Elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Elastic-plastic fracture mechanics study of thermal shock cracking
International Nuclear Information System (INIS)
Hirano, K.; Kobayashi, H.; Nakazawa, H.
1980-01-01
This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)
A calculational round robin in elastic-plastic fracture mechanics
International Nuclear Information System (INIS)
Larsson, L.H.
1983-01-01
Eighteen organisations participated in this elastic-plastic fracture mechanics (EPFM) numerical analysis round robin which treated the same three-point bend problem as a similar round robin conducted by ASTM four years earlier. The work involved the calculation of overall deformation, J, CTOD and crack profile using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. It was found that all of the elastic solutions were accurate to within a few per cent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. No significant progress has taken place in the state of the art of numerical EPFM analysis over the four-year interval. The reasons for this scatter and tentative conclusions on the most suitable numerical analysis methods in EPFM are discussed. (author)
Progress in elastic-plastic fracture mechanics and its applications
International Nuclear Information System (INIS)
Paris, P.C.; Zahalak, G.I.
1980-01-01
This paper surveys recent developments in the application of J-Integral methods to problems of elastic-plastic fracture. The analytical and experimental development of the J-Integral concept over the last ten years is reviewed briefly. Tearing instability theory is presented in general terms, and specific applications of the theory are discussed. Principles of fracture-proof design are shown to follow naturally from the tearing instability theory. These principles are illustrated first for simple structures, and then generalized to more complex configurations and loading conditions. Examples include multiple member tension structures, beams, frames, nuclear reactor pressure vessel nozzles and piping, and beams on elastic foundations. It is concluded that J-integral based methods offer the best immediate opportunity for the development of sound analytical techniques for treating important practical problems of elastic-plastic fracture
Elastic-plastic fracture mechanics of compact bone
Yan, Jiahau
Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear
comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis
International Nuclear Information System (INIS)
Sun Yingxue; Zheng Bin; Zhang Fenggang
2009-01-01
This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)
A calculational round robin in elastic-plastic fracture mechanics
International Nuclear Information System (INIS)
Larsson, L.H.
Eighteen organizations participated in this round robin which treated the same three-point bend problem as an ASTM round robin four years earlier. Overall deformation, J, CTOD and crack profile were the main results required using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. All elastic solutions were accurate to within a few percent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. Apparently no significant progress has taken place in the state of the art of numerical EPFM analysis in four years time. The paper discusses the reasons for this scatter and draws tentative conclusions on the most suitable numerical analysis methods in EPFM. (Auth.)
A unified approach to elastic-plastic fracture mechanics
International Nuclear Information System (INIS)
Neale, B.K.; Townley, C.H.A.
1976-01-01
To assess the integrity of a cracked structure, using materials data obtained from simple laboratory tests, it is essential to define materials properties which are independent of the shape and the size of the specimen and of the loading system applied to it. In those situations where either the specimen or the structure fails after significant yielding has taken place, there is considerable speculation about the materials parameters which are relevant. By extending the Griffith equation for the stability of a perfectly elastic cracked body, the authors derive a fracture criterion which is applicable in the post yield regime. Comparisons are made with procedures based on the J-contour integral, equivalent energy, and crack opening displacements and with the post yield fracture mechanics of Heald, Spink and Worthington, and Dowling and Townley. For certain materials, it is shown that the factor controlling crack initiation is the fracture toughness Ksub(1c), irrespective of the amount of prior plastic damage, and hence independent of the shape and size of the specimen tested. Load carrying capacity in the post yield regime cannot, however, be derived directly from a knowledge of fracture toughness; the ultimate tensile strength of the material is also relevant
Elastic-plastic Fracture Mechanics Assessment of nozzle corners submitted to thermal shock loading
International Nuclear Information System (INIS)
Chapuliot, S.; Marie, S.
2016-01-01
This paper focuses on the development of a simplified analytical scheme for the elastic-plastic Fracture Mechanics Assessment of large nozzle corners. Within that frame, following the specific numerical effort performed for the definition of a Stress Intensity Factor compendium, complementary elastic-plastic developments are proposed here for the consideration of the thermal shock loading in the elastic-plastic domain: this type of loading is a major loading for massive structures such as nozzle corners of large components. Thus, an important numerical was performed in order to extend the applicability domain of existing analytical schemes to those complex geometries. The final formulation is a simple one, applicable to a large variety of materials and geometrical configurations as long as the structure is large and the defect remains small in comparison to the internal radius of the nozzle. - Highlights: • Fracture Mechanics Assessment of large nozzle corners. • Elastic-plastic Stress Intensity Factor determination under thermal shock loading. • Semi-analytical schemes for J calculation.
International Nuclear Information System (INIS)
Bellucci, H.J.
1975-11-01
The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix
Sensitivity of using blunt and sharp crack models in elastic-plastic fracture mechanics
International Nuclear Information System (INIS)
Pan, Y.C.; Kennedy, J.M.; Marchertas, A.H.
1985-01-01
J-integral values are calculated for both the blunt (smeared) crack and the sharp (discrete) crack models in elastic-plastic fracture mechanics problems involving metallic materials. A sensitivity study is performed to show the relative strengths and weaknesses of the two cracking models. It is concluded that the blunt crack model is less dependent on the orientation of the mesh. For the mesh which is in line with the crack direction, however, the sharp crack model is less sensitive to the mesh size. Both models yield reasonable results for a properly discretized finite-element mesh. A subcycling technique is used in this study in the explicit integration scheme so that large time steps can be used for the coarse elements away from the crack tip. The savings of computation time by this technique are reported. 6 refs., 9 figs
International Nuclear Information System (INIS)
Scarth, D.A.; Kim, Y.J.; Vanderglas, M.L.
1985-10-01
A comprehensive literature survey on the application of Elastic-Plastic Fracture Mechanics to the assessment of the structural integrity of nuclear pressure vessels and piping is presented. In particular, the J-integral/Tearing Modulus (J/T) approach and the Failure Assessment Diagram (FAD) are covered in detail because of their general suitability for use in Ontario Hydro. (25 refs.)
Elastic-plastic fracture mechanics for nuclear pressure vessels: a preliminary appraisal
International Nuclear Information System (INIS)
Hahn, G.T.; Broek, D.; Marschall, C.W.; Rosenfield, A.R.; Rybicki, E.F.; Schmueser, D.W.; Stonesifer, R.B.; Kanninen, M.F.
1978-01-01
A research program directed at assessing the margin of safety of flawed nuclear pressure vessels near and beyond general yielding is described. The program has the general objective of developing an elastic-plastic fracture mechanics methodology. The approach is based on the use of finite element models together with experimental results to identify criteria appropriate for the onset of crack extension and for stable crack growth. A number of criteria beyond the conventional LEFM R curve are being evaluated. These include the critical values of the J-integral, its derivative, the crack tip opening angle, the average crack opening angle, a generalized energy release rate, its components and a crack tip force. The optimum fracture criterion for nuclear vessels is being determined by systematic measurements of load extension curves, strain distribution, crack opening displacement, stable crack growth and instability on 'toughness scaled' model materials. Computations have been performed for center cracked panels of a model material (2219-T87 aluminium) for full shear failure. (author)
The finite element part of the LAMCAL program. Elastic-plastic fracture mechanics applications
International Nuclear Information System (INIS)
Lamain, L.G.; Blanckenburg, J.F.G.
1982-01-01
The elastic-plastic FEM code described in this report is the third part of the Lamcal program of which the two other parts for mesh generating and plotting were presented previously. Also this part uses the dynamic core storage. All variables and problem defining data are stored in one common array-SPACE. If all three parts are used together, the same common-SPACE is reused in each part. The lay-out of the complete program is given. J-integral evaluation and plotting can be done immediately in the FE run or afterwards in a post processing run. Post processing is done within the FEM part with a reduced core space. Originally developed as a general code, the use of the present version is mainly focussed on research in the field of the fracture mechanics. Several J-integral routines are available as well as crack growth modelling by node release or stiffness reduction, energy calculations, crack tip elements, etc. In this report the theory is discussed and some sample problems are given. The theory is presented in two parts, the general FEM and the more specific EPFM theory. For the sample problems, a choice has been made to show the accuracy of the program under more or less severe loading conditions
Elastic-plastic analysis of fracture mechanics test specimens. Part 2
International Nuclear Information System (INIS)
Talja, H.; Wallin, K.
1984-12-01
This is second part of the report of the research program 'Comparisons between computational and experimental elastic-plastic results' started at the Technical Research Centre of Finland in 1981. The first part of the research program was reported earlier and contained a two dimensional linear elastic finite element analysis of four specimen geometries (CT, RCT, ASTM-3P and Charpy-V) and testing and elastic-plastic analysis of the specimen (EGF71; 1TCT, material A 542). In this report the second part of the program containing the testing and 2-D elastic-plastic analyses of five specimens is described. The four specimen geometries mentioned above and two different materials (stainless steel AISI 304 and ferrite pressure vessel steel A533B) are considered. The following comparisons are presented in the report: load vs. load displacement curves, J-integral, crack opening displacement (COD), J vs. COD and the size of the plastic zone. The agreement between the computational and experimental results is quite good. Complete agreement can be achieved only with 3-dimensional calculation models. (author)
Elastic-plastic fracture mechanics analysis of a pressure vessel with an axial outer surface flaw
International Nuclear Information System (INIS)
Aurich, D.
1988-04-01
Elastic-plastic finite element analyses of a test vessel (steel 1.6310=20 MnMoNi 55) with a semi-elliptical axial outer surface crack have been performed. The variations of J and CTOD along the crack front and the stresse state in the vicinity of the crack are presented. The applicability of approaches to determine J is examined. The FE results are compared with the experimental data. The results are analyzed with respect to the validity of J-controlled crack growth. It will be shown that the local ductile crack growth and, especially, the 'canoe effect' for a semi-elliptical crack can only be described correctly if local J R -curves are used which account for the varying triaxiality of the stress state along the crack front. (orig./HP) [de
Application of elastic and elastic-plastic fracture mechanics methods to surface flaws
McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.
Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.
Some comment on the use of J criterion in elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1978-01-01
In Post Yield Fracture Mechanics, several criteria have been proposed for the onset of crack propagation, one of the most popular being the J 1 integral criterion. This is only well established for elastic materials, where it can be shown that J 1 is not path dependent, and that J 1 is equal to the variation of potential energy with crack length. Extension is easy for material exhibiting deformation type plasticity, but there is no proof of path independence for flow-type plastic material. Experimental results are often given as a proof of J 1 criterion validity, but a critical analysis shows that important assumptions are made in the use of the test results. The main assumption is that the received work, known as strain energy, is not dependent on the loading history and is only dependent on the mechanical state. The study of the J 1 path dependence is the main point of the J 1 criteria validation. A general method to assess path dependence can be founded on the 'defect vector' (or driving force) concept. The space-density of defect is given by j = grad W - σ grad (W = strain-energy, σ stress tensor, epsilon strain tensor). It is shown that the virtual translation delta a of the defect vectors inside a volume, lead to a virtual work variation given by J 1 delta a and that J 1 is the resultant of all the defect vectors included in the volume surrounded by the integration surface. Using these results the path independence conditions are examined. Some numerical results are given for incremental processes such as plasticity or creep, and where the loading path is radial (proportional) and monotonic, no appreciable path variations found. Finally the results of direct applications of J 1 criterion to real structures are examined. (author)
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
International Nuclear Information System (INIS)
Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo
2002-01-01
Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored
International Nuclear Information System (INIS)
Chung, Nam Yong; Kim, Moon Young; Kim, Jong Woo
1999-01-01
In the study, the analysis of elastic-plastic J-integral was performed in high temperature components for gas turbine based on elastic-plastic fracture mechanics. It had been operated on the range of about 700 deg C and degraded by high temperature. It was tested for material properties of used component because of material properties changing at high temperature condition. The elastic-plastic fracture mechanics parameter, J is obtained with finite element method. A method is suggested which determines J Ic applying analysis of elastic-plastic finite element method and results of experimental load-displacements with CT specimen. It is also investigated that J-integral is applied for the elastic-plastic analysis in high temperature components. The elastic-plastic fracture toughness. J Ic determined by finite element was obtained with high accuracy using the experimental method.=20
International Nuclear Information System (INIS)
Song, Tae Kwang; Oh, Chang Kyun; Kim, Yun Jae; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
International Nuclear Information System (INIS)
Song, Tae Kwang; Kim, Yun Jae; Oh, Chang Kyun; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
International Nuclear Information System (INIS)
Brocks, W.; Kuenecke, G.
1989-06-01
Continuing preceding investigations, a further elastic-plastic finite element analysis of a test vessel with a semi-elliptical axial outer surface crack has been performed. The variations of J and CTOD along the crack front and the stress state in the vicinity of the crack are presented. The applicability of analytical approaches to determine J is examined. The FE results are used to analyze the experimental data with respect to the validity of J-controlled crack growth. Local J R -curves of the surface flaw are compared with J R -curves of various specimens of different geometries. Again, it became evident that the local ductile crack growth and, especially, the developing 'canoe shape' of the surface crack cannot be described by a single resistance curve which is assumed to be a material property. A method described in a previous report to predict the ductile crack growth by using local J R -curves which depend on the triaxiality of the stress state did not result in a satisfactory outcome, in the present case. The presumed reasons will be discussed. (orig.) [de
International Nuclear Information System (INIS)
Yamaguchi, Yoshihito; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng; Sugino, Hideharu
2011-01-01
The magnitude of Niigata-ken Chuetsu-Oki earthquake in 2007 was beyond the assumed one provided in seismic design. Therefore it becomes an important issue to evaluate the crack growth behaviors due to the cyclic overload like large earthquake. Fatigue crack growth is usually evaluated by Paris's law using the range of stress intensity factor (ΔK). However, ΔK is inappropriate in a loading condition beyond small scale yielding. In this study, the crack growth behaviors for piping materials were investigated based on an elastic-plastic fracture mechanics parameter, J-integral. It was indicated that the crack growth due to the cyclic overload beyond small scale yielding could be the sum of fatigue and ductile crack growth. The retardation effect of excessive loading on the crack growth was observed after the loading. The modified Wheeler model using J-integral has been proposed for the prediction of retardation effect. Finally, an evaluation method for crack growth behaviors due to the cyclic overload is suggested. (author)
Elastic-plastic fracture analysis of carbon steel piping using the latest CEGB R6 approach
International Nuclear Information System (INIS)
Kanno, S.; Hasegawa, K.; Shimizu, T.; Kobayashi, H.
1991-01-01
The elastic-plastic fracture of carbon steel piping having various pipe diameters and circumferential crack angles and subjected to a bending moment is analyzed using the latest United Kingdom Central Electricity Generating Board R6 approach. The elastic-plastic fracture criterion must be applied instead of the plastic collapse criterion with increase of the pipe diameter and the crack angle. A simplified elastic-plastic fracture analysis procedure based on the R6 approach is proposed. (author)
International Nuclear Information System (INIS)
Alvarez, J.A.; Gutierrez-Solana, F.
1999-01-01
Cracking processes suffered by new structural and piping steels when used in petroleum or other energy installations have demonstrated the need for a cracking resistance characterization methodology. This methodology, valid for both elastic and elastoplastic regimes, should be able to define crack propagation kinetics as a function of their controlling local parameters. This work summarizes an experimental and analytical methodology that has been shown to be suitable for characterizing cracking processes using compact tensile specimens, especially subcritical environmentally assisted ones, such as those induced by hydrogen in microalloyed steels. The applied and validated methodology has been shown to offer quantitative results of cracking behavior and to correlate these with the existing fracture micromechanisms. (orig.)
Elastic Plastic Fracture Analysis of an Aluminum COPV Liner
Forth, Scott; Gregg, Bradley; Bailey, Nathaniel
2012-01-01
Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.
Evaluation of elastic-plastic fracture of toughness and fracture resistance of carbon steel STS42
International Nuclear Information System (INIS)
Kobayashi, Hideo; Nakamura, Haruo; Kashiwagi, Kohmei
1987-01-01
The elastic-plastic fracture toughness (J Ic ) and fracture resistance (J-R curve) of a carbon steel, STS42, used for piping in a nuclear reactor were evaluated according to the several evaluating methods recommended or proposed so far, to discuss their applicability and utility. The results obtained are as follows: (1) In evaluating J Ic , the multiple specimen method recommended by the Japan Society for Mechanical Engineers (JSME standard S001) gives the most reliable results by using smaller sized specimens. (2) The single-specimen methods by using the compliance technique, adopted in the ASTM standards (E813, E813 modified, Tentative test procedure for determining the plain strain J-R curve), do not give an accurate J-R curve or J Ic , due to an error in the calculated crack length. (3) In evaluating the J-R curve, it is necessary to account for crack extension in calculating the J-integral. (4) According to the above results, a new standard method for determining the J-R curve including the J Ic test method should be poprosed. (author)
International Nuclear Information System (INIS)
Aurich, D.; Brocks, W.; Noack, D.; Veith, H.
1981-01-01
From a three-dimensional elastic-plastic stress-distortion analysis according to the finite element method (FEM) for a straight inner edge crack at room temperature in a nozzle of the intermediate vessel ZB 2 made of 22 NiMoCr 37 steel, the results obtained for stresses and strains in the ligament before the crack front, the crack opening profile, and the propagation of the plastic zone as a function of internal pressure until through-plastifying of the ligament are shown and explained. (orig.) [de
Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study
Lacidogna, Giuseppe; Accornero, Federico
2018-01-01
In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.
Energy based methods for determining elastic plastic fracture
International Nuclear Information System (INIS)
Witt, F.J.
1979-01-01
Several methods are currently in use or under study for calculating various conditions of fracturing for varying degrees of plasticity. Among these are innovations on the J-integral concept, crack opening displacement or angle, the two parameter concept and the equivalent energy method. Methods involving crack arrest and ductile tearing also fall in this category. Each of these methods have many salient points and some efforts are underway to establish the underlying relationship between them. In this paper, the current research directions of J-integral and equivalent energy methodologies are reviewed with a broader discussion presented for the equivalent energy methodology. The fundamental basis of equivalent energy methodology rests with the volumetric energy ratio. For fractures governed by linear elastic fracture mechanics, the volumetric energy ratio is independent of flaw size and geometry and depends only on the scale factor between model and prototype and temperature. The behavioral aspects of the volumetric energy ratios have been investigated throughout the temperature range from brittle fracture to fully ductile fracture. For five different specimen and structural configurations it has been shown experimentally that the volumetric energy ratio retains its basic properties. That is, the volumetric energy ratio while changing in actual value, maintains its independence of geometry and flaw size while retaining a unique dependence on scale factor and temperature. This property interpreted in terms of fracture mechanics leads to the equivalent energy method. (orig.)
Simplified computational methods for elastic and elastic-plastic fracture problems
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
Effect of temperature on the elastic-plastic fracture toughness behavior of Inconel X-750
International Nuclear Information System (INIS)
Mills, W.J.
1977-09-01
The elastic-plastic J/sub Ic/ fracture toughness response of precipitation heat treated Inconel X-750 has been evaluated by the multi-specimen resistance curve (R-curve) technique at room temperature, 800 0 F (427 0 C), and 1000 0 F (538 0 C). The value of J/sub Ic/ for this nickel-base superalloy was found to be relatively independent of temperature over the test temperature range. On the other hand, the slopes of the fracture toughness R-curves were steeper at 800 and 1000 0 F (427 and 538 0 C) than at 75 0 F (24 0 C), thereby indicating that the resistance to crack extension was considerably greater at elevated temperatures, Metallographic and electron fractographic examination of the Inconel X-750 fracture surfaces revealed that this slope change phenomenon was associated with an intergranular to transgranular fracture mechanism transition. Under room temperature conditions, crack extension occurred primarily by an intergranular dimple rupture mechanism attributed to microvoid coalescence along a grain boundary denuded region. In the 800 to 1000 0 F (427 to 538 0 C) regime, the fracture surface was dominated by a faceted transgranular morphology
Numerical estimate of fracture parameters under elastic and elastic-plastic conditions
International Nuclear Information System (INIS)
Soba, Alejandro; Denis, Alicia C.
2003-01-01
The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)
Directory of Open Access Journals (Sweden)
Isa Kolo
2016-01-01
Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.
Elastic-plastic fracture assessment using a J-R curve by direct method
International Nuclear Information System (INIS)
Asta, E.P.
1996-01-01
In the elastic-plastic evaluation methods, based on J integral and tearing modulus procedures, an essential input is the material fracture resistance (J-R) curve. In order to simplify J-R determination direct, a method from load-load point displacement records of the single specimen tests may be employed. This procedure has advantages such as avoiding accuracy problems of the crack growth measuring devices and reducing testing time. This paper presents a structural integrity assessment approach, for ductile fracture, using the J-R obtained by a direct method from small single specimen fracture tests. The J-R direct method was carried out by means of a developed computational program based on theoretical elastic-plastic expressions. A comparative evaluation between the direct method J resistance curves and those obtained by the standard testing methodology on typical pressure vessel steels has been made. The J-R curves estimated from the direct method give an acceptable agreement with the approach proposed in this study which is reliable to use for engineering determinations. (orig.)
Study on elastic-plastic fracture toughness test in high temperature water
International Nuclear Information System (INIS)
Miura, Yasufumi
2016-01-01
Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)
Directory of Open Access Journals (Sweden)
S. Psakhie
2013-04-01
Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.
DEFF Research Database (Denmark)
Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.
1998-01-01
of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...
Mechanically equivalent elastic-plastic deformations and the problem of plastic spin
Directory of Open Access Journals (Sweden)
Steigmann David J.
2011-01-01
Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.
Zehnder, Alan T
2012-01-01
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering. He teaches applied mechanics and his research t...
Mixed-mode elastic-plastic fracture of 2024-T351 aluminium alloy
International Nuclear Information System (INIS)
Sakata, Masaru; Aoki, Shigeru; Kishimoto, Kikuo; Chikugo, Hiroshi; Takizawa, Masakazu.
1985-01-01
In order to evaluate accurately the strength and structural soundness of the structures made of high toughness materials, it is necessary to clarify the fracture behavior under the loading condition of mixed mode such as oblique cracks as well as the elasto-plastic fracture behavior of the materials in the case of single opening displacement type mode. About the fracture condition in the state of mixed mode, various theories based on the linear fracture mechanics have been proposed. In this study, the elasto-plastic fracture toughness test of mixed mode was carried out by using an aluminum alloy as the subject, and the behavior of dulling and development of cracks was observed with a scanning electron microscope. Moreover, the state of deformation of the test pieces was analyzed by elasto-plastic finite element method, thus the parameters controlling the elasto-plastic fracture of mixed mode were examined. In the range of this study, the limiting stretch zone width in the case of loading of mixed mode was 12 μm similarly to the case of single mode. Also in the case of mixed mode, there was distinct difference between the inclination of a dulling straight line and an R-curve, and the limit value of J intergral was determined by their intersection. (Kako, I.)
International Nuclear Information System (INIS)
Kamaya, Masayuki
2012-01-01
Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)
Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.
2012-01-01
Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.
Use of J-integral and modified J-integral as measures of elastic-plastic fracture toughness
International Nuclear Information System (INIS)
Davis, D.A.; Hays, R.A.; Hackett, E.M.; Joyce, J.A.
1988-01-01
J-R Curve tests were conducted on 12T, 1T and 2T compact specimens of materials having J/sub IC/ values ranging from 150 in-lbsq in to over 2600 in-lbsq in. These materials were chosen such that some would exceed the maximum crack length criterion of ASTM E1152-87 prior to reaching the maximum J criterion (3-Ni steel, 5000 series Al) and some would exceed the maximum J criterion first (A533B, A710). The elastic-plastic fracture behavior of these materials was examined using both the deformation theory J-integral (J/sub D/) and the modified J-integral (J/sub M/). The J-R curve testing was performed to very large values of crack opening displacement (COD) where the crack growth was typically 75% of the original remaining ligament. The results of this work suggest that the J/sub D/-R curves exhibit no specimen size dependence to crack extensions far in excess of the E1152 allowables. The J/sub M/-R curves calculated for the same specimens show a significant amount of specimen size dependence which becomes larger as the material toughness decreases. This work suggests that it is premature to utilize the modified J-integral in assessing the flaw tolerance of structures
On the use of J-integral and modified J-integral as measures of elastic-plastic fracture toughness
International Nuclear Information System (INIS)
Davis, D.A.; Hays, R.A.; Hackett, E.M.; Joyce, J.A.
