage range -6 V to 2 V and at 10 kHz, 100 kHz, 500 kHz and 1 MHz at room temperature before and after 500 kGy irradiation. The measurement capacitance and conductance are corrected for series resistance. It has been seen that the value of the series resistance R {sub s} of sample decreases from 204 {omega} to 55.4 {omega} with increasing the frequency before irradiation while it decreases from 248 {omega} to 60 {omega} with increasing frequency at 500 kGy irradiation. It has been found that and D {sub it} values of MOS structure increases up to 100 kHz and then decreases up to 1 MHz while the R {sub s} increases with increasing irradiation dose for our sample. The interface state density D {sub it} ranges from 1.83 x 10{sup 13} cm{sup -2} eV{sup -1} for before irradiation to 1.54 x 10{sup 13} cm{sup -2} eV{sup -1} for 500 kGy irradiation dose at 500 kHz and decreases with increasing frequency.

  7. ASSESSMENT OF THE INFLUENCE OF RADIATION AND DEFORMATION ON THE ELASTOMER DETERIORATION BY USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Jasminka Bonato

    2017-01-01

    Full Text Available Elastomers belong to the group of polymer materials and they have an important role as technical material in the shipbuilding industry. The radiation crosslinking of elastomers shows significant advantages over chemical crosslinking. It can improve mechanical strength, resistance to chemicals and insulation properties of elastomers. An undesirable side reaction, which can occur during radiation, is the degradation process. This results in cracks breaking, chemical disintegration and reduction of mechanical properties of elastomers. In this paper fuzzy logic is used to estimate the influence of radiation and deformation on the behavior of elastomer samples. A Gaussian model is created according to both the experts' experience and the measuring data. The results of the model are calculated by using the Normalized Roth Mean Square Error (NRMSE and the Roth Mean Square Error (RMSE. The so developed model gives new conceptions, which offer a possibility to improve the application of elastomer materials.

  8. Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers

    Science.gov (United States)

    Tröls, Andreas; Kogler, Alexander; Baumgartner, Richard; Kaltseis, Rainer; Keplinger, Christoph; Schwödiauer, Reinhard; Graz, Ingrid; Bauer, Siegfried

    2013-10-01

    Dielectric elastomers are used for electromechanical energy conversion in actuators and in harvesting mechanical energy from renewable sources. The electrical breakdown strength determines the limit of a dielectric elastomer for its use in actuators and energy harvesters. We report two experimental configurations for the measurement of the stretch dependence of the electrical breakdown strength of dielectric elastomers, and compare the electrical breakdown fields for compliant and rigid electrodes on the elastomer. We show that the electrode configuration strongly influences the electrical breakdown field strength. Further, we compare the stretch dependent dielectric function and breakdown of the acrylic elastomer VHB 4910™ from 3M™, and of the natural rubber ZruElast™ A1040™ from Zrunek rubber technology. While the dielectric permittivity of VHB decreases with increasing stretch ratio, the dielectric constant of rubber is insensitive to stretch. Our results suggest natural rubber as a versatile material for dielectric elastomer energy harvesting.

  9. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  10. Offshore Substrate

    Data.gov (United States)

    California Department of Resources — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  11. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  12. Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    2015-01-01

    A silicone elastomer from PDMS-PEG multiblock copolymer has been prepared by use of silylation reactions for both copolymer preparation and crosslinking. The dielectric and mechanical properties of the silicone elastomers were carefully investigated, as well as the morphology of the elastomers wa...... to a significantly increased dielectric permittivity. The conductivity also remained low due to the resulting discontinuity in PEG within the silicone matrix....

  13. Design of Elastomer Structure to Facilitate Incorporation of Expanded Graphite in Silicones Without Compromising Electromechanical Integrity

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2015-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the past years due to their use in, for example, dielectric elastomers. For this particular use, both the electrically insulating properties - as well as the mechanical properties......-functional crosslinker, which allows for development of a suitable network matrix. The dielectric permittivity was increased by almost a factor of 4 compared to a benchmark silicone elastomer....

  14. A Methodology for the Indirect Determination and Spatial Resolution of Shear Modulus of PDMS-Silica Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, B; Reimer, J; Maxwell, R

    2007-08-29

    A methodology is described that allows for the spatial resolution of shear modulus in silica-filled PDMS elastomers via {sup 1}H relaxation measurements and stray-field imaging (STRAFI) techniques. Traditional Hahn echoes provide a simple, robust route to the extraction of a proton residual dipolar coupling constant (RDC), a direct measure of chain mobility and a parameter that can be corollated to numerous mechanical properties. Defining a dimensionless RDC eliminates any artifacts associated with low-field measurement and allows the RDC to become independent of field strength. A direct correlation between the NMR determined dimensionless RDC and results from dynamic mechanical analysis is presented, then employed via STRAFI to determine spatial variations in moduli associated with irradiated elastomeric materials. Reliable performance, despite poorly optimized STRAFI conditions, is demonstrated with an error of no more than 22% between the calculated shear modulus and the measured value via DMA.

  15. Foam injection molding of elastomers with iron microparticles

    Science.gov (United States)

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  16. Modified and Unmodified Zinc Oxide as Coagent in Elastomer Compounds

    Directory of Open Access Journals (Sweden)

    Kołodziejczak-Radzimska Agnieszka

    2014-09-01

    Full Text Available The aim of this work was to study the activity of unmodified and modified ZnO in the peroxide crosslinking of hydrogenated acrylonitrile-butadiene elastomer (HNBR and ethylene-propylene copolymer (EPM. In the first step, zinc oxide was obtained by emulsion precipitation. Maleic acid was introduced onto the surface of ZnO using an in situ method. The unmodified and modified zinc oxide was characterized using dispersive and morphological analysis, BET surface area analysis, and elemental, spectroscopic and thermal analysis. In the second stage of the research, the ZnO/MA systems were incorporated into the structure of elastomer compounds improving the kinetic and mechanical properties of vulcanizates. The proposed modification method had a favorable effect on the physicochemical properties of the zinc oxide and on the kinetic and mechanical properties of the vulcanizates. This study demonstrated that modification of zinc oxide by maleic acid is a promising technique.

  17. Mimicking biological stress–strain behaviour with synthetic elastomers

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress–strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  18. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    Dielectric elastomers (DE) are used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. For many applications, one of the major factors that limits the DE performance is premature electrical breakdown. There are many approaches that have been...... their long-term mechanical reliability as they are susceptible to Mullins effects as the results of pre-stretching. Therefore, two strategies are developed in this thesis in order to produce DEs with high electrical performance and long-term electromechanical reliability. The first strategy is to study...... the mechanisms behind the electrical breakdown of DEs and the second strategy is to investigate the long-term electromechanical reliability of DEs. In the first strategy, the electrothermal breakdown in polydimethylsiloxane (PDMS) elastomers was modelled in order to evaluate the thermal mechanisms behind...

  19. Optimization of large-scale fabrication of dielectric elastomer transducers

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager

    as conductive adhesives were rejected. Dielectric properties below the percolation threshold were subsequently investigated, in order to conclude the study. In order to avoid destroying the network structure, carbon nanotubes (CNTs) were used as fillers during the preparation of the conductive elastomers......Dielectric elastomers (DEs) have gained substantial ground in many different applications, such as wave energy harvesting, valves and loudspeakers. For DE technology to be commercially viable, it is necessary that any large-scale production operation is nondestructive, efficient and cheap. Danfoss...... grafted covalently to the CNT surface with poly(methacryloyl polydimethylsiloxane), resulting in the obtained conductivities being comparable to commercially available Elastosil LR3162, even at low functionalisation. The optimized methods allow new processes for the production of DE film with corrugations...

  20. Actuation of Thin Nematic Elastomer Sheets with Controlled Heterogeneity

    Science.gov (United States)

    Plucinsky, Paul; Lemm, Marius; Bhattacharya, Kaushik

    2017-09-01

    Nematic elastomers and glasses deform spontaneously when subjected to temperature changes. This property can be exploited in the design of heterogeneously patterned thin sheets that deform into a non-trivial shape when heated or cooled. In this paper, we start from a variational formulation for the entropic elastic energy of liquid crystal elastomers and we derive an effective two-dimensional metric constraint, which links the deformation and the heterogeneous director field. Our main results show that satisfying the metric constraint is both necessary and sufficient for the deformation to be an approximate minimizer of the energy. We include several examples which show that the class of deformations satisfying the metric constraint is quite rich.

  1. Magnetic force induced tristability for dielectric elastomer actuators

    Science.gov (United States)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  2. Dynamic performance of dielectric elastomers utilized as acoustic actuators

    Science.gov (United States)

    Hochradel, K.; Rupitsch, S. J.; Sutor, A.; Lerch, R.; Vu, D. K.; Steinmann, P.

    2012-06-01

    We report on the frequency dependent behavior of dielectric elastomer actuators (DEA). The introduced smart material actuators consist of 3M™'s elastomer VHB™4905 (9469) and a compliant, sputtered copper electrode on each side. The presented experiments on these compounds contain the active tuning of their resonance frequency and their application as acoustic actuators. We are able to decrease the membranes' eigenfrequency by 30% with an electrical offset potential. Alternatively, if an alternating signal is applied, sound pressure levels up to 130 dB in an enclosed volume of 28 ccm are achieved. In order to verify the results, a numerical simulation is introduced incorporating the two physical fields involved: electrical and mechanical.

  3. Dielectric elastomer fingers for versatile grasping and nimble pinching

    Science.gov (United States)

    Lau, Gih-Keong; Heng, Kim-Rui; Ahmed, Anansa S.; Shrestha, Milan

    2017-05-01

    Boneless soft robotic fingers cannot apply concentrated forces to pinch a delicate object. This letter reports a three-dimensional design of dielectric elastomer fingers with higher flexural stiffness and close to 90° voltage-controllable bending for object gripping and pinching. It makes use of tension arch flexures to elevate a pre-stretched dielectric elastomer actuator (DEA) into a roof shape and thus magnifies the tension-induced moment, 40 times higher than a flat DEA does, to bend a stiff base frame. Such fingers make normally close-grippers to lift a payload 8-9 times their weight. They also make normally open grippers that pinch a highly deformable raw egg yolk.

  4. Strong dielectric-elastomer grippers with tension arch flexures

    Science.gov (United States)

    Heng, Kim-Rui; Ahmed, Anansa S.; Shrestha, Milan; Lau, Gih-Keong

    2017-04-01

    Soft grippers based on dielectric elastomer actuator (DEA) are usually too flimsy to perform the task of pick and place on a heavier object given their low payload capacity. This work developed a new design of DEA unimorph consists of a flexible frame holding at a DEA on the discrete support by a stiffer spine-like flexure of 380μm thick Polyvinyl chloride (PVC) sheet. It finds an equilibrium of curling up when the DEA's pre-stretch is partially released; it can electrically unfolds upon a voltage application. This dielectric elastomer unimorph of 3 grams produced a maximum voltage induced bending of close to 90° and a maximum voltage-induced blocked force of up to 168mN. Given their higher stiffness and large actuation, these 3-D shaped and strengthened DEA unimorphs can make stronger grippers for passive grasping and active pinching.

  5. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces

    OpenAIRE

    Hoshian, Sasha; Jokinen, Ville; Franssila, Sami

    2016-01-01

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum templa...

  6. Biomimetic Underwater Robots Based on Dielectric Elastomer Actuators

    OpenAIRE

    Shintake, Jun; Shea, Herbert; Floreano, Dario

    2016-01-01

    Dielectric elastomer actuators (DEAs), a soft actuator technology, hold great promise for biomimetic underwater robots. The high-voltages required to drive DEAs can however make them challenging to use in water. This paper demonstrates a method to create DEA-based biomimetic swimming robots that operate reliably even in conductive liquids. We ensure the insulation of the high-voltage DEA electrodes without degrading actuation performance by laminating silicone layers. A fish and a jellyfish w...

  7. Interfacial Stress Transfer in an Aramid Reinforced Thermoplastic Elastomer

    OpenAIRE

    Coffey, Austin

    2007-01-01

    Abstract The interfacial micromechanics of Twaron 2200 aramid fibers in an engineering thermoplastic elastomer (Pebax 7033, polyether amide block co-polymer) has been investigated by determining the distribution of interfacial shear stress along fibers in single-fiber model composites using Raman spectroscopy. The effects of various fiber surface treatments on the interfacial shear stress and fragmentation of the aramid fibers are discussed. The fiber average stress in...

  8. Micropatterning on silicon elastomer (PDMS) with deep UVs

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune, Damien Cuvelier & Jenny Fink ### Abstract This protocol describes a technique to imprint adhesive micropatterns on silicon elastomers like PDMS (poly-dimethyl siloxane). The micropatterns are stable for days (depending on the cell type) and regions outside the patterns prevent cell attachment. This technique is fast and easy and can be useful to combine cell stretching and micro-patterning. ### Introduction This protoco...

  9. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  10. Localized soft elasticity in liquid crystal elastomers (POSTPRINT)

    Science.gov (United States)

    2016-02-23

    AFRL-RX-WP-JA-2016-0280 LOCALIZED SOFT ELASTICITY IN LIQUID CRYSTAL ELASTOMER (POSTPRINT) Taylor H. Ware, Andreas F. Shick, and...should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of...MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 11 August 2015 Interim 31 January 2014 – 11 July 2015 4. TITLE AND SUBTITLE LOCALIZED SOFT

  11. Towards liquid crystalline elastomer optically tunable photonic microstructures

    Science.gov (United States)

    Nocentini, S.; Martella, D.; Parmeggiani, C.; Zanotto, S.; Wiersma, D. S.

    2016-09-01

    In this paper we investigate the potentials of liquid crystalline elastomer microstructures for the realization of optically tunable photonic microstructures. While certain limitations regarding the compromise between feature size and structure warping have been observed, it turns out that the simultaneous presence of a refractive index tuning effect and of a shape tuning effect intrinsic to the LCE material can be harnessed to design tunable photonic devices with unique behavior.

  12. CREATING ACTIVATING SYSTEMS FOR THE EFFICIENT VULCANIZATION OF ELASTOMERS

    OpenAIRE

    O. V. Karmanova; L. V. Popova; O. V. Poimenova; I. K. Gusev

    2014-01-01

    Results of the study vulcanization of polydienes were presented. Vulcanization activators role in the formation of the actual curing agents and the formation of the spatial structure of the vulcanizates was considered. It is shown that to be effective requires the use of sulfur-vulcanization of zinc-containing vulcanization activators with a developed surface, capable of uniformly dispersed in a medium rubber. Activating sulfur vulcanization system elastomers as alloys of zinc oxide with ...

  13. Characteristics of Elastomer Seals Exposed to Space Environments

    Science.gov (United States)

    Daniels, Christopher C.; deGroh, Henry, III; Dunlap, Patrick H., Jr.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; Bastrzyk, Marta B.; Oswald, Jay J.; Banks, Bruce A.; Dever, Joyce A.; Miller, Sharon K.; hide

    2008-01-01

    A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. The Low Impact Docking System (LIDS) is being designed to operate using a seal-on-seal configuration in numerous space environments, each having unique exposures to temperature, solar radiation, reactive elements, debris, and mission duration. As the LIDS seal is likely to be manufactured from an elastomeric material, performance evaluation of elastomers after exposure to atomic oxygen (AO) and ultraviolet radiation (UV) was conducted, of which the work presented herein was a part. Each of the three candidate silicone elastomer compounds investigated, including Esterline ELA-SA-401, and Parker Hannifin S0383-70 and S0899-50, was characterized as a low outgassing compound, per ASTM E595, having percent total mass loss (TML) less than 1.0 percent and collected volatile condensable materials (CVCM) less than 0.1 percent. Each compound was compatible with the LIDS operating environment of -50 to 50 C. The seal characteristics presented include compression set, elastomer-to-elastomer adhesion, and o-ring leakage rate. The ELA-SA-401 compound had the lowest variation in compression set with temperature. The S0383-70 compound exhibited the lowest compression set after exposure to AO and UV. The adhesion for all of the compounds was significantly reduced after exposure to AO and was further decreased after exposure to AO and UV. The leakage rates of o-ring specimens showed modest increases after exposure to AO. The leakage rates after exposure to AO and UV were increased by factors of up to 600 when compared to specimens in the as-received condition.

  14. Mechanically Reinforced Skin-Electronics with Networked Nanocomposite Elastomer.

    Science.gov (United States)

    Han, Seungyong; Kim, Min Ku; Wang, Bo; Wie, Dae Seung; Wang, Shuodao; Lee, Chi Hwan

    2016-12-01

    Mechanically reinforced skin-electronics are presented by exploiting networked nanocomposite elastomers where high quality metal nanowires serve as conducting paths. Theoretical and experimental studies show that the established skin-electronics exhibit superior mechanical enhancements against crack and delamination phenomena. Device applications include a class of biomedical devices that offers the ability of thermotherapeutic stimulation and electrophysiological monitoring, all via the skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Compatibility Studies on Elastomers and Polymers with Ethanol Blended Gasoline

    OpenAIRE

    Dhaliwal, J S; M. S. Negi; G. S. Kapur; Shashi Kant

    2014-01-01

    This paper reports the compatibility studies of 10% ethanol blended gasoline (E10) with four types of elastomer materials, namely, Neoprene rubber, Nitrile rubber, hydrogenated Nitrile butadiene rubber (HNBR), and Polyvinyl chloride/Nitrile butadiene rubber blend (PVC/NBR), and two types of plastic materials, namely, Nylon-66 and Polyoxymethylene (Delrin). These materials have applications in automotives as engine seals, gaskets, fuel system seals and hoses, and so forth. Two types of the eth...

  16. Evaluation of a Conductive Elastomer Seal for Spacecraft

    Science.gov (United States)

    Daniels, Christopher C.; Mather, Janice L.; Oravec, Heather A.; Dunlap, Patrick H., Jr.

    2016-01-01

    An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.

  17. A survey on dielectric elastomer actuators for soft robots.

    Science.gov (United States)

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  18. Dynamic pattern of wrinkles in a dielectric elastomer.

    Science.gov (United States)

    Godaba, Hareesh; Zhang, Zhi-Qian; Gupta, Ujjaval; Chiang Foo, Choon; Zhu, Jian

    2017-04-19

    A membrane of a dielectric elastomer may undergo electromechanical phase transition from the flat to wrinkled state, when the applied voltage reaches a critical value. The wrinkled region is observed to expand at the expense of the flat region during the phase transition. In this paper, we report on a dynamic pattern of wrinkles in a circular membrane of a dielectric elastomer. During phase transition, both the flat and wrinkled regions move interchangeably in the membrane. The radial prestretch is found to significantly affect electromechanical phase transition. For example, a membrane with a small prestretch can exhibit a dynamic pattern of wrinkles, which is essentially related to snap-through instability. However, a membrane with a large prestretch undergoes continuous phase transition, without exhibiting a dynamic pattern. An analytical model is developed to interpret these experimental phenomena. Finite element simulations are performed to predict the wrinkle morphology, especially the coexistence of flat and wrinkled regions. Both the theoretical calculations and finite element simulations are qualitatively consistent with the experiments. Additionally, we observe another type of electromechanical behavior involving a dynamic pattern of wrinkles with different wavelengths. The membrane first undergoes continuous transition from the flat to wrinkled state, followed by discontinuous transition from one wrinkled state to another. These results may inspire new applications for dielectric elastomers such as on-demand patterning of wrinkles for microfluidics and stretchable electronics.

  19. Rupture of a highly stretchable acrylic dielectric elastomer

    Science.gov (United States)

    Pharr, George; Sun, Jeong-Yun; Suo, Zhigang

    2012-02-01

    Dielectric elastomers have found widespread application as energy harvesters, actuators, and sensors. In practice these elastomers are subject to large tensile stretches, which potentially can lead to mechanical fracture. In this study, we have examined fracture properties of the commercial acrylic elastomer VHB 4905. We have found that inserting a pre-cut into the material drastically reduces the stretch at rupture from λrup = 9.43±1.05 for pristine samples down to only λrup = 3.63±0.45 for the samples with a pre-cut. Furthermore, using ``pure-shear'' test specimens with a pre-crack, we have measured the fracture energy and stretch at rupture as a function of the sample geometry. The stretch at rupture was found to decrease with sample height, which agrees with an analytical prediction. Additionally, we have measured the fracture energy as a function of stretch-rate. The apparent fracture energy was found to increase with stretch-rate from γ 1500 J/m^2 to γ 5000 J/m^2 for the investigated rates of deformation. This phenomenon is due to viscoelastic properties of VHB 4905, which result in an apparent stiffening for sufficiently large stretch-rates.

  20. Control of the stiffness of robotic appendages using dielectric elastomers

    Science.gov (United States)

    Morton, Jeffrey

    A new robotic leg design is presented that utilizes dielectric elastomers (3M VHB 4910) to rapidly control stiffness changes for enhanced mobility and agility of a field demonstrated hexapod robot. It has been shown that stiffness changes of electro-active membranes made of dielectric elastomers can overcome challenges with other polymer materials that use heat to create modulus and stiffness changes. Applied electric fields eliminate issues with thermal transport rates and thermo-mechanical delaminatation. The dielectric elastomer is characterized uniaxially to understand its hyperelastic and viscoelastic properties. The uniaxial data is fit to a hyperelastic and viscoelastic finite deformation model. The material is then pre-stretched biaxially to stretch ratios ranging from 200%, 300% and 400%. A set of electro-mechanical transverse load experiments are then utilized to obtain up to 92% reduction in stiffness that is controlled by an electric field. The results are compared to a finite deformation membrane finite element model to understand and improve field driven stiffness changes for real-time robotic applications.

  1. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...

  2. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi

    2015-01-01

    -stretching is difficult to achieve withhighly filled elastomers. However, despite the negative outlook for metal oxide-filled silicone elastomers,the study paves the way for reliable dielectric elastomers by indicating that simply post-curing siliconeelastomers before use may increase reliability....

  3. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  4. ZnO as a cheap and effective filler for high breakdown strength elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    . In this article, we explore the use of a cheap and abundant metal oxide filler, namely ZnO, as a filler in silicone-based dielectric elastomers. The electro-mechanical properties of the elastomer composites are investigated, and their performance is evaluated by means of figures of merit. Various commercial...

  5. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Gerhard, R.

    2016-01-01

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer materialis based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets intoits matrix. The approach has two major ...

  6. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available polydimethylsiloxane (PDMS) composition, which has been modified by embedding glycerol droplets into its matrix.The approach has two ...

  7. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    Science.gov (United States)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  8. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    Science.gov (United States)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  9. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... is demonstrated herein, and a number of many and important parameters, such as dielectric permittivity/loss, viscoelastic properties and dielectric breakdown strength, are investigated. Ionic and silicone elastomer IPNs are promising prospects for dielectric elastomer actuators, since very high permittivities...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  10. Degradation patterns of silicone-based dielectric elastomers in electrical fields

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for the flexible insulator material in dielectric elastomer transducers and are as such almost ideal candidates because of their inherent softness and compliance. However, silicone elastomers suffer from low dielectric permittivity....... This shortcoming has been attempted optimized through different approaches during recent years. Material optimization with the sole purpose of increasing the dielectric permittivity may lead to the introduction of problematic phenomena such as premature electrical breakdown due to high leakage currents of the thin...... elastomer film. Within this work, electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers are investigated. Results showed that different types of polymer backbone chemistries lead to differences in electrical breakdown patterns, which were revealed through SEM imaging...

  11. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...... of chloropropyl-functional silicone oil in concentrations up to 30 phr was found to improve the properties of the silicone elastomer significantly, as dielectric permittivity increased to 4.4, dielectric breakdown increased up to 25% and dielectric losses were reduced. The chloropropyl-functional silicone oil...

  12. Irradiation subassembly

    Science.gov (United States)

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  13. Two New 1,1,3,3-Tetramethylguanidinium Halochromates (C5H14N3CrO3X (X: Cl, F: Efficient Reagents for Oxidation of Organic Substrates under Solvent-Free Conditions and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Kıvılcım Şendıl

    2016-01-01

    Full Text Available Two new mild oxidizing agents 1,1,3,3-tetramethylguanidinium fluorochromate (TMGFC and 1,1,3,3-tetramethylguanidinium chlorochromate (TMGCC were prepared in high yields by reacting tetramethylguanidine with CrO3 and related acid. These reagents are suitable to oxidize various primary and secondary alcohols and oximes to the corresponding carbonyl compounds under solvent-free conditions and microwave irradiation.

  14. Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds.

    Science.gov (United States)

    Prévôt, M E; Andro, H; Alexander, S L M; Ustunel, S; Zhu, C; Nikolov, Z; Rafferty, S T; Brannum, M T; Kinsel, B; Korley, L T J; Freeman, E J; McDonough, J A; Clements, R J; Hegmann, E

    2017-12-13

    Tissue regeneration requires 3-dimensional (3D) smart materials as scaffolds to promote transport of nutrients. To mimic mechanical properties of extracellular matrices, biocompatible polymers have been widely studied and a diverse range of 3D scaffolds have been produced. We propose the use of responsive polymeric materials to create dynamic substrates for cell culture, which goes beyond designing only a physical static 3D scaffold. Here, we demonstrated that lactone- and lactide-based star block-copolymers (SBCs), where a liquid crystal (LC) moiety has been attached as a side-group, can be crosslinked to obtain Liquid Crystal Elastomers (LCEs) with a porous architecture using a salt-leaching method to promote cell infiltration. The obtained SmA LCE-based fully interconnected-porous foams exhibit a Young modulus of 0.23 ± 0.07 MPa and a biodegradability rate of around 20% after 15 weeks both of which are optimized to mimic native environments. We present cell culture results showing growth and proliferation of neurons on the scaffold after four weeks. This research provides a new platform to analyse LCE scaffold-cell interactions where the presence of liquid crystal moieties promotes cell alignment paving the way for a stimulated brain-like tissue.

  15. Fabricating low cost and high performance elastomer lenses using hanging droplets

    Science.gov (United States)

    Lee, W. M.; Upadhya, A.; Reece, P. J.; Phan, Tri Giang

    2014-01-01

    Existing methods for low cost lenses using parallel mold stamping and high temperature reflow requires complex engineering controls to produce high quality lenses. These manufacturing techniques rely on expensive equipment. In this paper, we propose a low cost (< $ 0.01 per pc) flexible moldless lens fabrication method based on curing a hanging transparent polydimethylsiloxane (PDMS) elastomer droplet on a curved substrate. Additional deposition of hanging droplets in the same manner led to a substantial increase in the lens curvature and concomitant decrease in the focal length of the PDMS lenses down to ~2 mm. The shortest focal length lenses were shown to collimate light from a bare light emitting diode (LED) and image microscopic structures down to around 4 µm with 160x magnification. Our hanging droplet lens fabrication technique heralds a new paradigm in the manufacture of low cost, high performance optical lenses for the masses. Using these lenses, we were able to transform an ordinary commercial smartphone camera into a low-cost digital dermascope (60x magnification) that can readily visualize microscopic structures on skin such as sweat pores. PMID:24877020

  16. Nanomechanical probing of thin-film dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert

    2017-08-01

    Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.

  17. Cylindrical dielectric elastomer actuators reinforced with inextensible fibers

    Science.gov (United States)

    Goulbourne, Nakhiah C. S.

    2006-03-01

    Novel actuator configurations for various applications can be obtained using cylindrical dielectric elastomer actuators. A new configuration for a contractile electro-elastomer is presented here for the first time. A cylindrical or tubular configuration is used to realize simultaneous axial shortening and radial expansion when a voltage is applied across the thickness of the hollow cylinder. In this configuration, the inner and outer surfaces of a cylindrical dielectric elastomer are coated with compliant electrodes. The outer cylindrical surface is then enclosed by a network of helical fibers that are very thin, very flexible and inextensible. Fiber networks or cord families are commonly used in many different materials and for a variety of applications. The primary purpose of these networks is structural, that is to say, for reinforcement. The composite active structure proposed here is reminiscent of the McKibben actuator, a pneumatically actuated cylindrical construct consisting of a flexible rubber bladder sheathed in a fiber network, which garners its impressive contracting force from the inextensible fibers that prevent axial extension when an inflation pressure is applied to the internal bladder [1]. The system is modeled using an electro- elastic formulation derived from the large deformation theory of reinforced cylinders [2]. The model combines Maxwell-Faraday electrostatics and nonlinear elasticity theory [3]. Illustratively, solutions are obtained assuming a Mooney-Rivlin material model for a silicone actuator. The results indicate that the relationship between the axial contraction force and the axial shortening is linear for the voltage range considered. The importance of other system parameters such as the fiber angle and the applied constant pressure is also reported.

  18. A modelling approach for the heterogeneous oxidation of elastomers

    Science.gov (United States)

    Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.

    2017-09-01

    The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side

  19. Formation of free radicals during mechanical degradation of elastomers.

    Science.gov (United States)

    Devries, K. L.; Williams, M. L.; Roylance, D. K.

    1971-01-01

    Solithane 113 (an amorphous polyurethane elastomer) was prepared by curing equal proportions of castor oil and trifunctional isocyanate for 6 hr 45 min at 170 F. The sample material was mechanically degraded by grinding below and above its glass transition point at liquid nitrogen and room temperatures. The EPR spectra of ground samples were recorded and the number of free radicals were determined by a computer double-integration of the recorded spectra and by a comparison of the values with those of a standard material. Curves of EPR spectra suggest that different molecular mechanisms may be active in degradation of this material below and above its glass transition temperature.

  20. Band structures in the nematic elastomers phononic crystals

    Science.gov (United States)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  1. Printing 3D dielectric elastomer actuators for soft robotics

    Science.gov (United States)

    Rossiter, Jonathan; Walters, Peter; Stoimenov, Boyko

    2009-03-01

    We present a new approach to the fabrication of soft dielectric elastomer actuators using a 3D printing process. Complete actuators including active membranes and support structures can be 3D printed in one go, resulting in a great improvement in fabrication speed and increases in accuracy and consistency. We describe the fabrication process and present force and displacement results for a double-membrane antagonistic actuator. In this structure controlled prestrain is applied by the simple process of pressing together two printed actuator halves. The development of 3D printable soft actuators will have a large impact on many application areas including engineering, medicine and the emerging field of soft robotics.

  2. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.

    Science.gov (United States)

    Wang, Zhenhua; Liu, Jun; Wu, Sizhu; Wang, Wenchuan; Zhang, Liqun

    2010-03-28

    Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle-particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials

  3. Thermoelectric elastomer fabricated using carbon nanotubes and nonconducting polymer

    Science.gov (United States)

    Choi, Jeong-Hun; Hyun, Cheol-Min; Jo, Hyunjin; Son, Ji Hee; Lee, Ji Eun; Ahn, Ji-Hoon

    2017-09-01

    The electrical and thermoelectric properties of an organic elastomer composite composed of carbon nanotubes (CNTs) and a nonconductive polymer were systemically investigated as a function of CNT content. As the CNT content of the poly(dimethylsiloxane) (PDMS) matrix increased, the electrical conductivity increased remarkably (by about 250 times) without a large increase in the thermal conductivity, which could lead to significant improvement in the ZT value. Moreover, the Seebeck coefficient was also enhanced by increasing the CNT content. Consequently, the ZT value was effectively increased by a small increase in the quantity of CNTs in the nonconductive polymer matrix.

  4. Magnetorheological elastomer-based quadrupolar element of electric circuits

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Ioan, E-mail: ibica2@yahoo.co [West University of Timisoara, Faculty of Physics, Bd. V. Parvan, No. 4, 300223 Timisoara (Romania)

    2010-01-15

    The author of this paper describes a quadrupolar electric circuit element (Q) based on electroconductive magnetorheological elastomer. It is shown by means of the experimental setup presented in the paper, that the electrical resistances, measured at the gates of Q, decrease with the increase of the strength H of the transverse magnetic field. But, for intensities of the control current (I{sub c} = const.) injected into Q along the direction normal to H{sup -}>, the voltage at the outlet of Q decreases as the strength of the magnetic field increases. The as-obtained experimental results are presented and discussed.

  5. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage

    Science.gov (United States)

    Zhang, Junshi; Wang, Yanjie; McCoul, David; Pei, Qibing; Chen, Hualing

    2014-11-01

    Viscoelasticity causes a time-dependent deformation and lowers the response speed and energy conversion efficiency of VHB-based dielectric elastomers (DEs), thus seriously restricting a wide range of applications of this otherwise versatile soft smart material. The viscoelastic deformation of a prestretched VHB film in a circular actuator configuration is studied both theoretically and experimentally. By adjusting the applied voltage, viscoelastic creep can be dispelled and an invariable strain is obtained by simulation. Subsequently, an experiment was designed to validate the simulation and the results indicate that a constant strain can be achieved by preprogramming the applied actuation voltage.

  6. Effect of vulcanization temperature and dental stone colour on colour degradation of maxillofacial silicone elastomers.

    Science.gov (United States)

    Cifter, Ebru Demet; Ozdemir-Karatas, Meltem; Baca, Emrah; Cinarli, Adem; Balik, Ali; Sancakli, Erkan; Gokcen-Rohlig, Bilge

    2017-03-31

    Colour degradation is a major problem in maxillofacial silicone elastomers. Recent studies have focused on colour stability and the mechanical properties of the silicone elastomers. A colour match is also essential for the acceptance of the prosthesis by the patient. The aim of this study is to assess the colour degradation of the silicone elastomer after being moulded in different colours of dental stones at two different vulcanization temperatures. Five different colours of dental stones were used to fabricate a total of 120 silicone blocks using a Cosmesil M511 maxillofacial silicone elastomer. Vulcanization was completed at two different temperatures (25 and 100° Celsius). Colour measurements were obtained with a Conica Minolta spectrophotometer. The CIEDE2000 formula was used to calculate the colour differences (∆E00). Two-way ANOVA, one-way ANOVA with Bonferroni corrected post-hoc p values and independent samples t-test were used for the statistical analyses. High temperature vulcanization causes lightening of the maxillofacial silicone elastomers without regard to the dental stone colour (p = 0.001). Specimens moulded in green stone lightened least at room temperature (p = 0.999). Compared to the control group, at high temperature, all specimens moulded in coloured dental stones darkened significantly (p vulcanized in a stainless steel mould. White, yellow and reddish-brown dental stones make the silicone elastomer appear more yellow even if the elastomer is vulcanized at room temperature.

  7. A New Mechanical Loading Configuration for Maximizing The Performance of Dielectric Elastomer Generators

    Science.gov (United States)

    Shian, Samuel; Huang, Jiangshui; Suo, Zhigang; Clarke, David

    2013-03-01

    Electrical energy can be generated from mechanical deformations using dielectric elastomers but currently achieved energy densities and conversion efficiencies are still small. In this presentation, we demonstrate that significant improvements, an energy density over 500 mJ/g and up to 10% in efficiency, can be produced using VHB elastomers by altering the mechanical loading geometry. A major limitation is viscous losses in the VHB elastomer indicating that higher efficiencies with other elastomers will be attainable. The basic concept of mechanical energy harvesting with a dielectric elastomer sheet is a straightforward electromechanical cycle leading to a voltage step-up: a sheet is stretched, electrical charge at low voltage is placed on either side using compliant electrodes, the stretch is released causing the sheet's initial thickness and area to be recovered increasing the charge potential which can then be harvested. Integral to maximizing the energy conversion is the amount of mechanical energy that can be stored elastically and the amount of capacitance change in the elastomer sheet during stretching. We show that these factors can be maximized by equi-biaxial loading. Details of our dielectric elastomer generator will be described as well as the procedures we use for quantifying its performance.

  8. Hybrid Aorta Constructs via In Situ Crosslinking of Poly(glycerol-sebacate) Elastomer Within a Decellularized Matrix.

    Science.gov (United States)

    Guler, Selcan; Hosseinian, Pezhman; Aydin, Halil Murat

    2017-01-01

    Decellularization of tissues and organs has high potential to obtain unique conformation and composition as native tissue structure but may result in weakened tissue mechanical strength. In this study, poly(glycerol-sebacate) (PGS) elastomers were combined with decellularized aorta fragments to investigate the changes in mechanical properties. PGS prepolymer was synthesized via microwave irradiation and then in situ crosslinked within the decellularized aorta extracellular matrix (ECM). Tensile strength (σ) values were found comparable as 0.44 ± 0.10 MPa and 0.57 ± 0.18 MPa for native and hybrid aorta samples, respectively, while elongation at break (ɛ) values were 261% ± 17%, 7.5% ± 0.57%, and 22.18% ± 2.48% for wet control (native), decellularized dried aortae, and hybrid matrices, showing elastic contribution. Young's modulus data indicate that there was a threefold decrease in stiffness compared to decellularized samples once PGS is introduced into the ECM structure. Scanning electron microscopy (SEM) analysis of hybrid grafts revealed that the construct preserves porosity in medial layer of the vessel. Biocompatibility analyses showed no cytotoxic effects on human abdominal aorta smooth muscle cells. Cell studies showed 98% activity in hybrid graft extracts. As a control, collagen coating of the hybrid grafts was performed in the recellularization stage. SEM analysis of recellularized hybrid grafts revealed that cells were attached to the surface of the hybrid graft and proliferated during the 14 days of culture in both groups. This study shows that introducing an elastomer into the native ECM structure following decellularization process can be a useful approach for the preparation of mechanically enhanced composites for soft tissues.

  9. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  10. A lightweight push-pull acoustic transducer composed of a pair of dielectric elastomer films.

    Science.gov (United States)

    Sugimoto, Takehiro; Ando, Akio; Ono, Kazuho; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku; Nakamura, Kentaro

    2013-11-01

    A lightweight push-pull acoustic transducer using dielectric elastomer films was proposed for use in advanced audio systems in homes. The push-pull structure consists of two dielectric elastomer films developed to serve as an electroactive polymer. The transducer utilizes the change in the surface area of the dielectric elastomer film, induced by an electric-field-induced change in the thickness, for sound generation. The resonance frequency of the transducer was derived from modeling the push-pull configuration to estimate the lower limit of the frequency range. Measurement results presented an advantage of push-pull driving in the suppression of harmonic distortion.

  11. Impact of hydrocarbon drilling mud on mud motor elastomers at different temperatures

    Science.gov (United States)

    Epikhin, A. V.; Melnikov, V. V.; Nechaeva, L. N.; Ulyanova, O. S.

    2016-09-01

    The paper describes the experimental research of hydrocarbon drilling mud impact on engineering parameters of mud motor elastomer samples. It is believed to be urgent due to an increase in using mud motors in oil and gas well construction now, and the issue of intense exploitation is currently topical. The test results of elastomer IRP- 1226 dependent on the temperature are shown in the paper. It is proved that the hydrocarbon drilling muds have a significant impact on wearing of mud motors elastomers under the condition of a temperature increase.

  12. Pre-Stressed Double Network Elastomers And Hydrogels

    Science.gov (United States)

    Singh, Naveen; Lesser, Alan

    2011-03-01

    A new approach to prepare and characterize pre-stressed double network elastomers and hydrogel systems is investigated. In one example, a styrene-butadiene-styrene (SBS) tri-block copolymer system containing physical cross-links is used to achieve a pre-stressed double network by additional chemical crosslinking in a strained state using ultra-violet (UV) light. Unusual physical and mechanical properties that result from the interactions between each network are presented. These double network elastomers show a transition between competitive and collaborative behavior in their mechanical properties, as well as lower permanent set in both low and high strain regimes along with lower hysteresis. These networks exhibit lower modulus, along with lower coefficient of thermal expansion, still showing lower swelling ratios, which results from a competition of the networks. In another example, a new two-step curing schedule is utilized for Polyacrylamide based hydrogels, where a strain is induced in the middle of curing reaction. The final mechanical properties of these double network hydrogels are studied and compared to both first network and the single network formed without any step strain.

  13. Toward a predictive model for the failure of elastomer seals.

    Science.gov (United States)

    Molinari, Nicola; Khawaja, Musab; Sutton, Adrian; Mostofi, Arash; Baker Hughes Collaboration

    Nitrile butadiene rubber (NBR) and hydrogenated-NBR (HNBR) are widely used elastomers, especially as seals in oil and gas industry. During exposure to the extreme temperatures and pressures typical of well-hole conditions, ingress of gases causes degradation of performance, including mechanical failure. Using computer simulations, we investigate this problem at two different length- and time-scales. First, starting with our model of NBR based on the OPLS all-atom force-field, we develop a chemically-inspired description of HNBR, where C=C double bonds are saturated with either hydrogen or intramolecular cross-links, mimicking the hydrogenation of NBR to form HNBR. We validate against trends for the mass density and glass transition temperature for HNBR as a function of cross-link density, and for NBR as a function of the fraction of acrylonitrile in the copolymer. Second, a coarse-grained approach is taken in order to study mechanical behaviour and to overcome the length- and time-scale limitations inherent to the all-atom model. The effect of nanoparticle fillers added to the elastomer matrix is investigated. Our initial focus is on understanding the mechanical properties at the elevated temperatures and pressures experienced in well-hole conditions. Baker Hughes.

  14. Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness.

    Science.gov (United States)

    Willett, Emily S; Beatty, Mark W

    2015-03-01

    Facial prosthetic elastomers with wide ranges in hardness are available, yet material weatherability is unknown. The purpose of this study was to assess color, Durometer hardness, and tensile property changes after 3000 hours of outdoor weathering. Unpigmented elastomers with Durometer hardness 5, 30, 50, 70, and A-2186 were polymerized into dumbbells (ASTM D412) and disks, 34 mm in diameter by 6 mm thick. Materials were subjected to outdoor or time passage environments for 3000 hours. CIELab color (n=5), Durometer hardness (n=5), and tensile mechanical properties (n=10) were measured at 0 and 3000 hours, and group differences were assessed by material and weathering condition (ANOVA/Tukey, α=.05). Except for A-2186, the mean Durometer changes for all materials were 1 unit or less, with no significant differences observed between time passage and weathered groups (P≥.05). Three-thousand-hour tensile mechanical property results demonstrated nonsignificant differences between time passage and weathered materials but significantly changed properties from immediately tested materials (Phardness 5 and 30 and A-2186. With a few exceptions, outdoor weathering produced relatively small changes in color, Durometer hardness, or tensile properties compared with time passage. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Dielectric Elastomer Actuators for Soft Wave-Handling Systems.

    Science.gov (United States)

    Wang, Tao; Zhang, Jinhua; Hong, Jun; Wang, Michael Yu

    2017-03-01

    This article presents a soft handling system inspired by the principle of the natural wave (named Wave-Handling system) aiming to offer a soft solution to delicately transport and sort fragile items such as fruits, vegetables, biological tissues in food, and biological industries. The system consists of an array of hydrostatically coupled dielectric elastomer actuators (HCDEAs). Due to the electrostriction property of dielectric elastomers, the handling system can be controlled by electric voltage rather than the cumbersome pneumatic system. To study the working performance of the Wave-Handling system and how the performance can be improved, the basic properties of HCDEA are investigated through experiments. We find that the HCDEA exhibits some delay and hysteretic characteristics when activated by periodic voltage and the characteristics are influenced by the frequency and external force also. All this will affect the performance of the Wave-Handling system. However, the electric control, simple structure, light weight, and low cost of the soft handling system show great potential to move from laboratory to practical application. As a proof of design concept, a simply made prototype of the handling system is controlled to generate a parallel moving wave to manipulate a ball. Based on the experimental results, the improvements and future work are discussed and we believe this work will provide inspiration for soft robotic engineering.

  16. Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation

    Directory of Open Access Journals (Sweden)

    Runan Zhang

    2016-07-01

    Full Text Available This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation.

  17. Elastomer modulus and dielectric strength scaling with sample thickness

    Science.gov (United States)

    Larson, Kent

    2015-04-01

    Material characteristics such as adhesion and dielectric strength have well recognized dependencies on material thickness. There is disagreement, however, on the scale: the long held dictum that dielectric strength is inversely proportional to the square root of sample thickness has been shown to not always hold true for all materials, nor for all possible thickness regions. In D-EAP applications some studies have postulated a "critical thickness" below which properties show significantly less thickness dependency. While a great deal of data is available for dielectric strength, other properties are not nearly as well documented as samples get thinner. In particular, elastic modulus has been found to increase and elongation to decrease as sample thickness is lowered. This trend can be observed experimentally, but has been rarely reported and certainly does not appear in typical suppliers' product data sheets. Both published and newly generated data were used to study properties such as elastic modulus and dielectric strength vs sample thickness in silicone elastomers. Several theories are examined to explain such behavior, such as the impact of defect size and of common (but not well reported) concentration gradients that occur during elastomer curing that create micron-sized layers at the upper and lower interfaces with divergent properties to the bulk material. As Dielectric Electro-Active Polymer applications strive to lower and lower material thickness, changing mechanical properties must be recognized and taken into consideration for accurate electro-mechanical predictions of performance.

  18. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Annabelle; Kurokawa, Naruki; Hillmyer, Marc A. (UMM)

    2017-05-03

    Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol–1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment–segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.

  19. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  20. EFFECTS OF TRITIUM GAS EXPOSURE ON EPDM ELASTOMER

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.

    2009-12-11

    Samples of four formulations of ethylene-propylene diene monomer (EPDM) elastomer were exposed to initially pure tritium gas at one atmosphere and ambient temperature for various times up to about 420 days in closed containers. Two formulations were carbon-black-filled commercial formulations, and two were the equivalent formulations without filler synthesized for this work. Tritium effects on the samples were characterized by measuring the sample volume, mass, flexibility, and dynamic mechanical properties and by noting changes in appearance. The glass transition temperature was determined by analysis of the dynamic mechanical properties. The glass transition temperature increased significantly with tritium exposure, and the unfilled formulations ceased to behave as elastomers after the longest tritium exposure. The filled formulations were more resistant to tritium exposure. Tritium exposure made all samples significantly stiffer and therefore much less able to form a reliable seal when employed as O-rings. No consistent change of volume or density was observed; there was a systematic lowering of sample mass with tritium exposure. In addition, the significant radiolytic production of gas, mainly protium (H{sub 2}) and HT, by the samples when exposed to tritium was characterized by measuring total pressure in the container at the end of each exposure and by mass spectroscopy of a gas sample at the end of each exposure. The total pressure in the containers more than doubled after {approx}420 days tritium exposure.

  1. A novel variable stiffness mechanism for dielectric elastomer actuators

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  2. Constitutive modelling of elastomer/graphene platelet nanocomposites

    Science.gov (United States)

    Abdelsalam, Amir A.; Araby, Sherif; Hassan, M. A.; El-Moneim, A. A.

    2017-09-01

    Elastomers are used in a wide variety of structural and engineering applications. They exhibit a nonlinear elastic stress-strain behaviour known as hyperelasticity which is generally described by hyperelastic strain energy functions. The question raised in the current study was; which model can accurately describe and predict the actual behaviour of the elastomer nanocomposites. The tensile data were used to fit the various elastomeric material models available in MSC.MARC finite element analysis package. The relative percentage error was calculated to determine the goodness of fit in order to select the best model. Numerical results showed that the third order deformation model was the best among the various material models since giving a maximum relative error of fit was 2.7% at small and large strains. To verify the effectiveness of third order deformation model, FE simulations for tensile test was carried out. The results showed that the third order model is sufficiently enough to regenerate the experimental data for uniaxial test and efficiently capture the hyperelastic behavior as good as the experiments.

  3. A variable stiffness dielectric elastomer actuator based on electrostatic chucking.

    Science.gov (United States)

    Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru

    2017-05-14

    Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.

  4. Magnetoactive elastomer as an element of a magnetic retina fixator

    Science.gov (United States)

    Makarova, L. A.; Nadzharyan, T. A.; Alekhina, Yu A.; Stepanov, G. V.; Kazimirova, E. G.; Perov, N. S.; Kramarenko, E. Yu

    2017-09-01

    We explore the possibility of creating an effective retinal fixator on the basis of magnetoactive elastomers (MAEs) and systems of permanent magnets. MAEs consist of silicone elastomer matrix with embedded magnetic iron microparticles. We study theoretically and experimentally magnetic forces acting between MAE samples and permanent magnets in various configurations. The theoretical model is based around classical magnetostatics and Maxwell equations with different parameters accounting for peculiarities of the material and the setup. Approximation of the experimentally measured magnetization curves for MAE samples was used to find input parameters for the theoretical model. To test the model, we conducted a series of experimental measurements of magnetic forces accompanied by model predictions for the system of one cylindrical magnet and a cuboid MAE sample. Calculated dependences of the average pressure arising from magnetic interactions on the distance between the closest faces of MAE samples and a permanent magnet are in a good agreement with the experimental data. The proof on concept for smaller magnetic systems required for eye surgery includes data for 10 magnets configuration and a thin MAE band. This research demonstrates high prospects of using MAE as an element of a magnetic fixator for treatment of complicated retinal detachments.