1988-01-01
J-R Curve tests were conducted on 1/2T, 1T and 2T compact specimens of materials having J IC values ranging from 150 in-1b/sq in to over 2600 in-lb/sq in. These materials were chosen such that some would exceed the maximum crack length criterion of ASTM E1152-87 prior to reaching the maximum J criterion (3-Ni steel, 5000 series A1) and some would exceed the maximum J criterion first (A533B, A710). The elastic-plastic fracture behavior of these materials was examined using both the deformation theory J-integral (J D ) and the modified J-integral (J M ). The J-R curve testing was performed to very large values of crack opening displacement (COD) where the crack growth was typically 75% of the original remaining ligament. The results of this work suggest that the J D -R curves exhibit no specimen size dependence to crack extensions far in excess of the E1152 allowables. The J M -R curves calculated for the same specimens show a significant amount of specimen size dependence which becomes larger as the material toughness decreases. This work suggests that it is premature to utilize the modified J-integral in assessing the flaw tolerance of structures. (author)
International Nuclear Information System (INIS)
Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.
2001-01-01
An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs
Elastic-Plastic Deformation in Cracked Solids and Ductile Fracture Criterion.
1982-01-01
stresses fracture propertiesstanfedi; /atigue(materials)____ 0 AserivAcT ecwesu -oroe silill of1 reew-W vis t~dUiP by block nbr he main objectives of the... rubber infiltration, etc. None of these methods can avoid some degree of arbitrariness, either in the relation between the far field measurement and the
Nanomechanical quantification of elastic, plastic, and fracture properties of LiCoO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Qu, Meng; Woodford, William H.; Maloney, John M.; Carter, W. Craig; Chiang, Yet-Ming; Van Vliet, Krystyn J. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)
2012-08-15
Young's elastic modulus, hardness, and fracture toughness (K{sub Ic}) of individual grains are reported for polycrystalline LiCoO{sub 2}, a metal oxide cathode used in lithium-ion batteries, as measured via instrumented nanoindentation (indentations within circled locations; dashed line indicates grain boundary). The wide range of K{sub Ic} does not correlate strongly with grain orientation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Round-robin activities on finite element analyses of elastic-plastic fracture in Japan
International Nuclear Information System (INIS)
Shimakawa, T.; Takahashi, Y.; Yagawa, G.
1989-01-01
The establishment of the leak-before-break (LBB) concept requires a method to evaluate the fracture characteristics. The finite element method can be used for this purpose but the solution is more or less influenced by the method employed. In this study, two round-robin analyses are performed for three-dimensional crack problems. The first problem is for surface crack growth in a carbon steel plate subjected to tension loading. Ten solutions are obtained by ten participants, and calculated results are compared with each other as to the applied load, displacement and J-integral. Though the relation between applied load and displacement is affected by modeling of the stress-strain curve, fairly good agreement is obtained between the solutions. The second problem is for a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Nine solutions are obtained by eight participants. The difference between the solutions is relatively significant as to the relation between J-integral and load-point displacement. A discussion is made about the sources of difference between each solution. (orig.)
Why ductile fracture mechanics
International Nuclear Information System (INIS)
Ritchie, R.O.
1983-01-01
Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep
International Nuclear Information System (INIS)
Ast, Johannes
2016-01-01
The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system {100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior. This
International Nuclear Information System (INIS)
Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu
1992-08-01
This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
A new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (author)
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs
Elastic-plastic mechanical constitutive description for rock salt triaxial compression
International Nuclear Information System (INIS)
Butcher, B.M.
1981-06-01
A model for the time-independent part of the mechanical deformation of rock salt from the Waste Isolation Pilot Plant Site in southeastern New Mexico is presented. A recently published creep model was first used to correct conventional triaxial compression data for time-dependent deformation. The experimental data was from tests at a loading rate of approximately 11.9 N/s, 23 0 C, and confining pressures from 0 to -20.7 MPa. The corrected time-independent curves were then used to determine material constants for the model. Generalization to a three-dimensional plasticity-failure theory using a general constitutive relation proposed by Rudnicki and Rice was also performed. 7 figures, 3 tables
International Nuclear Information System (INIS)
Ikonen, K.
1993-07-01
The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)
Fracture mechanics. With an introduction to micromechanics
International Nuclear Information System (INIS)
Gross, D.
2006-01-01
Concerned with the fundamental concepts and methods of fracture mechanics and micromechanics, Fracture Mechanics primarily focuses on the mechanical description of the fracture process; however, material specific aspects are also discussed. The presentation of continuum mechanical and phenomenological foundations is followed by an introduction into classical failure hypotheses. A major part of the book is devoted to linear elastic and elastic-plastic fracture mechanics. Further subjects are creep fracture, dynamic fracture mechanics, damage mechanics, probabilistic fracture mechanics, failure of thin films and fracture of piezoelectric materials. The book also contains an extensive introduction into micromechanics. Self-contained and well-illustrated, this text serves as a graduate-level text and reference
On the use of elastic-plastic material characteristics for linear-elastic component assessments
International Nuclear Information System (INIS)
Kussmaul, K.; Silcher, H.; Eisele, U.
1995-01-01
In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)
Elastic-Plastic Fracture Mechanics Analysis of a CT-Specimen - a Two-Dimensional Approach
DEFF Research Database (Denmark)
Larsen, Gunner Chr.
strain as well as a plane stress approximation. The results presented include applied loads and displacements at certain locations. Moreover, the J-integral and the crack opening displacement have been presented. The plane strain and the plane stress approximation have been compared and the plane stres......« approximation is believed to deliver the best results. The results have been obtained using the finiteelement code ADINA and the postprocessor code JINT....
Fracture mechanics evaluation for at typical PWR primary coolant pipe
International Nuclear Information System (INIS)
Tanaka, T.; Shimizu, S.; Ogata, Y.
1997-01-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years
Fracture mechanics evaluation for at typical PWR primary coolant pipe
Energy Technology Data Exchange (ETDEWEB)
Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)
1997-04-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.
Perez, Nestor
2017-01-01
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...
Directory of Open Access Journals (Sweden)
Jan Valíček
2015-11-01
Full Text Available The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ, especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology
Allen, P. A.; Wells, D. N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
International Nuclear Information System (INIS)
Miannay, D.P.
1995-01-01
This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped
Elastic-plastic code in the static regime for two-dimensional structures
International Nuclear Information System (INIS)
Giuliani, S.
1976-07-01
The finite-element computer code STEP-2D, which was conceived as a numerical tool for basic research in fracture mechanics presently under way in the Materials Division of JRC Ispra is described. The code employs 8-node isoparametric elements for calculating elastic-plastic stress and strain distributions in 2-D geometries. The von Mises yield criterion is used. Material strain hardening is described by means of either the isotropic or the so-called 'overlay' model. An incremental solution is employed in the plastic range. The program has been written in Fortran IV and compiled on an IBM 370-165
Cracking mechanism of shale cracks during fracturing
Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.
2018-06-01
In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.
An elastic-plastic contact model for line contact structures
Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng
2018-06-01
Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.
Energy Technology Data Exchange (ETDEWEB)
Burdekin, F M
1988-12-31
This document deals with fracture mechanics methods used for the assessment of Light Water Reactor (LWR) components. The background to analysis methods using elastic plastic parameters is described. Several results obtained with these methods are presented as well as results of reliability analysis methods. (TEC). 27 refs.
International Nuclear Information System (INIS)
Kim, Jong Min; Huh, Nam Su
2010-01-01
The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components
Fracture mechanics evaluation for the cast duplex stainless steel after thermal aging
Energy Technology Data Exchange (ETDEWEB)
Urata, Shigeru [Kansai Electric Power Co., Inc., Osaka (Japan)
1998-12-31
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years. (author)
Elastic-plastic-creep analysis of shells
International Nuclear Information System (INIS)
Pai, D.H.
1979-01-01
This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Defect vectors and path integrals in fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1979-01-01
Several criteria have been proposed in Elastic Plastic Fracture Mechanics. One of the most interesting ones is the J 1 criterion where J 1 is a path integral surrounding the crack tip. Other path integrals (or surface integrals in 3D problems) can be used. But all these integrals are introduced on an elastic basis, though they are applied in plasticity. This paper shows that it is possible to introduce these integrals without any reference to the elastic behavior of the material. The method is based on the 'defect vector theory' which is an extension of the energy-momentum tensor theory. (orig.)
Draft fracture mechanics code case for American Society of Mechanical Engineers NUPACK rules
International Nuclear Information System (INIS)
McConnell, P.; Sorenson, K.; Nickell, R.; Saegusa, T.
2004-01-01
The containment boundaries of most spent-fuel casks certified for use in the United States by the Nuclear Regulatory Commission are constructed with stainless steel, a material that is ductile in an engineering sense at all temperatures and for which, therefore, fracture mechanics principles are not relevant for the containment application. Ferritic materials may fail in a nonductile manner at sufficiently low temperatures, so fracture mechanics principles may be applied to preclude nonductile fracture. Because of the need to transport and store spent nuclear fuel safely in all types of climatic conditions, these vessels have regulatory lowest service temperatures that range down to -40 C (-40 F) for transport application. Such low service temperatures represent a severe challenge in terms of fracture toughness to many ferritic materials. Linear-elastic and elastic-plastic fracture mechanics principles provide a methodology for evaluating ferritic materials under such conditions
Fracture mechanics evaluation of heavy welded structures
International Nuclear Information System (INIS)
Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.
1982-01-01
This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude of residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses
Energy Technology Data Exchange (ETDEWEB)
Peralta, Pedro
2018-04-16
Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres, to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanical behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO2) outlined in this project have been
International Nuclear Information System (INIS)
Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.
1997-01-01
Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)
1997-09-01
Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.
International Nuclear Information System (INIS)
Gomez, M.P.; McMeeking, R.M.; Parks, D.M.
1980-06-01
Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior
Fracture mechanical materials characterisation
International Nuclear Information System (INIS)
Wallin, K.; Planman, T.; Nevalainen, M.
1998-01-01
The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)
Thermodynamic analysis of elastic-plastic deformation
International Nuclear Information System (INIS)
Lubarda, V.
1981-01-01
The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Moreno, A
1977-07-01
In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs.
Finite element elastic-plastic analysis of LMFBR components
International Nuclear Information System (INIS)
Levy, A.; Pifko, A.; Armen, H. Jr.
1978-01-01
The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)
Probabilistic fracture mechanics applied for lbb case study: international benchmark
International Nuclear Information System (INIS)
Radu, V.
2015-01-01
An application of probabilistic fracture mechanics to evaluate the structural integrity for a case study chosen from experimental Mock-ups of FP7 STYLE project is described. The reliability model for probabilistic structural integrity, focused on the assessment of TWC in the pipe weld under complex loading (bending moment and residual stress) has been setup. The basic model is the model of fracture for through-wall cracked pipe under elastic-plastic conditions. The corresponding structural reliability approach is developed with the probabilities of failure associated with maximum load for crack initiation, net-section collapse but also the evaluation the instability loads. The probabilities of failure for a through-wall crack in a pipe subject to pure bending are evaluated by using crude Monte Carlo simulations. The results from the international benchmark are presented for the mentioned case in the context of ageing and lifetime management of pressure boundary/pressure circuit component. (authors)
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
Energy Technology Data Exchange (ETDEWEB)
Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
International Nuclear Information System (INIS)
Rudolph, Juergen; Goetz, Andreas; Hilpert, Roland
2012-01-01
The procedures of fatigue analyses of several relevant nuclear and conventional design codes (ASME, KTA, EN, AD) for power plant components differentiate between an elastic, simplified elastic-plastic and elastic-plastic fatigue check. As a rule, operational load levels will exclude the purely elastic fatigue check. The application of the code procedure of the simplified elastic-plastic fatigue check is common practice. Nevertheless, resulting cumulative usage factors may be overly conservative mainly due to high code based plastification penalty factors Ke. As a consequence, the more complex and still code conforming general elastic-plastic fatigue analysis methodology based on non-linear finite element analysis (FEA) is applied for fatigue design as an alternative. The requirements of the FEA and the material law to be applied have to be clarified in a first step. Current design codes only give rough guidelines on these relevant items. While the procedure for the simplified elastic-plastic fatigue analysis and the associated code passages are based on stress related cycle counting and the determination of pseudo elastic equivalent stress ranges, an adaptation to elastic-plastic strains and strain ranges is required for the elastic-plastic fatigue check. The associated requirements are explained in detail in the paper. If the established and implemented evaluation mechanism (cycle counting according to the peak and valley respectively the rainflow method, calculation of stress ranges from arbitrary load-time histories and determination of cumulative usage factors based on all load events) is to be retained, a conversion of elastic-plastic strains and strain ranges into pseudo elastic stress ranges is required. The algorithm to be applied is described in the paper. It has to be implemented in the sense of an extended post processing operation of FEA e.g. by APDL scripts in ANSYS registered . Variations of principal stress (strain) directions during the loading
New constitutive equations to describe infinitesimal elastic-plastic deformations
International Nuclear Information System (INIS)
Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.
1983-01-01
A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)
Fracture mechanics safety approaches
International Nuclear Information System (INIS)
Roos, E.; Schuler, X.; Eisele, U.
2004-01-01
Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the
Elevated temperature fracture mechanics
International Nuclear Information System (INIS)
Tomkins, B.
1979-01-01
The application of fracture mechanics concepts to cracks at elevated temperatures is examined. Particular consideration is given to the characterisation of crack tip stress-strain fields and parameters controlling crack extension under static and cyclic loads. (author)
Classical fracture mechanics methods
International Nuclear Information System (INIS)
Schwalbe, K.H.; Heerens, J.; Landes, J.D.
2007-01-01
Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals
Computer implementation of an elastic-plastic concrete relationship
International Nuclear Information System (INIS)
Murray, D.W.; Chitnuyanondh, L.; Wong, C.
1979-01-01
The purpose of this paper is to describe the difficulties that arose, and the strategies that were developed to overcome these difficulties, during the incorporation of a relatively complex elastic-plastic concrete constitutive relationship into an existing computer code for the analysis of axisymmetric loading acting on thin shells of revolution. The program had the capability of elastic-plastic analysis using a von-Mises yield curve prior to any modification by the writers. (orig.)
Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage
International Nuclear Information System (INIS)
Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu
2007-01-01
Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material
Results of fracture mechanics tests on PNC SUS 304 plate
International Nuclear Information System (INIS)
Mills, W.J.; James, L.A.; Blackburn, L.D.
1985-08-01
PNC provided SUS 304 plate to be irradiated in FFTF at about 400 0 C to a target fluence of 5 x 10 21 n/cm 2 (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel
Fracture mechanics and microstructures
International Nuclear Information System (INIS)
Gee, M.G.; Morrell, R.
1986-01-01
The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness
Fracture mechanics and parapsychology
Cherepanov, G. P.
2010-08-01
The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution
Fracture Mechanics of Concrete
DEFF Research Database (Denmark)
Ulfkjær, Jens Peder
Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...
Development of probabilistic fracture mechanics code PASCAL and user's manual
Energy Technology Data Exchange (ETDEWEB)
Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)
2001-03-01
As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)
Prediction of fretting fatigue behavior under elastic-plastic conditions
International Nuclear Information System (INIS)
Shin, Ki Su
2009-01-01
Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations
Energy Technology Data Exchange (ETDEWEB)
Ast, Johannes
2016-07-01
The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system <100>{100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior
International Nuclear Information System (INIS)
Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.
1976-07-01
This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)
Electrical resistivity response due to elastic-plastic deformations
International Nuclear Information System (INIS)
Stout, R.B.
1987-01-01
The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs
Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
2001-01-01
Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Fracture mechanics evaluation of cast duplex stainless steel after thermal aging
International Nuclear Information System (INIS)
Tujikura, Y.; Urata, S.
1999-01-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)
Fracture mechanics evaluation of cast duplex stainless steel after thermal aging
Energy Technology Data Exchange (ETDEWEB)
Tujikura, Y.; Urata, S. [Kansai Electr. Power Co., Inc., Osaka (Japan). General Office of Nucl. and Fossil Power Production
1999-07-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Introduction to contact mechanics
Fischer-Cripps, Anthony C
2000-01-01
Contact mechanics deals with the elastic or plastic contact between two solid objects, and is thus intimately connected with such topics as fracture, hardness, and elasticity.This text, intended for advanced undergraduates, begins with an introduction to the mechanical properties of materials, general fracture mechanics, and fractures in brittle solids.This is followed by a detailed discussion of stresses and the nature of elastic and elastic-plastic contact.
International Nuclear Information System (INIS)
Eisele, U.; Roos, E.
1991-01-01
Determining fracture-mechanical material characteristic values on the basis of the J-integral is described and stipulated in a variety of standards and guidelines. The individual specifications differ in terms of procedure when determining the characteristic values and, therefore, also in terms of the meaningfulness of the results. This paper presents the different procedures, suggested in the course of the development of test methods in the field of elastic-plastic fracture mechanics, used to characterize crack initiation behaviour with regard to their features as material characteristic values and their usability in the safety assessment of components. (orig.)
Studies of elastic-plastic instabilities
DEFF Research Database (Denmark)
Tvergaard, Viggo
1999-01-01
Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formati...
Mechanics of Hydraulic Fractures
Detournay, Emmanuel
2016-01-01
Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.
Theory of reversal nonisothermal elastic-plastic deformation
International Nuclear Information System (INIS)
Shorr, B.F.
1979-01-01
Considered is approximated theory of nonisothermal elastic-plastic deformation at arbitrary laws of loading, permitting to describe nonisothermal isotropic and anisotropic strengthening of the material, Bauschinger effect and different tempo of plastic deformation development over different directions of loading depending on the deformation prehistory. The comparison of the theory with the experimental data showed good coincidence and sufficient simplicity permits to use it in technical calcualtions
Dynamics of shock waves in elastic-plastic solids
Favrie , Nicolas; Gavrilyuk , Sergey ,
2010-01-01
Submitted in ESAIM Procedings; The Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of such a model which is compatible with the von Mises criterion of plasticity. Numerical examples show the ability of the model to deal with complex physical phenomena.
Elastic-plastic analysis of the SS-3 tensile specimen
International Nuclear Information System (INIS)
Majumdar, S.
1998-01-01
Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior
Analytical relations between elastic-plastic fracture criteria
International Nuclear Information System (INIS)
Merkle, J.G.
1976-07-01
The equation of the normalized COD design curve recently proposed in the UK as a basis for determining allowable crack sizes is derived from the Equivalent Energy approximation for the J Integral. It is also shown that another approximation for the J Integral recently proposed by Westinghouse is mathematically equivalent to the normalized COD approach
Constitutive relations in plasticity, damage and fracture mechanics based on a work property
International Nuclear Information System (INIS)
Marigo, J.J.
1989-01-01
This paper is devoted to restrictions imposed by a work property of Drucker-Iliushin's type on the general class of mechanical systems with an elastic range which contains plastic, damaged and cracked media. The analysis is purely mechanical and quasi-static. Starting from very weak assumptions relative to this constitutive class, we obtain a fundamental inequality which generalizes Hill's maximal work principle. So we can justify, for instance: the convexity of the elastic domain and the normality rule of the plastic strain rate in stress space for the infinitesimal and some finite plasticity theories, Griffith's criterion in brittle fracture mechanics, and we obtain some original results for elastic and elastic plastic damaged materials. It must be noted that the procedure is purely deductive, the assumptions are explicit and the results are implications
Elastic-plastic transition: A universal law
Directory of Open Access Journals (Sweden)
Chen Zhong
2016-01-01
Full Text Available Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays.
Energy Technology Data Exchange (ETDEWEB)
Wallin, K; Valo, M; Rintamaa, R; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, R [Imatran Voima Oy (IVO), Helsinki (Finland)
1994-12-31
An extensive mechanical property evaluation has been carried out on various specimens (a Japanese steel plate (JRQ), a French forging material (FFA) and a Japanese forging material (JFL)) in the as-received and irradiated conditions. The mechanical properties measured at different temperatures include Charpy-V notch and instrumented pre-cracked Charpy data and static and dynamic elastic-plastic fracture toughness based on the J-integral, with various specimen size and geometry. Test analysis lead to conclusions regarding the use of small specimen fracture mechanical tests for investigating irradiation effects: CVN{sub pc} and RCT type specimens are suitable for determining the materials fracture toughness even in the ductile/brittle transition region provided the elastic-plastic parameter K{sub JC} is applied together with a statistical size correction. These two specimen types yield equivalent results for the fracture toughness transition shift. Charpy-V appears not to be suitable for estimating the static fracture toughness transition shift. 8 refs., 11 figs.
Elastic-plastic behaviour of thick-walled containers considering plastic compressibility
International Nuclear Information System (INIS)
Betten, J.; Frosch, H.G.
1983-01-01
In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Lang, Hermann, E-mail: hermann.lang@areva.com [AREVA NP GmbH, PEEA-G, Henri-Dunant-Strasse 50, 91058 Erlangen (Germany); Rudolph, Juergen; Ziegler, Rainer [AREVA NP GmbH, PEEA-G, Henri-Dunant-Strasse 50, 91058 Erlangen (Germany)
2011-08-15
As code-based fully elastic plastic code conforming fatigue analyses are still time consuming, simplified elastic plastic analysis is often applied. This procedure is known to be overly conservative for some conditions due to the applied plastification (penalty) factor K{sub e}. As a consequence, less conservative fully elastic plastic fatigue analyses based on non-linear finite element analyses (FEA) or simplified elastic plastic analysis based on more realistic K{sub e} factors have to be used for fatigue design. The demand for more realistic K{sub e} factors is covered as a requirement of practical fatigue analysis. Different code-based K{sub e} procedures are reviewed in this paper with special regard to performance under thermal cyclic loading conditions. Other approximation formulae such as those by Neuber, Seeger/Beste or Kuehnapfel are not evaluated in this context because of their applicability to mechanical loading excluding thermal cyclic loading conditions typical for power plant operation. Besides the current code-based K{sub e} corrections, the ASME Code Case N-779 (e.g. Adam's proposal) and its modification in ASME Section VIII is considered. Comparison of elastic plastic results and results from the Rules for Nuclear Facility Components and Rules for Pressure Vessels reveals a considerable overestimation of usage factor in the case of ASME III and KTA 3201.2 for the examined examples. Usage factors according to RCC-M, Adams (ASME Code Case N-779), ASME VIII (alternative) and EN 13445-3 are essentially comparable and less conservative for these examples. The K{sub v} correction as well as the applied yield criterion (Tresca or von Mises) essentially influence the quality of the more advanced plasticity corrections (e.g. ASME Code Case N-779 and RCC-M). Hence, new proposals are based on a refined K{sub v} correction.
International Nuclear Information System (INIS)
Lang, Hermann; Rudolph, Juergen; Ziegler, Rainer
2011-01-01
As code-based fully elastic plastic code conforming fatigue analyses are still time consuming, simplified elastic plastic analysis is often applied. This procedure is known to be overly conservative for some conditions due to the applied plastification (penalty) factor K e . As a consequence, less conservative fully elastic plastic fatigue analyses based on non-linear finite element analyses (FEA) or simplified elastic plastic analysis based on more realistic K e factors have to be used for fatigue design. The demand for more realistic K e factors is covered as a requirement of practical fatigue analysis. Different code-based K e procedures are reviewed in this paper with special regard to performance under thermal cyclic loading conditions. Other approximation formulae such as those by Neuber, Seeger/Beste or Kuehnapfel are not evaluated in this context because of their applicability to mechanical loading excluding thermal cyclic loading conditions typical for power plant operation. Besides the current code-based K e corrections, the ASME Code Case N-779 (e.g. Adam's proposal) and its modification in ASME Section VIII is considered. Comparison of elastic plastic results and results from the Rules for Nuclear Facility Components and Rules for Pressure Vessels reveals a considerable overestimation of usage factor in the case of ASME III and KTA 3201.2 for the examined examples. Usage factors according to RCC-M, Adams (ASME Code Case N-779), ASME VIII (alternative) and EN 13445-3 are essentially comparable and less conservative for these examples. The K v correction as well as the applied yield criterion (Tresca or von Mises) essentially influence the quality of the more advanced plasticity corrections (e.g. ASME Code Case N-779 and RCC-M). Hence, new proposals are based on a refined K v correction.
Mechanical properties of fracture zones
International Nuclear Information System (INIS)
Leijon, B.
1993-05-01
Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs
International Nuclear Information System (INIS)
Huh, Nam Su; Im, Chang Ju; Kim, Young Jin; Pyo, Chang Ryul; Park, Chi Yong
2000-01-01
In order to evaluate the integrity of nuclear power plant components, the analysis based on fracture mechanics is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, it is time consuming to design the finite element model of a cracked structure. Also, the J-integral should by verified by alternative methods since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS program. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI (Domain Integral) and EDI (Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently
Elastic-plastic analysis of part-through crack propagation in piping and pressure vessels
International Nuclear Information System (INIS)
Souza, L.A. de; Ebecken, N.F.F.
1986-01-01
The shell structures, often used in the construction of reservoirs, pipings, pressure vessels, nuclear power plants, etc, with part-through crack along its thickness, are analysed, using a computer system developed by the finite element method. The surface is discretized with three-dimensional quadratic elements, degenerated in its mid-surface, such the fracture is simulated by scalar elements (non linear springs). The results are analysed by the stress intensity factor K Sub(I) and the strain energy release rate, which is known as J-integral. The analysis is performed in the elastic and elastic-plastic regime. The basic hipothesis and the formulation adopted in the derivation of the scalar elements are also shown. (Author) [pt
Fracture Mechanics of Concrete
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
the international workshop on concrete fracture, organised by A Carpinteri, at Torino ... The next question is how to bring the size effect into codes of practice on the ... analysis of the recent collapse of the World Trade Center in New York by Z P ...
Elastic-plastic dynamic analysis of a reactor building
International Nuclear Information System (INIS)
Umemura, Hajime; Tanaka, Hiroshi.
1976-01-01
The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)
Probabilistic application of fracture mechanics
International Nuclear Information System (INIS)
Dufresne, J.
1981-04-01
The different methods used to evaluate the rupture probability of a pressure vessel are reviewed. Data collection and processing of all parameters necessary for fracture mechanics evaluation are presented with particular attention to the size distribution of defects in actual vessels. Physical process is followed during crack growth and unstable propagation, using LEFM (Linear Elastic Fracture Mechanism) and plastic instability. Results show that the final failure probability for a PWR pressure vessel is 3.5 10 -8 , and is due essentially to LOCAs for any break size. The weakest point is the internal side of the belt line
Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels
Directory of Open Access Journals (Sweden)
Jinquan Guo
2016-01-01
Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.
Fracture mechanics model of fragmentation
International Nuclear Information System (INIS)
Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A.
1986-01-01
A model of the fragmentation process is developed, based on the theory of linear elastic fracture mechanics, which predicts the average fragment size as a function of strain rate and material properties. This approach permits a unification of previous results, yielding Griffith's solution in the low-strain-rate limit and Grady's solution at high strain rates
Development of probabilistic fracture mechanics code PASCAL and user's manual
Energy Technology Data Exchange (ETDEWEB)
Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)
2001-03-01
As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)
Elastic-plastic analysis of tube expansion in tubesheets
International Nuclear Information System (INIS)
Kasraie, B.; O'Donnell, W.J.; Porowski, J.S.; Selz, A.
1983-01-01
Conditions for expansion of tubes in tubesheets are often determined by the test. The tightness of the joint and pull out force are used as criteria for evaluation of the results. For closely spaced tubes, it is also necessary to control development of the plastic regions in the ligaments surrounding the tube being expanded. High local strains may occur and excessive distortion may result if the expansion of the tube is continued beyond the admissible limits. Elastic-plastic finite element analyses are performed herein in order to establish conditions for rolling of the tubes in tubesheets of low ligament efficiency. Such penetration patterns are often required in the design of tubular reactors for catalytic processes. The model considered includes individual tube expansion in tubesheets with triangular penetration patterns. The effect of prior expansion of the neighboring tubes is also evaluated. Gap elements are used to model the initial clearance of the tube in the hole. Development of the plastic zones and distortion of the ligaments is monitored during radial expansion of the tube diameter. The residual stresses between the tube and the hole surface and the history of gap closing after removal of the expansion tool are determined. The effect of axial extension of the tube on the tube thinning is determined. Tube thinning is often used as a measure of tube expansion in manufacturing processes. For the analyzed ligament efficiency, reliable joints are obtained for a thinning range within 2% to 3%
Asymptotic techniques in elastic-plastic analysis of structures
International Nuclear Information System (INIS)
Sayir, M.
1983-01-01
Elastic-plastic structures can nowadays be analyzed with the powerful numerical procedures of the finite element method. Nevertheless, in many engineering applications, analytical expressions capable of predicting with sufficient accuracy the stress distributions, the extent of the plastic zones and the load displacement behaviour could be of great practical value. For simple structures and loading stages not too far from the elastic limit, such analytical expressions may be obtained by using perturbation methods and asymptotic expansions. A small dimensionless parameter epsilon is defined as the ratio of a length characterizing the extent of the narrow plastic zone, to a conveniently chosen typical dimension of the structure. Stresses and displacements are formally expanded as asymptotic series in terms of powers of epsilon. For each order of magnitude, the exact basic relations lead to a separate set of simplified differential equations which can be integrated analytically or numerically by using standard procedures. The method is very general and can be applied to several classes of plastic behaviour and of structural problems. Three examples of very simple structures are chosen in particular to illustrate the applicability of the perturbation method to engineering problems. (orig./RW)
Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour
DEFF Research Database (Denmark)
Ottosen, N. Saabye; Gunneskov, O.
1985-01-01
to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...
International Nuclear Information System (INIS)
Osakabe, Kazuya; Onizawa, Kunio; Shibata, Katsuyuki; Kato, Daisuke
2006-09-01
As a part of the aging structural integrity research for LWR components, the probabilistic fracture mechanics (PFM) analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed in JAEA. This code evaluates the conditional probabilities of crack initiation and fracture of a reactor pressure vessel (RPV) under transient conditions such as pressurized thermal shock (PTS). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics and computer performance. PASCAL Ver.1 has functions of optimized sampling in the stratified Monte Carlo simulation, elastic-plastic fracture criterion of the R6 method, crack growth analysis models for a semi-elliptical crack, recovery of fracture toughness due to thermal annealing and so on. Since then, under the contract between the Ministry of Economy, Trading and Industry of Japan and JAEA, we have continued to develop and introduce new functions into PASCAL Ver.2 such as the evaluation method for an embedded crack, K I database for a semi-elliptical crack considering stress discontinuity at the base/cladding interface, PTS transient database, and others. A generalized analysis method is proposed on the basis of the development of PASCAL Ver.2 and results of sensitivity analyses. Graphical user interface (GUI) including a generalized method as default values has been also developed for PASCAL Ver.2. This report provides the user's manual and theoretical background of PASCAL Ver.2. (author)
International Nuclear Information System (INIS)
Zheng Bin; Lu Yuechuan; Zang Fenggang; Sun Yingxue
2009-01-01
In order to widen the application of the engineering method of EPRI, with a series of analysis on the 3D elastic and elastic-plastic fracture mechanics finite element, the crack open displacements (COD) of cracked pipe were calculated and a key influence function h 2 in EPRI engineering method was studied against the COD results of FEM. A calculation method of h2 under the condition of tension and bending combined load was introduced in detail. In order to validate this method, the calculated h 2 results were compared with that of EPRI, and the calculated COD results based on the h 2 results were compared with that of PICEP. The compared results indicated that the calculated h 2 results as well as the COD results and the corresponding reference values were respectively accordant, and the calculation method in this paper was validated accordingly. (authors)
Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion
International Nuclear Information System (INIS)
Sahoo, Prasanta; Banerjee, Atanu
2005-01-01
This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces
Coupled Flow and Mechanics in Porous and Fractured Media*
Martinez, M. J.; Newell, P.; Bishop, J.
2012-12-01
Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the
International Nuclear Information System (INIS)
Rack, H.J.; Knorovsky, G.A.
1978-09-01
Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
Fatigue crack propagation under elastic plastic medium at elevated temperature
International Nuclear Information System (INIS)
Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.
1980-01-01
The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)
International Nuclear Information System (INIS)
Toivonen, A.; Moilanen, P.; Taehtinen, S.; Aaltonen, P.; Wallin, K.
1998-01-01
The feasibility of sub size specimens to fracture mechanical tests in inert and in reactor environment is studied in this paper. The need for using sub size specimens has arised from the need to study highly irradiated materials as well as to study localised stress corrosion cracking, i.e. stress corrosion cracking in very narrow heat affected zones for example in welded thin walled pipes. This paper focuses on the effects of high J-integral values on ductile tearing and on environmentally assisted crack growth rate. The main focus is on the stress corrosion tests. The subject is approached first by theoretical discussion. The experimental study consists of J-R tests in air and of slow J-R tests in simulated boiling water reactor (BWR) environment. In most cases the tests were continued until the J-integral level was significantly above the maximum allowable J values for ductile fracture toughness characterisation prescribed in test standards. The results indicate that the measurement capacity of the specimens depends on the specimen dimensions in J-R tests in air, as could be expected. The measurement capacity limitations are not necessarily important in stress corrosion testing as the environmentally assisted crack growth rate can be measured even without exceeding the J-integral limits given in J-R standards. The theoretical and experimental studies indicate that stress corrosion studies are not limited to linear elastic fracture mechanics approach, but elastic plastic fracture mechanics is applicable as well. (author)
Multiaxial probabilistic elastic-plastic constitutive simulations of soils
Sadrinezhad, Arezoo
Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic
Fracture mechanics analysis and evaluation for the RPV of the Chinese Qinshan 300 MW NPP and PTS
International Nuclear Information System (INIS)
He Yinbiao; Isozaki, Toshikuni
2000-03-01
One of the most severe accident conditions of a reactor pressure vessel (RPV) in service is the loss of coolant accident (LOCA). Cold safety injection water is pumped into the downcomer of the RPV through inlet nozzles, while the internal pressure may remain at high level. Such an accident is called pressurized thermal shock (PTS) transient according to 10 CFR 50.61 definition. This paper illustrates the fracture mechanics analysis for the existing RPV of the Chinese Qinshan 300 MW nuclear power plant (NPP) under the postulated PTS transients that include SB-LOCA, LB-LOCA of Qinshan NPP and Rancho Seco transients. 3-D models with the flaw depth range a/w=0.05∼0.9 (a: flaw depth; w: wall thickness) were used to probe what kind of flaw and what kind of transient are most dangerous for the RPV in the end of life (EOF). Both the elastic and elastic-plastic material models were used in the stress analysis and fracture mechanics analysis. The different types of flaw and the influence of the stainless steel cladding on the fracture analysis were investigated for different PTS transients. comparing with the material initiation crack toughness K IC , the fracture evaluation for the RPV in question under PTS transients are performed in this paper. (author)
Deformation and fracture mechanics of engineering materials
National Research Council Canada - National Science Library
Hertzberg, Richard W; Vinci, Richard Paul; Hertzberg, Jason L
2012-01-01
"Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software...
Fracture Mechanics: Inspirations from Nature
Directory of Open Access Journals (Sweden)
David Taylor
2014-10-01
Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.
Continuum and micro-mechanics treatment of constraint in fracture
International Nuclear Information System (INIS)
Dodds, R.H. Jr.; Shih, C.F.
1993-01-01
This paper explores the fundamental concepts of the J-Q description of crack-tip fields, the fracture toughness locus and micromechanics approaches to predict the variability of macroscopic fracture toughness with constraint under elastic-plastic conditions. While these concepts derived from plane-strain considerations, initial applications in fully 3-D geometries are very promising. Computational results are presented for a surface cracked plate containing a 6:1 semi-elliptical, a=t/4 flaw subjected to remote uniaxial and biaxial tension. Crack-tip stress fields consistent with the J-Q theory are demonstrated to exist at each location along the crack front. The micromechanics model employs the J-Q description of crack-front stresses to interpret fracture toughness values measured on laboratory specimens for fracture assessment of the surface cracked plate. The computational results suggest only a minor effect of the biaxial loading on the crack tip stress fields and, consequently, on the propensity for fracture relative to the uniaxial loading. 45 refs., 19 figs., 3 tabs
Theoretical aspects of fracture mechanics
Atkinson, C.; Craster, R. V.
1995-03-01
In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber
Recent trends in fracture and damage mechanics
Zybell, Lutz
2016-01-01
This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors. The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.
Some comments about the J1 integral criterion in post yield fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1977-01-01
Several criteria have been proposed for Post Yield Fracture Mechanics. One of the most interesting ones is the J 1 integral. When the behaviour of material is elastic (even non-linear) it can be shown that J 1 is not path dependent (for a straight crack without thermal stresses). For this reason, it may be considered that J 1 characterizes the crack tip singularity. Extension is easy to deformation-type elastic plastic material, but there is no proof of path independence for flow-type plastic material (incremental plasticity or creep). Experimental results are often given as a proof of J 1 criterion validity, but there is no experimental value of a contour integral and assumptions are made in the use of experimental results. The main assumption implies that the received mechanical work (strain energy) is not dependent on the loading history (is only dependent on mechanical state). A general method to assess J 1 path dependence can be founded on the 'defect vector' (or driving force) concept. It can be shown that the resultant of defects included in a volumne is the J integral on the surface surrounding the volume (and L for the moment). In order to have an empirical idea of the J 1 path independence, it is possible to make computations with finite elements method. Some results are given and it seems that no noticeable path dependence is seen with simple shapes and radial (proportional) loading. A few cases with complex way of loading are also studied. (Auth.)
Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction
International Nuclear Information System (INIS)
Sahoo, Prasanta
2006-01-01
The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient
Intermetallic alloys: Deformation, mechanical and fracture behaviour
International Nuclear Information System (INIS)
Dogan, B.
1988-01-01
The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-01-19
A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.
Energy Technology Data Exchange (ETDEWEB)
Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-01-19
Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.
Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak
International Nuclear Information System (INIS)
Horie, T.
1987-07-01
Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses
Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses
International Nuclear Information System (INIS)
Sauer, G.
1998-01-01
Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)
Prediction of elastic-plastic response of structural elements subjected to cyclic loading
International Nuclear Information System (INIS)
El Haddad, M.H.; Samaan, S.
1985-01-01
A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES
Directory of Open Access Journals (Sweden)
Numan Behlül BEKTAŞ
2004-02-01
Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.
Fracture mechanics of piezoelectric and ferroelectric solids
Fang, Daining
2013-01-01
Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.
International Nuclear Information System (INIS)
Meny, Lucienne.
1979-06-01
Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr
Elastic-plastic deformation of fiber composites with a tetragonal structure
Energy Technology Data Exchange (ETDEWEB)
Makarova, E.IU.; Svistkova, L.A. (Permskii Politekhnicheskii Institut, Perm (USSR))
1991-02-01
Results of numerical solutions are presented for elastic-plastic problems concerning arbitrary loading of unidirectional composites in the transverse plane. The nucleation and evolution of microplastic zones in the matrix and the effect of this process on the macroscopic characteristics of the composite are discussed. Attention is also given to the effect of the fiber shape on the elastic-plastic deformation of the matrix and to deformation paths realized in simple microdeformation processes. The discussion is illustrated by results obtained for a composite consisting of a VT1-0 titanium alloy matrix reinforced by Ti-Mo fibers.
Fracture mechanisms and fracture control in composite structures
Kim, Wone-Chul
Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally
Test techniques for fracture mechanics testing
International Nuclear Information System (INIS)
Schwalbe, K.H.
1980-01-01
Test methods for fracture mechanics tests are described. Two groups of techniques are distinguished: Those for measurement of stable crack growth and those for determination of the loading parameters. (orig.) [de
Elastic-plastic transition on rotating spherical shells in dependence of compressibility
Directory of Open Access Journals (Sweden)
Thakur Pankaj
2017-01-01
Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.
Practical solution of plastic deformation problems in elastic-plastic range
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage
François, Dominique; Zaoui, André
2013-01-01
Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...
Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX
International Nuclear Information System (INIS)
Chin, E.; Reis, E.E.
1995-01-01
The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis
The creep low application for numerical modeling of elastic-plastic flows
Tyapin, Anatoly; Rudenko, Vladimir; Chekhunov, Evgeny; Shaburov, Michail
1999-06-01
The present paper demonstrates the applicability of Lomnitz logarithm creep law [1] in some approximated version for calculating the elastic-plastic flows. The model has been developed resulting from the intention to have appropriate calculation approximation for particle-velocity -vs-time histories observed in plate 6061-T6 Al samples of various thickness under shock loading and subsequent release and additional compression. The approximation is unique in the whole loading range, from very low to such that elastic precursor is swallowed up by plastic wave . The model is based on Lipkin and Asay [2] remark on scale similarity of the above mentioned particle velocity -vs-time histories for equal shock loading and on approximate equality of velocities that initial portions of release and recompression waves travel at. A Lomnitz creep law presents an ideal phenomenological tool providing both of the requirements be fulfilled at the same time. Its application to high rate processes of loading and release has required some law modification and a nontrivial review of the dislocation mechanism for stress relaxation. The agreement achieved with the experiment is illustrated in figures. The model is worked out and realized in the 1D user software MAG. 1. Lomnitz C. Joun. of Geology, 1956, vol. 64, p. 473-479. 2. Lipkin J., Asay J.R. J. Appl. Phys. ,1977, vol. 48, 1, p.182-189. 3. Johnson J., Barker L. J. Appl. Phys., 1969, vol. 40, 11, p. 4321-4334. 4. Asay J.R., Chhabildas L. M.: Metallurgia., 1984, p. 110-120.
Probabilistic finite elements for fracture mechanics
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells
International Nuclear Information System (INIS)
Jones, D.P.; Holliday, J.E.; Larson, L.D.
1998-07-01
This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures
A comparison of time-history elastic plastic piping analysis with measurement
International Nuclear Information System (INIS)
Scavuzzo, R.J.; Sansalone, K.H.
1992-01-01
The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)
Analysis of elastic-plastic dynamic response of reinforced concrete frame structure
International Nuclear Information System (INIS)
Li Zhongcheng
2009-01-01
Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)
Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening
International Nuclear Information System (INIS)
Roche, R.
1983-12-01
A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr
Fracture mechanics of ceramics. Vol. 7
International Nuclear Information System (INIS)
Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.
1986-01-01
This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines
The elastic-plastic failure assessment diagram of surface cracked structure
International Nuclear Information System (INIS)
Ning, J.; Gao, Q.
1987-01-01
The simplified NLSM is able to calculate the EPFM parameters and failure assessment curve for the surface cracked structure correctly and conveniently. The elastic-plastic failure assessment curve of surface crack is relevant to crack geometry, loading form and material deformation behaviour. It is necessary to construct the EPFM failure assessment curve of the surface crack for the failure assessment of surface cracked structure. (orig./HP)
An analysis of heat field of metal sheet during elastic-plastic deformation
International Nuclear Information System (INIS)
Li, S.X.; Huang, Y.; Shih, C.H.
1985-08-01
This paper describes the application of the finite element analysis to calculate the temperature distribution generated during the process of elastic-plastic deformation. A better agreement is found between the results of heat field computed by use of the finite element analysis and that measured by use of an infrared camera. The results indicate that the method of finite element analysis used for heat field evaluation is reliable. (author)
Study on elastic-plastic deformation analysis using a cyclic stress-strain curve
International Nuclear Information System (INIS)
Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi
1983-01-01
This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)
A method of solution of the elastic-plastic thermal stress problem
International Nuclear Information System (INIS)
Rafalski, P.
1975-01-01
The purpose of the work is an improvement of the numerical technique for calculating the thermal stress distribution in an elastic-plastic structural element. The work consists of two parts. In the first a new method of solution of the thermal stress problem for the elastic-plastic body is presented. In the second a particular numerical technique, based on the above method, for calculating the stress and strain fields is proposed. A new mathematical approach consists in treating the stress and strain fields as mathematical objects defined in the space-time domain. The methods commonly applied use the stress and strain fields defined in the space domain and establish the relations between them at a given instant t. They reduce the problem to the system of ordinary differential equations with respect to time, which are usually solved with a step-by-step technique. The new method reduces the problem to the system of nonlinear algebraic equations. In the work the Hilbert space of admissible tensor fields is constructed. This space is the orthogonal sum of two subspaces: of statically admissible and kinematically admissible fields. Two alternative orthogonality conditions, which correspond to the equilibrium and compatibility equations with the appropriate boundary conditions, are derived. The results of the work are to be used for construction of the computer program for calculation the stress and strain fields in the elastic-plastic body with a prescribed temperature field in the interior and appropriate displacement and force conditions on the boundary
International Nuclear Information System (INIS)
Wu, Szu-Ying; Tsai, Bor-Jiun; Chen, Jien-Jong
2015-01-01
In this study, a 3-D automatic elastic-plastic finite element mesh generator is established to accurately predict the J-integral value of an arbitrary reducer with a constant-depth internal circumferential surface crack under bending and axial force. The contact pairs are used on the crack surfaces to simulate the actual contact behaviors of the crack model under loadings. In order to verify the accuracy of the proposed elastic-plastic finite element model for a reducer with a surface crack, the cracked straight pipe models are generated according to a special modeling procedure for a flawed reducer. The J-integral values along the crack front of surface crack are calculated and compared with the straight pipe models which have been verified in the previous published studies. Based on the comparison of computed results, good agreements are obtained to show the accuracy of present numerical models. More confidence on using the 3-D elastic-plastic finite element analysis for reducers with internal circumferential surface cracks can be thus established in this work
A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures
International Nuclear Information System (INIS)
Lee, L.H.N.; Horng, J.T.
1975-01-01
The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained
Relationship between side necking and plastic zone size at fracture
International Nuclear Information System (INIS)
Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak
2004-01-01
Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed
International Nuclear Information System (INIS)
Park, H. B.; Chopra, O. K.
2000-01-01
A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of ΔJ and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values
Mechanical properties and fracture of titanium hydrides
International Nuclear Information System (INIS)
Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen
2006-01-01
Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)
Numerical methods in dynamic fracture mechanics
International Nuclear Information System (INIS)
Beskos, D.E.
1987-01-01
A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified
Geometry, mechanics and transmissivity of rock fractures
International Nuclear Information System (INIS)
Lanaro, F.
2001-04-01
This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of
Elastic-Plastic Calculation of a Dilatation Compensation Component
Atanasiu, Costică; Iliescu, Nicolae; Sorohan, Ștefan
2017-12-01
Compensators are elastic structures that have the role of taking over the axial displacements that occur in the junction areas of the technological equipment (pipelines or containers) through which the fluids circulate at pressures and high temperatures. These elastic structures, realized in a very wide range of shapes and sizes, are sujected by the inner pressure and an axial force produced by dilatation of structures in which they are mounted. The calculation of the expansion compensators raises many problems caused by the working regimes of the technological equipments they belong to. Following previous studies, undertaken by calculus and experimental, by the authors of this paper, it was found that in operation the state of stress in these elastic structures exceeds the flow limit of the material from which they are manufacturated. For this reason, in the present paper, the authors present the results of a calculus study, by FEM, on the stress and strain state, in the elasto-plastic regime of a leticular compensator. The calculation was made for two loading modes, separately applied and superimposed. The nonlinear mechanical behavior of this compensator is analyzed and discussed comparatively to the results of previous studies performed in elastic regime on the same type of compensator.
Fracture toughness in metal matrix composites
Directory of Open Access Journals (Sweden)
Perez Ipiña J.E.
2000-01-01
Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.
Fracture mechanics of collagen fibrils
DEFF Research Database (Denmark)
Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko
2013-01-01
Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...
Role of fracture mechanics in modern technology
International Nuclear Information System (INIS)
Sih, G.C.
1987-01-01
The conference served as a forum not only for reviewing past concepts and technologies but it provided an opportunity for many of the designers, engineers and scientists to come forth with more advanced ideas so that fracture mechanics application can be broadened and employed more effectively to avoid unexpected failures that are annoying, costly and destructive of credibility of the engineering community in general
Fractures and Rock Mechanics, Phase 1
DEFF Research Database (Denmark)
Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena
1997-01-01
The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality...
Fractures and Rock Mechanics, Phase 1
DEFF Research Database (Denmark)
Havmøller, Ole; Krogsbøll, Anette
1997-01-01
The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...
FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS
Directory of Open Access Journals (Sweden)
Budi Setiyana
2013-11-01
Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan yang menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan
Fracture Mechanisms in Steel Castings
Directory of Open Access Journals (Sweden)
Stradomski Z.
2013-09-01
Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.
Mechanical dispersion in fractured crystalline rock systems
International Nuclear Information System (INIS)
Lafleur, D.W.; Raven, K.G.