  5. Antagonistic dielectric elastomer actuator for biologically-inspired robotics

    Science.gov (United States)

    Conn, Andrew T.; Rossiter, Jonathan

    2011-04-01

    For optimal performance, actuators designed for biologically-inspired robotics applications need to be capable of mimicking the key characteristics of natural musculoskeletal systems. These characteristics include a large output stroke, high energy density, antagonistic operation and passive compliance. The actuation properties of dielectric elastomer actuators (DEAs) make them viable for use as an artificial muscle technology. However, much like the musculoskeletal system, rigid structures are needed to couple the compliant DEA layers to a load. In this paper, a cone DEA design is developed as an antagonistic, multi-DOF actuator, viable for a variety for biologically-inspired robotics applications. The design has the advantage of maintaining pre-strain through a support structure without substantially lowering the overall mass-specific power density. Prototype cone DEAs have been fabricated with VHB 4910 acrylic elastomer and have characteristic dimensions of 49mm (strut length) and 60mm (DEA diameter). Multi-DOF kinematical outputs of the cone DEAs were measured using a custom 3D motion tracking system. Experimental tests of the prototypes demonstrate antagonistic linear (+/-10mm), rotational (+/-25°) and combined multi-DOF strokes. Overall, antagonistic cone DEAs are shown to produce a complex multi-DOF output from a mass-efficient support structure and thus are well suited for being exploited in biologically-inspired robotics.

  6. Dielectric elastomer vibrissal system for active tactile sensing

    Science.gov (United States)

    Conn, Andrew T.; Pearson, Martin J.; Pipe, Anthony G.; Welsby, Jason; Rossiter, Jonathan

    2012-04-01

    Rodents are able to dexterously navigate confined and unlit environments by extracting spatial and textural information with their whiskers (or vibrissae). Vibrissal-based active touch is suited to a variety of applications where vision is occluded, such as search-and-rescue operations in collapsed buildings. In this paper, a compact dielectric elastomer vibrissal system (DEVS) is described that mimics the vibrissal follicle-sinus complex (FSC) found in rodents. Like the vibrissal FSC, the DEVS encapsulates all sensitive mechanoreceptors at the root of a passive whisker within an antagonistic muscular system. Typically, rats actively whisk arrays of macro-vibrissae with amplitudes of up to +/-25°. It is demonstrated that these properties can be replicated by exploiting the characteristic large actuation strains and passive compliance of dielectric elastomers. A prototype DEVS is developed using VHB 4905 and embedded strain gauges bonded to the root of a tapered whisker. The DEVS is demonstrated to produce a maximum rotational output of +/-22.8°. An electro-mechanical model of the DEVS is derived, which incorporates a hyperelastic material model and Euler- Bernoulli beam equations. The model is shown to predict experimental measurements of whisking stroke amplitude and whisker deflection.

  7. Experimental investigations on energy harvesting performance of dielectric elastomers

    Science.gov (United States)

    Wang, Yongquan; Liu, Xuejing; Xue, Huanhuan; Chen, Hualing; Jia, Shuhai

    2014-03-01

    In this paper, the emerging technology of energy harvesting based on dielectric elastomers (DE), a new type of functional materials belonging to the family of Electroactive Polymers (EAPs), is presented with emphasis on its performance characteristics and some key influencing factors. At first, on the basic principle of DE energy harvesting, the effects of some control parameters are theoretically analyzed under certain mechanical and electrical constraints. Then, a type of annular DE generator using the commercial elastomers of VHB 4910 (3M, USA), is specially designed and fabricated. A series of experimental tests for the device's energy harvesting performance are implemented at different pre-stretch ratios, stretch amplitudes (displacements), and bias voltages in the constant charge (open-circuit) condition. The experiment results demonstrate the associated influence laws of the above control parameters on the performance of the DE generator, and have good consistent with those obtained from the theoretical analysis. This study is expected to provide a helpful guidance for the design and operation of practical DE energy harvesting devices/systems.

  8. Elastomer Change Out - Justification for minimizing the removal of elastomers in order to prevent cross contamination in a multiproduct facility.

    Science.gov (United States)

    Parks, Michael; O'Dwyer, Niamh; Bollinger, Jeremy; Johnson, Alan; Goss, Brian; Wyman, Ned; Arroyo, Adeyma; Wood, Joseph; Willison-Parry, Derek

    2017-09-19

    The primary objective of any Biopharmaceutical Product Changeover (PCO) program is to employ control strategies before, during, and after the manufacturing process, as well as from the beginning of the lifecycle approach for the equipment and validation, which will minimize the opportunity for cross- contamination when switching between products. Evaluation of the need for an Elastomer Change Out (ECO) should be considered as a segment of an overall changeover assessment. Lifecycle systems (e.g. Preventive Maintenance (PM), Cleanability Coupon Testing, Good Engineering Practices, etc.) and procedures should be in place and data should be generated demonstrating the soft parts do not harbor residues from the previous product campaign(s). The determination of whether or not to replace elastomers/soft parts should be made in the context of all of these systems along with the proper assessment of Risk. By understanding the actual value of ECO in terms of the overall PCO program, and the other systems and procedures that are in place that protect against cross contamination, the need for ECO for every product changeover is not necessary. The purpose of this paper is to review the practice of ECO at product changeover, evaluate the need for an ECO using a risk based approach, and provide rationale for justifying the reduction or elimination of ECO at product changeover. Copyright © 2017, Parenteral Drug Association.

  9. Optimisation of Silicone-based Dielectric Elastomer Transducers by Means of Block Copolymers - Synthesis and Compounding

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam

    have been studied. Their actuation occurs when Maxwell stress exceeds elastic stress in the presence of an electrical field, resulting in contraction in thickness and planar expansion in the area. As well as an actuator, dielectric elastomers can be used as generators and sensors. As a dielectric...... through the use of a multi-walled carbon nanotube (MWCNT) in a PDMS-PEG matrix as a compliant electrode of dielectric elastomers. The conductive PDMS-PEG copolymer was incorporated with surface-treated MWCNT, in order to obtain highly conductive elastomer. The prepared sample with 4 parts per hundred...... rubber (phr) MWCNT was soft and the resulting conductivity of the cross-linked PDMS-PEG copolymer with the addition of MWCNT was high, at 10-2 S cm-1, nearly equivalent to a commonly used commercial conducting polymer. In this thesis, the elastomer and electrode system is referred to as a ‘dielectric...

  10. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  11. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    The research on soft elastomers with high dielectric permittivity for the use as dielectric electroactive polymers (DEAP) has grown substantially within the last decade. The approaches to enhance the dielectric permittivity can be categorized into three main classes: 1) Mixing or blending in high...... permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...... as for the traditionally applied thermoplastic encapsulation. The properties of the elastomers are investigated as function of the filler content and type. The dielectric permittivity, dielectric loss, conductivity, storage modulus as well as viscous loss are compared to elastomers with the same amounts of high...

  12. Three-dimensional structure of olefinic thermoplastic elastomer blends using electron tomography

    NARCIS (Netherlands)

    Sengupta, P.; Noordermeer, Jacobus W.M.

    2005-01-01

    The present communication reports the first use of electron tomography in reconstructing the three-dimensional morphology in thermoplastic elastomer blends. The blends investigated were dynamically vulcanized blends of ethylene-propylene-diene (EPDM) rubber/poly(propylene)/oil and

  13. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    Science.gov (United States)

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  14. Thermomechanical modeling of the thermo-order-mechanical coupling behaviors in liquid crystal elastomers

    Science.gov (United States)

    Jin, Lihua; Zeng, Zhi; Huo, Yongzhong

    2010-11-01

    Liquid crystal elastomer is a kind of anisotropic polymeric material, with complicated micro-structures and thermo-order-mechanical coupling behaviors. In this paper, we propose a method to systematically model these coupling behaviors. We derive the constitutive model in full tensor structure according to the Clausius-Duhem inequality. Two of the constitutive equations represent the mechanical equilibrium and the other two represent the phase equilibrium. Choosing the total free energy as the combination of the neo-classical free energy and the Landau-de Gennes nematic free energy, we obtain the Cauchy stress-deformation gradient relation and the order-mechanical coupling equations. We find the analytical homogeneous solutions of the deformation for the typical mechanical loadings, such as uniaxial stretch, and simple shear in any directions. We also compare the compression behavior of prolate liquid crystal elastomers with the stretch behavior of oblate liquid crystal elastomers. As a result, the stress, strain, temperature, order parameter, biaxiality and the direction of the director of liquid crystal elastomers couple with each other. When the prolate liquid crystal elastomer sample is stretched in the direction parallel to its director, the deviatoric stress makes the mesogens more order and increase the transition temperature. When the sample is sheared or stretched in the direction non-parallel to the director, the director of the liquid crystal elastomer will rotate, and the biaxiality will be induced. Because of the order-mechanical coupling, under infinitesimal deformation, liquid crystal elastomer has anisotropic Young's modulus and zero shear modulus in the direction parallel or perpendicular to the director. While for the oblate liquid crystal elastomers, the stretch parallel to the director will cause the rotation of the director and induce the biaxiality.

  15. Dry Rolling Friction and Wear of Elastomer Systems and Their Finite Element Modelling

    OpenAIRE

    Xu, Dan

    2009-01-01

    Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological ...

  16. Change in color of a maxillofacial prosthetic silicone elastomer, following investment in molds of different materials

    OpenAIRE

    Sethi, Tania; Kheur, Mohit; Coward, Trevor; Patel, Naimesha

    2015-01-01

    Purpose: In the authors? experience, the color of silicone elastomer following polymerization in molds made of gypsum products is slightly different from the color that was matched in the presence of the patient, before the silicone is packed. It is hypothesized that the investing materials and separating media have an effect on the color during the polymerization process of the silicone. Materials and Methods: This study compares and evaluates the change in color of silicone elastomer packed...

  17. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    and scanning electron microscopy. The materials were proven additionally to exhibit a strong affinity to water, which was investigated by simple water absorption tests. Incorporating glycerol into PDMS decreased the Young's modulus of the composites yet the ultimate strain of the elastomer was not compromised......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  18. From boots to buoys: promises and challenges of dielectric elastomer energy harvesting

    Science.gov (United States)

    Kornbluh, Roy D.; Pelrine, Ron; Prahlad, Harsha; Wong-Foy, Annjoe; McCoy, Brian; Kim, Susan; Eckerle, Joseph; Low, Tom

    2011-04-01

    Dielectric elastomers offer the promise of energy harvesting with few moving parts. Power can be produced simply by stretching and contracting a relatively low-cost rubbery material. This simplicity, combined with demonstrated high energy density and high efficiency, suggests that dielectric elastomers are promising for a wide range of energy harvesting applications. Indeed, dielectric elastomers have been demonstrated to harvest energy from human walking, ocean waves, flowing water, blowing wind, and pushing buttons. While the technology is promising, there are challenges that must be addressed if dielectric elastomers are to be a successful and economically viable energy harvesting technology. These challenges include developing materials and packaging that sustains long lifetime over a range of environmental conditions, design of the devices that stretch the elastomer material, as well as system issues such as practical and efficient energy harvesting circuits. Progress has been made in many of these areas. We have demonstrated energy harvesting transducers that have operated over 5 million cycles. We have also shown the ability of dielectric elastomer material to survive for months underwater while undergoing voltage cycling. We have shown circuits capable of 78% energy harvesting efficiency. While the possibility of long lifetime has been demonstrated at the watt level, reliably scaling up to the power levels required for providing renewable energy to the power grid or for local use will likely require further development from the material through to the systems level.

  19. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    Science.gov (United States)

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of Adhesion and Retention Forces for Two Candidate Docking Seal Elastomers

    Science.gov (United States)

    Hartzler, Brad D.; Panickar, Marta B.; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    To successfully mate two pressurized vehicles or structures in space, advanced seals are required at the interface to prevent the loss of breathable air to the vacuum of space. A critical part of the development testing of candidate seal designs was a verification of the integrity of the retaining mechanism that holds the silicone seal component to the structure. Failure to retain the elastomer seal during flight could liberate seal material in the event of high adhesive loads during undocking. This work presents an investigation of the force required to separate the elastomer from its metal counter-face surface during simulated undocking as well as a comparison to that force which was necessary to destructively remove the elastomer from its retaining device. Two silicone elastomers, Wacker 007-49524 and Esterline ELASA-401, were evaluated. During the course of the investigation, modifications were made to the retaining devices to determine if the modifications improved the force needed to destructively remove the seal. The tests were completed at the expected operating temperatures of -50, +23, and +75 C. Under the conditions investigated, the comparison indicated that the adhesion between the elastomer and the metal counter-face was significantly less than the force needed to forcibly remove the elastomer seal from its retainer, and no failure would be expected.

  1. Fracture studies of poly(propylene)/elastomer blend with {beta}-form nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Bai Hongwei [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang Yong, E-mail: yongwang1976@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang Danli; Xiao Chengquan; Song Bo; Li Yanli; Han Liang [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2009-07-15

    Poly(propylene)/elastomer blends with {beta}-form nucleating agent ({beta}-NA) aryl amides compound (TMB-5) were prepared. The effects of {beta}-NA on crystallization, melting behaviors and elastomer morphologies of PP/elastomer blends were studied through polarization optical microscope (POM), differential scanning calorimetry (DSC) and scanning electronic microscope (SEM). The fracture behaviors, including notched Izod impact fracture and single-edge notched tensile (SENT) fracture, were comparatively studied to establish the role of NA in improving the fracture toughness of PP/elastomer blends. Our results showed that the presence of {beta}-NA leads to determinable {beta}-PP formation in the blends, and as a consequence the fracture toughness of the blend is improved dramatically. Compared with notched Izod impact testing, which can efficiently characterize the fracture toughness of the blends only at lower elastomer content, SENT testing provides more detail of fracture behavior in all the compositions. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/elastomer/{beta}-NA is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage.

  2. How does static stretching decrease the dielectric constant of VHB 4910 elastomer?

    Science.gov (United States)

    Vu-Cong, T.; Nguyen-Thi, N.; Jean-Mistral, C.; Sylvestre, A.

    2014-03-01

    Subject to a voltage, dielectric elastomers deform by the effect of Maxwell stress which is depended directly on the dielectric constant of the material. The combination of large strain, soft elastic response and good dielectric properties has established VHB 4910 elastomer as the most used material for dielectric elastomer actuators. However, the effect of stretch on the dielectric constant for this elastomer is much debated topic while controversy results are demonstrated in the literature. The dielectric constant of this material is studied and demonstrated that it decreases slightly or hugely among the stretch but any pertinent response and any physic explications are validated by the scientific community. In this paper, we presented a detail study about dielectric behavior of VHB 4910 elastomer versus a broadband of stretch and temperature. We found that the dielectric constant of this material depends strongly on the stretch following a polynomial law. Among all the explanations of stretch dependence of the dielectric constant of VHB 4910 in the literature: the crystallization, the change of glass transition temperature, the decrease of dipole orientation, the electrostriction effect under stress; and based on our experimental result, we conclude that the decrease of dipole orientation seems the main reason to the drop of dielectric constant of VHB 4910 elastomer versus the stretch. We proposed also an accurate model describing the dielectric constant of this material for a large range of stretch and temperature.

  3. Ultrastable gold substrates for electron cryomicroscopy

    Science.gov (United States)

    Russo, Christopher J; Passmore, Lori A

    2015-01-01

    Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so they cannot be aligned with each other to calculate a 3D density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a new gold specimen support that nearly eliminates substrate motion during irradiation. This increases the sub-nanometer image contrast such that α-helices of individual proteins are resolved. With this improvement we determine the structure of apoferritin, a smooth, octahedral shell of α–helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures. PMID:25504723

  4. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    Science.gov (United States)

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  5. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  6. Toughening elastomers using mussel-inspired iron-catechol complexes

    Science.gov (United States)

    Filippidi, Emmanouela; Cristiani, Thomas R.; Eisenbach, Claus D.; Waite, J. Herbert; Israelachvili, Jacob N.; Ahn, B. Kollbe; Valentine, Megan T.

    2017-10-01

    Materials often exhibit a trade-off between stiffness and extensibility; for example, strengthening elastomers by increasing their cross-link density leads to embrittlement and decreased toughness. Inspired by cuticles of marine mussel byssi, we circumvent this inherent trade-off by incorporating sacrificial, reversible iron-catechol cross-links into a dry, loosely cross-linked epoxy network. The iron-containing network exhibits two to three orders of magnitude increases in stiffness, tensile strength, and tensile toughness compared to its iron-free precursor while gaining recoverable hysteretic energy dissipation and maintaining its original extensibility. Compared to previous realizations of this chemistry in hydrogels, the dry nature of the network enables larger property enhancement owing to the cooperative effects of both the increased cross-link density given by the reversible iron-catecholate complexes and the chain-restricting ionomeric nanodomains that they form.

  7. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  8. Thermal performance of an elastomer subjected to radiant heating

    Science.gov (United States)

    Hender, D. R.; Cross, C. R.

    1981-06-01

    This paper describes a test technique and modeling procedure that has been developed to provide an accurate thermal response model for a one-dimensional subliming ablation analysis code. Thin foil thermocouples are molded into the elastomer at different depths and tests are run at a broad range of radiant heat rates, thereby developing accurate temperature response data. Several test runs are made at a low heat flux to enable verification or adjustment of thermophysical properties measured in the laboratory. The modeling procedure consists of establishing a set of thermal properties and ablation parameters that match the test data over the range of test conditions. An NBR/EPDM blend material was used in the testing and modeling reported in this paper.

  9. Multiphase design of autonomic self-healing thermoplastic elastomers

    Science.gov (United States)

    Chen, Yulin; Kushner, Aaron M.; Williams, Gregory A.; Guan, Zhibin

    2012-06-01

    The development of polymers that can spontaneously repair themselves after mechanical damage would significantly improve the safety, lifetime, energy efficiency and environmental impact of man-made materials. Most approaches to self-healing materials require the input of external energy, healing agents, solvent or plasticizer. Despite intense research in this area, the synthesis of a stiff material with intrinsic self-healing ability remains a key challenge. Here, we show a design of multiphase supramolecular thermoplastic elastomers that combine high modulus and toughness with spontaneous healing capability. The designed hydrogen-bonding brush polymers self-assemble into a hard-soft microphase-separated system, combining the enhanced stiffness and toughness of nanocomposites with the self-healing capability of dynamic supramolecular assemblies. In contrast to previous self-healing polymers, this new system spontaneously self-heals as a single-component solid material at ambient conditions, without the need for any external stimulus, healing agent, plasticizer or solvent.

  10. Liquid Crystal Elastomer Actuators from Anisotropic Porous Polymer Template.

    Science.gov (United States)

    Wang, Qian; Yu, Li; Yu, Meina; Zhao, Dongyu; Song, Ping; Chi, Hun; Guo, Lin; Yang, Huai

    2017-08-01

    Controlling self-assembly behaviors of liquid crystals is a fundamental issue for designing them as intelligent actuators. Here, anisotropic porous polyvinylidene fluoride film is utilized as a template to induce homogeneous alignment of liquid crystals. The mechanism of liquid crystal alignment induced by anisotropic porous polyvinylidene fluoride film is illustrated based on the relationship between the alignment behavior of liquid crystals and surface microstructure of anisotropic polyvinylidene fluoride film. Liquid crystal elastomer actuators with fast responsiveness, large strain change, and reversible actuation behaviors are achieved by the photopolymerization of liquid crystal monomer in liquid crystal cells coated with anisotropic porous films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Visual implant elastomer mark retention through metamorphosis in amphibian larvae

    Science.gov (United States)

    Campbell Grant, Evan H.

    2008-01-01

    Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark–recapture studies, with particular application to studies of larval amphibians.

  12. Thermoplastic Dielectric Elastomer of Triblock Copolymer with High Electromechanical Performance.

    Science.gov (United States)

    Ma, Zipeng; Xie, Yuhan; Mao, Jie; Yang, Xuxu; Li, Tiefeng; Luo, Yingwu

    2017-08-01

    Dielectric elastomer (DE) actuators have been shown to have promising applications as soft electromechanical transducers in many emerging technologies. The DE actuators, which are capable of large actuation strain over a wide range of excitation frequencies, are highly desirable. Here, the first single-component DE of a triblock copolymer with attractive electromechanical performance is reported. Symmetric poly(styrene-b-butyl acrylate-b-styrene) (SBAS) is designed and synthesized. The SBAS actuator exhibits about 100% static actuation area strain and excellent dynamic performance, as evidenced by a wide half bandwidth of 300 Hz and a very high specific power of 1.2 W g-1 within the excitation frequency range of 300-800 Hz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  14. Numerical investigation of smart base isolation system employing MR elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Usman, M; Sung, S H; Jang, D D; Jung, H J [Department of Civil and Environmental Engineering, KAIST, 305-701, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Koo, J H [Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056 (United States)], E-mail: hjung@kaist.ac.kr

    2009-02-01

    This paper evaluates the dynamic performance of a newly proposed smart base isolation system employing Magneto-Rheological Elastomers (MREs). MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration reduction of civil engineering structures in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base-isolation system by using controllable MREs. To validate the effectiveness of the MRE-based isolation system, an extensive simulation study has been performed using a five degree-of-freedom structure under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

  15. Dielectric-elastomer-based fabrication method for varifocal microlens array.

    Science.gov (United States)

    Wang, Lihui; Hayakawa, Tomohiko; Ishikawa, Masatoshi

    2017-12-11

    We report on a method to fabricate a varifocal microlens array that employs a dielectric elastomer (DE) sandwiched between two electrodes as the lens material. The microlens array is patterned on the electrode plates, and when the electrodes are subjected to a controllable operating voltage, the DE material is "squeezed" by the Maxwell force to deform the lens array pattern, thus resulting in curvature deformation yielding a tunable lens profile. The tunable focal length performance ranges from 950 mm to infinity. When compared with liquid-filled lenses, solid-based varifocal lenses are more robust to thermal expansion, gravity, and vibrational motion. Our approach can be utilized in applications such as machine vision systems.

  16. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    Science.gov (United States)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  17. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  18. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  19. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  20. Toughening mechanism in elastomer-modified epoxy resins, part 2

    Science.gov (United States)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  1. Phytosanitary Irradiation

    Directory of Open Access Journals (Sweden)

    Guy J. Hallman

    2016-01-01

    Full Text Available Phytosanitary treatments disinfest traded commodities of potential quarantine pests. Phytosanitary irradiation (PI treatments use ionizing radiation to accomplish this, and, since their international commercial debut in 2004, the use of this technology has increased by ~10% annually. Generic PI treatments (one dose is used for a group of pests and/or commodities, although not all have been tested for efficacy are used in virtually all commercial PI treatments, and new generic PI doses are proposed, such as 300 Gy, for all insects except pupae and adult Lepidoptera (moths. Fresh fruits and vegetables tolerate PI better than any other broadly used treatment. Advances that would help facilitate the use of PI include streamlining the approval process, making the technology more accessible to potential users, lowering doses and broadening their coverage, and solving potential issues related to factors that might affect efficacy.

  2. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  3. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  4. Color stability and colorant effect on maxillofacial elastomers. Part III: weathering effect on color.

    Science.gov (United States)

    Haug, S P; Andres, C J; Moore, B K

    1999-04-01

    Maxillofacial prostheses are serviceable for approximately 6 months, after which they need to be refabricated because of the deterioration of color and physical properties. This third article in a 3-part series evaluated the color stability of commonly used colorant-elastomer combinations as a result of exposure to weathering. Fifteen specimens were fabricated for each of the 3 elastomers (Silastic medical adhesive type A, Silastic 4-4210, and Silicone A-2186) and 6 colorants (dry earth pigments, rayon fiber flocking, artist's oil paints, kaolin, liquid cosmetics, and no colorant) for a total of 270 specimens (18 groups of 15 specimens). The 15 specimens of each elastomer-colorant combination were separated into 3 test condition groups (control, time passage, and natural weathering) of 5 specimens per test condition group. Control specimens were evaluated within 1 month of fabrication. The time passage group was sealed in glass containers and kept in the dark for 6 months before testing. The natural weathering groups were placed on the roof of the dental school for 6 months and exposed to sunlight and weathering. Color and optical density data for each elastomer-colorant combination were subjected to a 1-way analysis of variance to examine effects among test conditions (control, time passage, and weathering). When significant differences were observed, the Student-Newman-Keuls multiple range test was performed to identify differences in elastomer-colorant combinations among each test condition at a significance level of .05. Changes in color, as a result of weathering, were noted in many of the colorant-elastomer combinations. Also, color change occurred not only to the colored, but also to uncolored materials over time without exposure to weathering. Clinically, the addition of colorants could have a stabilizing effect on the elastomer color when it is exposed to weathering.