1986-12-01
This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m
Ali, Mohammed Ali Nasser
The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the
Fracture mechanisms in lead zirconate titanate ceramics
International Nuclear Information System (INIS)
Freiman, S.W.; Chuck, L.; Mecholsky, J.J.; Shelleman, D.L.
1986-01-01
Lead Zirconate Titanate (PZT) ceramics can be formed over a wide range of PbTiO 3 /PbZrO 3 ratios and exist in a number of crystal structures. This study involved the use of various fracture mechanics techniques to determine critical fracture toughness, K /SUB IC/ , as a function of composition, microstructure, temperature, and electrical and thermal history. The results of these experiments indicate that variations in K /SUB IC/ are related to phase transformations in the material as well as to other toughening mechanisms such as twinning and microcracking. In addition, the strength and fracture toughness of selected PZT ceramics were determined using specimens in which a crack was introduced by a Vicker's hardness indentor. The variation of K /SUB IC/ with composition and microstructure was related to the extent of twin-crack interaction. Comparison of the plot of strength as a function of indentation load with that predicted from indentation fracture models indicates the presence of internal stresses which contribute to failure. The magnitude of these internal stresses has been correlated with electrical properties of the ceramic. Fractographic analysis was used to determine the magnitude of internal stresses in specimens failing from ''natural flaws.''
Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei
2018-03-01
This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.
Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.
Piriz, A R; Sun, Y B; Tahir, N A
2015-03-01
A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
Energy Technology Data Exchange (ETDEWEB)
Tkach, Y., E-mail: Yuri.Tkach@WGIM.com [Department of Civil and Structural Engineering, School of MACE, UMIST/University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom); Burdekin, F.M., E-mail: mburdekin@aol.com [Department of Civil and Structural Engineering, School of MACE, UMIST/University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)
2012-05-15
This paper reports the second stage of an extensive series of detailed three-dimensional elastic-plastic finite element analyses on the influence of fracture mechanics test specimen geometry and different material properties on constraint and triaxiality in the near crack tip region. The specimens studied were pre-cracked plain-sided and side-grooved Charpy sized specimens, plain-sided and side-grooved compact tension specimens of thickness B = 25 mm and plain-sided compact tension specimens of thickness B = 100 mm all with the ratio of the crack length to the specimen width a/W = 0.5. Stress-strain curves of materials of different yield strength and strain hardening behaviour spanning the range of practical interest for typical structural steels were implemented into the finite element models. The level of constraint in the specimens modelled has been characterised in terms of both the Q-stress parameter and the ratio of hydrostatic to the equivalent stress components. It has been established that in-plane constraint in the fracture toughness test pieces is significantly affected by the absolute ligament size of the specimen. It has also been shown that the strain hardening behaviour is one of the major material parameters defining constraint level in the fracture toughness specimen. - Highlights: Black-Right-Pointing-Pointer 3D FE analyses on plain and side-grooved Charpy sized and CT specimens of two sizes. Black-Right-Pointing-Pointer Crack tip constraint analysed for Q-stress and hydrostatic/equivalent stress ratio. Black-Right-Pointing-Pointer In-plane constraint is significantly affected by the absolute ligament size. Black-Right-Pointing-Pointer Constraint level is significantly affected by material strain hardening behaviour.
International Nuclear Information System (INIS)
Tkach, Y.; Burdekin, F.M.
2012-01-01
This paper reports the second stage of an extensive series of detailed three-dimensional elastic-plastic finite element analyses on the influence of fracture mechanics test specimen geometry and different material properties on constraint and triaxiality in the near crack tip region. The specimens studied were pre-cracked plain-sided and side-grooved Charpy sized specimens, plain-sided and side-grooved compact tension specimens of thickness B = 25 mm and plain-sided compact tension specimens of thickness B = 100 mm all with the ratio of the crack length to the specimen width a/W = 0.5. Stress–strain curves of materials of different yield strength and strain hardening behaviour spanning the range of practical interest for typical structural steels were implemented into the finite element models. The level of constraint in the specimens modelled has been characterised in terms of both the Q-stress parameter and the ratio of hydrostatic to the equivalent stress components. It has been established that in-plane constraint in the fracture toughness test pieces is significantly affected by the absolute ligament size of the specimen. It has also been shown that the strain hardening behaviour is one of the major material parameters defining constraint level in the fracture toughness specimen. - Highlights: ► 3D FE analyses on plain and side-grooved Charpy sized and CT specimens of two sizes. ► Crack tip constraint analysed for Q-stress and hydrostatic/equivalent stress ratio. ► In-plane constraint is significantly affected by the absolute ligament size. ► Constraint level is significantly affected by material strain hardening behaviour.
Investigation on crack growth parameters in the elastic plastic region (interim report)
International Nuclear Information System (INIS)
Prij, J.
1982-03-01
Some theoretical as well as numerical results are presented with respect to the 2D and 3D application of linear elastic fracture mechanics. The application of the finite element method to calculate the stress and strain field in cracked bodies has been discussed with special attention to: singularity representation, parameter extraction and mesh refinement. Detailed 3D stress analyses of fracture mechanics test specimen are presented showing that: the stress intensity concept cannot be extended simply into a 3D concept, the energy release concept is more promising within this aspect and the plastic region along the crackfront will not have a dogbone shape. The 3D elastic fracture mechanics concept is applied to evaluate the consequences of the thermal stresses due to γ-heating in an in-pile crack growth experiment
Integration of fracture mechanics and NDE
International Nuclear Information System (INIS)
Njo, D.H.; McDonald, N.R.; Nichols, R.W.
1991-01-01
This paper addresses issues concerning the effective assessment of the structural integrity of safety related components, principally the primary system, in operating nuclear power plants. The failure mode of greatest safety concern is fracture and this is usually assessed by fracture mechanics (FM) procedures. These require the choice and application of an appropriate analytical method based on a knowledge of the materials, loading and environmental conditions, and characteristics of such defects as have been identified by non destructive examination (NDE). The paper focuses on capabilities and limitations of the NDE procedures, FM methods and other input information which must be taken into account in practical circumstances as well as some problems encountered. It concludes that an integral approach requiring mutual understanding, dialogue and cooperation among the materials, FM and NDE experts is essential for effective and reliable structural integrity assessments
Elastic-plastic adhesive contact of rough surfaces using n-point asperity model
International Nuclear Information System (INIS)
Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath
2009-01-01
This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.
International Nuclear Information System (INIS)
Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.
1981-01-01
Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)
Elastic-plastic analysis of high speed rotors with no plane of symmetry
International Nuclear Information System (INIS)
Anantha Ramu, S.
1981-01-01
A general method of analysis of elastic plastic shells has been developed. The material of the shell is assumed to obey von Mises yield condition and a stress strain law on the basis of deformation theory of plasticity. The method permits an easy iterative solution of the complete set of coupled nonlinear differential equations. The iterative procedure is essentially the solution of the elastic problem several times with different sets of loads. The solution finally yields among other things, the location of the elastic-plastic boundary in the shell wall. The second approach suggested is a three-dimensional hexahedral isoparametric solid element. The computer program developed is capable of modelling perfectly plastic, bilinear as well as nonlinear strain hardening behaviour of materials. As an example, a radial impeller is analysed by both the approaches by idealizing it as a rotating conical shell. The complete history of plastification of the shell wall as the speed increases is determined. The results of both approaches are found to be in good agreement with each other. (orig./HP)
Energy Technology Data Exchange (ETDEWEB)
Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.
2016-11-15
The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.
Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report
International Nuclear Information System (INIS)
Asaro, R.J.; Gurland, J.; Needleman, A.; Rice, R.J.
1979-06-01
Progress is reported on microscopic fracture mechanisms, including studies of void and crack initiation in steels in the absence and presence of hydrogen, the effects of hydrogen on ductile fracture in medium and high carbon steels; elastic--plastic crack growth including the quasi-stable growth of cracks in ductile solids under increasing load and conditions of instability; and elevated temperature rupture including analysis of the stress field near a crack tip in an elastic-nonlinear viscous material under tensile load as well as the processes of diffusion, and cavitation of grain boundaries in plastically creeping materials
Directory of Open Access Journals (Sweden)
Zhan-ping Song
2016-01-01
Full Text Available To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM. Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.
Mechanical Integrity of Canisters Using a Fracture Mechanics Approach
Energy Technology Data Exchange (ETDEWEB)
Koyama, Tomofumi; Guoxiang Zhang; Lanru Jing [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering
2006-07-15
This report presents the methods and results of a research project about numerical modeling of mechanical integrity of cast-iron canisters for the final disposal of spent nuclear fuel in Sweden, using combined boundary element (BEM) and finite element (FEM) methods. The objectives of the project are: 1) to investigate the possibility of initiation and growth of fractures in the cast-iron canisters under the mechanical loading conditions defined in the premises of canister design by Swedish Nuclear Fuel and Waste Management Co. (SKB); 2) to investigate the maximum bearing capacity of the cast iron canisters under uniformly distributed and gradually increasing boundary pressure until plastic failure. Achievement of the two objectives may provide some quantitative evidence for the mechanical integrity and overall safety of the cast-iron canisters that are needed for the final safety assessment of the geological repository of the radioactive waste repository in Sweden. The geometrical dimension, distribution and magnitudes of loads and Material properties of the canisters and possible fractures were provided by the latest investigations of SKB. The results of the BEM simulations, using the commercial code BEASY, indicate that under the currently defined loading conditions the possibility of initiation of new fractures or growth of existing fractures (defects) are very small, due to the reasons that: 1) the canisters are under mainly compressive stresses; 2) the induced tensile stress regions are too small in both dimension and magnitude to create new fractures or to induce growth of existing fractures, besides the fact that the toughness of the fractures in the cast iron canisters are much higher that the stress intensity factors in the fracture tips. The results of the FEM simulation show a approximately 75 MPa maximum pressure beyond which plastic collapse of the cast-iron canisters may occur, using an elastoplastic Material model. This figure is smaller compared
Introduction into technical application of fracture mechanics. 3. rev. ed.
International Nuclear Information System (INIS)
Heckel, K.
1991-01-01
Technical components made out of metal material are liable to be defective. Cracks are the most dangerous defects. Based on fracture mechanics methods were developed which permit to estimate the proveness of cracks to intrate fracture. The present book is restricted to the standardised methods of fracture mechanics. Theoretical foundations of various concepts aspect under the fracture mechanics are given. Experimental methods of determining material characteristics of fracture mechanics are explained in detail as a profound knowledge of testing criteria is necessary in order to be able to a characteristic to a component. This book contains the latest level of standardised methods of fracture mechanics. It is meant for advanced students and engineers working in practice. Some fully calculated examples are used as an introduction into the thinking of fracture mechanics. (orig./MM) [de
Use of fracture mechanics in engineering problems
Energy Technology Data Exchange (ETDEWEB)
Carter, C S
1965-02-26
If an engineering material containing a crack is subjected to a slowly increasing load, applied so that the crack tends to open, a small zone of plastic yielding develops at the crack tip. This zone increases in size with increasing load, and has the effect of resisting the tendency of the crack to extend. The basic concepts of fracture mechanics are outlined and the significance of crack toughness as measured by KDcU and KD1cU which relate the applied stress and crack size for unstable fracture prior to general yielding is discussed. The methods available for crack-toughness evaluation are indicated, and the mathematical expressions describing KDcU and KD1cU for a variety of geometrical situations are quoted. This approach to the design of fracture- resistant structures has been used in a number of fields in the U.S. and could be of value to the British steam turbine, aerospace, and pressure-vessel industries for design, inspection, and material selection. (64 refs.)
Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu
2018-04-01
A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.
Dislocation-free zone model of fracture comparison with experiments
International Nuclear Information System (INIS)
Ohr, S.M.; Chang, S.
1982-01-01
The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip
Energy Technology Data Exchange (ETDEWEB)
Weber, Wilhelm
2010-07-01
. Furthermore, it can be utilized for steady state as well as transient loading conditions. In addition, nonproportional mixed model loadings are also treatable, which arise from crack surface contact. Beside crack growth, rupture due to static overload is an important topic. Here, elastic-plastic stress analyzes have to carried out for the determination of the maximum load. Since volume discretization of 3D structures with arbitrary crack geometries is very complicated the BEM is also utilized for this task. Indeed, a volume discretization is required for the elastic-plastic stress analysis with the BEM. However, only the inelastic domain has to be meshed that can be encased by simple geometries. Therefore, the advantage of the BEM concerning the discretization is reduced only slightly. The results of the crack growth simulation as well as of the elastic-plastic stress analysis are utilized for a general assessment according to the failure assessment diagram, that includes altogether safety against brittle fracture, ductile fracture and plastic collapse. The accuracy of the numerical tool is shown on selected specimens. Furthermore, the influence of the crack surface roughness is analyzed and the industrial applicability is demonstrated on a complex real structure. (orig.)
International Nuclear Information System (INIS)
Ekobori, T.; Konosu, S.; Ekobori, A.
1980-01-01
Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Dynamic elastic-plastic response of a 2-DOF mass-spring system.
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibit elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.
Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Hutchinson, J. W.
2017-01-01
parameter through the plate in the plastic zone at the crack tip. The distribution of the mode I and mode III stress intensity factors along the crack front are obtained for the elastic problem. The out-of-plane bending constraint imposed on the plate significantly influences the mixed mode behavior along......Elastic and elastic-plastic results are obtained for a semi-infinite slanted through-crack propagating in a symmetrically loaded plate strip with the aim of providing theoretical background to commonly observed plate tearing behavior. Were it is not for the slant of the crack through the thickness...... of the plate, the problem would be mode I, but due to the slant the local conditions along the crack front are a combination of mode I and mode III. A three-dimensional formulation for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and Lode...
Comparison of experiment and theory for elastic-plastic plane strain crack growth
International Nuclear Information System (INIS)
Hermann, L.; Rice, J.R.
1980-02-01
Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens
Elastic-plastic analysis of an axi-symmetric problem by a finite element method
International Nuclear Information System (INIS)
Isozaki, Toshikuni
1984-06-01
Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
International Nuclear Information System (INIS)
Eraslan, Ahmet N.; Akis, Tolga
2006-01-01
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters
Elastic-plastic and creep analyses by assumed stress finite elements
International Nuclear Information System (INIS)
Pian, T.H.H.; Spilker, R.L.; Lee, S.W.
1975-01-01
A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used
Development of a plastic fracture methodology. Final report
International Nuclear Information System (INIS)
Kanninen, M.F.; Hahn, G.T.; Broek, D.; Stonesifer, R.B.; Marschall, C.W.; Abou-Sayed, I.S.; Zahoor, A.
1981-03-01
A number of candidate fracture criteria were investigated to determine the basis for plastic fracture mechanics assessments of nuclear pressure vessels and other components exhibiting fully ductile behavior. The research was comprised of an integrated combination of stable crack growth experiments and elastic-plastic finite element analyses. The results demonstrated that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. All have some disadvantages and none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, was also suggested by these results
Development of a plastic fracture methodology. Final report
Energy Technology Data Exchange (ETDEWEB)
Kanninen, M.F.; Hahn, G.T.; Broek, D.; Stonesifer, R.B.; Marschall, C.W.; Abou-Sayed, I.S.; Zahoor, A.
1981-03-01
A number of candidate fracture criteria were investigated to determine the basis for plastic fracture mechanics assessments of nuclear pressure vessels and other components exhibiting fully ductile behavior. The research was comprised of an integrated combination of stable crack growth experiments and elastic-plastic finite element analyses. The results demonstrated that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. All have some disadvantages and none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, was also suggested by these results.
Three-dimensional effects in fracture mechanics
International Nuclear Information System (INIS)
Benitez, F.G.
1991-01-01
An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)
Fracture toughness determination in steam generator tubes
International Nuclear Information System (INIS)
Bergant M; Yawny, A; Perez Ipina, J
2012-01-01
The assessment of the structural integrity of steam generator tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for steam generator tubes with circumferential through wall cracks. The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5 min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required. Finally, a procedure for the structural integrity analysis of steam generator tubes with crack-like defects, based on a FAD diagram (Failure Assessment Diagram), is briefly described (author)
Fracture mechanics performance of UF6 containers
International Nuclear Information System (INIS)
Gonzalez, M.E.; Iorio, A.F.; Crespi, J.C.
1993-01-01
The main purpose of this work was to determine the fracture mechanics performance of UF 6 transport cylinders type ANSI N14.1.30B, which was made from ASTM A 516 Grade 70 steel. It was assumed an internal surface axial crack subjected to stresses due to service, proof and transport accident loads. The KUMAR-GERMAN-SHIH elastoplastic methodology gave adequate results for crack depth estimation. The results validate the leak-before-break criteria for service and proof conditions but not for accident ones. In the last case a non-destructive examination must be done in order to assure the absence of defects larger than one third of the cylinder wall thickness. (Author)
Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
2001-05-01
Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)
Directory of Open Access Journals (Sweden)
Mir Hamid Reza Ghoreishy
2014-12-01
Full Text Available A theoretical and experimental study was conducted on the mechanical behavior of nanocomposites based on PA6/NBR thermoplastic elastomer reinforced by single wall carbon nanotubes (SWNTs. The selected samples include 60 and 40% NBR with 0.5, 1.0 and 1.5% SWNT. The modeling methodology was based on the use of two-dimensional "representative volume elements" (RVE. The Abaqus/standard code was employed to carry out the non-linear finite element calculations. Plane stress elements were selected for discretization of the domain. Linear elastic and isotropic hardening elastic-plastic models were utilized to describe the mechanical behaviors of the carbon nanotubes and polymer matrix, respectively. The samples were simultaneously prepared using melt mixing method in a laboratory internal mixer. Different orientations including regular in both longitudinal and transverse directions and random were selected for the nanotubes in the matrix. Also, two structural forms including hollow and solid for the carbon nanotubes were chosen. The highest and lowest predicted moduli were obtained from models with regular orientation in longitudinal and transverse directions, respectively. On the other hand, comparison between the predicted elastic modulus and elastic-plastic behaviors of the samples with their corresponding experimental data revealed that the random orientation in conjunction with hollow structural form gives the best results. Moreover, the selected material model for the thermoplastic elastomer i.e., isotropic hardening can precisely describe the mechanical behavior in both tension and compression modes. It is also concluded that the main source of error in this modeling methodology can be attributed to the effects of interface between polymer and nanotubes and orientation in perpendicular directions.
3-D Experimental Fracture Analysis at High Temperature
Energy Technology Data Exchange (ETDEWEB)
John H. Jackson; Albert S. Kobayashi
2001-09-14
T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.
Fracture mechanics of concrete : Will applications start to emerge?
Van Mier, J.G.M.
1995-01-01
Fracture mechanics of concrete has developed into an active field of research in the past decades. It promises a rational solution technique to structural problems in reinforced concrete in the limit state. Numerical tools have been developed on the basis of fracture mechanics theories. The question
Finnie's notes on fracture mechanics fundamental and practical lessons
Dharan, C K H; Finnie, Iain
2016-01-01
This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical. This book also: Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of f...
Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size
International Nuclear Information System (INIS)
Tsang, Y.W.; Witherspoon, P.A.
1983-01-01
A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations
Complexity: a new paradigm for fracture mechanics
Directory of Open Access Journals (Sweden)
S. Puzzi
2009-10-01
Full Text Available The so-called Complexity Sciences are a topic of fast growing interest inside the scientific community. Actually, researchers did not come to a definition of complexity, since it manifests itself in so many different ways [1]. This field itself is not a single discipline, but rather a heterogeneous amalgam of different techniques of mathematics and science. In fact, under the label of Complexity Sciences we comprehend a large variety of approaches: nonlinear dynamics, deterministic chaos theory, nonequilibrium thermodynamics, fractal geometry, intermediate asymptotics, complete and incomplete similarity, renormalization group theory, catastrophe theory, self-organized criticality, neural networks, cellular automata, fuzzy logic, etc. Aim of this paper is at providing insight into the role of complexity in the field of Materials Science and Fracture Mechanics [2-3]. The presented examples will be concerned with the snap-back instabilities in the structural behaviour of composite structures (Carpinteri [4-6], the occurrence of fractal patterns and selfsimilarity in material damage and deformation of heterogeneous materials, and the apparent scaling on the nominal mechanical properties of disordered materials (Carpinteri [7,8]. Further examples will deal with criticality in the acoustic emissions of damaged structures and with scaling in the time-to-failure (Carpinteri et al. [9]. Eventually, results on the transition towards chaos in the dynamics of cracked beams will be reported (Carpinteri and Pugno [10,11].
The application of post yield fracture methodology to the evaluation of large structures
International Nuclear Information System (INIS)
Landes, J.D.
1979-01-01
The objective of this work is to determine how to use small specimens test results to measure fracture toughness values for application to the evaluation of large structural components. Linear elastic fracture mechanics concepts based on the crack tip stress intensity factor, K, have been extended into the post yield regime by the use of elastic-plastic characterizing parameters such as J integral and COD. One of the primary applications of this technology is the determination of fracture toughness values from small specimens tests taken primarily in the post yield regime which can be used to evaluate structures operating in an essentially linear elastic regime. The fracture toughness values may be either conservative or unconservative depending on the fracture mode; extreme care must be taken in interpretting these results. (orig.)
[Mechanics analysis of fracture of orthodontic wires].
Wang, Yeping; Sun, Xiaoye; Zhang, Longqi
2003-03-01
Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.
Fracture mechanics behaviour of neutron irradiated Alloy A-286
International Nuclear Information System (INIS)
Mills, W.J.; James, L.A.
The effect of fast-neutron irradiation on the fatigue-crack propagation and fracture toughness behaviour of Alloy A-286 was characterized using fracture mechanics techniques. The fracture toughness was found to decrease continuously with increasing irradiation damage at both 24 deg. C and 427 deg. C. In the unirradiated and low fluence conditions, specimens displayed appreciable plasticity prior to fracture, and equivalent Ksub(Ic) values were determined from Jsub(Ic) fracture toughness results. At high irradiation exposure levels, specimens exhibited a brittle Ksub(Ic) fracture mode. The 427 deg. C fracture toughness fell from 129 MPa√m in the unirradiated condition to 35 MPa√m at an exposure of 16.2 dpa (total fluence of 5.2x10 22 n/cm 2 ). Room temperature fracture toughness values were consistently 40 to 60 percent higher than the 427 deg. C values. Electron fractography revealed that the reduction in fracture resistance was attributed to a fracture mechanism transition from ductile microvoid coalescence to channel fracture. Fatigue-crack propagation tests were conducted at 427 deg. C on specimens irradiated at 2.4 dpa and 16.2 dpa. Crack growth rates at the lower exposure level were comparable to those in unirradiated material, while those at the higher exposure were slightly higher than in unirradiated material. (author)
Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark
2017-04-01
The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the
Integration of NDE Reliability and Fracture Mechanics
Energy Technology Data Exchange (ETDEWEB)
Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.
1981-03-01
The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.
Strain localization and elastic-plastic coupling during deformation of porous sandstone
Energy Technology Data Exchange (ETDEWEB)
Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.
2017-09-12
Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.
Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials
Polavarapu, Rinosh; Banerjee, Arindam
2017-11-01
The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.
Directory of Open Access Journals (Sweden)
RN Lidam
2012-12-01
Full Text Available This paper investigates the angular distortion induced by the gas metal arc welding (GMAW process on the combined butt and T-joint with a thickness of 9 mm. The material used in this study was low manganese carbon steel S355J2G3. A 2-D and 3-D thermo-elastic-plastic finite element (FE analysis has been developed to simulate the induced distortion of multipassed welding. In this research, SYSWELD 2010 with its computation management tool, known as multipassed welding advisor (MPA, was applied to analyze the distortion behavior of combined joint types. To model the heat source of GMAW, Goldak's double ellipsoid representation, which is available within this finite element analysis (FEA code was selected. Prior to the results discussion, this paper also shows the step-bystep procedures to simulate combined jointing which begins with metallurgical and customized heat source modeling, and is followed by creating geometrical mesh using Visual-Mesh 6.5 for analyzing and processing the results. Apart from 2-D and 3-D comparison analysis, the final objective of this research is also aimed to be a baseline study to provide preliminary information in preparing the tools and equipment for experimental investigation.
Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading
Hayes, D. B.; Hall, C.; Hixson, R. S.
2005-07-01
Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.
Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam
Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.
2018-04-01
The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.
Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids
International Nuclear Information System (INIS)
Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T
2014-01-01
Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.
Elastic-Plastic Behavior of U6Nb under Ramp Wave Loading
International Nuclear Information System (INIS)
Hayes, D. B.; Gray, G. T. III; Hixson, R. S.; Hall, C. A.