  5. Proton irradiation effects in silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, E.; Vanhellemont, J.; Alaerts, A. [IMEC, Leuven (Belgium)] [and others

    1997-03-01

    Proton irradiation effects in silicon devices are studied for components fabricated in various substrates in order to reveal possible hardening effects. The degradation of p-n junction diodes increases in first order proportionally with the fluence, when submitted to 10 MeV proton irradiations in the range 5x10{sup 9} cm{sup -2} to 5x10{sup 11} cm{sup -2}. The damage coefficients for both p- and n-type Czochralski, Float-Zone and epitaxial wafers are reported. Charge-Coupled Devices fabricated in a 1.2 {mu}m CCD-CMOS technology are shown to be quite resistant to 59 MeV H{sup +} irradiations, irrespective of the substrate type. (author)

  6. Dopamine-Incorporated Dual Bioactive Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic Differentiation.

    Science.gov (United States)

    Zhao, Xin; Dong, Ruonan; Guo, Baolin; Ma, Peter X

    2017-09-06

    Soft tissue engineering needs elastic biomaterials not only mimicking the elasticity of soft tissue but also possessing multiple bioactivity to promote cell adhesion, proliferation, and differentiation, which still remain ongoing challenges. Herein, we synthesized a series of dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers by combining the properties of elastomeric poly(citric acid-co-polycaprolactone) (CA-PCL) polyurethane elastomer, bioactive dopamine (DA), and electroactive aniline hexamer (AH). The chemical structures, electroactivity, conductivity, thermal properties, hydrophilicity and hydration ability, mechanical properties, and degradability of the polyurethane elastomers were systematically characterized. The elastomers showed excellent shape fixity ratio and shape recovery ability under physiological conditions. The elastomers' elongation and stress were tailored by the AH content, whereas the hydrophilicity and hydration ability of the elastomers were adjusted by the content of DA and AH, as well as the doping state of AH. The viability and proliferation results of C2C12 cells seeded on the elastomers showed their excellent cytocompatibility. Additionally, by analyzing the protein and gene level, the promotion effect on myogenic differentiation of C2C12 cells by these elastomers compared to that by control groups (PCL80 000, CA-PCL elastomer, and CA-PCL elastomer with the DA segment) was demonstrated. Furthermore, the results from subcutaneous implantation confirmed the elastomers' mild host response in vivo. These results represent that these dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers are promising candidates for soft tissue regeneration that is sensitive to electrical signals.

  7. Mechanical and optical effects of elastomer interaction in polypropylene modification: Ethylene-propylene rubber, poly-(ethylene-co-octene and styrene-butadiene elastomers

    Directory of Open Access Journals (Sweden)

    M. Gahleitner

    2012-09-01

    Full Text Available The interaction between binary combinations of three different elastomer classes commonly applied in impact modification of isotactic polypropylene (iPP was studied. Blends based on a homogeneous ethylene-propylene (EP random copolymer (EP-RACO and a heterophasic EP impact copolymer comprising ethylene-propylene rubber (EPR with different external elastomer types, one homogeneous ethylene-1-octene copolymer (EOC, and two hydrogenated styrenebutadiene-styrene triblock copolymers (SEBS with different styrene content, were prepared. The phase morphology, mobility as a function of temperature, mechanical and optical properties were studied. Special effects could be achieved for the combination of two different elastomer types. The results clearly demonstrate the possibility to achieve attractive property combinations in ternary systems consisting of a crystalline PP matrix and two different types of elastomer, EPR or EOC on the one hand and SEBS on the other hand. A combination of density matching and compatibilization effects allows reaching good low temperature impact strength together with a transparency close to matrix level when selecting a butadiene-rich SEBS type.

  8. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  9. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer...

  10. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: elifkelesh@hotmail.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: bhazer2@yahoo.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  11. Aging Behavior and Performance Projections for a Polysulfide Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quintana, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The accelerated aging behavior and aging state of a 30 year old field retrieved polysulfide elastomer was examined. The material is used as an environmental thread sealant for a stainless steel bolt in a steel threaded insert in an aluminum assembly. It is a two component curable polysulfide elastomer that is commercially available in a similar formulation as was applied 30 years ago. The primary goal of this study was to establish if aging over 30 years under moderate aging conditions (mostly ambient temperature and humidity) resulted in significant property changes, or if accelerated aging could identify developing aging pathways which would prevent the extended use of this material. The aging behavior of this material was examined in three ways: A traditional accelerated thermo-oxidative aging study between 95 to 140°C which focused on physical and chemical properties changes, an evaluation of the underlying oxidation rates between RT and 125°C, and an assessment of the aging state of a small 30 year old sample. All three data sets were used to establish aging characteristics, their time evolution, and to extrapolate the observed behavior to predict performance limits at RT. The accelerated aging study revealed a relatively high average activation energy of ~130 kJ/mol which gives overconfident performance predictions. Oxidation rates showed a decreasing behavior with aging time and a lower E a of ~84 kJ/mol from time - temperature superposition , but also predicted sufficient additional performance at RT. Consistent with these projections for extended RT performance, only small changes were observed for the 30 year old material. Extrapolations using this partially aged material also predict ongoing use as a viable option. Unexpected RT degradation could only develop into a concern should the oxidation rate not trend lower over time as was observed at elevated temperature. Considering all data acquired in this limited aging study , there are no immediately

  12. The Mechanical Performance of Subscale Candidate Elastomer Docking Seals

    Science.gov (United States)

    Bastrzyk, Marta B.; Daniels, Christopher C.

    2010-01-01

    The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion

  13. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.

    Science.gov (United States)

    Ning, Nanying; Wang, Zhifei; Yao, Yang; Zhang, Liqun; Tian, Ming

    2015-10-05

    To meet the growing demand of environmental protection and resource saving, it is imperative to explore bio-based elastomers as next-generation dielectric elastomers (DEs). In this study, we used a bio-based gelatin/glycerin (GG) elastomer as the DE matrix because GG exhibits high dielectric constant (ɛr). Cellulose nanocrystals (CNCs), extracted from natural cellulose fibers, were used to improve the mechanical strength of GG elastomer. The results showed that CNCs with a large number of hydroxyl groups disrupted the hydrogen bonds between gelatin molecules and formed new stronger hydrogen bonds with gelatin molecules. A good interfacial adhesion between CNCs and GG was formed, and thus a good dispersion of CNCs in GG matrix was obtained, leading to the improved mechanical strength of GG. More interestingly, the ɛr of GG elastomer was obviously increased by adding 5 wt% of CNCs, ascribed to the increase in the polarizability of gelatin chains caused by the disruption of hydrogen bonds of gelatin. As a result, a 230% increase in the actuated strain at low electric field of GG was obtained by adding 5 wt% of CNCs. Since CNCs, gelatin and glycerol are all bio-based, this study offers a new method to prepare high performance DE for its application in biological and medical fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    Science.gov (United States)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  15. Study on the control of the compositions and properties of a biodegradable polyester elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Quanyong; Weng Jingyi; Zhang Liqun [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei, E-mail: liu_quanyong@126.co, E-mail: zhanglq@mail.buct.edu.c [Key Laboratory of Bioprocess of Beijing, Beijing University of Chemical Technology, Beijing 100029 (China)

    2009-04-15

    Biodegradable polyester elastomers are widely reported to be applied in varied biomedical fields. In this paper, we attempt to investigate how both the thermal-curing time and molar ratio of the monomers affect the final compositions and properties of the novel poly(glycerol-sebacate-citrate) (PGSC) elastomers. First, PGSC elastomers are obtained after the thermal curing of the moldable mixtures consisting of citric acid and poly(glycerol-sebacate) (PGS) prepolymers synthesized in the lab. Then further studies show that, on the one hand, the control of longer thermal-curing time results in elastomers with less sol, lower swelling degree, slower degradation, greater mechanical strength and higher glass transition temperature and, on the other hand, the crosslink with more citric acid is advantageous to greatly improving their mechanical strength and glass transition temperatures, simultaneously decreasing their sol contents, swelling degrees and degradation rates. The PGSC elastomers show thermosetting properties, certain strength, mass losses lower than 20% after 4-week degradation and durative water absorption during degradation. Thus they might be potentially used as degradable bio-coatings, varied soft biomedical membranes and drug delivery matrices.

  16. A Transparent, Highly Stretchable, Autonomous Self-Healing Poly(dimethyl siloxane) Elastomer.

    Science.gov (United States)

    Zhang, Baolin; Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Wu, Biao; Yu, You

    2017-08-01

    An innovative self-healing polydimethylsiloxane (PDMS) elastomer, namely, PDMS-TFB, is reported by incorporating the reversibly dynamic imine bond as the self-healing points into the PDMS networks. The PDMS-TFB elastomer features good optical transmittance (80%) in full visible light region, high stretchability (≈700%), and excellent autonomous self-healing ability at room temperature. Surprisingly, the self-healing behavior can take place in water and even at a temperature as low as -20 °C in air, showing a promising outlook for broader applications. As a proof-of-concept, this study demonstrates the use of the PDMS-TFB elastomer for preparing anticorrosion coating and adhesive layer, and also the use of such an elastomer to be the platform for fabricating the flexible interconnector and chemical sensor. Remarkably, no significant difference is observed between the pristine and healed samples. Taking full advantage of these unique properties, it is anticipated that such a PDMS-TFB elastomer shows wide applications in the fields of materials science, electronics, biology, optics, etc. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Measurements of residual strains in ceramic-elastomer composites with diffuse scattering of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, Wojciech [H. Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)], E-mail: Wojciech.Zajac@ifj.edu.pl; Boczkowska, Anna; Babski, Kamil; Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Deen, Pascale P. [Institute Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble (France)

    2008-12-15

    An experiment of diffuse scattering (also referred to as wide-angle neutron scattering) of polarized neutrons with polarization analysis was performed in order to detect residual strains in ceramic-elastomer composites of porous SiO{sub 2} and poly(urea-urethane) elastomers. Two ceramics, with pore sizes of 20 and 70 {mu}m, and two elastomers, with hard/soft segments molar ratios of H/S = 0.25 and 1.5, were selected for composite fabrication. The use of polarization analysis made it possible to detect and study very weak coherent scattering peaks from the elastomer synthesized inside SiO{sub 2} ceramics. Residual strains were detected and measured based on interatomic distances in the SiO{sub 2}+ H/S = 1.5 composite but not in the SiO{sub 2}+ H/S = 0.25. The reason is sought in soft domains being ordered in the H/S = 0.25 elastomer as opposed to the H/S = 1.5 one.

  18. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    Science.gov (United States)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  19. Flexible electrowetting and electrowetting on flexible substrates

    Science.gov (United States)

    Steckl, Andrew J.; You, Han; Kim, Duk-Young

    2011-03-01

    Electrowetting (EW) technology is shown to be quite flexible in operation and able to operate on flexible substrates. Complementary ON/OFF characteristics of EW devices have been obtained through a plasma irradiation and annealing process. This enables the design of EW array operation in a reduced power mode. Examples of EW operation on flexible substrates are discussed. This includes paper, plastic and metal substrates. Prototypes of flexible EW arrays on plastic substrates are demonstrated to switch reversibly by applying a low voltage difference (20 V). The array operation is maintained even when the display is mechanically flexed. These results indicate the promise of flexible EW devices for mobile and other devices, including video rate flexible e-paper.

  20. Proton irradiation effects on the properties of silicon wafer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gihyun; Shin, Chansun [Myongji University, Yongin (Korea, Republic of); Sun, Gwang-Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The study the effect of energetic particle irradiation on the properties of semiconductor devices has been interested for developing and utilizing semiconductor irradiation detectors under various irradiation conditions such as large hadron collider in CERN. In this study, we investigated the influence of proton irradiation on carrier lifetime and electrical resistance of silicon wafers. Proton is known to make a stable irradiation defects in silicon. These irradiation defects form a new energy level within the band gap, hence affect the properties of silicon. The irradiation defects generated by proton irradiation affect the carrier lifetime by capturing excess carriers and the electrical resistance by hindering the carrier movement. In this study, the carrier lifetime of proton-irradiated silicon substrates was found to decrease rapidly as the irradiation dose increases. On the other hand, the sheet electrical resistance was not significantly changed up to the irradiation dose level of 10{sup 12} cm{sup -2}. Hence, proton irradiation less than dose level of 10{sup 12} cm{sup -2} can be utilized to decrease carrier lifetime significantly without sacrificing the electrical resistance.

  1. Design & synthesis of silicone elastomer networks with tunable physico-chemical characteristics

    Science.gov (United States)

    Willoughby, Julie Ann-Crowe

    2007-05-01

    and eventual surface "freezing". The effects of surface chemistry and topology on cellular adhesion and proliferation have been studied extensively in the past. However, little work exists that aims at probing the effects of surface morphology and elastic modulus on cell behavior. To achieve timely and comprehensive experimental design, there is need for the availability of novel substrata with tunable mechanical properties (or compliance) at the micro and meso-scale level ranging from individual cells to whole tissues. Despite expansive research that has targeted the understanding of cellular response to its host scaffold, the choice of material and extrapolation of findings from one cell/material system to another has proven difficult. Thus establishing general relationships between substrate compliance and cell behavior cannot be considered independent of the material and cell type. In our work, we have explored creating surfaces from SEs comprising gradients in stiffness (or elastic modulus), by controlling the degree of cross-linking. Network regions consisting of higher cross-linking demonstrate a greater elastic modulus. We present two methods to control the mechanical properties of silicone elastomers. The first technique utilizes interdiffusion of multiple SEs with varied molecular weights that are subsequently cross-linked into a network. The second method involves synthesizing a UV-curable SE. This method controls the degree of cross-linking by regulating the intensity of the UV light via a transparency with tunable transmittance placed on top of the SE film. Our results show that it is possible to generate compliance gradients through either route, enabling a large range of both gradient patterns and stiffness.

  2. Dielectric elastomer stack actuator-based autofocus fluid lens.

    Science.gov (United States)

    Rasti, Pejman; Hous, Henry; Schlaak, Helmut F; Kiefer, Rudolf; Anbarjafari, Gholamreza

    2015-11-20

    Extremely small cameras and many cell phones simply do not have enough room to allow users to move a rigid lens the distance required for a varying range of focal lengths. An adaptive liquid lens, however, enables small cameras to focus without needing extra room. An autofocus liquid lens provides several advantages over a traditional lens in terms of efficiency, cost, compactness, and flexibility. But one of the main challenges in these lenses is a high driving voltage requirement of around at least 1.8 kV. In this paper, we propose a new design of a liquid lens based on a dielectric elastomer stack actuator (DESA), which significantly overcomes the aforementioned existing problem. The lens consists of a frame (a thin DESA membrane with a hole in the middle), silicon oil, and water. A voltage range is applied on the membrane in order to change the hole dimension. Due to change of hole dimension, a change in meniscus occurs that changes the focal length of the lens. In this research work, various experimental results are achieved by configuring two DESA with different active areas. Depending on the active area of the membrane, the length of the laser beam on the plane varies from 6 to 35 mm, and the driving voltage is in the range of 50-750 V.

  3. Dielectric elastomer actuators for octopus inspired suction cups.

    Science.gov (United States)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  4. Soft mobile robots driven by foldable dielectric elastomer actuators

    Science.gov (United States)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2016-08-01

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  5. Challenges of using dielectric elastomer actuators to tune liquid lens

    Science.gov (United States)

    Keong, Gih-Keong; La, Thanh-Giang; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Recently, dielectric elastomer actuators (DEAs) have been adopted to tune liquid membrane lens, just like ciliary muscles do to the lens in human eye. However, it faces some challenges, such as high stress, membrane puncture, high driving voltage requirement, and limited focus distance (not more than 707cm), that limit its practical use. The design problem gets more complex as the liquid lens shares the same elastomeric membrane as the DEA. To address these challenges, we separate DEA from the lens membrane. Instead, a liquid-immersed DEA, which is safe from terminal failure, is used as a diaphragm pump to inflate or deflate the liquid lens by hydraulic pressure. This opens up the possibility that the DEA can be thinned down and stacked up to reduce the driving voltage, independent of the lens membrane thickness. Preliminary study showed that our 8-mm-diameter tunable lens can focus objects in the range of 15cm to 50cm with a small driving voltage of 1.8kV. Further miniaturization of DEA could achieve a driving voltage less than 1kV.

  6. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  7. CREATING ACTIVATING SYSTEMS FOR THE EFFICIENT VULCANIZATION OF ELASTOMERS

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2014-01-01

    Full Text Available Results of the study vulcanization of polydienes were presented. Vulcanization activators role in the formation of the actual curing agents and the formation of the spatial structure of the vulcanizates was considered. It is shown that to be effective requires the use of sulfur-vulcanization of zinc-containing vulcanization activators with a developed surface, capable of uniformly dispersed in a medium rubber. Activating sulfur vulcanization system elastomers as alloys of zinc oxide with fatty acids and their derivatives, modified halogenated compounds have been developed. Experimental vulcanization activators were tested in formulations of rubber compounds based on styrene butadiene rubber. Found that the use of experienced vulcanization activators enhances the cure rate and improved tensile properties, elastic rubber presumably due to the formation of a network structure of the cross-linking of different nature and energy. It is noted that the use of the experimental products enables products to reduce the vulcanization time by 7-10%. The possibility of reducing the dosage formulation activators in rubber vulcanization by using effective activating systems. The possibility to reduce 4-5 times the content of environmentally dangerous zinc oxide in rubber products and im-proved manufacturing techniques of rubber compounds by the use of experimental products in non-dusting form.

  8. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  9. Soft mobile robots driven by foldable dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong, E-mail: jxzhouxx@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  10. Modeling a dielectric elastomer as driven by triboelectric nanogenerator

    Science.gov (United States)

    Chen, Xiangyu; Jiang, Tao; Wang, Zhong Lin

    2017-01-01

    By integrating a triboelectric nanogenerator (TENG) and a thin film dielectric elastomer actuator (DEA), the DEA can be directly powered and controlled by the output of the TENG, which demonstrates a self-powered actuation system toward various practical applications in the fields of electronic skin and soft robotics. This paper describes a method to construct a physical model for this integrated TENG-DEA system on the basis of nonequilibrium thermodynamics and electrostatics induction theory. The model can precisely simulate the influences from both the viscoelasticity and current leakage to the output performance of the TENG, which can help us to better understand the interaction between TENG and DEA devices. Accordingly, the established electric field, the deformation strain of the DEA, and the output current from the TENG are systemically analyzed by using this model. A comparison between real measurements and simulation results confirms that the proposed model can predict the dynamic response of the DEA driven by contact-electrification and can also quantitatively analyze the relaxation of the tribo-induced strain due to the leakage behavior. Hence, the proposed model in this work could serve as a guidance for optimizing the devices in the future studies.

  11. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    Directory of Open Access Journals (Sweden)

    Sandra dePedro

    2016-12-01

    Full Text Available Stimuli-responsive materials undergo physicochemical, and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of Polydimethylsiloxane (PDMS-based stimuli-responsive elastomers (SRE has seldomly been presented. Here we present the structural, biological, optical, magnetic and mechanical properties of several magnetic SRE (M-SRE obtained by combining PDMS and isoparafin-based ferrofluid (FF. Independently of the FF concentration, results shown a similar aggregation level, with the nanoparticles (NP mostly isolated (>60%. In addition to the superparamagnetic behaviour, the samples show no cytotoxicity except the sample with the highest FF concentration. Spectral response shows FF concentrations where both optical readout and magnetic actuation can simultaneously be used. The Young’s modulus increases with the FF concentration until the elastomeric network is distorted. Our results demonstrate that PDMS can host up to 24.6% FF. When applied to soft microsystems, a large displacement for relatively low magnetic fields (< 0.3 T is achieved. The herein presented M-SRE characterization can be used for a large number of disciplines where magnetic actuation can be combined with optical detection, mechanical elements and biological samples.

  12. Compatibility Studies on Elastomers and Polymers with Ethanol Blended Gasoline

    Directory of Open Access Journals (Sweden)

    J. S. Dhaliwal

    2014-01-01

    Full Text Available This paper reports the compatibility studies of 10% ethanol blended gasoline (E10 with four types of elastomer materials, namely, Neoprene rubber, Nitrile rubber, hydrogenated Nitrile butadiene rubber (HNBR, and Polyvinyl chloride/Nitrile butadiene rubber blend (PVC/NBR, and two types of plastic materials, namely, Nylon-66 and Polyoxymethylene (Delrin. These materials have applications in automotives as engine seals, gaskets, fuel system seals and hoses, and so forth. Two types of the ethanol blended gasoline mixtures were used: (a gasoline containing 5% ethanol (E5, which is commercial form of gasoline available in India, and (b gasoline containing 10% ethanol (E10. The above materials were immersed in E5 and E10 for 500 hrs at 55°C. A set of eight different properties in E5 and E10 (visual inspection, weight change, volume change, tensile strength, percent elongation, flexural strength, impact strength, and hardness were measured after completion of 500 hrs and compared with reference specimens (specimens at 55°C without fuel and specimens at ambient conditions. Variation observed in different materials with respect to the above eight properties has been used to draw inference about the compatibility of these elastomeric/polymer materials with E10 fuel vis-à-vis E5 fuels. The data presented in this study is comparative in nature between the results of E10 and E5.

  13. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  14. Integrated sensing and actuation of dielectric elastomer actuator

    Science.gov (United States)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  15. Pulsed actuation avoids failure in dielectric elastomer artificial muscles

    Directory of Open Access Journals (Sweden)

    Toma Kobayashi

    2014-10-01

    Full Text Available Dielectric elastomer actuators (DEAs are a class of artificial muscles capable of large linear strains (well over 100%, and with high energy density, and low cost and weight. One of the most prominent failure modes of a DEA is electrical breakdown, which can damage the device permanently, limiting its deformation capability. Breakdown is also common, since to maximize energy output, devices often operate near the breakdown limit. Elucidating breakdown mechanisms, as well as finding ways to prevent it, are of intense research interest. We show that by applying short electrical pulses, one could minimize the exposure of the DEAs to high leakage current, which is one of the main mechanisms for electrical breakdown. This allows one to operate at significantly higher potentials than the DC breakdown voltage. By applying pulses, we demonstrate up to 81.7% area strain repeatedly, at voltages more than twice the DC breakdown limit, without the risk of failure. The pulsed operation mode of DEAs accommodating higher voltages than possible with DC represents an opportunity for potential applications, safer and simpler device designs, and a technique for further study of DEA breakdown mechanisms.

  16. Transient Grating Experiments on Inorganic–elastomer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Andrea TASCHIN

    2011-10-01

    Full Text Available We studied the photo-elastic and photo-thermal response of two new nanocomposites base on a polyurea elastomer mixed with inorganic nanotubes (MoS2 or nanowires (Mo6S2I8. The investigation has been performed using time-resolved laser spectroscopy, transient grating technique (TG, based on short laser pulses. This spectroscopic tool enables the measurement of the thermo-elastic response of the nanocomposites covering a very large time window, from nanoseconds to milliseconds, revealing the different dynamic phenomena present in these materials. On the fast timescale (from 1 to 100 ns the TG signal shows the propagation of a high frequency acoustic wave enabling the measure of its sound velocity and damping time. In the slow time window (from 5 to 100 ms the TG signal presents a slow decay due to the thermal diffusion process. As expected, these features are common for both pure polymeric and nanocomposite samples. Surprisingly, the presence of nanotubes or nanowires in the polymeric matrix produces on the intermediate time scale a new dynamic phenomenon in the experimental data, whose origin is not clear.

  17. Tunable actuation of dielectric elastomer by electromechanical loading rates

    Science.gov (United States)

    Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong

    2017-10-01

    Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.

  18. A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.

    Science.gov (United States)

    Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang

    2017-12-01

    Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.

  19. The application of high temperature elastomer PCP in CSS wells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Song, F.; Wu, F.; Luo, E. [Petro-China, Liaohe (China). Liaohe Oilfield Co.; Seince, L.; Wu, B. [PCM, Vanves (France); Xiao, J.H. [Andmir Environmental Group, Calgary, AB (Canada)

    2009-07-01

    Progressive cavity pumps (PCPs) are now widely used in oil field applications. This paper discussed the feasibility of using a high temperature elastomer PCP in cyclic steam stimulation (CSS) applications. Data were obtained for fluid yields, speed, and wellhead temperature and dynamics. The study showed that during the initial production phase, wellhead temperature reached 80 degrees C. Water was injected to reduce the temperature to under 70 degrees C. The well has been operational for a period of 10 months. A second trial with a PCP with steam injection parameters of 14.6 MPa, a flow rate of 15.7 ton/h, and total steam injection of 1451 tonnes was then conducted. A set of optical fibres was used to obtain downhole temperature distribution data. The well has now been operational for more than 6 months, yielding 44.7 tonnes of fluid per day, with a daily oil yield of 14.8 tonnes per day. Actual pump-depth temperature before the pump start up was 98 degrees C. After start-up, actual pump depth temperatures reached 145 degrees C, which was decreased over time to 125 degrees C. It was concluded that the pumps are capable of withstanding the high temperature CSS environment. 8 refs., 1 tab., 4 figs.

  20. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  1. Viscoelastic performance of dielectric elastomer subject to different voltage stimulation

    Science.gov (United States)

    Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing

    2017-04-01

    Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.

  2. Fluid electrodes for submersible robotics based on dielectric elastomer actuators

    Science.gov (United States)

    Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.

    2017-04-01

    Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.

  3. Toughening elastomers using mussel-inspired iron-catechol complexes.

    Science.gov (United States)

    Filippidi, Emmanouela; Cristiani, Thomas R; Eisenbach, Claus D; Waite, J Herbert; Israelachvili, Jacob N; Ahn, B Kollbe; Valentine, Megan T

    2017-10-27

    Materials often exhibit a trade-off between stiffness and extensibility; for example, strengthening elastomers by increasing their cross-link density leads to embrittlement and decreased toughness. Inspired by cuticles of marine mussel byssi, we circumvent this inherent trade-off by incorporating sacrificial, reversible iron-catechol cross-links into a dry, loosely cross-linked epoxy network. The iron-containing network exhibits two to three orders of magnitude increases in stiffness, tensile strength, and tensile toughness compared to its iron-free precursor while gaining recoverable hysteretic energy dissipation and maintaining its original extensibility. Compared to previous realizations of this chemistry in hydrogels, the dry nature of the network enables larger property enhancement owing to the cooperative effects of both the increased cross-link density given by the reversible iron-catecholate complexes and the chain-restricting ionomeric nanodomains that they form. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Xuan Bao Nguyen

    2017-01-01

    Full Text Available In this research, a novel variable stiffness vibration isolator that uses magnetorheological elastomers (MREs accompanied with a fuzzy semiactive vibration control was developed. Firstly, the viscoelastic characteristics of MREs in shear mode were clarified systematically in order to achieve a mathematical basis for the controller development. Secondly, the fuzzy semiactive vibration control with a strategy based on the Lyapunov theory and dynamic characteristic of MREs was proposed for minimizing the movement of the isolator. In the conventional semiactive algorithm, the command applied current of MRE-based isolator is set at either minimum or maximum value which causes high acceleration and jerk peaks periodically, thus leading to the degeneration of the overall system quality. However, the fuzzy semiactive algorithm presented here is able to produce the sufficient applied current and thus viscoelastic force is desirably produced. The effectiveness of the developed isolator was evaluated numerically by MATLAB simulation and experimentally in comparison with the performances of a passive system and a system with on-off type semiactive controller. The results showed that the developed controller was successful in overcoming the disadvantages of conventional on-off semiactive control.

  5. Distinct Tensile Response of Model Semi-flexible Elastomer Networks

    Science.gov (United States)

    Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.

    2011-03-01

    Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.

  6. Dielectric elastomer generator with equi-biaxial mechanical loading for energy harvesting

    Science.gov (United States)

    Huang, Jiangshui; Shian, Samuel; Suo, Zhigang; Clarke, David R.

    2013-04-01

    Dielectric elastomer generators (DEGs) are attractive candidates for harvesting electrical energy from mechanical work since they comprise relatively few moving parts and large elastomer sheets can be mass produced. Successfully demonstrations of the DEG prototypes have been reported from a diverse of energy sources, including ocean waves, wind, flowing water and human movement. The energy densities achieved, however, are still small compared with theoretical predictions. We show that significant improvements in energy density (550 J/kg with an efficiency of 22.1%), can be achieved using an equi-biaxial mechanical loading configuration, one that produces uniform deformation and maximizes the capacitance changes. Analysis of the energy dissipations indicates that mechanical losses, which are caused by the viscous losses both within the acrylic elastomer and within the thread materials used for the load transfer assembly, limits the energy conversion efficiency of the DEG. Addressing these losses is suggested to increase the energy conversion efficiency of the DEG.

  7. Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments

    Energy Technology Data Exchange (ETDEWEB)

    Kennelley, K.J.; Abrams, P.I. (Exxon Production Research Co., Houston, TX (US)); Vicic, J.C. (FMC Corp., Central Engineering Labs., Santa Clara, CA (US)); Cain, D. (FMC Corp., Wellhead Equipment, Houston, TX (US))

    1989-01-01

    Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C. The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.

  8. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    Though dielectric elastomers (DEs) have many favourable properties, the issue of high driving voltages limits the commercial viability of the technology. Driving voltage can be lowered by decreasing the Young's modulus and increasing the dielectric permittivity of silicone elastomers. A decrease...... in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers....... Furthermore, the increase in dielectric permittivity (43%) was obtained without compromising other important properties of DEs such as viscous and dielectric losses as well as electrical breakdown strength....

  9. Large amplitude oscillatory measurements as mechanical characterization methods for soft elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2012-01-01

    oscillating elongation (LAOE)1 and planar elongation2, 3 make the ideal set of experiments to evaluate the mechanical performance of DEAPs. We evaluate the mechanical performance of several soft elastomers applicable for DEAP purposes such as poly(propyleneoxide) (PPO) networks3, 4 and traditional unfilled......Mechanical characterization of soft elastomers is usually done either by traditional shear rheometry in the linear viscoelastic (LVE) regime (i.e. low strains) or by extensional rheology in the nonlinear regime. However, in many commercially available rheometers for nonlinear extensions...... the measurements rely on certain assumptions such as a predefined shape alteration and are very hard to perform on soft elastomers in most cases. The LVE data provides information on important parameters for DEAP purposes such as the Young’s modulus and the tendency to viscous dissipation (at low strains only...

  10. The Effect of Cross-Link Density on the Toughening Mechanism of Elastomer-Modified Epoxies

    Science.gov (United States)

    Pearson, R. A.; Yee, A. F.

    1984-01-01

    A DGEBA epoxide resin (EPON 828) was elastomer modified by using three different carboxyl terminated butadiene acrylonitrile copolymers. The fracture toughness of these elastomer modified epoxies was measured in terms of the critical strain energy release rate, G sub IC. The toughening mechanism was elucidated using a tensile dilatometry technique. A plot of volume strain versus longitudinal strain often reveals the types of micromechanical deformations occurring in the uniaxial tensile specimen up to yield. Several microscopy techniques were employed to corroborate the tensile dilatometry results. The role of matrix ductility on the toughening mechanism of elastomer modified epoxies was investigated. By reducing the cross link density with various equivalent weight epoxide resins. Fracture toughness was again measured in terms of G sub IC. The characterization of the toughening mechanism was performed using a uniaxial tensile dilatometry technique and corroborated using various microscopy techniques.

  11. Long-term stable modifications of silicone elastomer for improved hemocompatibility

    Directory of Open Access Journals (Sweden)

    Boudot Cécile

    2016-09-01

    Full Text Available Silicone elastomers are well established in medical engineering and particularly in blood-contacting applications such as catheters and medical tubing. Still, their intrinsic surface properties have potential for improvement. For example, hydrophobicity reduction can be a way to provide better hemocompatibility. In this study, several bulk and surface modifications of silicone elastomers using polyethylene glycol (PEG were investigated. All modifications induced long-term (2 months, stable wettability of the surface. Moreover, cytotoxicity testing demonstrated their suitability as implant material. Hemocompatibility was investigated through a thrombin generation assay as well as a platelet adhesion study combining an enzymatic assay and a scanning electron microscope analysis. That the hemocompatibility of silicone was considerably improved thanks to the PEG modifications could be shown. The study introduces easily processable, cost-efficient, and long-term stable hydrophilic modifications of silicone elastomer for improved hemocompatibility.

  12. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo; Chen Hualing; Qiang Junhua; Hu Shulin; Zhu Zicai; Wang Yongquan, E-mail: hlchen@mail.xjtu.edu.cn [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-04-20

    A dielectric elastomer is capable of giant electromechanical actuation but fails at breakdown due to instability under certain conditions with a small deformation. By applying a mechanical pre-stretch, one obtains a stabilized large actuation. In this paper, we measured the dielectric constant and critical voltage of a polyacrylic dielectric elastomer subjected to both equal and unequal biaxial stretch, and modelled its actuation by employing the Gent strain energy function with a microscopic view to characterize the nonlinear stiffening behaviour and the electrostrictive effect in the deformation. The mechanical pre-stretch contributes in several ways to the stabilization of dielectric elastomer, by eliminating the pull-in instability, by generating electrostriction, by improving the breakdown strength, as well as by reducing the membrane thickness which consequently lowers the voltages required for activation.

  13. Self-clearing dielectric elastomer actuators using charcoal-powder electrodes

    Science.gov (United States)

    Lau, Gih-Keong; Chua, Soo-Lim; Shiau, Li-Lynn; Tan, Adrian Wei Yee

    2012-04-01

    This study found that compliant electrodes using charcoal powder enable self clearing property to dielectric elastomer actuator. Charcoal powder is applied as compliant electrodes by smearing on a 100% bi-axially pre-stretched dielectric elastomer membrane (VHB 9473), with nominal pre-stretched thickness of 62.3 μm. This DEA using charcoal-powder electrodes can sustain up 10 kV without terminal breakdown, while those using graphite or silver grease break down at slightly above 2 kV. It is noted that this DEA using charcoal-powder has maximum areal strain at about 45 % at 4 kV, beyond which the strain does not increase further for reduced electrical conductivity. The dielectric elastomer actuator using the charcoal-powder electrodes generate less actuation strain than that using the graphite. However, the former can produce a large actuation stress as it can driven to a higher driving voltage without pre-mature breakdown.

  14. Giant linear voltage-induced deformation of a dielectric elastomer actuator

    Science.gov (United States)

    Zhu, Jian; Kollosche, Matthias; Kofod, Guggi; Suo, Zhigang

    2012-02-01

    For dielectric elastomers, one of the most conspicuous attributes is large deformation of actuation induced by voltage. However, electromechanical instability may limit their deformation. In this seminar, I will illustrate how dielectric elastomers survive or eliminate electromechanical instability, through mechanical designs. For example, I will analyze a dielectric elastomer with a ``pure shear'' boundary condition. The membrane is first prestretched along the transverse direction, and then fixed by a rigid bar. As a result, the stretch in transverse direction is fixed, and the membrane can only be actuated along the vertical direction. The theory shows that the actuator can avert electromechanical instability, and achieve a giant linear deformation of actuation. The experiments confirm the theoretical predictions. For SEBS material, the linear strain of actuation can be 80%. For VHB material, the linear strain of actuation can be 300%. The actuator shows advantages compared to the classic designs (say, tube and circular actuators), and can be used as artificial muscles in soft robots.

  15. Toughening elastomers using mussel-inspired catechol-metal coordination complexes

    Science.gov (United States)

    Filippidi, Emmanouela; Christiani, Thomas; Valentine, Megan; Waite, J. Herbert; Israelachvili, Jacob; Ahn, Kollbe

    Amorphous, covalently-linked elastomers possess excellent reversible extensibility and high failure strain compared to other materials. However, by nature, the large deformability compromises the Young's modulus and the toughness of the elastomer to low values (mussel-inspired strategy of iron-catechol coordination bonding creating dynamic, reversible cross-links in addition to permanent chemical cross-links in an elastomer used in ambient, dry conditions. This simple additional energy dissipative mechanism results in increased modulus and toughness without affecting the network extensibility, which is based on the covalent network. Control of the chain relaxation time scales can be further tuned using the dynamic bonds, imparting mechanical rate dependent properties to the bulk material. The quantitative understanding of the time scales associated with the chain motion versus the metal coordination may provide another simple and independent control parameter in elastomeric material design.

  16. Reduction of the Adhesive Friction of Elastomers through Laser Texturing of Injection Molds

    Directory of Open Access Journals (Sweden)

    Joel Voyer

    2017-11-01

    Full Text Available It is well known that elastomers usually possess poor dry sliding friction properties due to their highly adhesive character. In order to overcome this problematic behavior in industrial applications, interfacial materials such as oils, greases, coatings, or lacks are normally used in order to separate or to functionalize the contact surfaces of elastomers. Alternatively, the high adhesion tendency of elastomers may be explicitly reduced by modifying the elastomer composition itself or by enabling a reduction of its effective contact area through, for example, surface laser texturing. This second approach, i.e., the reduction of the adhesive character of elastomers through laser structuring, will be the main topic of the present study. For this purpose, different micro-sized grooved structures were produced on flat injection molds using an ultra-short pulsed laser. The micro-structured molds were then used to produce injection molded micro-ridged Liquid Silicone Rubber (LSR sample pads. The investigations consisted firstly of determining the degree of replication of the mold micro-structures onto the surface of the LSR pads and secondly, to ascertain the degree of reduction of the friction force (or coefficient of friction of these micro-ridged LSR pads in comparison to the benchmark (unstructured LSR pads when tested under dry conditions against Aluminum alloy (Al-6082 or PA6.6-GF30 plates. For this second part of the investigation, the normal force (or contact pressure dependency of the coefficient of friction was determined through stepwise load increasing friction tests. The results of these investigations have shown that the production of micro-ridged surfaces on LSR pads through laser structuring of the injection molds could be successfully achieved and that it enables a significant reduction of the friction force for low normal forces (or contact pressures, where the component of adhesion friction is playing an important and determining

  17. Soft Functional Silicone Elastomers with High Dielectric Permittivty: Simple Additives vs. Cross-Linked Synthesized Copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    silicone elastomers with high dielectric permittivity were prepared through the use of chloropropyl-functional silicones. One method was through the synthesis of modular cross-linkable chloropropyl-functional copolymers that allow for a high degree of chemical freedom such that a tuneable silicone...... as an additive to commercial silicone elastomer systems. Here the functional copolymer acts both as a permittivity enhancer and plasticizer. We show how the DE properties and the dielectric permittivity to Young’s modulus ratio are improved for these systems and we compare the use of cross-linkable polymers...

  18. Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation

    Science.gov (United States)

    Sahu, R. K.; Patra, K.

    2014-07-01

    This paper reports experimental characterisation of a dielectric elastomer which is used as a base material for electro-active polymer actuators and sensors. Specific deformation energy has been experimentally determined to characterise a dielectric acrylic elastomer for large elastic deformation. Specific deformation energy value was estimated from the experimental stress-strain data in the range between zero and chosen strain using trapezoidal method. The coefficients of variation of specific deformation energy measured at different strain values are reasonably low. Results show that specific deformation energy can be better indicator to the differences in large deformations of such material compared to elastic modulus or the slope at the given strain.

  19. Friction of elastomer-on-glass system and direct observation of its frictional interface

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro [Department of Mathematical and Design Engineering, Gifu University, Gifu, 501-1193 (Japan)

    2007-11-15

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers.

  20. Buckling of elastomer sheets under non-uniform electro-actuation.

    Science.gov (United States)

    Bense, Hadrien; Trejo, Miguel; Reyssat, Etienne; Bico, José; Roman, Benoît

    2017-04-12

    Dielectric elastomer sheets undergo in-plane expansion when stimulated by a transverse electric field. We study experimentally how dielectric plates subjected to a non-uniform voltage distribution undergo buckling instabilities. Two different configurations involving circular plates are investigated: plates freely floating on a bath of water, and plates clamped on a frame. We describe theoretically the out-of-plane deformation of the plates within the framework of weakly non-linear plate equations. This study constitutes a first step of a route to control the 3D activation of dielectric elastomers.

  1. The use of Visual Implant Fluorescent Elastomer (VIE for marking Phyllopezus pollicaris lizards (Squamata: Phyllodactylidae

    Directory of Open Access Journals (Sweden)

    Paulo Ragner Silva de Freitas

    2013-11-01

    Full Text Available This study reports the use of Visible Implant Fluorescent Elastomer (VIE and its efficiency in marking Phyllopezus pollicaris lizards from an area of caatinga in northeastern Brazil. The marking procedure of individuals was conducted from April to September 2012. Forty individuals were marked in the dorsal region with fluorescent colors (red, yellow, green and orange. Twenty lizards were recaptured and showed good retention of the elastomer. Only two specimens presented fragmented marks. The results showed that the use of VIE for tagging and recapture was efficient because of the high retention rate in the individuals recaptured and low fragmentation rate of the marks.

  2. Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion

    Science.gov (United States)

    La, Thanh-Giang; Lau, Gih-Keong

    2013-05-01

    This letter reported that a dielectric elastomer actuator (3M VHB), which is immersed in a liquid dielectric bath, is enhanced tremendously in dielectric strength up to 800 MV/m, as compared to 450 MV/m for the actuator operated in air. The bath consists of silicone oil (Dow Corning Fluid 200 50cSt), which is 6.5 times more thermally conductive than air, and it is found able to maintain the actuator at a stable temperature. As a result, the oil-immersed dielectric elastomer actuator is prevented from local thermal runaway, which causes loss of electrical insulation, and consequently avoids the damage by electromechanical instability.

  3. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating

    Science.gov (United States)

    La, Thanh-Giang; Lau, Gih-Keong

    2016-01-01

    Electrical breakdown of dielectric elastomer actuators (DEA) is very localized; a spark and a pinhole (puncture) in dielectric ends up with short-circuit. This letter shows that prevention of electrothermal breakdown helps defer failure of DEAs even with conductive-grease electrodes. Dielectric gel encapsulation or coating (Dow Corning 3-4170) helps protect acrylic elastomer (VHB 4905), making it thermally more stable and delaying its thermal oxidation (burn) from 218 °C to 300 °C. Dielectric-gel-coated acrylic DEAs can withstand higher local leak-induced heating and thus achieve higher dielectric strengths than non-coated DEAs do.

  4. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  5. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    Science.gov (United States)

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO2) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO2-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  7. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  8. Agglomeration defects on irradiated carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Cássio Stein Moura

    2012-03-01

    Full Text Available Aligned carbon nanotubes (CNT were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  9. Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates

    Science.gov (United States)

    Heepe, Lars; Petersen, Dennis S.; Tölle, Lisa; Wolff, Jonas O.; Gorb, Stanislav N.

    2017-01-01

    Many insects possess adhesive foot pads, which enable reliable attachment to diverse and unpredictable substrates. The function of these adhesive organs was shown to be affected by environmental conditions such as substrate roughness, chemistry, and ambient humidity. So far, the attachment ability of insects and also that of spiders and geckos has been tested on rigid substrates only. However, the natural habitats of climbing animals may provide a variety of substrate stiffness ranging from rigid rock surfaces to soft, biofilm covered substrates. In order to test the effect of different substrate stiffness on the attachment ability of insects, we have performed friction experiments with female and male ladybird beetles Coccinella septempunctata on smooth silicone elastomer substrates of different stiffness, using a centrifugal force tester. Whereas in females, the attachment ability was not affected by the substrate stiffness within the range of tested stiffness, males showed decreasing attachment ability with decreasing substrate stiffness. This sexual dimorphism in attachment ability is explained by the presence of a specialized, discoidal seta type in males, which is not present in females. It is argued that discoidal setae, when softer if compared to the substrate, may show an advantageous peak-free interfacial stress distribution when being pulled off the substrate. For such setae being stiffer if compared the substrate, they potentially show increased edge stress concentration. In this case, lower pull-off forces are expected, in agreement with the experimentally obtained results. With the present study, we demonstrate for the first time that the substrate stiffness may have an effect on the attachment ability of climbing animals, which may also be of relevance for technical and medical applications involving adhesion to soft substrates.

  10. New operating limits for applications with electroactive elastomer: effect of the drift of the dielectric permittivity and the electrical breakdown

    Science.gov (United States)

    Vu-Cong, T.; Jean-Mistral, C.; Sylvestre, A.

    2013-04-01

    Dielectric elastomer generators are a promising solution to scavenge energy from human motion, due to their lightweight, high efficiency low cost and high energy density. Performances of a dielectric elastomer used in a generator application are generally evaluated by the maximum energy which can be converted. This energy is defined by an area of allowable states and delimited by different failure modes such as: electrical breakdown, loss of tension, mechanical rupture and electromechanical instability, which depend deeply on dielectric behaviors of the material. However, there is controversy on the dielectric constant (permittivity) of usual elastomers used for these applications. This paper aims to investigate the dielectric behaviors of two popular dielectric elastomers: VHB 4910 (3M) and Polypower (Danfoss). This study is undertaken on a broad range of temperature. We focus on the influence of pre-stretch in the change of the dielectric constant. An originality of this study is related to the significant influence of the nature of compliant electrodes deposited on these elastomers. Additionally, the electrical breakdown field of these two elastomers has been studied as a function of pre-stretch and temperature. Lastly, thanks to these experiments, analytic equations have been proposed to take into account the influence of the temperature, the pre-stretch and the nature of the compliant electrodes on the permittivity. These analytic equations and the electrical breakdown field were embedded in a thermodynamic model making it possible to define new limits of operation closer to the real use of these elastomers for energy harvesting applications.

  11. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    2013-11-01

    The use of the visible implant elastomer (VIE tagging system in zebrafish (Danio rerio was examined. Two tag orientations (horizontal and vertical at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch. Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus and 5 tag colors (yellow, red, pink, orange, blue were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year and multiple tagging sites (right and left of dorsal fin and pectoral fin base were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/− zebrafish was evaluated after VIE tagging. The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch. VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish. The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.

  12. Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle

    Science.gov (United States)

    deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M

    2008-01-01

    Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.

  13. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  14. Optimization of electrode placement in electromyographic control of dielectric elastomers

    Science.gov (United States)

    Walbran, Scott H.; Calius, Emilio P.; Dunlop, G. Reg; Anderson, Iain A.

    2009-03-01

    Human intention recognition is becoming a key part of powered prosthetics research. With the advent of smart materials, the usefulness of powered prosthetics has increased. Correspondingly, there is a greater need for control technology. Electromyography (EMG) has previously been used to control myoelectric hands; however the approach to electrode placement has been speculative at best. Carpi, Raspopovic and De Rossi have shown that dielectric elastomer actuators (DEAs) can be controlled by a variety of human electrophysiological signals, including EMG. To control a DEA device with multiple degrees of freedom using EMG, multiple electrode sites are required. This paper presents an approach to control an array of DEAs using a series of electrodes and an optimized electrode data filtering scheme to maximize classification accuracy when differentiating between hand grasps. A silicon mould of a human forearm was created with an array of electrodes embedded within it. Data from each electrode site was recorded using the Universal Electrophysiological Mapping (UnEmap) system developed at the University of Auckland Bioengineering Institute for the amplification and filtering of multiple biopotential signals. The recorded data was then processed off-line, in order to calculate spatial gradients; this would determine which electrode sites would give the best bipolar readings. The spatial gradients were then compared to each other in order to find the optimal electrode sites. Several points in the extensor compartment of the forearm were found to be useful in recognizing grasping, while several points in the flexor compartment of the forearm were found to be useful in differentiating between grasps.

  15. Inkjet printing of carbon black electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Schlatter, Samuel; Rosset, Samuel; Shea, Herbert

    2017-04-01

    Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.

  16. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  17. Soft segmented inchworm robot with dielectric elastomer muscles

    Science.gov (United States)

    Conn, Andrew T.; Hinitt, Andrew D.; Wang, Pengchuan

    2014-03-01

    Robotic devices typically utilize rigid components in order to produce precise and robust operation. Rigidity becomes a significant impediment, however, when navigating confined or constricted environments e.g. search-and-rescue, industrial pipe inspection. In such cases adaptively conformable soft structures become optimal. Dielectric elastomers (DEs) are well suited for developing such soft robots since they are inherently compliant and can produce large musclelike actuation strains. In this paper, a soft segmented inchworm robot is presented that utilizes pneumatically-coupled DE membranes to produce inchworm-like locomotion. The robot is constructed from repeated body segments, each with a simple control architecture, so that the total length can be readily adapted by adding or removing segments. Each segment consists of a soft inflatable shell (internal pressure in range of 1.0-15.9 mBar) and a pair of antagonistic DE membranes (VHB 4905). Experimental testing of a single body segment is presented and the relationship between drive voltage, pneumatic pressure and active displacement is characterized. This demonstrates that pneumatic coupling of DE membranes induces complex non-linear electro-mechanical behaviour as drive voltage and pneumatic pressure are altered. Locomotion of a two-segment inchworm robot prototype with a passive length of 80 mm is presented. Artificial setae are included on the body shell to generate anisotropic friction for locomotion. A maximum locomotion speed of 4.1 mm/s was recorded at a drive frequency of 1.5 Hz, which compares favourably to biological counterparts. Future development of the soft inchworm robot are discussed including reflexive low-level control of individual segments.