2006-01-01
When uranium-niobium (6 wt.%) alloy is shock loaded, the expected elastic precursor is absent. A prior model attributed this absence to shear-induced twinning and the concomitant shear stress reduction that prevented the shocked material from reaching the plastic yield point. In the present study, carefully prepared U6Nb was subjected to shock loading to verify the adequacy of the prior model. Other samples were loaded with a ramp pressure pulse with strain rate large enough so that significant twinning would not occur during the experiment. Backward integration analyses of these latter experiments' back surface motion give stress-strain loading paths in U6Nb that suggest ordinary elastic-plastic flow. Some of the U6Nb was pre-strained by cold rolling in an effort to further ensure that twinning did not affect wave propagation. Shock and ramp loadings yielded similar results to the baseline material except, as expected, they are consistent with a higher yield stress and twinning shear stress threshold
Analysis of elastic-plastic problems using edge-based smoothed finite element method
International Nuclear Information System (INIS)
Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.
2009-01-01
In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.
International Nuclear Information System (INIS)
Petruschke, W.; Strunk, G.
1987-01-01
The investigations according to the system identification show that the piping model using beam theory and flexibility factors according to the Karman theory are adequate for evaluating natural frequencies, mode shapes, static displacements and stresses. The same accuracy can be seen by comparing the piping response due to blowdown within the elastic range. The simplified elastic-plastic analysis in general overestimates the maximum amplitudes while the frequency content is not simulated very well. For practical purposes, it can be an adequate tool in many cases. The elastic-plastic analysis is the most expensive procedure but gives also the best results. The use of beam elements with multilinear moment-curvature relationships results in a good approximation for the global behaviour (displacements). The strains according to this theory only include the beam deformation modes
Directory of Open Access Journals (Sweden)
Lee Kyung-Hun
2015-01-01
Full Text Available The purpose of this study is to investigate the elastic-plastic behavior of inclusions, i.e. SiO2 particles, in cold drawn wire using reverse analysis and nanoindentation test. First, the nanoindentation tests were performed to obtain indentation load P – penetration depth h curves. Second, the reverse analysis which is consisted of various dimensionless functions including change in E∗/σr, Wp/Wt and n was used to extract the elastic-plastic properties of the indented inclusions and metals from indentation responses. To verify the accuracy of calculated properties, uniaxial tensile tests were performed for different materials which are AISI 1045 and AISI 1080. Results (E, σy, n of tensile tests for each material were also compared with those of nanoindentation tests.
International Nuclear Information System (INIS)
Sokolov, M.A.; Wallin, K.; McCabe, D.E.
1996-01-01
In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab
Concepts and possibilities of fracture mechanics for fracture safety assessment
International Nuclear Information System (INIS)
Blauel, J.
1980-01-01
In very tough materials for pressure vessels and pipelines of nuclear plants, cracking begins in a stable manner and only after macroscopic plastic deformations and crack blunting. It is possible to describe this elasto-plastic fracture behaviour and to quantify the safety margin compared to the assessment criteria based on linear elastic stressing and initiation by the concept of the J integral, the crack peak width and the crack resistance Jsub(R) curve. The numerous problems of details still open and the partly very limited validity range should not prevent the further investigation into the great possibilities of this concept and making greater use of the interpretation of large scale tests. (orig./RW) [de
Fracture mechanics parameters for glasses: A compilation and correlation
International Nuclear Information System (INIS)
Freiman, S.W.; Baker, T.L.; Wachtmann, J.B.
1985-01-01
This paper describes a computerized fracture mechanics data base and associated computer programs which permit extension and modification of data base as well as selection, plotting and curve fitting. Some preliminary results of correlations of fracture energy, gamma, with composition and elastic modulus are presented
Sedimentary facies control on mechanical and fracture stratigraphy in turbidites
Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Tinterri, Roberto; Bedogni, Enrico; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael
2017-01-01
Natural fracture networks exert a first-order control on the exploitation of resources such as aquifers, hydrocarbons, and geothermal reservoirs, and on environmental issues like underground gas storage and waste disposal. Fractures and the mechanical stratigraphy of layered sequences have been
Fracture mechanics and statistical mechanics of reinforced elastomeric blends
Heinrich, Gert; Kaliske, Michael; Klüppel, Manfred; Schneider, Konrad; Vilgis, Thomas
2013-01-01
Elastomers are found in many applications ranging from technology to daily life applications for example in tires, drive systems, sealings and print rollers. Dynamical operation conditions put extremely high demands on the performance and stability of these materials and their elastic and flow properties can be easily adjusted by simple manipulations on their elastic and viscous properties. However, the required service life suffers often from material damage as a result of wear processes such as abrasion and wear fatigue, mostly caused by crack formation and propagation. This book covers interdisciplinary research between physics, physical chemistry, material sciences and engineering of elastomers within the range from nanometres to millimetres and connects these aspects with the constitutive material properties. The different chapters describe reliable lifetime and durability predictions based on new fracture mechanical testing concepts and advanced material-theoretical methods which are finally implemented...
Selection of pipeline steels with an engineering fracture mechanical analysis
Energy Technology Data Exchange (ETDEWEB)
Stenbacka, N [Swedish State Power Board, Vaellingby
1985-01-01
Selection of pipeline steels is discussed on the basis of two mutually independent failure mechanisms: elastic fracture and plastic collapse. The presentation is restricted to axial flaws. A formal analysis shows that brittle fracture in modern pipelines has no high priority in design, since steels used today have a high fracture toughness. Instead, a case of practical concern is tha plastic collapse mode, where failure is flow stress controlled. Conditions governing this design case are specified. In conjunction with this, criterions for material selection with regard to fracture toughness is presented.
Fracture mechanics as judgement criterion in reference publications
International Nuclear Information System (INIS)
Bartholome, G.
1976-01-01
Fracture mechanics is applied in particular in ship and aeroplane construction, in astronautics, and in nuclear engineering. Around 1950, the high quality demands in nuclear engineering led to the first regulation for brittle-fracture-safe operation of thick-walled nuclear pressure vessels. These regulations are based on the brittle-fracture-plan (NDT concept). For reactor engineering this plan is applied in a simplified way, the so-called modified PORSE-diagram. The permissible operational stresses must be out of the range of brittle fracture margin which is defined by the NDT temperature extension limit. (RW) [de
Directory of Open Access Journals (Sweden)
Kotaro eKojima
2016-01-01
Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.
Preliminary test results from the HSST shallow-crack fracture toughness program
International Nuclear Information System (INIS)
Theiss, T.J.; Robinson, G.C.; Rolfe, S.T.
1991-01-01
The Heavy Section Steel Technology (HSST) Program under sponsorship of the Nuclear Regulatory Commission (NRC) is investigating the influence of crack depth on the fracture toughness of reactor pressure vessel steel. The ultimate goal of the investigation is the generation of a limited data base of elastic-plastic fracture toughness values appropriate for shallow flaws in a reactor pressure vessel and the application of this data to reactor vessel life assessments. It has been shown that shallow-flaws play a dominant role in the probabilistic fracture mechanics analysis of reactor pressure vessels during a pressurized-thermal-shock event. In addition, recent research has shown that the crack initiation toughness measured using specimens with shallow flaws is greater that the toughness determined with conventional, deeply notched specimens at temperatures within the transition region for non-nuclear steels. The influence of crack depth on the elastic-plastic fracture toughness for prototypic reactor material is being investigated. Preliminary results indicate a significant increase in the toughness associated with shallow-flaws which has the potential to significantly impact the conditional probability of vessel failure. 8 refs., 4 figs., 1 tab
International Nuclear Information System (INIS)
Kanninen, M.F.; Hudak, S.J. Jr.; Reed, K.W.; Dexter, R.J.; Polch, E.Z.; Cardinal, J.W.; Achenbach, J.D.; Popelar, C.H.
1986-01-01
The objective of this research is to develop a fundamentally correct methodology for the prediction of crack arrest at the high upper shelf conditions occurring in a postulated pressurized thermal shock (PTS) event. The effort is aimed at the development of a versatile finite-element method for the solution of time-dependent boundary value problems that admit inertia effects, a prescribed spatial temperature distribution, and viscoplastic constitutive and fracture behavior. Supporting this development are (1) material characterization and fracture experimentation, (2) detailed mathematical analyses of the near-tip region, (3) elastodynamic fracture analysis, and (4) elastic-plastic tearing instability analyses. As a first step, dynamic-viscoplastic analyses are currently being made of the wide plate tests being performed by the National Bureau of Standards in a companion HSST program. Some preliminary conclusions drawn from this work and from the supporting research activities are offered in this paper. The outstanding critical issues that subsequent research must focus on are also described
International Nuclear Information System (INIS)
Mills, W.J.
1980-05-01
The effect of heat treatment on the tensile and fracture toughness properties of Alloy 718 weldments was characterized at room temperature and elevated temperatures. The two heat treatments employed during this investigation were the convectional (ASTM A637) precipitation treatment and a modified treatment designed to improve the toughness of Alloy 718 welds. Weldments were also examined in the as-welded condition. The fracture toughness behavior of the Alloy 718 weldments was determined at 24, 427 and 538 degree C using both linear-elastic (K Ic ) and elastic-plastic (J Ic ) fracture mechanics concepts. Metallographic and electron fractographic examination of Alloy 718 weld fracture surfaces revealed that differences in fracture toughness behavior for the as-welded, conventional and modified conditions were associated with variations in the weld microstructure. 28 refs., 16 figs., 4 tabs
DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM
Directory of Open Access Journals (Sweden)
O. L. Shved
2014-01-01
Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.
Yield fracture mechanics. Report colloquium of the DFG
International Nuclear Information System (INIS)
1992-01-01
This volume contains 17 lectures, which were given at the Report Colloquium of the DFG at Bonn on November 5th 1992. The main points of yield fracture mechanics were: Theory, experiment technique, transferability, material and structure. (MM) [de
Fracture Mechanics Prediction of Fatigue Life of Aluminum Highway Bridges
DEFF Research Database (Denmark)
Rom, Søren; Agerskov, Henning
2015-01-01
Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations. The fati......Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations...... against fatigue in aluminum bridges, may give results which are unconservative. Furthermore, it was in both investigations found that the validity of the results obtained from Miner's rule will depend on the distribution of the load history in tension and compression....
Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E
1997-04-01
In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.
Mechanical properties of austenitic stainless steels in sodium
International Nuclear Information System (INIS)
Lloyd, G.J.
1978-03-01
A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)
PASCAL, Probabilistic Fracture Mechanics Analysis of Structural Components in Aging LWR
International Nuclear Information System (INIS)
Shibata, Katsuyuki; Onizawa, Kunio; Li, Yinsheng; Kato, Daisuke
2005-01-01
A - Description of program or function: PASCAL (PFM analysis of Structural Components in Aging LWR) is a PFM (Probabilistic Fracture Mechanics) code for evaluating the failure probability of aged pressure components. PASCAL has been developed as a part of the JAERI's research program on aging and structural integrity of LWR components, in order to respond to the increasing need of the probabilistic methodology in the regulation and inspection of nuclear components with the objective to provide a rational tool for the evaluation of the reliability and integrity of structural components. In order to improve the accuracy and reliability of the analysis code, some new fracture mechanics models or computational techniques are introduced considering the recent progress in the state of the art and performance of PC. Thus some new analysis models and original methodologies were introduced in PASCAL such as the elastic-plastic fracture criterion based on R6 method, a new crack extension model of semi-elliptical crack evaluation and so on. Moreover a function to evaluate the effect of embrittlement recovery by annealing of irradiated RPV is also introduced in the code based on the USNRC R.G. 1.162(1996). The code has been verified through various failure analysis results and international PTS round robin analysis ICAS which had been organized by the Principal Working Group 3 of OECD/NEA/CSNI. In order to attain a high usability, PASCAL Ver.1 with GUI provides an exclusive FEM pre-processor Pre-PASCAL for generating the input load transient data, a GUI system for generating the input data for PASCAL main processor of main solver and post-processor for output data. - Pre-PASCAL: Pre-PASCAL is an exclusive 3-D FEM pre-processor for generating the input transient data provided with 3 RPV mesh models and two simple specimen mesh models, i.e. CT and CCP. Almost the same input data format with that of PASCAL main processor is used. Output data of temperature and stress distribution
Application of simulation techniques in the probabilistic fracture mechanics
International Nuclear Information System (INIS)
De Ruyter van Steveninck, J.L.
1995-03-01
The Monte Carlo simulation is applied on a model of the fracture mechanics in order to assess the applicability of this simulation technique in the probabilistic fracture mechanics. By means of the fracture mechanics model the brittle fracture of a steel container or pipe with defects can be predicted. By means of the Monte Carlo simulation also the uncertainty regarding failures can be determined. Based on the variations in the toughness of the fracture and the defect dimensions the distribution of the chance of failure is determined. Also attention is paid to the impact of dependency between uncertain variables. Furthermore, the influence of the applied distributions of the uncertain variables and non-destructive survey on the chance of failure is analyzed. The Monte Carlo simulation results agree quite well with the results of other methods from the probabilistic fracture mechanics. If an analytic expression can be found for the chance of failure, it is possible to determine the variation of the chance of failure, next to an estimation of the chance of failure. It also appears that the dependency between the uncertain variables has a large impact on the chance of failure. It is also concluded from the simulation that the chance of failure strongly depends on the crack depth, and therefore of the distribution of the crack depth. 15 figs., 7 tabs., 12 refs
An interim report on shallow-flaw fracture technology development
International Nuclear Information System (INIS)
Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.
1995-01-01
Shallow-flaw fracture technology is being developed for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVS) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) a strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness
Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds
International Nuclear Information System (INIS)
Carter, R.G.; Gamble, R.M.
2002-01-01
Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)
Uncertainty analysis on probabilistic fracture mechanics assessment methodology
International Nuclear Information System (INIS)
Rastogi, Rohit; Vinod, Gopika; Chandra, Vikas; Bhasin, Vivek; Babar, A.K.; Rao, V.V.S.S.; Vaze, K.K.; Kushwaha, H.S.; Venkat-Raj, V.
1999-01-01
Fracture Mechanics has found a profound usage in the area of design of components and assessing fitness for purpose/residual life estimation of an operating component. Since defect size and material properties are statistically distributed, various probabilistic approaches have been employed for the computation of fracture probability. Monte Carlo Simulation is one such procedure towards the analysis of fracture probability. This paper deals with uncertainty analysis using the Monte Carlo Simulation methods. These methods were developed based on the R6 failure assessment procedure, which has been widely used in analysing the integrity of structures. The application of this method is illustrated with a case study. (author)
An algorithm for post-yield probabilistic fracture mechanics
International Nuclear Information System (INIS)
Connors, D.C.
1982-01-01
The role of the concept of failure probability in structural integrity assessments is described. Expressions are derived to enable the failure probability of a general structure to be calculated in terms of probability density functions for material properties, defect size, and loading, using the R6 elastic - plastic failure criterion. Time dependence is included in the expressions, so that cumulative probability and instantaneous failure probability can be calculated throughout a structure's operational lifetime. To verify the method, examples are described in which the failure probability of a pipe is calculated using postulated probability density functions for material properties and defect size. A range of pipe geometries is studied. (author)
Application of fracture mechanics to fatigue in pressure vessels
International Nuclear Information System (INIS)
Ghavami, K.
1982-01-01
The methods of application of fracture mechanics to predict fatigue crack propagation in welded structures and pressure vessels are described with the following objectives: i) To identify the effect of different variables such as crack tip plasticity, free surface, finite plate thickness, stress concentration and type of the structure, on the magnitude of stress intensity factor K in Welded joint. ii) To demonstrate the use of fracture mechanics for analysing fatigue crack propagation data. iii) To show how a law of fatigue crack propagation based on fracure mechanics, may be used to predict fatigue behavior of welded structures such as pressure vessel. (Author) [pt
Japanese round robin analysis for probabilistic fracture mechanics
International Nuclear Information System (INIS)
Yagawa, G.; Yoshimura, S.; Handa, N.
1991-01-01
Recently attention is focused on the probabilistic fracture mechanics, a branch of fracture mechanics with probability theory for a rational mean to assess the strength of components and structures. In particular, the probabilistic fracture mechanics is recognized as the powerful means for quantitative investigation of significance of factors and rational evaluation of life on problems involving a number of uncertainties, such as degradation of material strength, accuracy and frequency of inspection. Comparison with reference experiments are generally employed to assure the analytical accuracy. However, accuracy and reliability of analytical methods in the probabilistic fracture mechanics are hardly verified by experiments. Therefore, it is strongly needed to verify the probabilistic fracture mechanics through the round robin analysis. This paper describes results from the round robin analysis of flat plate with semi-elliptic cracks on the surface, conducted by the PFM Working Group of LE Subcommittee of the Japan Welding Society under the contract of the Japan Atomic Energy Research Institute and participated by Tokyo University, Yokohama National University, the Power Reactor and Nuclear Fuel Corporation, Tokyo Electric Power Co. Central Research Institute of Electric Power Industry, Toshiba Corporation, Kawasaki Heavy Industry Co. and Mitsubishi Heavy Industry Co. (author)
Primer: Fracture mechanics in the nuclear power industry
International Nuclear Information System (INIS)
Wessel, E.T.; Server, W.L.; Kennedy, E.L.
1990-01-01
This Primer is intended to familiarize utility engineers with the fracture mechanics technology and to provide the basis for a working knowledge of the subject. It is directed towards all the engineering disciplines that are involved either directly or indirectly with the structural reliability of electrical power generation equipment and systems. These engineering disciplines include such areas as: design and stress analysis, metallurgy and materials, nondestructive inspection and quality control, structural analysis and reliability engineering, chemical engineering and water chemistry control, and architectural engineering. This Primer does not provide a comprehensive, in-depth treatment of all the detailed aspects involved in fracture mechanics. It does, however, provide sufficient information and a common vocabulary that should enable engineers to: read and converse intelligently about the subject, understand and utilize ASME Codes and Regulatory Guides involving fracture mechanics, absorb technical information presented and discussed at various technical meetings, and begin to apply this technology towards actual engineering problems encountered in the course of their work. Example problems are provided to further enhance an understanding of fracture mechanics. Also, Appendix A describes fracture mechanics computer codes available through EPRI to analyze rotors, reactor pressure vessels and piping
Thermo-hydro-mechanical behavior of fractured rock mass
International Nuclear Information System (INIS)
Coste, F.
1997-12-01
The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)
Directory of Open Access Journals (Sweden)
Sanjeev Sharma
2013-01-01
Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.
International Nuclear Information System (INIS)
Chang, T.Y.; Prachuktam, S.; Reich, M.
1975-01-01
The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used
Energy Technology Data Exchange (ETDEWEB)
Kadiri, I
2002-10-15
The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then
The hydro-mechanical modeling of the fractured media
International Nuclear Information System (INIS)
Kadiri, I.
2002-10-01
The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then
Statistical fracture mechanics approach to the strength of brittle rock
International Nuclear Information System (INIS)
Ratigan, J.L.
1981-06-01
Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models
Early Age Fracture Mechanics and Cracking of Concrete
DEFF Research Database (Denmark)
Østergaard, Lennart
2003-01-01
. The reasons are the increased autogenous deformation, the high rate of heat evolution and a higher brittleness of these concretes. Due to these adverse mechanisms the interest in the full description of the behavior of early age concrete has increased dramatically in the last two or three decades. Almost all...... the fictitious crack model and the aim has been experimentally to determine the fracture mechanical properties related to this model. The results provide interesting and important insight into the development of the fracture properties in early age. It is found that the characteristic length has moments of low...... values in early age, which means that the cracking sensibility is higher at those time points. The possible influence of time-dependent effects in the fracture mechanical properties on the cracking behavior in early age has also been investigated. The reason for this has been the known fact...
The application of fracture mechanics on nodular cast iron
International Nuclear Information System (INIS)
Kussmaul, K.; Blind, D.; Kockelmann, H.; Roos, E.; Eisele, U.
1987-01-01
A series of studies on predominantly thick-walled castings was the first attempt at a characterization of the material of ferritization-annealed ductile cast iron under aspects of fracture mechanics according to today's state of fracture-mechanics research and testing. As in static and dynamic tensile testing, ferritic cast iron meeting specifications was found to be tough down -40 0 C and below in fracture mechanical testing without substantial reduction of the corresponding characteristics at room temperature; this is true for a temperature range where the lowest point of impact notch work has been reached already. Impact-type stresses with and without notching resulted in enhanced deformation resistance and deformability in the longitudinal samples taken from tubes. (orig./DG) [de
Interdisciplinary seminar on nondestructive testing and fracture mechanics. Lectures
International Nuclear Information System (INIS)
1998-01-01
The proceedings volume contains 17 lectures presented at a DGZfP seminar held in Berlin/Germany, 2-3 November 1998. Fracture mechanics data are of interest with respect to determining maximum permissible limits for non-destructive materials evaluation, and as quantitative NDE test results indicating existing materials flaws in a system component, delivering information for assessement of remaining service life and safety risks. The topics of lectures are: Quality concepts for welded joints; NDE for service life assessment of engine components, shown for evaluation of engine pales and disks; NDE and crack detection at pressurized gas cylinders; fracture mechanics requirements for NDE in nuclear installations, discussion of practical examples (T. Seidenkranz); failure of off-shore constructions seen in the light of a novel fracture mechanics technical code. (orig./CB) [de
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Computational aspects of nonlinear fracture mechanics
International Nuclear Information System (INIS)
Brocks, W.; Cornec, A.; Scheider, I.
2003-01-01
The following contribution will essentially restrict to the application of the von Mises theory of incremental plasticity to cracked specimens and components. In particular, the classical parameters of EPFM, J and CTOD, as well as subsequently proposed parameters such as energy dissipation rate and crack-tip opening angle (CTOA) and the related computational aspects will be discussed. Some remarks follow on the 'local approach to fracture' which is based on continuum field quantities, namely stresses and strains, and the damage models of Gurson (1977) and Rousselier (1987), which have now found increasing application, will be briefly addressed in Section 3.03.4. The numerical modeling of decohesion and separation phenomena by 'cohesive elements' will be presented in Section 3.03.5. (orig.)
Mechanical transport in two-dimensional networks of fractures
International Nuclear Information System (INIS)
Endo, H.K.
1984-04-01
The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables
International Nuclear Information System (INIS)
Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto
2008-01-01
A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)
Ductile fracture mechanics methodology for complex cracks in nuclear piping
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
1988-02-01
Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions.
Ductile fracture mechanics methodology for complex cracks in nuclear piping
International Nuclear Information System (INIS)
Zahoor, A.
1988-01-01
Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions. (orig.)
Applications of probabilistic fracture mechanics to FBR components
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Takenaka, Makoto; Hojo, Kiminobu; Kaguchi, Hitoshi.
1991-01-01
A probabilistic fracture mechanics code PCCF which could analyze half-elliptical crack behavior in a plate under creep-fatigue condition using nonlinear fracture mechanics parameters was developed. The effects of bending stress level on failure probability was studied using the PCCF as test analyses. As the results, failure mode was leakage not break in all cases analyzed in this study. It is shown that leak probability is sensitive to stress level and increase rapidly around yield stress of materials. (J.P.N.)
Fracture mechanism of coronal teenage dentin
Panfilov, P. E.; Kabanova, A. V.; Borodin, I. N.; Guo, J.; Zang, Z.
2017-10-01
The structure of coronal teenage dentin and the development of cracks in it are studied on microand nanolevels. The material is found to fail according to a ductile mechanism on a microlelvel and according to a ductile-brittle mechanism on a nanoscale. This behavior is similar to the failure of a polyethylene film and rubber, when significant elastic and irreversible deformation precedes crack growth. The viscoelastic behavior can be considered as the reaction of dentin to an applied mechanical load.
International Nuclear Information System (INIS)
Ranganath, S.
1979-01-01
Nuclear pressure vessel components are designed to meet the requirements of Section III of the ASME Boiler and Pressure Vessel Code. Specifically, the design must satisfy the limits on stress range and fatigue usage prescribed in NB-3200, Section III ASME Code for the various design and operating conditions for the component. The Code requirements assure that the component does not experience gross yielding and that in general, elastic shakedown occurs following cyclic loading. When elastic stress analysis is performed this can be shown by meeting the limits in the Code on Primary and Primary plus Secondary (P+Q) stress intensities. However, when the P+Q limits cannot be met and elastic Shakedown cannot be demonstrated, plastic analysis may be performed to meet the requirements of the Code. This paper describes the elastic-plastic stress analysis of a Boiling Water Reactor Vessel bottom head in-core penetration and illustrates how plastic analysis can be used in ASME Code evaluations to show Code compliance. Details of the thermal analysis, elastic-plastic stress analysis and fatigue evaluation are presented and it is shown that the in-core penetration satisfies the code requirements. 6 refs
Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.