  18. Electrical breakdown detection system for dielectric elastomer actuators

    Science.gov (United States)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  19. Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting.

    Science.gov (United States)

    Yang, Shengyou; Zhao, Xuanhe; Sharma, Pradeep

    2017-07-14

    Pull-in instability often occurs when a film of a dielectric elastomer is subjected to an electric field. In this work, we concoct a set of simple, experimentally implementable, conditions that render the dielectric elastomer film impervious to pull-in instability for all practical loading conditions. We show that a uniaxially pre-stretched film has a significantly large actuation stretch in the direction perpendicular to the pre-stretch and find that the maximal specific energy of a dielectric elastomer generator can be increased from 6.3 J g-1 to 8.3 J g-1 by avoiding the pull-in instability.

  20. Novel co-agents for improved properties in peroxide cure of saturated elastomers

    NARCIS (Netherlands)

    Alvarez Grima, M.M.

    2007-01-01

    Peroxide vulcanisation is a widely used cure system for elastomers and offers many possibilities for use, mainly because of the availability of co-agents and scorch retarders. The range of applications of peroxide cure could significantly be widened, if certain mechanical properties could be

  1. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  2. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Science.gov (United States)

    2010-07-12

    ... Foreign-Trade Zones Board Grant of Authority For Subzone Status Materials Science Technology, Inc... Materials Science Technology, Inc., located in Conroe, Texas, (FTZ Docket 46-2009, filed October 27, 2009... manufacturing and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  3. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2015-01-01

    In practice, the electrical breakdown strength of dielectric electroactive polymers (DEAPs)determines the upper limit for transduction. During DEAP actuation, the thickness of the elastomer decreases, and thus the electrical field increases and the breakdown process is determined by a coupled ele...

  4. Effects of plasticization of a soft silicone for dielectric elastomer actuation

    Science.gov (United States)

    Galantini, Fabia; Carpi, Federico; Gallone, Giuseppe

    2013-10-01

    Dielectric elastomer (DE) actuators exploit electrically induced deformations of insulating rubbery materials, as a means to transduce electrical energy into mechanical work. To enable large deformations, recent studies have demonstrated the advantage of either using elastomers that suppress pull-in electromechanical instability or driving the actuator at the verge of instability while still preventing it. Whenever these strategies are not applicable, softening the material remains the mechanical approach of choice to enable large deformations at relatively low electric fields. As the most common approach to lower the elastic modulus of an elastomer is the use of plasticizers, understanding their effects also on other properties of the elastomer is important, especially to actuator designers. Aimed at gaining insights in this respect, this paper presents an extensive chemical-physical, dielectric, mechanical and electromechanical characterization, for different amounts of a plasticizer, of one of the softest commercial silicones demonstrated for DE actuation (elastic modulus of the order of 100 kPa). The results showed the interplaying effects of a variable addition of the plasticizer, elucidating key features that could thus serve as a guide to the design of actuators for specific needs.

  5. Cross-linking and modification of saturated elastomers using functionalized azides

    NARCIS (Netherlands)

    Zielinska, A.J.

    2011-01-01

    The main advantage of saturated elastomers, such as EPM and EPDM over their unsaturated counter-parts is the absence of carbon-carbon unsaturation in the main polymer chain, resulting in excellent ozone and heat resistance. A consequent disadvantage of the absence of unsaturation is the lack of

  6. Preliminary results on the fatigue life characterization of a styrenic dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Chen, Yi; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Recently, a styrenic rubber membrane (commercialized under the name of "THERABAND YELLOW 11726") demonstrated excellent electromechanical properties for the development of high power density and highly efficient dielectric elastomer transducers (DETs). In particular, in an experimental application as generator, an inflated circular diaphragm DET based on this material made it possible to consistently convert pneumatic energy into electricity at a maximum energy density per cycle and power density greater than 400 J/kg and 650 W/kg, respectively, with even higher numbers being expected for DETs configured so as to have the material working in uniform states of deformation. As for any other existing dielectric elastomer material, these experimented performances can however be sustained for a limited number of cycles only, after which the DET will fail irreversibly. To date, very little information is available on the fatigue life performances of dielectric elastomer materials and of the transducers made thereof. Having identified the electrical breakdown as the most probable mode of DET failure, this paper reports for the first time on a set of lifetime constant-electric-stress tests conducted on the considered styrenic dielectric elastomer membrane. Specifically, the paper starts with a description of the employed experimental set-up and procedures. Then, it summarizes the obtained experimental results. Finally, it concludes with a discussion on how the acquired data could be used in a design procedure to find optimal tradeoffs between DET performance and lifetime/reliability.

  7. High dielectric permittivity elastomers from well-dispersed expanded graphite in low concentrations

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hassouneh, Suzan Sager; Kostrzewska, Malgorzata

    2013-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the last years due to their use in for example dielectric electroactive polymers. For this particular use, both the electrically insulating properties - as well as the mechanical...

  8. Numerical study of liquid crystal elastomers by a mixed finite element method

    KAUST Repository

    LUO, C.

    2011-08-22

    Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional Bladon-Terentjev-Warner model and the one-constant Oseen-Frank energy expression are combined to study the liquid crystal elastomer. We also impose two material constraints, the incompressibility of the elastomer and the unit director norm of the liquid crystal. We prove existence of minimiser of the energy for the proposed model. Next we formulate the discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values of the discrete linearised system are then related to the smallest singular values of certain matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the two material constraints are proved under the assumption that the inf-sup conditions hold. Finally numerical simulations of the clamped-pulling experiment are presented for elastomer samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both cases. The stripe domain phenomenon, however, is not observed, which might be due to the relative coarse mesh employed in the numerical experiment. Possible improvements are discussed that might lead to the recovery of the stripe domain phenomenon. © Copyright Cambridge University Press 2011.

  9. Inflated dielectric elastomer actuator for eyeball's movements: fabrication, analysis and experiments

    Science.gov (United States)

    Liu, Yanju; Shi, Liang; Liu, Liwu; Zhang, Zhen; Leng, Jinsong

    2008-03-01

    Bio-mimetic actuators are inspired to the human or animal organ and they are aimed at replicating actions exerted by the main organic muscles. We present here an inflated dielectric Electroactive Polymer actuator based on acrylic elastomer aiming at mimicing the ocular muscular of the human eye. Two sheets of polyacrylic elastomer coated with conductive carbon grease are sticked to a rotatable backbone, which function like an agonist-antagonist configuration. When stimulating the two elastomer sheets separately, the rotatable mid-arc of the actuator is capable of rotating from -50° to 50°. Experiments shows that the inflated actuator, compared with uninflated one, performs much bigger rotating angle and more strengthened. Connected with the actuator via an elastic tensive line, the eyeball rotates around the symmetrical axes. The realization of more accurate movements and emotional expressions of our native eye system is the next step of our research and still under studied. This inflated dielectric elastomer actuator shows as well great potential application in robofish and adaptive stucture.

  10. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy

    Science.gov (United States)

    Okano, Makoto; Watanabe, Shinichi

    2016-12-01

    Elastomers are one of the most important materials in modern society because of the inherent viscoelastic properties due to their cross-linked polymer chains. Their vibration-absorbing and adhesive properties are especially useful and thus utilized in various applications, for example, tires in automobiles and bicycles, seismic dampers in buildings, and seals in a space shuttle. Thus, the nondestructive inspection of their internal states such as the internal deformation is essential in safety. Generally, industrial elastomers include various kinds of additives, such as carbon blacks for reinforcing them. The additives make most of them opaque in a wide spectral range from visible to mid-infrared, resulting in that the nondestructive inspection of the internal deformation is quite difficult. Here, we demonstrate transmission terahertz polarization spectroscopy as a powerful technique for investigating the internal optical anisotropy in optically opaque elastomers with conductive additives, which are transparent only in the terahertz frequency region. The internal deformation can be probed through the polarization changes inside the material due to the anisotropic dielectric response of the conductive additives. Our study about the polarization-dependent terahertz response of elastomers with conductive additives provides novel knowledge for in situ, nondestructive evaluation of their internal deformation.

  11. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  12. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  13. A comperative study of different techniques for microstructural characterization of iol extended thermoplastic elastomer blends

    NARCIS (Netherlands)

    Sengupta, P.; Noordermeer, Jacobus W.M.

    2005-01-01

    This paper gives a relative comparison of different microscopic methods that are presently used to visualize polymer blend morphologies, versus the possibility to visualize the three-dimensional structure of the blends with electron tomography. Oil extended thermoplastic elastomer (TPE) blends based

  14. Investigation of air entrapment and weld line defects in micro injection moulded thermoplastic elastomer micro rings

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Tosello, Guido; Calaon, Matteo

    2015-01-01

    The micro injection moulding (μIM) process for the production of micro rings in thermoplastic elastomers (TPE) was investigated and optimized. The objective was to minimize the formation of air entrapments and the depth of micro weld line created on the surface of the TPE micro moulded rings...

  15. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...

  16. Switchable bumps of a bead-embedded elastomer surface with variable adhesion.

    Science.gov (United States)

    Ohzono, T; Teraoka, K

    2017-12-13

    An extremely simple structural design of a composite material composed of an elastomer sheet and hard beads embedded at the surface is proposed to realize a shape-tunable surface; it reversibly forms bumps/undulations in response to in-plane tensile strain applied to the surface. Tribological properties such as adhesion therefore become switchable.

  17. Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties

    NARCIS (Netherlands)

    Sengupta, P.; Sengers, W.G.F.; Noordermeer, Jacobus W.M.; Picken, S.J.; Gotsis, A.D.

    2004-01-01

    The linear viscoelastic properties of two types of olefinic thermoplastic elastomer blends were studied using dynamic rheology. The first type consists of a blend of PP, SEBS and oil and has a co-continuous morphology. The second type consists of vulcanised EPDM particles dispersed in a PP matrix.

  18. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    Directory of Open Access Journals (Sweden)

    Sara M. Zayed

    2014-01-01

    Full Text Available Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2 on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n=21. One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624, tensile strength (ASTM D412, percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α=0.05. Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer.

  19. Geometry optimization of tubular dielectric elastomer actuators with anisotropic metallic electrodes

    DEFF Research Database (Denmark)

    Rechenbach, Björn; Willatzen, Morten; Sarban, R.

    2014-01-01

    This paper presents an experimentally verified static three-dimensional model for core free tubular dielectric elastomer actuators with anisotropic compliant metal electrodes. Due to the anisotropy of the electrodes, the performance (force versus voltage, force versus stroke, and stroke versus...

  20. Tensile and impact properties of three-component PP/wood/elastomer composites

    Directory of Open Access Journals (Sweden)

    B. Pukanszky

    2012-03-01

    Full Text Available Polypropylene (PP was reinforced with wood flour and impact modified with elastomers to increase stiffness and impact resistance simultaneously. Elastomer content changed in four (0, 5, 10 and 20 wt%, while that of wood content in seven steps, the latter from 0 to 60 wt% in 10 wt% steps. Structure and adhesion were controlled by the addition of functionalized (maleated polymers. Composites were homogenized in a twin-screw extruder and then injection molded to tensile bars. Fracture resistance was characterized by standard and instrumented impact tests. The results showed that the components are dispersed independently of each other even when a functionalized elastomer is used for impact modification, at least under the conditions of this study. Impact resistance does not change much as a function of wood content in PP/wood composites, but decreases drastically from the very high level of the PP/elastomer blend to almost the same value obtained without impact modifier in the three-component materials. Increasing stiffness and fiber related local deformation processes led to small fracture toughness at large wood content. Micromechanical deformation processes depend mainly on the strength of PP/wood interaction; debonding and pull-out take place at poor adhesion, while fiber fracture dominates when adhesion is strong. Composites with sufficiently large impact resistance cannot be prepared in the usual range of wood contents (50–60 wt%.

  1. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    Science.gov (United States)

    Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.

  2. Antibacterial activity of antibiotic-soaked polyvinylpyrrolidone-grafted silicon elastomer hydrocephalus shunts

    NARCIS (Netherlands)

    Boelens, J. J.; Tan, W. F.; Dankert, J.; Zaat, S. A.

    2000-01-01

    If shunts, inserted for the relief of hydrocephalus, are pretreated with antimicrobials, the incidence of shunt-associated infections (SAI) may be reduced. The duration of the antibacterial activity of shunts, made from conventional silicon elastomer (SE) or from SE grafted with the hydrogel

  3. Semicylindrical acoustic transducer from a dielectric elastomer film with compliant electrodes.

    Science.gov (United States)

    Sugimoto, Takehiro; Ono, Kazuho; Ando, Akio; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku

    2011-08-01

    A semicylindrical acoustic transducer was constructed using a dielectric elastomer film with compliant electrodes that is an electroactive polymer composed of a polyurethane elastomer base and polyethylene dioxythiophene/polystyrene sulfonate electrodes. The use of this dielectric elastomer is advantageous because polyurethane is a common material that keeps its shape without any rigid frame. Because the dielectric elastomer films are essentially incompressible, electric-field-induced thickness changes are usually translated into much larger changes of the film area and side length. Here it is proposed that this change in side length can be utilized for sound generation when the film is bent into a semicylindrical shape. Accordingly, a semicylindrical acoustic transducer was fabricated using a film of thickness of 300 μm and its acoustic characteristics were investigated. The transducer can be operated at low applied voltages by reducing the film thickness, as long as the film is thick enough to generate sufficient force to overcome sound radiation impedance. The second harmonic distortion of the transducer was also investigated as a function of the ratio of the direct current bias voltage to the alternating current audio signal amplitude.

  4. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...

  5. Color stability and colorant effect on maxillofacial elastomers. Part I: colorant effect on physical properties.

    Science.gov (United States)

    Haug, S P; Andres, C J; Moore, B K

    1999-04-01

    The average clinical life span of a maxillofacial prosthesis is approximately 6 months, at which point it needs to be refabricated, mainly because of degradation of the color and physical properties of the prosthesis. This first part of a 3-part study evaluated the effect of coloring agents on the physical properties of maxillofacial elastomers. Five dumbbell-shaped and 5 trouser-shaped specimens were fabricated for each of the combinations of the 3 elastomers (Silastic medical adhesive type A, Silastic 4-4210, and Silicone A-2186) and 6 colorants (dry earth pigments, rayon fiber flocking, artist's oil paints, kaolin, liquid cosmetics, and no-colorants), for a total of 180 specimens. Evaluations of hardness and tear strength were made with the trouser-shaped specimens. Evaluations of the ultimate tensile strength and the percentage elongation were made with the dumbbell-shaped specimens. A within elastomer analysis compared the 6 colorants using a 1-way analysis of variance for each of the 4 physical properties. When significant differences were observed, the Student-Newman-Keuls multiple range test was used to identify differences between groups at a significance level of.05. Physical properties of maxillofacial elastomers were changed by the incorporation of coloring agents. Dry earth pigments, kaolin, and rayon flocking acted as a solid filler without bonding to the Silicone, and artists' oils and liquid cosmetics acted as a liquid phase without bonding to the silicone matrix. No clearly superior colorant-elastomer combination was demonstrated in all the tests in this study.

  6. Effect of chemical disinfectants and accelerated aging on maxillofacial silicone elastomers: An In vitro Study

    Directory of Open Access Journals (Sweden)

    Anna Serene Babu

    2018-01-01

    Full Text Available Context: Maxillofacial prostheses need frequent refabrication due to degradation of color and deterioration of physical properties of the elastomer. Aims: This study attempted to evaluate the change in color stability, Shore A hardness, and surface roughness of two maxillofacial silicones, A-2186 and Cosmesil M511, when submitted to chemical disinfection and accelerated aging. Settings and Design: This was a comparative in vitro study. Subjects and Methods: The materials included two silicone elastomers – A-2186 and Cosmesil M511 (Factor II Incorporated – functional intrinsic red pigment and three disinfectants – Fittydent tablet, chlorhexidine gluconate 4%, and neutral soap. The specimens in each group of elastomer were evaluated initially for color, hardness, and surface roughness, which were further divided into subgroups and subjected to disinfection and accelerated aging. The evaluation of color was performed with the help of an ultraviolet reflectance spectrophotometer. Shore A hardness was evaluated using a durometer and surface roughness, with a digital roughness tester followed by scanning electron microscopy analysis. Statistical Analysis Used: Analysis of variance and Tukey's multiple comparison test were used for statistical analysis. Results: Accelerated aging caused a significant decrease in color, increase in Shore A hardness, and variation in surface roughness in both silicone elastomer groups. Chemical disinfection presented significant changes in color and surface roughness whereas no significant effect on Shore hardness, irrespective of the disinfectant used. Conclusions: The maxillofacial silicone elastomers presented deterioration in color, hardening, and significant variations in surface roughness when subjected to chemical disinfection and accelerated aging, which provides a valid baseline for future research.

  7. Effect of newly developed pigments and ultraviolet absorbers on the color change of pigmented silicone elastomer.

    Science.gov (United States)

    Kheur, Mohit G; Kakade, Dilip; Trevor, Coward J; Lakha, Tabrez Amin; Sethi, Tania

    2017-01-01

    The aim and objective of the study is to evaluate effect of ultraviolet (UV) stabilizer (UV absorber Chimassorb 81) on color change of pigmented silicone elastomer when commercially available (red and yellow), and newly developed pigments (sicotrans red and sicopal brown) were used. Two commercially available pigments - red (P112 Brilliant Red) and yellow (P106 Yellow) and two newly developed pigments - sicotrans red and sicopal brown were studied. In total eight groups made up of nine samples each were fabricated using elastomer with the combinations of the above pigments and UV stabilizer (Chimassorb 81). Groups 1, 3, 5, and 7 contain elastomer in combination with sicotrans red, sicopal brown, yellow and red pigments, respectively. Similarly, groups 2, 4, 6, and 8 along with elastomer and pigments (sicotrans sed, sicopal brown, yellow and red, respectively) contain the UV stabilizer (Chimassorb 81). Samples were subjected to aging in an accelerated weathering chamber (Weather-Ometer). Color values CIE (Commission Internationale d'Eclairage) L*, a*, and b * were measured at baseline and after 1000 h of weathering. Change in color (Delta E) was calculated. All groups showed a significant color change at 1000 h. Groups 1, 2, 3, and 4 showed a statistically significant less change in both colors (sico trans red and sicopal brown) compared to groups 5,6,7, and 8 (commercial pigments-Red and Yellow). Overall, the change in the color in groups with the UV stabilizer (Chimassorb) was less when compared to the groups where the stabilizer was not used. The newly developed pigment led to increased color stability as compared to commercially available pigments. Addition of UV stabilizer, Chimassorb led to a further reduction in color change of the pigmented elastomer.

  8. The preparation and physical properties of polysulfide-based elastomers through one-pot thiol-ene click reaction

    Directory of Open Access Journals (Sweden)

    Y. W. Quan

    2013-07-01

    Full Text Available In this paper, polysulfide-based elastomers were successfully prepared through a simple one-pot thiol-ene click reaction of the liquid polysulfide oligomer with bisphenol-A diacrylate resin. Real-time Fourier transform infrared spectroscopy (FTIR analysis showed that the molecular weight of the liquid polysulfide oligomer had no effect on mercaptan functional group conversion. The obtained elastomers continued to keep low temperature flexibility of polysulfide except Elastomer-LP3, which was due to higher content of bisphenol-A structure. All the samples had a tensile strength of over 0.7 MPa, which was comparable to that of polysulfide polymer cured by metal oxide. Moreover, the samples exhibited higher thermal stability than metal oxide cured polysulfide. This vulcanization methodology will provide a fast, efficient, and environmentally friendly approach (without metal oxides and plasticizers for preparing polysulfide elastomers.

  9. More than 10-fold increase in the actuation strain of silicone dielectric elastomer actuators by applying prestrain

    Science.gov (United States)

    Akbari, S.; Rosset, Samuel; Shea, Herbert R.

    2013-04-01

    Silicone based dielectric elastomer actuators are preferred for reliable and fast actuation due to their negligible viscoelastic behavior. However, it is more challenging to achieve large deformation actuation using this class of polymers compared to the traditionally used VHB films. In this paper, we present theoretical guidelines for improving actuation strain of silicone based dielectric elastomer actuators. The electromechanical behavior of two different silicones is compared and it is demonstrated that the softest elastomer is not necessarily the best choice to achieve large deformation. Lastly, we have experimentally shown that uniaxially prestretching the elastomer with an optimum prestretch ratio enhances the actuation strain up to 10 times. Actuation strain of up to 80% on 100 × 100 μm2 microactuators is generated.

  10. Submicro foaming in biopolymers by UV pulsed laser irradiation

    Science.gov (United States)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  11. Impact of X-ray irradiation on PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Saman, E-mail: saman.khan343@gmail.com [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Rafique, Muhammad Shahid [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Anjum, Safia [Physics Department, Lahore College for Woman University, Lahore (Pakistan); Hayat, Asma [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Iqbal, Nida [Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia (UTM) (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PMMA thin films were deposited at 300 Degree-Sign C and 500 Degree-Sign C using PLD technique. Black-Right-Pointing-Pointer These films were irradiated with different fluence of laser produced X-rays. Black-Right-Pointing-Pointer Irradiation affects the ordered packing as well as surface morphology of film. Black-Right-Pointing-Pointer Hardness of film decreases up to certain value of X-ray fluence. Black-Right-Pointing-Pointer Absorption in UV-visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 Degree-Sign C and 500 Degree-Sign C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm{sup -2}. Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV-vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 Degree-Sign C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 Degree-Sign C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV-visible region.

  12. THE STUDY OF THE TECHNICAL PROPERTIES OF MEMBRANES HIGH-STYRENE THERMOPLASTIC ELASTOMER

    Directory of Open Access Journals (Sweden)

    A. A. Sedykh

    2014-01-01

    Full Text Available Summary. In the prevention of gastric diseases flexible optical fiber harness with camera and lighting after its extraction from the stomach is subjected to disassembly and continuous sterilization. Protection flexible optical fiber tourniquet, disposable and transparent sheath reduces the duration of the disassembly and sterilization. As the material for the shell of the recommended developed by the Voronezh branch of the FSUE "NIISK" high-styrene block copolymers Styrotep-65. The aim of this work was the development of technologies for films, protective shells of TEC and estimation of their technical parameters. As a benchmark comparison was tested extruded film Styrotep-65. The orientation of the macromolecules of the polymer along the sleeve during extraction provided the anisotropy of the properties of the film along and across the sleeves. In the study of properties of solutions of thermoplastic elastomer is established that the increase in solution viscosity provides greater film thickness in a single dunking them in forms. We investigated the effect of the concentration of a solution Styrotep-65 in toluene and the speed of rotation of a spindle of a Brookfield viscometer PV-E on their viscosity. With increasing concentration of the polymer solution with 19,0 to 26.8 % of the mass. the level of viscosity was increased from 104 to 330 MPa•S. In the interval of increasing the rotational speed of the spindle from 2.0 to 10.0 rpm viscosity solutions is not dependent on the concentration increased due to manifestations of thixotropy. A further increase in the speed of rotation of the spindle 10 to 100 rpm did not affect the viscosity of the solutions. This is true for ideal fluids. Film cast on a horizontal surface of the cellophane from a 10 % toluene solution, was characterized by lower strength than extruded, but with a large elongation at break. Determined the impact of the multiplicity of dipping forms in solution and polymer solution

  13. Preparation and electro-response of chitosan-g-poly (acrylic acid) hydrogel elastomers with interpenetrating network

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianli [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi' an, 710062 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi' an, 710062 (China); Gao, Ling-xiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi' an, 710062 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi' an, 710062 (China); Han, Xuewu; Chen, Tao; Luo, Jue; Liu, Kaiqiang; Gao, Ziwei; Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi' an, 710062 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi' an, 710062 (China)

    2016-02-01

    In this article, novel chitosan-g-poly (acrylic acid) hydrogel elastomers were successfully sythesised by grafting chitosan (CTS) onto poly acrylic acid (PAA) through radical polymerization in the presence/absence of direct current electric field. Their structure and electro-response were evaluated through scanning electron microscopy (SEM), infrared spectroscopy (IR), and dynamic mechanical analyser (DMA), respectively. Stress-strain test showed that the toughness of the chitosan-g-PAA elastomer is higher than the PAA gel. The result demonstrates the elastomers obtained in the presence/absence of electric field with similar chemical composition possess different microstructure. The positive electro responsive effect appeared on the elastomers, and both of storage modulus increment and increment sensitivity yielded maximum value at the AA concentration of 14.09 wt% under the applied electric field of 1.5 kV/mm. Thermo gravimetry and differential scanning calorimetry (TG-DSC) showed the elastomers cured under an applied electric field have stronger intramolecular bonding and higher cross-linking density. - Highlights: • The chitosan-g-poly (acrylic acid) hydrogel elastomers have been prepared. • They have ordered structure and positive electro-response under an electric field. • The maximum electro-response occurs near or at the AA wt% of 14.09 under 1.5 kV/mm.

  14. Color stability and colorant effect on maxillofacial elastomers. Part II: weathering effect on physical properties.

    Science.gov (United States)

    Haug, S P; Moore, B K; Andres, C J

    1999-04-01

    The clinical life of a maxillofacial prosthesis averages about 6 months, before it needs to be refabricated. Degradation of the color and physical properties of the prosthesis are the principle reasons for replacement. This second part of a 3-part in vitro investigation evaluated the change in physical properties of popular colorant-elastomer combinations as a result of weather exposure. Fifteen dumbbell-shaped and 15 trouser-shaped specimens were fabricated for each of the 3 elastomers (Silastic medical adhesive type A, Silastic 4-4210, and Silicone A-2186) and 6 colorant combinations (dry earth pigments, rayon fiber flocking, artist's oil paints, kaolin, liquid cosmetics, and no-colorants) for a total of 540 specimens. The 15 dumbbell-shaped and trouser-shaped specimens of each elastomer colorant combination were separated into 5 of each shape among 3 test condition groups (control, time passage, and natural weathering). Control specimens were evaluated within 1 month of fabrication. The time passage group was sealed in glass containers and kept in the dark for 6 months before testing. The natural-weathering groups were placed on the roof of the dental school for 6 months and exposed to sunlight and weathering. Evaluations of hardness and tear strength were made on trouser-shaped specimens, and evaluations of the ultimate tensile strength and percentage elongation on dumbbell-shaped specimens. Physical property data for each elastomer-colorant combination were subjected to a 1-way analysis of variance to examine effects among the test conditions. When significant differences were observed, the Student-Newman-Keuls multiple range test was performed to identify differences in elastomer-colorant combinations among each test condition at a significance level of .05. Exposure to weathering and time changes of the physical properties of many colorant-elastomer combinations indicated that properties of a clinical prosthesis can change with time. The addition of

  15. Swift heavy ion irradiation of MgB{sub 2} thin films: a comparison between gold and silver ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Himanshu [Superconductivity Division, National Physical Laboratory, Dr K S Krishnan Marg, New Delhi 110012 (India); Bhatt, Ravindra K [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Agrawal, H M [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Kushwaha, R P S [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Kishan, H [Superconductivity Division, National Physical Laboratory, Dr K S Krishnan Marg, New Delhi 110012 (India)

    2007-04-04

    The effect of 200 MeV Au ion irradiation on the temperature and field dependence of the critical current density, J{sub c}, of MgB{sub 2} thin films on sapphire substrates is reported. The results have been presented in comparison with those obtained after 200 MeV Ag ion irradiation of a similar film. After irradiation, the critical temperature T{sub c} decreased for all samples except for the one with a higher dose of gold ions, where it increased marginally. This observation was also confirmed from measurements of magnetization as a function of temperature with a constant applied field of 10{sup -2} T. The critical current density, J{sub c}, was estimated from the widths of magnetization loops using Bean's critical state model. It has been found that J{sub c} increases after irradiation, the enhancement being more pronounced for the Au ion irradiation. The higher enhancement of J{sub c} by Au ion irradiation may be attributed to higher flux-pinning efficiency of the irradiated samples. It has been concluded that, although the flux-line shear (FLS) model satisfactorily explains the silver ion irradiation induced enhancement of J{sub c}, some other mechanisms also seem to play a role in the J{sub c} enhancement by gold ion irradiation.

  16. Effects of gamma irradiation on deteriorated paper

    Science.gov (United States)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  17. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  18. High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: Actuation processes

    Science.gov (United States)

    Koh, Soo Jin Adrian; Keplinger, Christoph; Kaltseis, Rainer; Foo, Choon-Chiang; Baumgartner, Richard; Bauer, Siegfried; Suo, Zhigang

    2017-08-01

    A dielectric elastomer transducer is a deformable capacitor, and is under development as a sensor, actuator, or generator. Among various geometric configurations, laterally-constrained transducer, also known as pure-shear transducer, is easy to implement and effective to couple mechanical force and electrical voltage. This analytical study reveals that lateral pre-stretch enhances actuation, far exceeding previously reported actuation strokes. Laterally-constrained transducers exhibit complex electromechanical behavior. As voltage increases, an actuator may undergo electromechanical instability, or form wrinkles, or suffer electrical breakdown. We survey the behavior of actuators under all possible states of pre-stretches, and identify five modes of actuation. Our analysis predicts that laterally-constrained actuators can achieve actuation stroke of 1000% for an acrylic elastomer, and 230% for natural rubber. This analysis opens the door to design actuators of simple geometry capable of a very large range of electromechanical actuation.

  19. Post-Cure Studies on Solid Silicone Elastomer: DC745U

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Acosta, Denisse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Janicke, Michael T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoder, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-17

    DC745U is a silicone elastomer originally manufactured by Dow Corning under the name of Silastic® DC745U at their manufacturing facility in Kendaville, Indiana. Currently DC745U is available through Xiameter® or Dow Corning’s distributor R. D. Abbott Company. This silicone elastomer is used in numerous parts of weapon systems, including outer pressure pads, aft cap support in W80 and pressure pad in the B61. DC745U is a proprietary formulation and limited information about its composition and properties is provided to the customer. Thus, Los Alamos National Laboratory and Lawrence Livermore National Laboratory have performed a variety of characterization experiments on this material.

  20. Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Ramses V.; Whitesides, George M.

    2017-10-25

    Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.

  1. A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers

    Science.gov (United States)

    Schümann, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S.

    2017-09-01

    Magnetorheological elastomers are a type of smart hybrid material where elastic properties of a soft elastomer matrix are combined with magnetic properties of magnetic micro particles. This combination leads to a complex interplay of magnetic and elastic phenomena, of which the magnetorheological effect is the best described. In this paper, magnetically hard NdFeB-particles were used to obtain remanent magnetic properties. X-ray microtomography has been utilised to analyse the particle movement induced by magnetic fields. A particle tracking was performed; thus, it was possible to characterise the movement of individual particles. Beyond that, a comprehensive analysis of the orientation of all particles was performed at different states of magnetisation and global particle arrangements. For the first time, this method was successfully applied to a magnetorheological material with a technically relevant amount of magnetic NdFeB-particles. A significant impact of the magnetic field on the rotation and translation of the particles was shown.

  2. Actomyosin pulsation and flows in an active elastomer with turnover and network remodeling.

    Science.gov (United States)

    Banerjee, Deb Sankar; Munjal, Akankshi; Lecuit, Thomas; Rao, Madan

    2017-10-24

    Tissue remodeling requires cell shape changes associated with pulsation and flow of the actomyosin cytoskeleton. Here we describe the hydrodynamics of actomyosin as a confined active elastomer with turnover of its components. Our treatment is adapted to describe the diversity of contractile dynamical regimes observed in vivo. When myosin-induced contractile stresses are low, the deformations of the active elastomer are affine and exhibit spontaneous oscillations, propagating waves, contractile collapse and spatiotemporal chaos. We study the nucleation, growth and coalescence of actomyosin-dense regions that, beyond a threshold, spontaneously move as a spatially localized traveling front. Large myosin-induced contractile stresses lead to nonaffine deformations due to enhanced actin and crosslinker turnover. This results in a transient actin network that is constantly remodeling and naturally accommodates intranetwork flows of the actomyosin-dense regions. We verify many predictions of our study in Drosophila embryonic epithelial cells undergoing neighbor exchange during germband extension.

  3. Wide angle scattering study of nanolayered clay/gelatin electrorheological elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; Rozynek, Z; Zhou, M; Fossum, J O [Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, NO-7491, Trondheim (Norway)], E-mail: baoxiang.wang@ntnu.no, E-mail: jon.fossum@ntnu.no

    2009-02-01

    In the general context of self-assembly of nanolayered clay, we have studied both kaolinite and montmorillonite guided assembly into chain-like structures in gelatin hydrogel. The electrorheological (ER) elastomers, containing clay particles which dispersed in gelatin/water matrix, were prepared with or without the applied DC electric field and cross-linked polymerized with the help of formaldehyde. The experimental techniques include synchrotron X-ray scattering, atomic force microscopy, optical microscopy. The aim is to produce a water-based, low-cost and environmentally friendly ER hydrogel. The wide-angle x-ray scattering (WAXS) patterns observed from clay/gelatin ER elastomers curing in the DC field are highly anisotropic and show differences clearly compared to that without curing in the field. Both clay nanolayers have preferential orientation in gelatine hydrogel along the direction of electric field.

  4. Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes.

    Science.gov (United States)

    Lee, Ye Rim; Kwon, Hyungho; Lee, Do Hoon; Lee, Byung Yang

    2017-09-27

    We demonstrate a dielectric elastomer actuator (DEA) with a high areal strain value of 146% using hybrid electrodes of silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). The addition of a very small amount of SWCNTs (∼35 ng mm-2) to a highly resistive AgNW network resulted in a remarkable reduction of the electrode sheet resistance by three orders, increasing the breakdown field by 183% and maximum strain, while maintaining the reduction of optical transmittance within 11%. The DEA based on our transparent and stretchable hybrid electrodes can be easily fabricated by a simple vacuum filtration and transfer process of the electrode film on a pre-strained dielectric elastomer membrane. We expect that our approach will be useful in the future for fabricating stretchable and transparent electrodes in various soft electronic devices.

  5. Magnetically Responsive Elastomer-Silicon Hybrid Surfaces for Fluid and Light Manipulation.

    Science.gov (United States)

    Yang, Zining; Park, Jun Kyu; Kim, Seok

    2017-11-24

    Stimuli-responsive surfaces with tunable fluidic and optical properties utilizing switchable surface topography are of significant interest for both scientific and engineering research. This work presents a surface involving silicon scales on a magnetically responsive elastomer micropillar array, which enables fluid and light manipulation. To integrate microfabricated silicon scales with ferromagnetic elastomer micropillars, transfer printing-based deterministic assembly is adopted. The functional properties of the surface are completely dictated by the scales with optimized lithographic patterns while the micropillar array is magnetically actuated with large-range, instantaneous, and reversible deformation. Multiple functions, such as tunable wetting, droplet manipulation, tunable optical transmission, and structural coloration, are designed, characterized, and analyzed by incorporating a wide range of scales (e.g., bare silicon, black silicon, photonic crystal scales) in both in-plane and out-of-plane configurations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inorganic-organic elastomer nanocomposites from integrated ellipsoidal silica-coated hematite nanoparticles as crosslinking agents

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ferrer, A; Mezzenga, R [ETH Zurich, Institute of Food, Nutrition and Health, Food and Soft Materials Science Group, Schmelzbergstrasse 9, 8092 Zurich (Switzerland); Reufer, M; Schurtenberger, P; Dietsch, H, E-mail: herve.dietsch@unifr.ch [Adolphe Merkle Institute and Fribourg Center for Nanomaterials, University of Fribourg, Route de l' Ancienne Papeterie, PO Box 209, 1723 Marly 1 (Switzerland)

    2010-05-07

    We report on the synthesis of nanocomposites with integrated ellipsoidal silica-coated hematite (SCH) spindle type nanoparticles which can act as crosslinking agents within an elastomeric matrix. Influence of the surface chemistry of the hematite, leading either to dispersed particles or crosslinked particles to the elastomer matrix, was studied via swelling, scattering and microscopy experiments. It appeared that without surface modification the SCH particles aggregate and act as defects whereas the surface modified SCH particles increase the crosslinking density and thus reduce the swelling properties of the nanocomposite in good solvent conditions. For the first time, inorganic SCH particles can be easily dispersed into a polymer network avoiding aggregation and enhancing the properties of the resulting inorganic-organic elastomer nanocomposite (IOEN).

  7. EXPERIMENTAL INVESTIGATION OF THE ADHESIVE CONTACT WITH ELASTOMERS: EFFECT OF SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Lars Voll

    2015-04-01

    Full Text Available Adhesion between an elastomer and a steel indenter was studied experimentally and described with an analytical model. Cylindrical indenters having different roughness were brought into contact with an elastomer with various normal forces. After a “holding time”, the indenter was pulled with a constant velocity, which was the same in all experiments. We have studied the regime of relatively small initial normal loadings, large holding times and relatively large pulling velocities, so that the adhesive force did not depend on the holding time but did depend on the initially applied normal force and was approximately proportional to the pulling velocity. Under these conditions, we found that the adhesive force is inversely proportional to the roughness and proportional to the normal force. For the theoretical analysis, we used a previously published MDR-based model.

  8. A visoelastic constitutive model for magneto-mechanical coupling of magnetorheological elastomers

    Science.gov (United States)

    Kou, Yong; Jin, Ke; Xu, Liqin; Zheng, Xiaojing

    2017-11-01

    This paper focuses on the behavior of field-dependent viscoelasticity for magnetorheological elastomers (MREs). A novel nonlinear constitutive model for magneto-viscoelastic behavior of MREs is proposed. The model considered here is thermodynamically motivated and based on the second law. An extended three-parameter standard linear solid model is proposed to describe the viscoelastic behavior of MREs, where the effect of particles on the elastomers at zero field is taken into account. Furthermore, the nonlinear magnetization and the local magnetic field within the ferromagnetic particle are incorporated to describe field-dependent constitutive behavior based on the dipole model. Then a set of analytical expressions of the constitutive law for MREs are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. The quantitative results demonstrate that this model can well capture the constitutive relation under both quasi-static and dynamic shear loading.

  9. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    Science.gov (United States)

    Modzelewski, Tomasz

    The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion

  10. Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy.

    Science.gov (United States)

    Russo, Christopher J; Passmore, Lori A

    2014-12-12

    Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that α helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of α-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures. Copyright © 2014, American Association for the Advancement of Science.

  11. Fluorogel Elastomers with Tunable Transparency, Elasticity, ShapeMemory, and Antifouling Properties**

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X; Dunn, SS; Kim, P; Duffy, M; Alvarenga, J; Aizenberg, J

    2014-03-18

    Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

  12. Fluorogel Elastomers with Tunable Transparency, Elasticity, Shape-Memory, and Antifouling Properties**

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xi; Dunn, Stuart; Kim, Philseok; Duffy, Meredith; Alvarenga, Jack; Aizenberg, Joanna

    2014-04-22

    Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

  13. Ionic Liquids Applied to Improve the Dispersion of Coagent Particles in an Elastomer

    OpenAIRE

    Magdalena Maciejewska; Marian Zaborski

    2013-01-01

    The aim of this work was to study the activity of several ionic liquids (alkylimidazolium salts) that are used to improve the dispersion of coagent particles in peroxide-cross-linked hydrogenated acrylonitrile butadiene elastomer (HNBR). Hydrotalcite grafted with monoallyl maleate was applied as a coagent for the HNBR vulcanization. In this paper, we discuss the effect of the ionic liquids (alkylimidazolium salts) with respect to their anion (bromide, chloride, tetrafluoroborate, and hexafluo...

  14. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems.

    Science.gov (United States)

    Tian, Kevin; Bae, Jinhye; Bakarich, Shannon E; Yang, Canhui; Gately, Reece D; Spinks, Geoffrey M; In Het Panhuis, Marc; Suo, Zhigang; Vlassak, Joost J

    2017-03-01

    A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    Science.gov (United States)

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  16. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    Energy Technology Data Exchange (ETDEWEB)

    Kofod, Guggi [University of Potsdam, Institute of Physics, Advanced Condensed-Matter Physics, 14476 Potsdam (Germany)], E-mail: guggi.kofod@uni-potsdam.de

    2008-11-07

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  17. Numerical verification of three point bending experiment of magnetorheological elastomer (MRE) in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Miedzinska, Danuta [Military University of Technology In Warsaw, Faculty of Mechanical Engineering (Poland); Boczkowska, Anna [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland); Zubko, Konrad, E-mail: dmiedzinska@wat.edu.p [Military University of Technology In Warsaw, Faculty of Advanced Technologies and Chemistry (Poland)

    2010-07-01

    In the article a method of numerical verification of experimental results for magnetorheological elastomer samples (MRE) is presented. The samples were shaped into cylinders with diameter of 8 mm and height of 20 mm with various carbonyl iron volume shares (1,5%, 11,5% and 33%). The diameter of soft ferromagnetic substance particles ranged from 6 to 9 {mu}m. During the experiment, initially bended samples were exposed to the magnetic field with intensity levels at 0,1T, 0,3T, 0,5T, 0,7 and 1T. The reaction of the sample to the field action was measured as a displacement of a specimen. Numerical calculation was carried out with the MSC Patran/Marc computer code. For the purpose of numerical analysis the orthotropic material model with the material properties of magnetorheological elastomer along the iron chains, and of the pure elastomer along other directions, was applied. The material properties were obtained from the experimental tests. During the numerical analysis, the initial mechanical load resulting from cylinder deflection was set. Then, the equivalent external force, that was set on the basis of analytical calculations of intermolecular reaction within iron chains in the specific magnetic field, was put on the bended sample. Correspondence of such numerical model with results of the experiment was verified. Similar results of the experiments and both theoretical and FEM analysis indicates that macroscopic modeling of magnetorheological elastomer mechanical properties as orthotropic material delivers accurate enough description of the material's behavior.

  18. Modeling and characterization of stiffness controlled robotic legs using dielectric elastomers

    Science.gov (United States)

    Newton, Jason; Morton, Jeffrey; Clark, Jonathan; Oates, William S.

    2012-04-01

    A new robotic leg design is presented that utilizes dielectric elastomers (3M VHB 4910) to rapidly control stiffness changes for enhanced mobility and agility of a field demonstrated hexapod robot. A set of electromechanical test are utilized to obtain up to 92% reduction in stiffness that is controlled by an electric field. The results are compared to a finite deformation membrane finite element model to understand and improve field driven stiffness changes for real-time robotic applications.

  19. Note: Analysis of the efficiency of a dielectric elastomer generator for energy harvesting

    Science.gov (United States)

    Kang, Gyungsoo; Kim, Kyung-Soo; Kim, Soohyun

    2011-04-01

    In this study, a dielectric elastomer (DE) generator is developed for micropower generation, and its efficiency is derived. It is shown explicitly that power generation efficiency depends on the thickness of the DE generator, the charging voltage, the effective stiffness of the DE generator, the dielectric constant, and the relative deformation. Through experiments with VHB™ 4905 film, the proposed analysis is verified. In particular, the effective stiffness of a DE generator inversely improves the power generation efficiency.

  20. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    Science.gov (United States)

    Kofod, Guggi

    2008-11-01

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  1. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  2. Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators

    Science.gov (United States)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2017-05-01

    As a new transduction technology, dielectric elastomer generators (DEGs) are capable of converting mechanical energy from diverse sources into electrical energy. However, their energy harvesting performance is strongly affected by the material viscoelasticity. Based on the finite-deformation viscoelasticity theory and the nonlinear coupled field theory for dielectric elastomers, this work presents a theoretical framework to model the performance of DEGs. Motivated by the recent experiments of DEGs with a triangular harvesting scheme, we propose a method to optimize the harvesting cycle, which could significantly improve the conversion efficiency of viscoelastic DEGs. From our simulation results, choosing a higher voltage power source appears to be an effective way to improve the performance of DEGs. In addition, optimizing the period of the discharging process of DEG can markedly increase its efficiency. Also, we have uncovered that the triangular harvesting scheme for DEGs, which is expected to harvest energy close to the maximum achievable energy, could be actually realized by choosing dielectric elastomers with a higher fraction of time-independent polymer networks. The theoretical framework and simulation results presented in this work are expected to benefit the optimal design of DEGs for different applications.

  3. Towards holonomic electro-elastomer actuators with six degrees of freedom

    Science.gov (United States)

    Conn, A. T.; Rossiter, J.

    2012-03-01

    Functionally efficient six degree of freedom (DOF) actuators have not yet been developed in a scale-invariant and inherently compliant unified form. This has primarily been due to the use of conventional serial or parallel kinematical configurations and electromagnetic motors, pneumatics and hydraulics. Contrary to traditional technologies, utilizing electro-active elastomers enables multi-DOF actuation and holonomic operation with minimal structural complexity. Conical dielectric elastomer actuators (DEAs) are compact multi-DOF actuator-sensors that are scalable and can be entirely polymeric, making them suitable for a variety of applications including minimally invasive medical devices. In this paper, cone DEAs are developed towards integrated 6-DOF actuation with muscle-like performance from a single structure. This is achieved by demonstrating the feasibility of holonomic 6-DOF actuation and through experimental characterization of a 5-DOF prototype. The 5-DOF prototype (50 mm length, 60 mm diameter) produced rotational actuation outputs of ±21.7° and ±9.42 mN m and linear actuation outputs of ±4.45 mm (±9.1%) and ±0.55 N. Finally, combined multi-DOF actuation is demonstrated as part of development towards scalable holonomic electro-active elastomer actuators.

  4. A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2017-06-01

    To develop control algorithms that taking maximum advantage of rapidly varying rheological properties of MR elastomer devices, models must be developed that can adequately characterize the smart material’s intrinsic nonlinearity. However, most existing MRE models are only effective within a narrow strain amplitude range and under certain loading frequencies. To derive a MRE model with better applicability, MR elastomer samples were fabricated and their steady-state response under harmonic loading with different strain amplitudes, frequencies and magnetic fields were tested. Following a review of several existing models of MR elastomer, a new revised Bouc-Wen model is proposed that can effectively portray the behavior of the material. Comparison with experimental results indicates that the model is accurate over a wide range of frequencies, strain amplitudes and magnetic flux densities. A simplified model was then proposed after parametric study. As the magnetic field is the only determinant of the parameters, the simplified model is adequate for base isolation devices design and simulation.

  5. Polysiloxane-based luminescent elastomers prepared by thiol-ene "click" chemistry.

    Science.gov (United States)

    Zuo, Yujing; Lu, Haifeng; Xue, Lei; Wang, Xianming; Wu, Lianfeng; Feng, Shengyu

    2014-09-26

    Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  7. Novel Reversible Mechanochromic Elastomer with High Sensitivity: Bond Scission and Bending-Induced Multicolor Switching.

    Science.gov (United States)

    Wang, Taisheng; Zhang, Na; Dai, Jingwen; Li, Zili; Bai, Wei; Bai, Ruke

    2017-04-05

    Although the rational designed mechanochromic polymer (MCP) materials have evoked major interest and experienced significant progress recently, it is still a great challenge to develop a facile and effective strategy for preparation of reversible broad-spectrum MCPs with a combination of wide-range color switch ability and high sensitivity, which thus make it possible to mimic gorgeous color change as in nature. Herein, we designed and synthesized a novel rhodamine-based mechanochromic elastomer. Our results demonstrated that the elastomer exhibited very promising and unique properties. Three primary fluorescence colors were presented during continuous uniaxial extension and relaxing process, and reversible broad-spectrum fluorescence color change could be achieved consequently. The fluorescence quantum yield of the opened zwitterion of this new mechanophore was as high as 0.67. In addition, the elastomer showed very high sensitivity to stress with a detectable activation strain of ∼0.24, which was much smaller than those reported in the previous literature reports. Meantime, the easy-to-obtain material, facile preparation, and good mechanical property also made it suitable for potential practical applications.

  8. Elastomer Reinforced with Regenerated Chitin from Alkaline/Urea Aqueous System.

    Science.gov (United States)

    Yu, Peng; He, Hui; Luo, Yuanfang; Jia, Demin; Dufresne, Alain

    2017-08-09

    Novel hybrid elastomer/regenerated chitin (R-chitin) composites were developed, for the first time, by introducing chitin solution (dissolved in alkaline/urea aqueous solution at low temperature) into rubber latex, and then cocoagulating using ethanol as the cocoagulant. During the rapid coprecipitation process, the chitin solution showed rapid coagulant-induced gelation and a porous chitin phase was generated, and the rubber latex particles were synchronously demulsificated to form the rubbery phase. The two phases interlaced and interpenetrated simultaneously to form an interpenetrating polymer network (IPN) structure, which was evidenced by SEM observation. The ensuing compound was also characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and swelling experiments. The unique porous structure of R-chitin could result in strong physical entanglements and interlocks between filler and matrix, thus a highly efficient load transfer between the filler and the matrix was achieved. Accordingly, R-chitin endows the elastomer with a remarkable reinforcement. We envisage that this work may contribute new insights on novel design of chitin-based elastomer hybrids with IPN structure.