2017-09-01
We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
Fracture mechanics based life assessment in petrochemical plants
International Nuclear Information System (INIS)
Norasiah Ab Kasim; Abd Nassir Ibrahim; Ab Razak Hamzah; Shukri Mohd
2004-01-01
The increasing use of thick walled pressure vessels in petrochemical plants operating at high pressure under severe service conditions could lead to catastrophic failure. In the Malaysian Institute for Nuclear Technology Research (MINT), initial efforts are underway to apply fracture mechanics approach for assessment of significance of defects detected during periodic in service inspection (ISI) of industrial plants. This paper outlines the integrity management strategy based on fracture mechanics and proposes a new procedure for life assessment of petrochemical plants based on ASME Boiler and Pressure Vessel Code, Section XI, BSI PD 6493:1991, BSI 6539:1994, BSI Standard 7910:1999 and API 579:2000. Essential relevant data required for the assessment is listed. Several methods available for determination of fracture toughness are reviewed with limitations in their application to petrochemical plants. A new non destructive method for determination of fracture toughness based on hardness testing and normalized key roughness curve is given. Results of fracture mechanics based life assessment conducted for 100 mm thick ammonia converter of Ni r o steel and 70 mm thick plat forming reactor vessel of ASTM A 38 7 grade B steel in operational fertilizer and petroleum refining plants are presented. (Author)
Energy Technology Data Exchange (ETDEWEB)
Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)
1997-09-01
One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.
Rheology and Fracture Mechanics of Foods
Vliet, van T.
2013-01-01
The mechanical properties of food play an important role during manufacturing, storage, handling, and last but not least, during consumption. For an adequate understanding of the mechanical properties of liquid, liquid-like, soft solid, and solid foods, a basic understanding of relevant aspects of
Comparative study of fracture mechanical test methods for concrete
DEFF Research Database (Denmark)
Østergaard, Lennart; Olesen, John Forbes
2004-01-01
and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test.......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...
Finite elements in fracture mechanics theory, numerics, applications
Kuna, Meinhard
2013-01-01
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
The fluid mechanics of channel fracturing flows: experiment
Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).
Approximative determination of failure probabilities in probabilistic fracture mechanics
International Nuclear Information System (INIS)
Riesch-Oppermann, H.; Brueckner, A.
1987-01-01
The possibility of using FORM in probabilistic fracture mechanics (PFM) is investigated. After a short review of the method and a description of some specific problems occurring in PFM applications, results obtained with FORM for the failure probabilities in a typical PFM problem (fatigue crack growth) are compared with those determined by a Monte Carlo simulation. (orig./HP)
Fracture mechanics applied to the machining of brittle materials
Energy Technology Data Exchange (ETDEWEB)
Hiatt, G.D.; Strenkowski, J.S.
1988-12-01
Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.
Use of fracture mechanics in the US industry
Energy Technology Data Exchange (ETDEWEB)
Landes, J.D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung
2001-07-01
The modern fracture mechanics technology began in the US in the 1960's. It was developed in response to failure problems that could not be explained by current technology. Some segments of the US industry were quick to embrace this new technology. The period of 1960 to middle 1980's marked a time of active fracture mechanics research in the US industry. From this various codes and assessment procedures have been developed to apply the fracture mechanics approach to evaluate the safety and reliability of critical structural components. This report discusses the US industry use of fracture mechanics. It considers the historical developments, some of the fracture mechanics tools that are available and present practices. Several different industry segments that have used the fracture mechanics approach are considered. These include aerospace, military, power generation, petrochemical and pipelines, metal producers, and construction/transportation. Their current use of the fracture mechanics methods involves the implementation of codes and procedures, the development of software packages, the use of outside consulting groups and some in-house research efforts. (orig.) [German] Die Entwicklung der modernen Bruchmechanik in den USA begann in den 1960er Jahren im Zusammenhang mit einer Reihe von Versagensfaellen, die auf konventionelle Weise nicht erklaert werden konnten. Die neuen Ansaetze wurden von einigen Branchen schnell aufgegriffen und weiterentwickelt. Die Periode von 1960 bis in die Mitte der 1980er Jahre markiert eine Zeit intensiver Forschungsarbeit in der amerikanischen Industrie. Eine Reihe von Codes und Vorschriften zur Bewertung der Sicherheit und Zuverlaessigkeit gefaehrdeter Strukturen hat ihren Ursprung in dieser Zeit. Der vorliegende Aufsatz thematisiert die Anwendung bruchmechanischer Methoden in der Industrie der USA anhand historischer Aspekte, des heute verfuegbaren Instrumentariums der Bauteilbewertung und der gaengigen Praxis bei der
Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools
Energy Technology Data Exchange (ETDEWEB)
Heckmann, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Saifi, Qais [VTT Technical Research Centre of Finland, Espoo (Finland)
2016-11-15
Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.
Unique Mechanism of Chance Fracture in a Young Adult Male
Directory of Open Access Journals (Sweden)
Aaron Birch
2013-03-01
Full Text Available Since the first description of the Chance fracture in 1948, there have been few case reports ofunique mechanisms causing this classical flexion-extension injury to the spine in motor vehicleaccidents, sports injury, and falls. To our knowledge, this injury has not been reported from a fall withthe mechanistic forces acting laterally on the spine and with spinal support in place. We present a21-year-old male who slid down a flight of stairs onto his side wearing a heavy mountaineering stylebackpack, subsequently sustaining a Chance fracture of his first lumbar vertebrae.
Fracture behavior and deformation mechanisms under fast neutron irradiation
International Nuclear Information System (INIS)
Boutard, J.L.; Dupouy, J.M.
1980-09-01
We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture
Application of Fracture-Mechanics Approach to Gas Pipelines
Czech Academy of Sciences Publication Activity Database
Gajdoš, Lubomír; Šperl, Martin
VII, č. 73 (2011), s. 480-487 ISSN 2010-376X R&D Projects: GA ČR(CZ) GAP105/10/2052; GA ČR(CZ) GPP105/10/P555 Grant - others:GAMPO(CZ) FT-TA5/076 Program:FT Institutional research plan: CEZ:AV0Z20710524 Keywords : axial crack * fracture-mechanics * J integral * pipeline wall Subject RIV: JL - Materials Fatigue, Friction Mechanics
The fracture properties and toughening mechanisms of bone and dentin
Koester, Kurt John
The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.
Probabilistic fracture mechanics analysis of reactor vessels with low upper-shelf fracture toughness
International Nuclear Information System (INIS)
Yoon, K.K.
1993-01-01
A class of submerged-arc welds used in fabricating early reactor vessels has relatively high copper contents. Studies have shown that when such vessels are irradiated, the copper contributes to lowering the Charpy upper-shelf energy level. To address this concern, 10CFR50, Appendix G requires a fracture mechanics analysis to demonstrate an adequate margin of safety for continued service. The B and W Owners Group (B and WOG) has been accumulating J-resistance fracture toughness data for these weld metals. Based on a mathematical model derived from this B and WOG data base, the first Appendix G analysis was performed. Another important issue affecting reactor vessel integrity is pressurized thermal shock (PIS) transients. In the early 1980s, probabilistic fracture mechanics analyses were performed on a reactor vessel to determine the probability of failure under postulated accident scenarios. Results of such analyses were used by the Nuclear Regulatory Commission (NRC) to establish the screening criteria for assessing reactor vessel integrity under PTS transient loads. This paper addresses the effect of low upper-shelf toughness on the probability of failure of reactor vessels under PTS loads. Probabilistic fracture mechanics codes were modified to include the low upper-shelf toughness model used in a reference and a series of analyses was performed using plant-specific material conditions and realistic PTS scenarios. The results indicate that low upper-shelf toughness has an insignificant effect on the probability of reactor vessel failures. This is mostly due to PTS transients being susceptible to crack initiation at low temperatures and not affected by upper-shelf fracture toughness
Elastic-plastic response of a piping system due to simulated double-ended guillotine break events
International Nuclear Information System (INIS)
Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.
1987-01-01
From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 MPa were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. (orig./GL)
International Nuclear Information System (INIS)
Schnabel, F.
1987-01-01
The present report deals with the influence of time-dependent material behavior on the load-carrying capacity of thin-walled shells of revolution. In the first part various creep-hardening hypotheses as well as the spatial and temporal discretization procedures employed are described. The adaptation of a well-tested finite element method based on ring elements to the treatment of creep problems and several time-integration procedures, in particular the iterative treatment of the coupling between creep and elastic-plastic strains as well as the important aspect of time-step-control are discussed in detail. In the second part several typical shell configurations are analyzed and a comparison with available theoretical and experimental results is made. Finally, the time-dependent load-carrying behavior of torispherical pressure vessel ends subjected to internal and external pressure is investigated and design aids for the determination of creep collapse times are proposed. (orig.) [de
Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.
2012-01-01
Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.
Comparison of theory and experiment for elastic-plastic plane-strain crack growth. [AISI 4140 steel
Energy Technology Data Exchange (ETDEWEB)
Hermann, L.; Rice, J.R.
1980-08-01
Recent theoretical results on elastic-plastic plane-strain crack growth are reviewed and experimental results for crack growth in a 4140 steel are discussed in terms of the theoretical concepts. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasistatically advancing crack tip in an ideally plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large-scale yielding. Nevertheless, it is sufficient for the derivation of a relation between the imposed loading and amount of crack growth prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.
International Nuclear Information System (INIS)
Streit, R.D.
1981-01-01
The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)
Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture
Directory of Open Access Journals (Sweden)
Sorochak Andriy
2015-06-01
Full Text Available The main regularities in fatigue fracture of the railway axle material - the OSL steel - are found in this paper. Micromechanisms of fatigue crack propagation are described and systematized, and a physical-mechanical interpretation of the relief morphology at different stages of crack propagation is proposed for fatigue cracks in specimens cut out of the surface, internal and central layers of the axle.
Fracture mechanism of a dispersion-hardened molybdenum alloy with strong structural interfaces
International Nuclear Information System (INIS)
Vasil'ev, A.D.; Malashenko, I.S.; Moiseev, V.F.; Pechkovskij, Eh.P.; Sul'zhenko, V.K.; Trefilov, V.I.; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)
1978-01-01
Fracture mechanism in the two-phase Mo-15wt.%Nb-3.5 vol.% TiN alloy known to be of ''brittle matrix-strong interfaces'' type has been investigated depending on tensile test temperature. Several temperature intervals of fracture have been found, each of them having its own peculiarities. A scheme is suggested for fracture mechanism changes in dispersion-hardened alloys with strong interfaces. At low test temperatures brittle cleavage fracture takes place. With temperature increase fracture mechanisms change in the following way: brittle intergranular fracture; fracture of ''microvoid coalescence'' type; fracture typical for reinforced materials with ductile matrix; intergran laru fracture. Particles of strengthening phase have been shown to play different roles depending on the test temperature in the fracture of the alloys studied
International Nuclear Information System (INIS)
Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito
2015-01-01
According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)
Methodology for plastic fracture - a progress report
International Nuclear Information System (INIS)
Wilkinson, J.P.D.; Smith, R.E.E.
1977-01-01
This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)
Acoustic emission from zirconium alloys during mechanical and fracture testing
International Nuclear Information System (INIS)
Coleman, C.E.
1986-10-01
The application of acoustic emission during the mechanical and fracture testing of zirconium alloys is reviewed. Acoustic emission is successful in following delayed hydride cracking quantitatively. It is especially useful when great sensitivity is required. Application to fatigue, tensile deformation and stress corrosion cracking appears promising but requires more work to separate phenomena before it can be used quantitatively. This report is based on an invited review for the American Society of Non-Destructive Testing Handbook: Volume 5, Acoustic Emission Testing
Special fracture mechanics specimens for multilayer plastic pipes testing
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Šestáková, Lucie; Knésl, Zdeněk; Nezbedová, E.; Náhlík, Luboš
2009-01-01
Roč. 28, č. 8 (2009), s. 785-792 ISSN 0142-9418 R&D Projects: GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional research plan: CEZ:AV0Z20410507 Keywords : Multilayer plastic pipes * C-type specimen * K-calibration * Fracture toughness * Slow crack growth * Non-homogenous specimens Subject RIV: JL - Material s Fatigue, Friction Mechanics Impact factor: 1.667, year: 2009
State-of-the-art report on piping fracture mechanics
Energy Technology Data Exchange (ETDEWEB)
Wilkowski, G.M.; Olson, R.J.; Scott, P.M. [Battelle, Columbus, OH (United States)
1998-01-01
This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.
State-of-the-art report on piping fracture mechanics
International Nuclear Information System (INIS)
Wilkowski, G.M.; Olson, R.J.; Scott, P.M.
1998-01-01
This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date
Development of a plastic fracture methodology for nuclear systems
International Nuclear Information System (INIS)
Marston, T.U.; Jones, R.L.; Kanninen, M.F.; Mowbray, D.F.
1981-01-01
This paper describes research conducted to develop a fundamental basis for flaw tolerance assessment procedures suitable for components exhibiting ductile behavior. The research was composed of an integrated combination of stable crack growth experiments and elastic-plastic analyses. A number of candidate fracture criteria were assembled and investigated to determine the proper basis for plastic fracture mechanics assessments. The results demonstrate that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. While all have some disadvantages, none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack-tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, also was suggested by these results. The influence of biaxial and mixed flat/shear fracture behavior was investigated and found to not alter the basic results. Further work in the development of simplified ductile fracture analyses for routine engineering assessments of nuclear pressure vessels and piping evolving from this research is also described
International Nuclear Information System (INIS)
2003-01-01
Subjects of the meeting were: Simulation of fatigue crack growth in real strucures using FEA (M. Fulland, Paderborn); Modelling of ductile crack growth (W. Brocks, Geesthacht); Advances in non-local modelling of ductile damage (F. Reusch et al., Berlin, Dortmund); Fracture mechanics of ceramics (D. Munz, Karlsruhe); From materials testing to vehicle crash testing (J.G. Blauel, Freiburg); Analytical simulation of crack growth in thin-walled structures (U. Zerbst, Geesthacht); The influence of intrinsic stresses on fatigue crack growth (C. Dalle Donne etc., Cologne, Dortmund, Pisa, and M. Sander, Paderborn); Fracture mechanical strength calculation in case of mixed mode loads on cracks (H.A. Richard, Paderborn); Numeric simulation of intrinsic stresses during welding (C. Veneziano, Freiburg); New research fields of the Fraunhofer-Institut fuer Werkstoffmechanik (P. Gumbsch, Head of the Institute, Freiburg); Modern developments and advances in fracture and damage mechanics; Numeric and experimental simulation of crack propagation and damage processes; Exemplary damage cases; Fracture mechanics in product development; Failure characteristics of lightweight constructional materials and joints [de
Probabilistic pipe fracture evaluations for applications to leak-rate detection
Energy Technology Data Exchange (ETDEWEB)
Rahman, S; Wilkowski, G; Ghadiali, N [Battelle Columbus Labs., OH (United States)
1993-12-31
Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab.
Probabilistic pipe fracture evaluations for applications to leak-rate detection
International Nuclear Information System (INIS)
Rahman, S.; Wilkowski, G.; Ghadiali, N.
1992-01-01
Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab
Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics
International Nuclear Information System (INIS)
Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo
2010-04-01
The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be utilized
Measurement of residual stresses using fracture mechanics weight functions
International Nuclear Information System (INIS)
Fan, Y.
2000-01-01
A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed
Measurement of residual stresses using fracture mechanics weight functions
International Nuclear Information System (INIS)
Fan, Y.
2001-01-01
A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)
The J-integral concept for elastic-plastic material behavior
International Nuclear Information System (INIS)
Schmitt, W.; Kienzler, R.
1987-03-01
A simple analytical extension of the J integral has been presented which extends the J concept to apply for materials described by an incremental theory of plasticity. The stress work density replacing the strain energy density is load-history dependent. The J integral may be made path independent by virtue of an additional volume integral and may be understood as work dissipation rate. The discussion of the consequences for the applicability of the J concept to describe fracture processes showed that validity criteria proposed in the standards are not sufficient to yield configuration-independent J-resistance curves. However, a possibility is sketched to assess those structure-dependent resistance curves based on plastic-collapse considerations. With 6 figs., 33 refs
OCA-P, PWR Vessel Probabilistic Fracture Mechanics
International Nuclear Information System (INIS)
Cheverton, R.D.; Ball, D.G.
2001-01-01
1 - Description of program or function: OCA-P is a probabilistic fracture-mechanics code prepared specifically for evaluating the integrity of pressurized-water reactor vessels subjected to overcooling-accident loading conditions. Based on linear-elastic fracture mechanics, it has two- and limited three-dimensional flaw capability, and can treat cladding as a discrete region. Both deterministic and probabilistic analyses can be performed. For deterministic analysis, it is possible to conduct a search for critical values of the fluence and the nil-ductility reference temperature corresponding to incipient initiation of the initial flaw. The probabilistic portion of OCA-P is based on Monte Carlo techniques, and simulated parameters include fluence, flaw depth, fracture toughness, nil-ductility reference temperature, and concentrations of copper, nickel, and phosphorous. Plotting capabilities include the construction of critical-crack-depth diagrams (deterministic analysis) and a variety of histograms (probabilistic analysis). 2 - Method of solution: OAC-P accepts as input the reactor primary- system pressure and the reactor pressure-vessel downcomer coolant temperature, as functions of time in the specified transient. Then, the wall temperatures and stresses are calculated as a function of time and radial position in the wall, and the fracture-mechanics analysis is performed to obtain the stress intensity factors as a function of crack depth and time in the transient. In a deterministic analysis, values of the static crack initiation toughness and the crack arrest toughness are also calculated for all crack depths and times in the transient. A comparison of these values permits an evaluation of flaw behavior. For a probabilistic analysis, OCA-P generates a large number of reactor pressure vessels, each with a different combination of the various values of the parameters involved in the analysis of flaw behavior. For each of these vessels, a deterministic fracture
Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics
International Nuclear Information System (INIS)
2001-07-01
While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and computer speed will however most probably diminish the computational problem rather rapidly. Compare for instance the rate of development of computational methods for structural analysis. Meanwhile micro-mechanical modelling may serve as a tool by which more simplified engineering methods can be validated. The process of receiving a wide acceptance of the new methods is probably much slower. This involves many steps. First the research community must be in reasonable agreement on the methods and their use. Then the methods have to be implemented into computer software and into code procedures. The development and acceptance of conventional fracture mechanics may serve as an historical example of the time required before a new methodology has received a wide usage. The CSNI Working Group on Integrity and Ageing (IAGE) decided to carry out a report on micro-mechanical modeling to promote this promising and valuable technique. The report presents a comparison with non-linear fracture mechanics and highlights key aspects that could lead to a better knowledge and accurate predictions. Content: - 1. Introduction; - 2. Concepts of non-linear fracture mechanics with point crack tip modelling; - 3. Micro-mechanical models for cleavage fracture; - 4, Micro-mechanical modelling of
Mechanical design optimization of bioabsorbable fixation devices for bone fractures.
Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret
2009-03-01
Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.
Study on the Elasticity-Plasticity-Stickiness of the Railway Crushed Stone Ballast
Institute of Scientific and Technical Information of China (English)
Gao Liang
2004-01-01
This paper is mainly aimed at the mechanics characteristic elas of ticity-plasticitystickiness existed in the CWR (continuously welded rails) track plane of the railway crushed stone ballast. As an important mechanics parameter of the CWR track plane, the ballast resistance is mainly influenced by this mechanics characteristic. Through the systematic experimental research and the theoretical analysis, this mechanics characteristic of the ballast resistance is revealed and a reasonable theoretical model is built for it. This study set a sound foundation for further studying the CWR track deformation property. It will be beneficial to the development of high-speed railway in China.
International Nuclear Information System (INIS)
Holt, J.; Goddard, D.J.
1980-01-01
Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)
An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media
Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai
2018-02-01
In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Energy Technology Data Exchange (ETDEWEB)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
Forecasts on service life by fracture mechanics methods
International Nuclear Information System (INIS)
Munz, D.
1985-01-01
The service life of many component parts can frequently be divided into the stages up to the formation of a crack and of crack propagation. This holds good of fatigue crack, stress corrosion crack, and also in many cases of creep. But often the crack propagation stage is the only one of interest for service life forecasts if cracks must be reckoned with already on putting parts into service. Cracks in welding constructions are typical examples. Crack- and -fracture mechanics deal with the laws underlying crack propagation and provide quantitative information on crack propagation behaviour. (orig./DG) [de
Fatigue fracture of steel after mechanical and ultrasonic strengthening
International Nuclear Information System (INIS)
Stotskij, I.M.
1978-01-01
Fatigue fracture surfaces of samples after mechanical and ultrasonic strengthening have been studied metallographically and by electron fractography. Studied was the 40Kh steel hardened from 850 deg and then tempered at 180 deg or at 550 deg C. The ultrasound power was 25 kWt, the frequency was 20 kHz, the sample rotation velocity was 39.5 m/min. Mechanical and ultrasonic treatment was found to cause structural changes (formation of a white layer) and deformation of the material under the layer. The fatigue cracks were extending beyond the white layer; their propagation involved generation and coalescence of microcracks on account of segregation of carbides. It is concluded that mechanical and ultrasonic treatment should be used for increasing the fatigue strength of low and average strength materials rather than hardened or low-tempered ones
Elastic-plastic response of a piping system due to simulated double-ended guillotine break events
International Nuclear Information System (INIS)
Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.
1987-01-01
From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in the reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 mPA were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. On account of the safety margins proved in the experiments, potential inaccuracies in theoretical structure analyses are recommended so as to be on the safe side. On the other hand, it appears that designing pipework with reference to elastic stress categories does not adequately take into account the actual reserves of the pipework material
International Nuclear Information System (INIS)
Buchalet, C.; Riccardella, P.C.
1972-01-01
Residual stresses due to weld deposited cladding on the inside of a typical Westinghouse pressurized water reactor vessel are investigated using an axisymmetric finite element elastic-plastic analysis. At the beginning of the analysis, one head of the weld cladding is assumed to lie on the reactor vessel wall at melting temperature (2600degF), but in the solid phase, while the vessel remains at 300degF (preheat temperature). All material properties used in the calculations are taken as temperature-dependent. Temperature profiles are obtained in the cladding and base metal at several discrete time intervals. These temperatures profiles are used to obtain the stress distribution for the same time intervals. Residual hoop tensile stresses of approximately 25 ksi were found to exist in the cladding. Peak tensile stresses in the hoop direction occur in the base metal near the cladding interface and reach a value of 60 ksi at the end of the transient. The tensile stress decreases very rapidly through the thickness of the base metal and becomes insignificant at about two inches from the inside surface. In order to lower residual stresses, a post-weld heat treatment is performed by uniformly heating the vessel to 1100degF, holding at that temperature for a specified period of time and then cooling slowly. The analysis shows that after this treatment, the peak stresses in the base metal decrease from 60 ksi to 32 ksi, while the stress in the cladding does not change significantly. (author)
International Nuclear Information System (INIS)
Anderson, C.A.; Smith, P.D.
1978-01-01
The variable modulus-cracking model is capable of predicting the behavior of reinforced concrete structures (such as the reinforced plate under transverse pressure described previously) well into the range of nonlinear behavior including the prediction of the ultimate load. For unreinforced thick-walled concrete vessels under internal pressure the use of elastic--plastic concrete models in finite element codes enhances the apparent ductility of the vessels in contrast to variable modulus-cracking models that predict nearly instantaneous rupture whenever the tensile strength at the inner wall is exceeded. For unreinforced thick-walled end slabs representative of PCRV heads, the behavior predicted by finite element codes using variable modulus-cracking models is much stiffer in the nonlinear range than that observed experimentally. Although the shear type failures and crack patterns that are observed experimentally are predicted by such concrete models, the ultimate load carrying capacity and vessel-ductility are significantly underestimated. It appears that such models do not adequately model such features as aggregate interlock that could lead to an enhanced vessel reserve strength and ductility
International Nuclear Information System (INIS)
Anderson, C.A.; Smith, P.D.
1979-01-01
Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)
In situ neutron diffraction and Elastic-Plastic Self-Consistent polycrystal modeling of HT-9
Energy Technology Data Exchange (ETDEWEB)
Clausen, B., E-mail: clausen@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, D.W.; Bourke, M.A.M.; Saleh, T.A.; Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2012-06-15
Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development.
Energy absorption during compression and impact of dry elastic-plastic spherical granules
Antonyuk, Sergiy; Heinrich, Stefan; Tomas, Jürgen; Deen, N.G.; van Buijtenen, M.S.; Kuipers, J.A.M.
2010-01-01
The discrete modelling and understanding of the particle dynamics in fluidized bed apparatuses, mixers, mills and others are based on the knowledge about the physical properties of particles and their mechanical behaviour during slow, fast and repeated stressing. In this paper model parameters
Fracture analysis procedure for cast austenitic stainless steel pipe with an axial crack
International Nuclear Information System (INIS)
Kamaya, Masayuki
2012-01-01
Since the ductility of cast austenitic stainless steel pipes decreases due to thermal aging embrittlement after long term operation, not only plastic collapse failure but also unstable ductile crack propagation (elastic-plastic failure) should be taken into account for the structural integrity assessment of cracked pipes. In the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME), Z-factor is used to incorporate the reduction in failure load due to elastic-plastic failure. However, the JSME code does not provide the Z-factor for axial cracks. In this study, Z-factor for axial cracks in aged cast austenitic stainless steel pipes was derived. Then, a comparison was made for the elastic-plastic failure load obtained from different analysis procedures. It was shown that the obtained Z-factor could derive reasonable elastic-plastic failure loads, although the failure loads were more conservative than those obtained by the two-parameter method. (author)
Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile.
Liu, Ning; Hong, Jiawang; Zeng, Xiaowei; Pidaparti, Ramana; Wang, Xianqiao
2017-05-24
The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties
Elastic-plastic-creep response of structures under composite time history of loadings
International Nuclear Information System (INIS)
Zudans, Z.
1975-01-01
High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This work derives the theory, develops efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of this analysis on a real structure. (Auth.)
International Nuclear Information System (INIS)
McCabe, D.E.; Sokolov, M.A.; Nanstad, R.K.
1997-01-01
The primary objective of the Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series was to develop a fracture mechanics evaluation of weld metal WF-70, which was taken from the beltline and nozzle course girth weld joints of the Midland Reactor vessel. This material became available when Consumers Power Company of Midland, Michigan, decided to abort plans to operate their nuclear power plant. WF-70 is classified as a low upper-shelf steel primarily due to the Linde 80 flux that was used in the submerged-arc welding process. The master curve concept is introduced to model the transition range fracture toughness when the toughness is quantified in terms of K Jc values. K Jc is an elastic-plastic stress intensity factor calculated by conversion from J c ; i.e., J-integral at onset of cleavage instability
International Nuclear Information System (INIS)
Gurland, J.; Rice, J.R.; Asaro, R.J.; Needleman, A.
1978-06-01
The work reported includes studies on: (1) The role of particles and interfaces in the initiation of fracture, including fundamentals of brittle versus ductile response of interfaces and observations on cavity growth by the cracking of grain or sub-grain boundaries adjacent to carbides in spheroidized steels; (2) Environment sensitive fracture mechanisms, particularly the effect of hydrogen in reducing tensile ductility by acceleration of the crack-like mode of cavity growth along grain boundaries in steels; (3) Models for elevated temperature diffusive processes of cavity growth on grain interfaces, including non-equilibrium effects and crack-like growth modes; (4) Localization of plastic deformation and the inception of ductile rupture; and (5) Elastic-plastic stress analysis, by finite elements, of growing cracks and examination of criteria for stable crack growth
Application of fracture mechanics to weldments; Bruchmechanische Bewertung von Schweissverbindungen
Energy Technology Data Exchange (ETDEWEB)
Zerbst, U.; Kocak, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung; Huebner, P. [Technische Univ. Bergakademie Freiberg (Germany)
2002-07-01
Weldments have been a major topic of engineering fracture mechanics research for many years as it shows up in the immense number of scientific papers published recently. Part of this generated knowledge has already been implemented in some industrial codes and standards. The focussing on weldments has its own reason in the utmost importance of this class of components in many industrial fields, but also in its susceptibility to the formation of defects during manufacturing and cracks in service, which promotes the danger of component failure. The present report is addressed to designers and material testers to provide updated information on the present state-of-the-art of fracture mechanics application to weldments. (orig.) [German] Schweissverbindungen bilden seit vielen Jahren einen Schwerpunkt der anwendungsnahen bruchmechanischen Forschung, was seinen Niederschlag in einer nahezu unuebersehbaren Fuelle an wissenschaftlichen Publikationen findet. Ein Teil der Ergebnisse hat bereits Eingang in industrienahe bruchmechanische Bewertungsvorschriften gefunden. Die Konzentration auf Schweissverbindungen hat ihre Ursache in der immensen Bedeutung dieser Bauteilklasse fuer viele Gebiete der Volkswirtschaft, aber auch in ihrer besonderen Anfaelligkeit zur Rissbildung in der Fertigung und im Betrieb und damit hinsichtlich der Gefahr von Bauteilversagen. Der vorliegende Beitrag wendet sich an Konstrukteure und Werkstoffpruefer, die einen Einblick in den gegenwaertigen Stand der Ingenieurbruchmechanik an Schweissverbindungen gewinnen wollen. (orig.)
Hot ductility and fracture mechanisms of a structural steel
International Nuclear Information System (INIS)
Calvo, J.; Cabrera, J. M.; Prado, J. M.
2006-01-01
The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)
Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method
Directory of Open Access Journals (Sweden)
Huang Bo
2017-01-01
Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.
CT for diagnosing fractures of the undersurface of the talus and mechanism of injury
International Nuclear Information System (INIS)
Okamoto, Hideaki; Shibata, Yoshimori; Nishi, Genzaburo; Tago, Kyoji; Tsuchiya, Daiji; Chiba, Takehiro; Okumura, Hisashi; Ikeda, Takeshi; Wada, Ikuo
2000-01-01
Talus fractures whose fracture lines extend to the subtalar joint, except fractures of the neck and the body of the talus, are defined as fractures of the lower portion of the talus. It is difficult to make a correctly diagnosis of inferior fractures of the talus by plain radiography or tomography alone. The author encountered 12 cases of inferior fractures of the talus between 1989 and 1997, and CT imaging in 2 directions, in the horizontal and frontal plane, was useful in making the diagnosis. The correct diagnosis rate was 100%, and differentiation of the site and extent of the fractures was possible. Based on the CT findings, the fractures were classified into 8 types (fractures of the lateral process of the talus, fractures of the medial tubercle, fractures of the posterior process, and combinations of the above, and comminuted fractures). The mechanism of the injuries was also investigated, and the fractures of the lateral process of the talus seemed to have been caused by excessive eversion force on the ankle joint, with the lateral process becoming trapped between the fibula and the calcaneus. Medial tubercle fractures also seemed to be caused by forcible inversion of the ankle, with the tip of the medial malleous impacting and the medial tubercle being trapped between it and the sustentaculum tali. The comminuted fractures seem to have been caused by axial compression added to various of external forces. (K.H.)
CT for diagnosing fractures of the undersurface of the talus and mechanism of injury
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Hideaki; Shibata, Yoshimori; Nishi, Genzaburo; Tago, Kyoji; Tsuchiya, Daiji; Chiba, Takehiro; Okumura, Hisashi [Aichiken Koseiren Kainan Hospital, Yatomi (Japan); Ikeda, Takeshi; Wada, Ikuo
2000-02-01
Talus fractures whose fracture lines extend to the subtalar joint, except fractures of the neck and the body of the talus, are defined as fractures of the lower portion of the talus. It is difficult to make a correctly diagnosis of inferior fractures of the talus by plain radiography or tomography alone. The author encountered 12 cases of inferior fractures of the talus between 1989 and 1997, and CT imaging in 2 directions, in the horizontal and frontal plane, was useful in making the diagnosis. The correct diagnosis rate was 100%, and differentiation of the site and extent of the fractures was possible. Based on the CT findings, the fractures were classified into 8 types (fractures of the lateral process of the talus, fractures of the medial tubercle, fractures of the posterior process, and combinations of the above, and comminuted fractures). The mechanism of the injuries was also investigated, and the fractures of the lateral process of the talus seemed to have been caused by excessive eversion force on the ankle joint, with the lateral process becoming trapped between the fibula and the calcaneus. Medial tubercle fractures also seemed to be caused by forcible inversion of the ankle, with the tip of the medial malleous impacting and the medial tubercle being trapped between it and the sustentaculum tali. The comminuted fractures seem to have been caused by axial compression added to various of external forces. (K.H.)
Directory of Open Access Journals (Sweden)
KharchenkoV.V.
2014-12-01
Full Text Available The results of calculating the stress state of a hollow cylinder with a defect in the form of cracks, which is at the top of the cavity in the elastic-plastic formulation is presented. The calculation results are compared with the results of solving this problem in the elastic formulation vand with the results of solving the problem of the stretching cylinder with a crack.
KharchenkoV.V.; Ban’koS.N.; KobelskyS.V.; KravchenkoV.I.
2014-01-01
The results of calculating the stress state of a hollow cylinder with a defect in the form of cracks, which is at the top of the cavity in the elastic-plastic formulation is presented. The calculation results are compared with the results of solving this problem in the elastic formulation vand with the results of solving the problem of the stretching cylinder with a crack.
Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304
International Nuclear Information System (INIS)
Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.
1995-01-01
Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user's experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book
Fracture mechanics of piezoelectric solids with interface cracks
Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri
2017-01-01
This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...
Stenroos, A; Pakarinen, H; Jalkanen, J; Mälkiä, T; Handolin, L
2016-09-01
Alpine skiing and snowboarding share the hazards of accidents accounting for tibial fractures. The aim of this study was to evaluate the fracture patterns and mechanisms of injury of tibial fractures taking place in downhill skiing and snowboarding. All patients with tibial fracture due to alpine skiing or snowboarding accident treated in four trauma centers next to the largest ski resorts in Finland were analyzed between 2006 and 2012. The hospital records were retrospectively reviewed for data collection: equipment used (skis or snowboard), age, gender, and mechanism of injury. Fractures were classified according to AO-classification. There were 342 skiing and 30 snowboarding related tibial fractures in 363 patients. Tibial shaft fracture was the most common fracture among skiers (n = 215, 63%), followed by proximal tibial fractures (n = 92, 27%). Snowboarders were most likely to suffer from proximal tibial fracture (13, 43%) or tibial shaft fracture (11, 37%). Snowboarders were also more likely than skiers to suffer complex AO type C fractures (23% vs 9%, p jumping (46%). The most important finding was the relatively high number of the tibial plateau fractures among adult skiers. The fracture patterns between snowboarding and skiing were different; the most common fracture type in skiers was spiral tibial shaft fracture compared to proximal tibial fractures in snowboarders. Children had more simple fractures than adults. © The Finnish Surgical Society 2016.
Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods
International Nuclear Information System (INIS)
Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.
1979-01-01
Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)
International Nuclear Information System (INIS)
Lee, So-Dam; Lee, Han-Sang; Kim, Yun-Jae; Ainsworth, Robert A.; Dean, David W.
2016-01-01
This technical note presents the effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values. This is investigated via systematic elastic-plastic-creep finite element (FE) analysis. Three different stress-strain curves are used, having essentially the same plastic properties at large strains but different tensile data near the 0.2% proof (yield) strength. It is found that the plastic property in stress-strain curve affects the FE C(t) values only at short times (within approximately 20% of the redistribution time). The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time. - Highlights: • The effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values is presented via FE analysis. • The plastic property affects the FE C(t) values only at short times up to ∼20% of the redistribution time. • The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time.
DEFF Research Database (Denmark)
Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.
2018-01-01
A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...
Elastic-plastic creep response of structures under composite time history
Energy Technology Data Exchange (ETDEWEB)
Zudans, Z [Franklin Inst. Research Labs., Philadelphia, Pa. (USA)
1975-12-01
High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems.
Elastic-plastic creep response of structures under composite time history
International Nuclear Information System (INIS)
Zudans, Z.
1975-01-01
High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)
NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software
Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe
2004-01-01
This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.
Surface effects in solid mechanics models, simulations and applications
Altenbach, Holm
2013-01-01
This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.
Fracture mechanics of ceramics. Vol. 8. Microstructure, methods, design, and fatigue
International Nuclear Information System (INIS)
Bradt, R.C.; Evans, A.G.; Hasselman, D.P.H.; Lange, F.F.
1986-01-01
This paper presents information on the following topics: fracture mechanics and microstructures; non-lubricated sliding wear of Al 2 O 3 , PSZ and SiC; mixed-mode fracture of ceramics; some fracture properties of alumina-containing electrical porcelains; transformation toughening in the Al 2 O 3 -Cr 2 O 3 /ZrO 2 -HfO 2 system; strength toughness relationships for transformation toughened ceramics; tensile strength and notch sensitivity of Mg-PSZ; fracture mechanisms in lead zirconate titanate ceramics; loading-unloading techniques for determining fracture parameters of brittle materials utilizing four-point bend, chevron-notched specimens; application of the potential drop technique to the fracture mechanics of ceramics; ceramics-to-metal bonding from a fracture mechanics perspective; observed changes in fracture strength following laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC; crack growth in single-crystal silicon; a fracture mechanics and non-destructive evaluation investigation of the subcritical-fracture process in rock; slow crack growth in sintered silicon nitride; uniaxial tensile fatigue testing of sintered silicon carbide under cyclic temperature change; and effect of surface corrosion on glass fracture
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-07-01
Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.
Deformation localization at the tips of shear fractures: An analytical approach
Misra, Santanu
2011-04-01
Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.
Dynamic elastic-plastic behaviour of a frame including coupled bending and torsion
International Nuclear Information System (INIS)
Messmer, S.; Sayir, M.
1989-01-01
The full time response of a space frame under impact loading perpendicular to the frame plane is discussed. Theoretical solutions and experimental results are presented and compared. A space frame clamped at its two ends is loaded by a 0.22 lead bullet that hits a mass in the middle of the transversal beam of the frame. The loading time is about 40 to 60 μs and the resulting linear momentum of the impact in the experiment is 0.5 to 1 N s. The time response of this frame can be divided in four phases where different physical effects are dominant: (a) The loading phase where elastic wave motion dominates the time response. Because of the high impact forces, plastic deformation occurs in the vicinity of the mass and must be included in a theoretical model. The influence of reflections at the corners on the time response is shown in theory and experiment. (b) The evolution phase. Within this phase, a plastic collapse mechanism develops. Most of this phase is dominated by elastic deformation but local plastic deformations beside the mass are also present. Because many reflections at corners, clamps and the mass occur within this phase, a modal analysis method is used to predict time histories. (c) The plastic phase with plastic zones at the clamps. The phase sets in after the bending wave reaches the clamps. It is characterized by plastic deformation near the clamps and elastic deformation of the other parts of the frame. We used a modal analysis including plastic 'modes' to get accurate results. (d) The elastic vibration phase
Elastic-plastic-creep response of structures under composite time history of loadings
International Nuclear Information System (INIS)
Zudans, Z.
1975-01-01
The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads
Elastic-plastic analysis of local and integral straining behaviour in a cracked plate
International Nuclear Information System (INIS)
Grueter, L.; Ruettenauer, B.
1982-01-01
For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)
Hydro-thermo-mechanical response of a fractured rock block
International Nuclear Information System (INIS)
Kelkar, S.; Zyvoloski, G.
1990-01-01
Hydro-thermo-mechanical effects in fractured rocks are important in many engineering applications and geophysical processes. Modeling these effects is made difficult by the fact that the governing equations are nonlinear and coupled, and the problems to be solved are three dimensional. In this paper we describe a numerical code developed for this purpose. The code is finite element based to allow for complicated geometries, and the time differencing is implicit, allowing for large time steps. The use of state-of-the-art equation solvers has resulted in a practical code. The code is capable of fully three dimensional simulations, however, in this paper we consider only the case of two dimensional heat and mass flow coupled to one dimensional deformation. Partial verification of the code is obtained by comparison with published semianalytical results. Several examples are presented to demonstrate the effects of matrix expansion, due to pore pressure and heating, on fracture opening due to fluid injection. 16 refs., 11 figs
Wear resistance and fracture mechanics of WC-Co composites
International Nuclear Information System (INIS)
Kaytbay, Saleh; El-Hadek, Medhat
2014-01-01
Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset
Eyre, T.; Van der Baan, M.
2016-12-01
Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and
Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J
2013-04-01
Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test
DEFF Research Database (Denmark)
Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik
2006-01-01
properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...... models are presented, a simple semi-analytical model based on analytical solutions for the crack propagation in a rectangular prismatic body, and a finite element model including plasticity in bulk material as well as crack propagation in interface elements. A numerical study applying these models...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...
Application of fracture-mechanics principles to austenitic steels
International Nuclear Information System (INIS)
Schwalbe, K.H.; Cornec, A.; Baustian, K.
1996-01-01
Recent experimental and analytical work mainly carried out at GKSS and TH Darmstadt is used to check the usefulness of fracture mechanics methods as developed for more conventional materials, such as ferritic steels and aluminium alloys. Finite element calculations serve for quantifying J validity limits; they are a function of constraint conditions and strain hardening properties. Crack growth studies show the ability of the J-integral, the modified J-integral, J(M), and of the crack tip opening displacement, CTOD delta(5), to generate unique, i.e. size-independent, R-curves. It is also shown that the delta(5)-type CTOD technique yields values close to the standardised CTOD. Finally, the Engineering Treatment Model is used to estimate delta(5) and J as driving force parameters. Special attention is given to the power law representation of actual stress/strain curves. (author)
ORNL probabilistic fracture-mechanics code OCA-P
International Nuclear Information System (INIS)
Cheverton, R.D.; Ball, D.G.
1984-01-01
The computer code OCA-P was developed at the request of the USNRC for the purpose of helping to evaluate the integrity of PWR pressure vessels during overcooling accidents (OCA's). The code can be used for both deterministic and probabilistic fracture-mechanics calculations, and consists essentially of OCA-II and a Monte Carlo routine similar to that developed by Strosnider et al. In the probabilistic mode OCA-P generates a large number of vessels (10 6 more or less), each with a different combination of the various values of the different parameters involved in the analysis of flaw behavior. For each of these vessels a deterministic fracture-mechanics analysis is performed (calculation of K/sub I/, K/sub Ic/, K/sub Ia/) to determine whether vessel failure takes place. The conditional probability of failure is simply the number of vessels that fail divided by the number of vessels generated. OCA-II is used for the deterministic analysis. Basic input to OCA-II includes, among other things, the primry-system pressure transient and the temperature transient for the coolant in the reactor-vessel downcomer. With this and additional information available OCA-II performs a one-dimensional thermal analysis to obtain the temperature distribution in the wall as a function of time and then a one-dimensional linear-elastic stress analysis. OCA-P has been checked against similar codes and is presently being used in the Integrated Pressurized Thermal Shock Program for specific PWR plants
Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins
Ouraga, Zady; Guy, Nicolas; Pouya, Amade
2018-05-01
In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.
Impact of Injury Mechanisms on Patterns and Management of Facial Fractures.
Greathouse, S Travis; Adkinson, Joshua M; Garza, Ramon; Gilstrap, Jarom; Miller, Nathan F; Eid, Sherrine M; Murphy, Robert X
2015-07-01
Mechanisms causing facial fractures have evolved over time and may be predictive of the types of injuries sustained. The objective of this study is to examine the impact of mechanisms of injury on the type and management of facial fractures at our Level 1 Trauma Center. The authors performed an Institutional Review Board-approved review of our network's trauma registry from 2006 to 2010, documenting age, sex, mechanism, Injury Severity Score, Glasgow Coma Scale, facial fracture patterns (nasal, maxillary/malar, orbital, mandible), and reconstructions. Mechanism rates were compared using a Pearson χ2 test. The database identified 23,318 patients, including 1686 patients with facial fractures and a subset of 1505 patients sustaining 2094 fractures by motor vehicle collision (MVC), fall, or assault. Nasal fractures were the most common injuries sustained by all mechanisms. MVCs were most likely to cause nasal and malar/maxillary fractures (P management. Age and number of fractures sustained were associated with operative intervention. Although there is a statistically significant correlation between mechanism of injury and type of facial fracture sustained, none of the mechanisms evaluated herein are statistically associated with surgical intervention. Clinical Question/Level of Evidence: Therapeutic, III.
Influence of crack depth on the fracture toughness of reactor pressure vessel steel
International Nuclear Information System (INIS)
Theiss, T.J.; Bryson, J.W.
1991-01-01
The Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. Recently, it has been shown that, in notched beam testing, shallow cracks tend to exhibit an elevated toughness as a result of a loss of constraint at the crack tip. The loss of constraint takes place when interaction occurs between the elastic-plastic crack-tip stress field and the specimen surface nearest the crack tip. An increased shallow-crack fracture toughness is of interest to the nuclear industry because probabilistic fracture-mechanics evaluations show that shallow flaws play a dominant role in the probability of vessel failure during postulated pressurized-thermal-shock (PTS) events. Tests have been performed on beam specimens loaded in 3-point bending using unirradiated reactor pressure vessel material (A533 B). Testing has been conducted using specimens with a constant beam depth (W = 94 mm) and within the lower transition region of the toughness curve for A533 B. Test results indicate a significantly higher fracture toughness associated with the shallow flaw specimens compared to the fracture toughness determined using deep-crack (a/W = 0.5) specimens. Test data also show little influence of thickness on the fracture toughness for the current test temperature (-60 degree C). 21 refs., 5 figs., 3 tabs
Techniques developed to evaluate the fracture toughness offast breeder reactor duct
International Nuclear Information System (INIS)
Huang, F.H.; Wire, G.L.
1979-01-01
Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. Therefore, the resistance of cladding and duct materials to fracture after exposure to fast neutron environments is of concern. Existing Type 316 stainless steel irradiated ducts are relatively thin and since this material retains substantial ductility, even after irradiation, the fracture behavior of the duct material cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor duct materials irradiated at elevated temperatures. Alloy A-286 was chosen for these experiments because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain
Microscale fracture mechanisms of a Cr3C2-NiCr HVOF coating
International Nuclear Information System (INIS)
Robertson, Andrew L.; White, Ken W.
2017-01-01
Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr 3 C 2 -NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.
The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel
Energy Technology Data Exchange (ETDEWEB)
Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan
2015-06-11
The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.
Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks
Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.
2015-12-01
Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.
Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai
2018-02-01
Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.
Directory of Open Access Journals (Sweden)
Ferdinand Stoeckhert
2015-06-01
Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.
Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity
2017-10-01
AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of
Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests
2016-02-02
interfacial fracture ) in CFRP was recently found in the fuselages of Dreamliner 787, and two types of cracks were found in the rib feet brackets...AFRL-AFOSR-UK-TR-2016-0003 Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests Zhenjun Yang UNIVERSITY OF MANCHESTER...Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests 5a. CONTRACT NUMBER EOARD 12-2100 5b. GRANT NUMBER F8655-12-1
From fracture mechanics to damage mechanics: how to model structural deterioration
International Nuclear Information System (INIS)
Nicolet, S.; Lorentz, E.; Barbier, G.
1998-01-01
Modelling of structural deteriorations of thermo-mechanical origin is highly enhanced when using damage mechanics. Indeed, the latter offers both a fine description of the material behaviour and an ability to deal with any loading conditions, moving away the current limits of fracture mechanics. But new difficulties can arise, depending on the examined problem: if forecasts of rack initiation are well mastered, the study of crack propagation remains more complex and needs sophisticated modelizations, which are nevertheless on the point of being well understood too. (authors)
International Nuclear Information System (INIS)
Smith, E.
1980-01-01
Fractographic observations on irradiated Zircaloy cladding stress corrosion fracture surfaces are considered against the background of recent developments in the plastic fracture mechanics field. Dimples have been observed on the fracture surfaces of failed cladding, even though the cracks in metallographic sections are tight, i.e., crack propagation is associated with a low crack tip opening angle. This result is interpreted as providing evidence for an environmentally assisted ductile mode of fracture. The presence of this fracture mode forms the basis of an argument, which adds further support for the view that power ramp stress corrosion cladding failures are caused by stress concentrations that produce stress gradients in the cladding. (orig.)
Fracture-mechanical results of non-destructive testing - function, goals, methods
International Nuclear Information System (INIS)
Herter, K.H.; Kockelmann, H.; Schuler, X.; Waidele, H.