  9. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites.

    Science.gov (United States)

    Yin, Guoling; Yang, Yu; Song, Feilong; Renard, Christophe; Dang, Zhi-Min; Shi, Chang-Yong; Wang, Dongrui

    2017-02-15

    Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (∼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm3 was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.

  10. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells.

    Science.gov (United States)

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K; Zhao, Xuanhe

    2017-02-28

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.

  11. Synthesis of Biocompatible Liquid Crystal Elastomer Foams as Cell Scaffolds for 3D Spatial Cell Cultures.

    Science.gov (United States)

    Prévôt, Marianne E; Ustunel, Senay; Bergquist, Leah E; Cukelj, Richard; Gao, Yunxiang; Mori, Taizo; Pauline, Lindsay; Clements, Robert J; Hegmann, Elda

    2017-04-11

    Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable as 3D cell culture scaffolds. The combined properties of the regular structure of the metal foam and of the elastomer result in a 3D cell scaffold that promotes not only higher cell proliferation compared to conventional porous templated films, but also better management of mass transport (i.e., nutrients, gases, waste, etc.). The nature of the metal template allows for the easy manipulation of foam shapes (i.e., rolls or films) and for the preparation of scaffolds of different pore sizes for different cell studies while preserving the interconnected porous nature of the template. The etching process does not affect the chemistry of the elastomers, preserving their biocompatible and biodegradable nature. We show that these smectic LCEs, when grown for extensive time periods, enable the study of clinically relevant and complex tissue constructs while promoting the growth and proliferation of cells.

  12. The influence of modification of elastomer compositions in polyethylene oxides on their resistance to mineral oils

    Directory of Open Access Journals (Sweden)

    E. P. Uss

    2017-01-01

    Full Text Available The influence of modifying of elastomer compositions based on nitrile rubber in the medium of low molecular weight polyethylene oxide on resistance of rubbers to liquid aggressive mediawas studied. Standard hydrocarbon oils – oil ASTM №1 and ASTM №3, having a constant chemical composition and properties, were used as aggressive fluids. Resistance of elastomer compositions to standard oil was evaluated by change in weight, volume and relative compression set after keeping the samples in these oils at elevated temperatures. The influence of aggressive environment on the degree of swelling and the value of compression set of compositions modified in polyethylene oxides medium was established. It has been shown that the mass/volume of modified rubbers during aging in oil ASTM №1 reduced to a lesser degree compared to unmodified samples, which is probably due to the influence of low molecular weight polyethylene oxides for the formation of vulcanizates structure. At the same time exposure to oil ASTM №3 of elastomer compositions increases the degree of swelling of modified rubber more than unmodified, which can be due to destruction by the action of aggressive medium additional intermolecular bonds between macromolecules of polyethylene oxide and rubber, resulting in increased flexibility of the elastomeric matrix segments. It revealed that modification of rubbers in low molecular weightpolyethylene oxides facilitates preparation of rubber with low compression set after aging in standard oils at elevated temperatures.

  13. Tailoring chain length and cross-link density in dielectric elastomer toward enhanced actuation strain

    Science.gov (United States)

    Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian

    2017-10-01

    Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.

  14. A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Benjamin A., E-mail: ben.evans@elon.edu [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Fiser, Briana L. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Prins, Willem J.; Rapp, Daniel J. [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Shields, Adam R. [Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, SW Washington, DC 20375 (United States); Glass, Daniel R. [Department of Physics, Elon University, CB 2625, Elon, NC 27244 (United States); Superfine, R. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2012-02-15

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material that is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite ({gamma}-Fe{sub 2}O{sub 3}) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (<100 nm) and can be crosslinked to form a flexible magnetic material, which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 to 50 wt% without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. - Highlights: > Silicone-magnetite elastomer with nanoscale homogeneity. > Iron content tunable from 0 to 50 wt% without aggregation. > Elastic modulus increases in magnetic field. > Model and experiment show maximal actuation for microstructures near 40 wt% iron.

  15. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    Science.gov (United States)

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials.

  16. Impact and fracture resistance of an experimental acrylic polymer with elastomer in different proportions

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2009-01-01

    Full Text Available The purpose of this study was to evaluate the impact and fracture resistance of acrylic resins: a heat-polymerized resin, a high-impact resin and an experimental polymethyl methacrylate with elastomer in different proportions (10, 20, 40 and 60%. 120 specimens were fabricated and submitted to conventional heat-polymerization. For impact test, a Charpy-type impact tester was used. Fracture resistance was assessed with a 3-point bending test by using a mechanical testing machine. Ten specimens were used for each test. Fracture (MPa and impact resistance values (J.m-1 were submitted to ANOVA - Bonferroni's test - 5% significance level. Materials with higher amount of elastomer had statistically significant differences regarding to impact resistance (p < 0.05. Fracture resistance was superior (p < 0.01 for high-resistance acrylic resin. The increase in elastomer concentration added to polymethyl methacrylate raised the impact resistance and decreased the fracture resistance. Processing the material by injection decreased its resistance to impact and fracture.

  17. Preparation and Characterization of Thermally Reversible Self-healing Polyurethane Elastomer

    Directory of Open Access Journals (Sweden)

    YANG Yi-lin

    2017-08-01

    Full Text Available In order to investigate the structure and property relationships of intrinsic self-healing polyurethane and balance the seemly contradictory forces between its self-healing efficiency and mechanical strength, the reversible disulfide bonds were introduced into polyester-polyurethane by taking hexamethylene diisocyanate (HDI trimers as the cross-linker and 4,4-diamino diphenyl disulfide as the chain-extender. The results show that the optimal self-healing elastomer exhibits a tensile strength of 7.7MPa and a maximum self-healing efficiency of 97.4% at 60℃after 24 hours, whereas the common elastomer synthesized without disulfide bonds (via H-bonding interactions only exhibits a tensile strength of 9.3MPa and a maximum self-healing efficiency of 58.0% under the same condition, indicating that the existence of disulfide bonds helps to increase the self-healing efficiency by 67.9%. The prepared elastomer is found to have multi time self-healing capabilities and the second time self-healing efficiency is 62.3%.

  18. Evaluation of visible fluorescent elastomer tags implanted in marine medaka, Oryzias dancena

    Directory of Open Access Journals (Sweden)

    Jae Hyun Im

    2017-09-01

    Full Text Available Abstract The aim of this study was to assess visible implant fluorescent elastomer (VIE tagging and stress response in marine medaka, Oryzias dancena. The experimental fish were anesthetized individually and marked with red, yellow, or green elastomer at each of the following three body locations: (1 the abdomen, (2 the back, and (3 the caudal vasculature. During 12 months, the accumulated survival rates of fish in the experimental treatments were not different among red, yellow, and green elastomers. The experimental fish retained > 85% of the tags injected in the back, > 70% of the tags injected in the caudal vasculature, and > 60% of the tags injected in the abdomen (P < 0.05. An important observation was that the abdomen site was associated with poor tag retention. For all injected sites, the red and green tags were able to be detected more easily than the yellow tags when observed under both visible and UV lights. Tag readability was lower for the abdomen site than for the other sites (back and caudal vasculature. Thus, VIE tags were easy to apply to marine medaka (< 1 min per fish and were readily visible when viewed under UV light.

  19. Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications

    Science.gov (United States)

    Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto

    2015-04-01

    Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.

  20. A soft flying robot driven by a dielectric elastomer actuator (Conference Presentation)

    Science.gov (United States)

    Wang, Yingxi; Zhang, Hui; Godaba, Hareesh; Khoo, Boo Cheong; Zhu, Jian

    2017-04-01

    Modern unmanned aerial vehicles are gaining promising success because of their versatility, flexibility, and minimized risk of operations. Most of them are normally designed and constructed based on hard components. For example, the body of the vehicle is generally made of aluminum or carbon fibers, and electric motors are adopted as the main actuators. These hard materials are able to offer reasonable balance of structural strength and weight. However, they exhibit apparent limitations. For instance, such robots are fragile in even small clash with surrounding objects. In addition, their noise is quite high due to spinning of rotors or propellers. Here we aim to develop a soft flying robot using soft actuators. Due to its soft body, the robot can work effectively in unstructured environment. The robot may also exhibit interesting attributes, including low weight, low noise, and low power consumption. This robot mainly consists of a dielectric elastomer balloon made of two layers of elastomers. One is VHB (3M), and the other is natural rubber. The balloon is filled with helium, which can make the robot nearly neutral. When voltage is applied to either of the two dielectric elastomers, the balloon expands. So that the buoyance can be larger than the robot's weight, and the robot can move up. In this seminar, we will show how to harness the dielectric breakdown of natural rubber to achieve giant deformation of this soft robot. Based on this method, the robot can move up effectively in air.

  1. Sample Size Effect of Magnetomechanical Response for Magnetic Elastomers by Using Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tsubasa Oguro

    2017-01-01

    Full Text Available The size effect of magnetomechanical response of chemically cross-linked disk shaped magnetic elastomers placed on a permanent magnet has been investigated by unidirectional compression tests. A cylindrical permanent magnet with a size of 35 mm in diameter and 15 mm in height was used to create the magnetic field. The magnetic field strength was approximately 420 mT at the center of the upper surface of the magnet. The diameter of the magnetoelastic polymer disks was varied from 14 mm to 35 mm, whereas the height was kept constant (5 mm in the undeformed state. We have studied the influence of the disk diameter on the stress-strain behavior of the magnetoelastic in the presence and in the lack of magnetic field. It was found that the smallest magnetic elastomer with 14 mm diameter did not exhibit measurable magnetomechanical response due to magnetic field. On the opposite, the magnetic elastomers with diameters larger than 30 mm contracted in the direction parallel to the mechanical stress and largely elongated in the perpendicular direction. An explanation is put forward to interpret this size-dependent behavior by taking into account the nonuniform field distribution of magnetic field produced by the permanent magnet.

  2. Fabrication on Prototype of Depth Calibration Standard Machine for Elastomer Hardness Tester

    Science.gov (United States)

    Mongkolsuttirat, K.; Sanponpute, T.

    2017-09-01

    The prototype of depth calibration standard machine was fabricated to calibrate the depth of indentation for elastomer hardness tester. According to ISO 18898, ASTM D2240 and ASTM D1415, the measurement of indentation depth by a measuring device comprising a length-measuring system shall be in reference with the pressure foot of the elastomer hardness tester. Nation Institute of Metrology (Thailand); NIMT develop the depth calibration standard which can measure the indentation depth with always reference at the surface level of pressure foot of the hardness tester at each hardness scale. The calibration of the prototype of depth calibration standard machine was performed to provide the accuracy of the measurement of the machine which can be a suitable standard machine for depth of indentation within 1 μm complied with the requirement of ISO and ASTM standard. Furthermore, the prototype of depth calibration standard machine was validated to another NIMT method, which used the two length-measuring systems. The comparison results between 2 methods showed in a good agreement within 2 μm. Therefore, the NIMT prototype of depth calibration standard machine can be used as a depth calibration standard for elastomer hardness tester provided the required accuracy of measurement complied with ISO 18898, ASTM D2240 and ASTM D1415.

  3. The preparation of an elastomer/silicate layer nanocompound with an exfoliated structure and a strong ionic interfacial interaction by utilizing an elastomer latex containing pyridine groups

    Energy Technology Data Exchange (ETDEWEB)

    He Shaojian; Wang Yiqing; Feng Yiping; Liu Qingsheng; Zhang Liqun, E-mail: zhanglq@mail.buct.edu.cn [Key Laboratory for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-03-19

    A great variety of polymer/layered silicate (PLS) nanocomposites have been reported, however, there are few exfoliated PLS nanocomposites and their inorganic-organic interfaces are still a great problem, especially for the elastomers. In this research, a kind of exfoliated elastomer/silicate layer nanocompound was prepared and proved by XRD and TEM, in which 10 phr Na{sup +}-montmorillonite was dispersed in butadiene-styrene-vinyl pyridine rubber by latex compounding method with acidic flocculants. Moreover, a dynamic mechanical thermal analyzer (DMTA) suggested a strong interfacial interaction (interaction parameter B{sub H} = 4.91) between the silicate layers and macromolecules in addition to the weak inorganic-organic interfacial interaction, and solid state {sup 15}N NMR indicated the formation of a strong ionic interface through the acidifying pyridine. Subsequently, a remarkable improvement of the dispersing morphology, mechanical performance and gas barrier property appeared, compared to that using calcium ion flocculants. This supports the formation of an exfoliated structure and an improved interfacial interaction.

  4. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    Unknown

    irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2⋅0 MeV proton microbeam are reported. Preliminary results on pattern ... sist materials: electromagnetic radiation (e.g. optical, UV or X-ray photons) or charged ... a substrate and depending on the positive or negative type of resist material, the exposed or ...

  5. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    Directory of Open Access Journals (Sweden)

    Liyun Yu

    2015-10-01

    Full Text Available One prominent method of modifying the properties of dielectric elastomers (DEs is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR has relatively low viscosity, which is favorable for loading inorganic fillers. In the present study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2 particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0.1 Hz, breakdown strength of 160 V µm−1, tear strength of 5.3 MPa, elongation at break of 190%, a Young’s modulus of 0.85 MPa and a 10% strain response (simple tension in a 50 V μm−1 electric field was obtained.

  6. Electrical breakdown of an acrylic dielectric elastomer: effects of hemispherical probing electrode’s size and force

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-10-01

    Full Text Available Dielectric elastomers are widely investigated as soft electromechanically active polymers (EAPs for actuators, stretch/force sensors, and mechanical energy harvesters to generate electricity. Although the performance of such devices is limited by the dielectric strength of the constitutive material, the electrical breakdown of soft elastomers for electromechanical transduction is still scarcely studied. Here, we describe a custom-made setup to measure electrical breakdown of soft EAPs, and we present data for a widely studied acrylic elastomer (VHB 4905 from 3M. The elastomer was electrically stimulated via a planar and a hemispherical metal electrode. The breakdown was characterized under different conditions to investigate the effects of the radius of curvature and applied force of the hemispherical electrode. With a given radius of curvature, the breakdown field increased by about 50% for a nearly 10-fold increase of the applied mechanical stress, while with a given mechanical stress the breakdown field increased by about 20% for an approximately twofold increase of the radius of curvature. These results indicate that the breakdown field is highly dependent on the boundary conditions, suggesting the need for reporting breakdown data always in close association with the measurement conditions. These findings might help future investigations in elucidating the ultimate breakdown mechanism/s of soft elastomers.

  7. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 1: Verification of basic methods

    Science.gov (United States)

    Chiang, T.; Tessarzik, J. M.; Badgley, R. H.

    1972-01-01

    The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.

  8. Enhanced Au induced lateral crystallization in electron-irradiated amorphous Ge on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Shin; Kaneko, Takahiro; Ootsubo, Takanobu; Sakai, Takatsugu; Nakashima, Kazutoshi; Moto, Kenta; Yoneoka, Masashi; Takakura, Kenichiro; Tsunoda, Isao, E-mail: isao_tsunoda@kumamoto-nct.ac.jp

    2014-04-30

    We have investigated the low temperature of Au induced lateral crystallization of electron irradiated amorphous Ge on SiO{sub 2}/Si substrate. The reduction of the critical annealing time to cause the Au induced lateral crystallization is realized by high energy electron irradiation. In addition, the lateral crystallization region of the sample with electron irradiation has high crystalline quality as well as the sample without electron irradiation. We have speculated that the Au induced lateral crystallization of amorphous Ge on SiO{sub 2}/Si substrate was enhanced by electron irradiation, due to the introduction of point defects into amorphous Ge able to diffuse easily of Au atoms. - Highlights: • Au induced lateral crystallization of electron irradiated Ge is investigated. • Crystallization annealing time is significantly reduced. • High crystalline quality of lateral region was not changed by electron irradiation.

  9. AGC-2 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  10. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  11. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR) has relatively low viscosity, which is favorable for loading inorganic fillers. In the present...... study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV) were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability...

  12. Investigation of elastomer rheological properties based on multi-circuit scheme synthesis of the experimental sample substitution

    Science.gov (United States)

    Tatevosyan, A. A.; Tatevosyan, A. S.

    2017-08-01

    The paper is to describe the method for studying the rheological characteristics of elastomers using a multi-circuit electrical scheme of substitution, the synthesis of which is performed on the basis of experimental data obtained during the mechanical relaxation of loaded test samples at a fixed value of the relative deformation. In analyzing the fast and slow stages of the stress relaxation process in elastomer test specimens with significantly different viscoelastic properties, it is established that the number of relaxation mechanisms in the decomposition of the time dependence into exponentials does not exceed 6 (six).

  13. A removable silicone elastomer seal reduces granulation tissue growth and maintains the sterility of recording chambers for primate neurophysiology

    Science.gov (United States)

    Spitler, Kevin M.; Gothard, Katalin M.

    2008-01-01

    The maintenance of the sterility of craniotomies for serial acute neurophysiological recordings is exacting and time consuming yet is vital to the health of valuable experimental animals. We have developed a method to seal the craniotomy with surgical grade silicone elastomer (Silastic®) in a hermetically sealed chamber. Under these conditions the tissues in the craniotomy and the inside surface of the chamber remain unpopulated by bacteria. The silicone elastomer sealant retarded the growth of granulation tissue on the dura and reduced the procedures required to maintain ideal conditions for neurophysiological recordings. PMID:18241928

  14. A Novel Fabrication Technique for Liquid-Tight Microchannels by Combination of a Paraffin Polymer and a Photo-Curable Silicone Elastomer.

    Science.gov (United States)

    Mogi, Katsuo; Sakata, Kenshiro; Hashimoto, Yuki; Yamamoto, Takatoki

    2016-07-27

    The development and growth of microfluidics has been mainly based on various novel fabrication techniques for downsizing and integration of the micro/nano components. Especially, an effective fabrication technique of three-dimensional structures still continues to be strongly required in order to improve device performance, functionality, and device packing density because the conventional lamination-based technique for integrating several two-dimensional components is not enough to satisfy the requirement. Although three-dimensional printers have a high potential for becoming an effective tool to fabricate a three-dimensional microstructure, a leak caused by the roughness of a low-precision structure made by a 3D printer is a critical problem when the microfluidic device is composed of several parts. To build a liquid-tight microchannel on such a low-precision structure, we developed a novel assembly technique in which a paraffin polymer was used as a mold for a microchannel of photo-curable silicone elastomer on a rough surface. The shape and roughness of the molded microchannel was in good agreement with the master pattern. Additionally, the seal performance of the microchannel was demonstrated by an experiment of electrophoresis in the microchannel built on a substrate which has a huge roughness and a joint.

  15. Low temperature behaviour of elastomers in seals; Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, Matthias

    2012-04-25

    Elastomeric seals are of high importance as machine parts and construction elements, but in spite of this the low temperature limit for the use of a seal was not fully understood. Hence, the required safety relevant evaluation of the lowest acceptable operating seal temperature is difficult. Therefore the presented work was aimed to understand the temperature dependent material behaviour of representative elastomers and to conclude from this knowledge the low temperature limit down to which such seals could safely fulfil the desired requirements. Starting with the published statement that a seal can safely work below its glass transition temperature the influence of the glass-rubber-transition was investigated. At first the glass-rubber-transition temperatures of the selected elastomers were determined applying several techniques to allow a comparison with the behaviour of the seals during component tests. Furthermore a new method to characterise the low temperature behaviour of elastomers was developed that emulates the key features of the standardised compression set test used for seal materials. In comparison to the standardized test this new method allows a much faster measurement that can be automatically performed. Using a model based data analysis an extrapolation of the results to different temperatures can be performed and therefore the necessary measuring expenditure can be additionally reduced. For the temperature dependent characterisation of the failure process of real seals a measurement setup was designed and the materials behaviour was investigated. By use of the results of all applied characterisation techniques the observed dependence of the failure temperature on the degree of compression could be explained for the investigated seals under static load. Additionally information about the behaviour of such seals under dynamic load could be gained from the time dependent material behaviour by use of the time temperature superposition relationship

  16. Adaptive absorber based on dielectric elastomer stack actuator with variable stiffness

    Science.gov (United States)

    Karsten, Roman; Schlaak, Helmut F.

    2012-04-01

    This paper describes the theoretical analysis for changing the stiffness in dielectric elastomer stack actuators (DESA) by electric voltage and investigates the influence of the mounting of DESA. The theoretical calculations are validated by the experimental measurements. The tuning of the stiffness by electrical voltage can be used for small adaptive absorbers to attenuate varying resonance frequencies of a system for example caused by the temperature variations. The best experimental results were reached for the structure with unbonded DESA between stiff plates. The resonance frequency was shifted from 129 Hz to 108 Hz. Besides, the selective mounting of DESA is a promising approach for the adaptive absorber applications.

  17. Control del dolor postoperatorio mediante el uso de bombas elastoméricas

    OpenAIRE

    Cantón González, Olga

    2014-01-01

    El control del dolor postoperatorio es un aspecto esencial de los cuidados postoperatorios, pero a pesar de ello, su atención continúa siendo inadecuada. En el hospital de Cabueñes se administran analgésicos mediante los dispositivos denominados bombas elastoméricas. Con este trabajo hemos pretendido saber si estos dispositivos son eficaces para el control del dolor postoperatorio, y si se realiza una adecuada evaluación del dolor postoperatorio en los servicios quirúrgicos de este hospital. ...

  18. Application of silicone based elastomers for manufacturing of Green Fiber Bottle

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano

    Due to ever-increasing demand of sustainable products, eco-friendly packaging solutions are finding their importance in the paper packaging industry. Green Fiber Bottle (GFB) is an alternative to plastic, glass and metal based packaging for beverages. The tool concept for manufacturing of paper b...... bottle uses a silicone based elastomer as the core. The expansion of core in the tool resists shrinkage of paper during drying as well as helps in obtaining good fiber compaction. The feasibility of the tool concept in the production of GFB is discussed in this work....

  19. Change in color of a maxillofacial prosthetic silicone elastomer, following investment in molds of different materials.

    Science.gov (United States)

    Sethi, Tania; Kheur, Mohit; Coward, Trevor; Patel, Naimesha

    2015-01-01

    In the authors' experience, the color of silicone elastomer following polymerization in molds made of gypsum products is slightly different from the color that was matched in the presence of the patient, before the silicone is packed. It is hypothesized that the investing materials and separating media have an effect on the color during the polymerization process of the silicone. This study compares and evaluates the change in color of silicone elastomer packed in three commonly used investing materials - Dental stone (white color), dental stone (green color), and die stone (orange color); coated with three different separating media - Alginate-based medium, soap solution and a resin-based die hardening material. Pigmented silicone samples of dimensions 1.5 cm × 2 cm × 0.5 cm were made from the elastomer in the above-mentioned mold materials using combinations of the mentioned separating media. These served as test group samples. Control group samples were made by packing a mix of the same pigmented elastomer in stainless steel molds. The L*, a*, b* values of the test and control group samples were determined using a spectrophotometer. The change in color (Delta E) was calculated between the control and test groups. The mean L, a, b values for the control group were, 31.8, 26.2, and 36.3, respectively. Average values of change in color (Delta E) for samples packed utilizing alginate-based medium, die hardener, and soap solution, respectively in white dental stone (2.70, 2.74, and 2.88), green dental stone (2.19, 2.23, 2.42), and orange die stone (3.19, 2.72, 2.80) were tabulated. Among the investing materials studied, die stone showed the most color change (3.19), which was statistically significant. Among the separating media, die hardener showed the least color change (2.23). The best combination of an investing material and separating media as per this investigation is a dental stone (green) and alginate-based separating medium.

  20. Design and fabrication of a microfluidic chip driven by dielectric elastomers

    Science.gov (United States)

    Li, Bo; Chen, Hualing; Wu, Jiuhui; Zhu, Zicai; Xia, Dongmei; Jing, Sufang

    2009-07-01

    This paper presents a valveless microfluidic chip driven by dielectric elastomers (DEs). First, the planar DE actuator is designed and the diaphragm actuating performances were characterized. Then the micro chip, containing a pump chamber and a pair of nozzle/diffuser, is fabricated on SU-8 under exposure to UV-light with a mask. The diaphragm and the SU-8 is sealed and finally covered by a PMMA. The pumping and flow rate is tested and measured under high AC supply, and a maxim flow rate of 21.2μl is achieved under 3500V, 8Hz sine wave.