2004-01-01
Non-destructive testing provides data for fracture-mechanical analyses, e.g. defect size and orientation. On the other hand, fracture-mechanical analyses may help to define criteria for non-destructive testing, e.g. sensitivity, inspection intervals and inspection sites. The criteria applied differ as a function of the safety relevance of a component. (orig.) [de
Mechanical test and fractal analysis on anisotropic fracture of cortical bone
Energy Technology Data Exchange (ETDEWEB)
Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)
2015-12-01
Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in
Mechanical test and fractal analysis on anisotropic fracture of cortical bone
International Nuclear Information System (INIS)
Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong
2015-01-01
Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in
Undercut tolerances in industry from a fracture mechanic perspective
Directory of Open Access Journals (Sweden)
Steimbreger Ceferino
2018-01-01
Full Text Available Fatigue is an important damage mechanism that particularly affects welded components, since they are likely to present residual stresses, inhomogeneities and stress raisers. Assessment of cyclic load effects on welds has concerned both industries and scientist for decades; unexpected failure must be prevented and at the same time, structures must withstand design loads with minimum requirements of material. All these facts together with economic issues have lead to the creation of normative that rule designing and construction of welded components. Particularly, toe undercuts are generally found in large structures, and large scatter and disagreement exists towards their significance and effects. Documents usually limit only their depth without considering radius, width or length, and there is currently no explanation to that fact. Understanding the damaging process will also help to set less conservative tolerances, with consequent cost reduction due to less demanding inspection. The present paper deals with a fracture mechanic approach that uses the Resistance Curve concept to predict fatigue limit of welded components with undercuts. Results revealed that depth is the most influencing variable, and it can be used as the limiting parameter in design regulations. Moreover, good correlation was obtained with FAT values normally assigned to this kind of defect.
Hydrogen embrittlement of titanium tested with fracture mechanics specimens
International Nuclear Information System (INIS)
Aho-Mantila, I.; Rahko, P.
1990-11-01
Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study
Pipe fracture evaluations for leak-rate detection: Probabilistic models
International Nuclear Information System (INIS)
Rahman, S.; Wilkowski, G.; Ghadiali, N.
1993-01-01
This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications
International Nuclear Information System (INIS)
Voss, C.F.; Shotwell, L.R.
1990-04-01
The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs
Hou, Fang
With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters
Isolated posterior malleolus fracture: A rare injury mechanism ...
African Journals Online (AJOL)
Sprain of the ankle is undoubtedly a common injury during athletic activity, and the sprain can be also associated with fracture of the ankle. Isolated posterior malleolus fracture is a very rare condition, which is usually missed. Here, we are presenting a 37 years old female patient, who suffered injury secondary pressing on ...
International Nuclear Information System (INIS)
Hutula, D.N.; Wiancko, B.E.
1980-03-01
ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports
Spartan Release Engagement Mechanism (REM) stress and fracture analysis
Marlowe, D. S.; West, E. J.
1984-01-01
The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.
Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754
Kumar, Pankaj; Singh, Akhilendra
2017-10-01
In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.
International Nuclear Information System (INIS)
McConnell, P.; Sorenson, K.B.
1995-01-01
Sandia National Laboratories recently completed a cask drop test programme. The aims of the programme were (1) to demonstrate the applicability of a fracture mechanics-based methodology for ensuring cask integrity, and (2) to assess the viability of using a ferritic materials for cask containment. The programme consisted of four phases: (i) materials characterisation; (ii) non-destructive examination of the cask; (iii) finite element analyses of the drop events; and (iv) a series of drop tests of a ductile iron cask. The first three phases of the programme provided information for fracture mechanics analyses and predictions for the drop test phase. The drop tests were nominally based upon the IAEA 9 m drop height hypothetical accident scenario although one drop test was from 18 m. All tests were performed in the side drop orientation at a temperature of -29 o C. A circumferential, mid-axis flaw was introduced into the cask body for each drop test. Flaw depth ranged from 19 to 76 mm. Steel saddles were welded to the side wall of the cask to enhance the stresses imposed upon the cask in the region of the introduced flaw. The programme demonstrated the applicability of a fracture mechanics methodology for predicting the conditions under which brittle fracture may occur and thereby the utility of fracture mechanics design for ensuring cask structural integrity by ensuring an appropriate margin of safety. Positive assessments of ductile iron for cask containment and the quality of the casting process for producing ductile iron casks were made. The results of this programme have provided data to support IAEA efforts to develop brittle fracture acceptance criteria for cask containment. (author)
Energy Technology Data Exchange (ETDEWEB)
Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)
2016-12-01
Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.
The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel
International Nuclear Information System (INIS)
Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.
1979-01-01
Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)
Defect forces, defect couples and path integrals in fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1979-07-01
In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr
Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics
Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.
1989-01-01
The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.
Integration of nondestructive examination reliability and fracture mechanics
International Nuclear Information System (INIS)
Doctor, S.R.; Bates, D.J.; Charlot, L.A.
1985-01-01
The primary pressure boundaries (pressure vessels and piping) of nuclear power plants are in-service inspected (ISI) according to the rules of ASME Boiler and Pressure Vessel Code, Section XI. Ultrasonic techniques are normally used for these inspections, which are periodically performed on a sampling of welds. The Integration of Nondestructive Examination (NDE) Reliability and Fracture Mechanics (FM) Program at Pacific Northwest Laboratory was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: 1) determine the reliability of ultrasonic ISI performed on commercial light-water reactor primary systems; 2) using probabilistic FM analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability; 3) evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques; and 4) based on material properties, service conditions, and NDE uncertainties, formulate recommended revisions to ASME Code, Section XI, and Regulatory Requirements needed to ensure suitably low failure probabilities
Fracture Mechanics Analyses for Interface Crack Problems - A Review
Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.
2013-01-01
Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.
In situ grain fracture mechanics during uniaxial compaction of granular solids
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.
Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik
2017-10-13
Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.
Understanding cracking failures of coatings: A fracture mechanics approach
Kim, Sung-Ryong
A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness
International Nuclear Information System (INIS)
Yagawa, G.; Yoshimura, S.
1986-01-01
This study is concerned with the application of the electromagnetic force to the determination of the dynamic fracture toughness of materials. Taken is an edge-cracked specimen which carries a transient electric current I and is simply supported in a uniform and steady magnetic field B. As a result of their interaction, the dynamic electromagnetic force occurs in the whole body of the specimen, which is then deformed to fracture in the opening mode of cracking. For the evaluation of dynamic fracture toughness, the extended J integral with the effects of the electromagnetic force and inertia is calculated using the dynamic finite-element method. To determine the dynamic crack-initiation point in the experiment, the electric potential method is used in the case of brittle fracture, and the electric potential and the J-R curve methods in the case of ductile fracture, respectively. Using these techniques, the dynamic fracture toughness values of nuclear pressure vessel steel A508 class 3 are evaluated over a wide temperature range. (author)
Failure conditions from push out tests of a steel-concrete joint: fracture mechanics approach
Czech Academy of Sciences Publication Activity Database
Klusák, Jan; Seitl, Stanislav; De Corte, W.; Helincks, P.; Boel, V.; De Schutter, G.
488-489, - (2012), s. 710-713 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : Push out test * generalized linear elastic fracture mechanics * bi-material notch Subject RIV: JL - Materials Fatigue, Friction Mechanics
The elasto plastic fracture mechanics in ductile metal sheets
International Nuclear Information System (INIS)
Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.
1999-01-01
The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)
Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp
2012-01-01
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...
An extension of fracture mechanics/technology to larger and smaller cracks/defects
Abé, Hiroyuki
2009-01-01
Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123
International Nuclear Information System (INIS)
Canamon, I.; Javier Elorza, F.; Ababou, R.
2007-01-01
We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)
The role of strain localization in the fracture of irradiated pressure tube material
International Nuclear Information System (INIS)
Dutton, R.
1989-04-01
This report reviews those phenomena that lead to strain localization in zirconium alloys, with particular reference to the role played by the formation of shear bands in fracture processes. The important influence of plastic deformation, in general, on fracture mechanisms is emphasized. This is to be expected when elastic-plastic fracture mechanics is the chosen analytical technique. Intensely inhomogeneous characteristics of strain localization cause an abrupt bifurcation in the evolution of deformation strain and lead to plastic instability linked with intrinsic material behaviour (e.g., work softening) or of geometric origin (e.g., localized necking). Both of these effects are discussed in relation to measurable deformation parameters, such as the work hardening rate and strain rate sensitivity, which determine the degree of resistance to plastic instability. The modifying effect of irradiation on these quantities is given specific attention, the appropriate literature pertaining to Zircaloy and Zr-2.5% Nb being reviewed. Recommendations are made for a combined experimental and theoretical program to characterize strain localization and reduced ductility in irradiated cold-worked Zr-2.5% Nb pressure tube material. The relationship between the deformation properties and the fracture behaviour is discussed
International Nuclear Information System (INIS)
Gurland, J.; Rice, J.R.; Asaro, R.J.; Needleman, A.
1976-07-01
Major studies have been started on (1) The conditions governing the localization of plastic flow at the onset of rupture. Specific calculations of critical conditions for a number of material models have been made possible through a theoretical framework by which localization is formulated as a constitutive instability, in the form of a bifurcation into a localized mode from a state of previously homogeneous deformation, and (2) The strength of interfaces with and without the presence of dissolved segregants. Criteria for brittle vs. ductile response of an interface were developed on the basis of dislocation mechanisms and thermodynamic relations, and applied to hydrogen embrittlement. Further progress has been achieved in the analysis of stress and deformation at a crack tip by the application of the large-strain elastic-plastic finite element program developed over the last two years. Work has continued on particle and sub-boundary strengthening in steels and an experimental study of fracture initiation at particles was begun
Energy Technology Data Exchange (ETDEWEB)
Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.
2016-11-15
The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.
Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)
Kaminsky, A. A.
2014-09-01
Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given
Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range
Directory of Open Access Journals (Sweden)
Milan T. Jovanović
2017-06-01
Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.
The use of fracture mechanics for the evaluation of NDE flaw acceptance standards
Energy Technology Data Exchange (ETDEWEB)
Alicino, A; Capurro, E; Ansaldo, Sp; Corvi, A [Ansaldo SpA, Genoa (Italy)
1988-12-31
This document deals with the use of fracture mechanics criteria to evaluate the Non Destructive Examination (NDE) flaw acceptance standards. The communication discusses the general schemes and the guidelines of the activity carried out. (TEC).
Swanson, P. L.
1984-01-01
An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.
Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels
Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.
2011-01-01
The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.
Czech Academy of Sciences Publication Activity Database
Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk
2011-01-01
Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics
Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei
2017-12-01
The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.
Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures
International Nuclear Information System (INIS)
Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu
2015-01-01
Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)
Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel
2017-10-01
The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.
Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam
2018-03-28
The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.
Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics
International Nuclear Information System (INIS)
Zhang Jun; Li, Victor C.
2004-01-01
Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known
STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository
International Nuclear Information System (INIS)
Huyakorn, P.; Golis, M.J.
1989-01-01
1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system
International Nuclear Information System (INIS)
Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K.; Hawthorne, J.R.; Hiser, A.L.; Lott, R.A.; Begley, J.A.; Shogan, R.P.
1991-01-01
The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950's from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150 degrees C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25 degrees C and 125 degrees C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125 degrees C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J def at 1 mm crack extension) is between 20% to 65%; the range of J 1C values are 72.8 to 366 kJ/m 2 for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies
International Nuclear Information System (INIS)
Min, Kibok
2011-01-01
This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow
International Nuclear Information System (INIS)
Song, Kee Nam; Hong, Sung Deok; Park, Hong Yoon
2011-01-01
A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$ study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype
Fracture mechanics of polymer mortar made with recycled raw materials
Jurumenha,Marco Antonio Godoy; Reis,João Marciano Laredo dos
2010-01-01
The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET) as matrix and po...
Pseudoarthrosis following proximal humeral fractures: A possible mechanism
Energy Technology Data Exchange (ETDEWEB)
Rooney, P.J.; Cockshott, W.P.
1986-01-01
A small series of four patients with pseudarthrosis of the proximal humeral shaft is reported. These patients all had restricted movement of the shoulder joint prior to the trauma, three as a result of rheumatoid arthritis and one due a surgical fusion of the glenohumeral joint. It is suggested that pseudarthrosis is more likely under these circumstances and that pursuit of union of the fracture in such patients may not always be necessary.
Future trends in fracture mechanics: theory and applications
International Nuclear Information System (INIS)
Hosbons, R.R.
1978-05-01
A brief description of the current methods available for the analysis of fracture in ductile materials is given. Crack-opening displacement, R-curves and J-integrals are discussed and their future incorporation into structural codes assessed. The current areas of research which will probably influence code making bodies are also described. Emphasis is made on J-integral theory and a description of its limitations and extensions. Numerical techniques for calculating J for complicated structure are outlined. (author)
Fracture toughness of intermetallics using a micro-mechanical probe
International Nuclear Information System (INIS)
Gerberich, W.W.; Venkataraman, S.K.; Hoehn, J.W.; Marsh, P.G.
1993-01-01
A novel technique for determining the fracture toughness of brittle intermetallics is presented, wherein very small samples are used and multiple tests are easily conducted on a flat polished surface. The fracture toughness of single crystal NiAl and polycrystalline Al 3 Sc are evaluated with this continuous microscratch technique at scratch rates ranging from 0.5 to greater than 100 μm s - . For comparison, small compact tension samples of (100) NiAl are evaluated at applied stress intensity rates ranging from 1.5 to 5,400 MPa-m 1/2 s -1 . Good comparison of microscratch toughness to compact tension K Ic values are obtained in this study for (001) NiAl, 10.6 vs. 10.0 MPa-m 1/2 , from the literature for (001) , 13.5 vs. 12.2 MPa-m 1/2 , and from the literature for polycrystalline Al 3 Sc, 3.5 vs. 3.1 MPa-m 1/2 . Also, the fracture toughness of both NiAl and Al 3 Sc are found to be strongly dependent on strain rate at room temperature with toughness dropping by an order of magnitude over a decade increase in rate. Possible reasons and implications to improving low temperature brittleness are discussed
Fracture mechanical treatment of bridging stresses in ceramics
International Nuclear Information System (INIS)
Fett, T.; Munz, D.
1993-12-01
Failure of ceramic materials often starts from cracks which can originate at pores, inclusions or can be generated during surface treatment. Fracture occurs when the stress intensity factor of the most serious crack in a component reaches a critical value K lc , the fracture toughness of the material. In case of ideal brittle materials the fracture toughness is independent of the crack extension and, consequently, identical with the stress intensity factor K l0 necessary for the onset of stable crack growth. It is a well-known fact that failure of several ceramics is influenced by an increasing crack-growth resistance curve. Several effects are responsible for this behaviour. Crack-border interactions in the wake of the advancing crack, residual stress fields in the crack region of transformation-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack branching. The effect of increasing crack resistance has consequences on many properties of ceramic materials. In this report the authors discuss the some aspects of R-curve behaviour as the representation by stress intensity factors or energies and the influence on the compliance using the bridging stress model. (orig.) [de
Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding
Directory of Open Access Journals (Sweden)
Ana Cláudia Gabrielli Piveta
2012-12-01
Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.
Mechanical behavior and essential work of fracture of starch-based blown films
Nottez, M.; Chaki, S.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P.
2015-05-01
A fracture mechanics approach (Essential Work of Fracture, EWF) was applied to assess the toughness of novel partly starch-grafted polyolefin blown films, compared to that of a neat polyethylene reference. Tests were performed on double-end notched samples. The digital image correlation method was used to monitor the deformation field around the notch. Regular tensile and tear tests were also carried out. The specific essential work of fracture is a characteristic which is much more sensitive to materials structural modifications than the tensile or tear properties.
International Nuclear Information System (INIS)
Ellison, E.G.; Musicco, G.G.; Pineau, A.
1988-01-01
A CEC State of the Art Report on Fracture Mechanics for Fast Breeder Reactors (Fracture below the Creep Range) has recently been published by Bhandari and coworkers (1984). There has also been a compilation of Creep Crack Growth Data from Germany, France and the U.K. for 304 and 316 stainles steel by Lloyd et al (1984). The present Report provides considerably more data and analytical techniques taken from Worldwide sources on creep crack initiation and propagation. Since the subject is moving quickly there is an emphasis on the most recent work; indeed research studies as yet unpublished are also included. The total Report is in 3 volumes. Volume 3 contains the most important and up-to-date information in some detail in Appendices H to M; this provides a sound base for the Report and for future workers
International Nuclear Information System (INIS)
Ellison, E.G.; Musicco, G.G.; Pineau, A.
1988-01-01
A CEC State of the Art Report on Fracture Mechanics for Fast Breeder Reactors (Fracture below the Creep Range) has recently been published by Bhandari and coworkers (1984). There has also been a compilation of Creep Crack Growth Data from Germany, France and the U.K. for 304 and 316 stainles steel by Lloyd et al (1984). The present Report provides considerably more data and analytical techniques taken from Worldwide sources on creep crack initiation and propagation. Since the subject is moving quickly there is an emphasis on the most recent work; indeed research studies as yet unpublished are also included. The total Report is in 3 volumes. Volume 2 contains the most important and up-to-date information in some detail in Appendices A to G; this provides a sound base for the Report and for future workers
Determination of ASTM 1016 structural welded joints fracture toughness through J integral
International Nuclear Information System (INIS)
Martins, Geraldo de Paula; Villela, Jefferson Jose; Terra, Jose Lucio; Rabello, Emerson Giovani; Martins, Geraldo Antonio Scoralick; Carneiro, Jose Rubens Goncalves
2009-01-01
Fracture toughness is an important parameter for studies of materials behavior in nuclear and conventional industry. Crack propagation resistance is, in general, evaluate using one of the fracture mechanics parameters K IC , for the case of the materials that exhibits a linear elastic behavior, the CTOD (crack tip opening displacement) and J IC , the critical value of J Integral, for the case of materials with elastic-plastic behavior. On this work the fracture mechanics parameters of the ASTM 1016 structural steel welded joints were obtained, using the J Integral. Charpy V tests at several temperatures were also obtained, with the purpose to obtain the curves of ductile-brittle of the regions of the welded joints: Base Metal, (MB), and Melted Zone (MZ). The joints were welded by Gas Metal Arc Welding (GMAW) with V bevel for evaluation the MZ toughness properties. The tests were accomplished at temperatures varying from -100 deg C to 100 deg C using the technical of compliance variation for J IC determination, the critical value that defines the initial stable crack growth, that applies to brittle and ductile materials. The J Integral alternative specimens has square cross section 10mmX10mm, according ASTM E 1820, with notch localized respectively at the BM and MZ. After the tests, the specimens fractured were analyzed in a scanning microscopic electronic (SME) for verification of the fracture surface. The fractography of the specimens at elevated temperatures presented dimples at the region of stable crack growth, characteristic of ductile fracture. The results of J Integral and Charpy V presented a good correlation between these two parameters. From these correlations it can be concluded that in some applications, the use Charpy V energy to infer fracture toughness can be substitute the Integral J tests. (author)
Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping
2018-05-01
The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.
Experimental and theoretical fracture mechanics applied to volcanic conduits and domes
Sammonds, P.; Matthews, C.; Kilburn, C.; Smith, R.; Tuffen, H.; Meredith, P.
2008-12-01
We present an integrated modelling and experimental approach to magma deformation and fracture, which we attempt to validate against field observations of seismicity. The importance of fracture processes in magma ascent dynamics and lava dome growth and collapse are apparent from the associated seismicity. Our laboratory experiments have shown that brittle fracture of magma can occur at high temperature and stress conditions prevalent in the shallow volcanic system. Here, we use a fracture mechanics approach to model seismicity preceding volcanic eruptions. Starting with the fracture mechanics concept of a crack in an elastic body, we model crack growth around the volcanic conduit through the processes of crack interactions, leading either to the propagation and linkage of cracks, or crack avoidance and the inhibition of crack propagation. The nature of that interaction is governed by the temperature and plasticity of the magma. We find that fracture mechanics rules can account for the style of seismicity preceding eruptions. We have derived the changes in seismic b-value predicted by the model and interpret these in terms of the style of fracturing, fluid flow and heat transport. We compare our model with results from our laboratory experiments where we have deformed lava at high temperatures under triaxial stresses. These experiments were conducted in dry and water saturated conditions at effective pressures up to 10 MPa, temperatures up to 1000°C and strain rates from 10-4 s-1 to 10-6 s-1. The behaviour of these magmas was largely brittle under these conditions. We monitored the acoustic emission emitted and calculate the change in micro-seismic b-value with deformation. These we find are in accord with volcano seismicity and our fracture mechanics model.
Fracture mechanical analysis of strengthened concrete tension members with one crack
DEFF Research Database (Denmark)
Hansen, Christian Skodborg; Stang, Henrik
2012-01-01
A concrete tension member strengthened 2 with fiber reinforced polymer plates on two sides 3 is analyzed with non-linear fracture mechanics. The 4 analysis of the strengthened tension member incorpo5 rates cohesive properties for both concrete and inter6 face between concrete and strengthening...... the structural classification parameters, is inves13 tigated in a non-dimensional analysis, and found to 14 depend strongly on the ratio between interfacial and 15 concrete fracture energies....
Directory of Open Access Journals (Sweden)
Zhanghua Lian
2015-03-01
Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.
Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong
2017-12-01
In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.
Czech Academy of Sciences Publication Activity Database
Betekhtin, V. I.; Sklenička, Václav; Saxl, Ivan; Kardashev, B. K.; Kadomtsev, A. G.; Narykova, M. V.
52 2010, č. 8 (2010), s. 1629-1636 ISSN 1063-7834 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10190503 Keywords : equal-channel angular pressing (ECAP) * severe plastic deformation * ultrafine-grained material * elastic-plastic properties Subject RIV: JG - Metallurgy Impact factor: 0.727, year: 2010
Al Kharusi, Laiyyan M.
Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive
Two-parameter fracture mechanics: Theory and applications
International Nuclear Information System (INIS)
O'Dowd, N.P.; Shih, C.F.
1993-02-01
A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed
Directory of Open Access Journals (Sweden)
Zhitao Zheng
2015-11-01
Full Text Available Sudden falls of large-area hard roofs in a mined area release a large amount of elastic energy, generate dynamic loads, and cause disasters such as impact ground pressure and gas outbursts. To address these problems, in this study, the sleeve fracturing method (SFM was applied to weaken a hard roof. The numerical simulation software FLAC3D was used to develop three models based on an analysis of the SFM working mechanism. These models were applied to an analysis of the fracturing effects of various factors such as the borehole diameter, hole spacing, and sleeve pressure. Finally, the results of a simulation were validated using experiments with similar models. Our research indicated the following: (1 The crack propagation directions in the models were affected by the maximum principal stress and hole spacing. When the borehole diameter was fixed, the fracturing pressure increased with increasing hole spacing. In contrast, when the fracturing pressure was fixed, the fracturing range increased with increasing borehole diameter; (2 The most ideal fracturing effect was found at a fracturing pressure of 17.6 MPa in the model with a borehole diameter of 40 mm and hole spacing of 400 mm. The results showed that it is possible to regulate the falls of hard roofs using the SFM. This research may provide a theoretical basis for controlling hard roofs in mining.
Energy Technology Data Exchange (ETDEWEB)
Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)
2007-07-01
We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)
International Nuclear Information System (INIS)
Jung, Sung Gyu; Jin, Tae Eun; Jhung, Myung Jo; Choi, Young Hwan
2003-01-01
The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated
Variate generation for probabilistic fracture mechanics and fitness-for-service studies
International Nuclear Information System (INIS)
Walker, J.R.
1987-01-01
Atomic Energy of Canada Limited is conducting studies in Probabilistic Fracture Mechanics. These studies are being conducted as part of a fitness-for-service programme in support of CANDU reactors. The Monte Carlo analyses, which form part of the Probabilistic Fracture Mechanics studies, require that variates can be sampled from probability density functions. Accurate pseudo-random numbers are necessary for accurate variate generation. This report details the principles of variate generation, and describes the production and testing of pseudo-random numbers. A new algorithm has been produced for the correct performance of the lattice test for the independence of pseudo-random numbers. Two new pseudo-random number generators have been produced. These generators have excellent randomness properties and can be made fully machine-independent. Versions, in FORTRAN, for VAX and CDC computers are given. Accurate and efficient algorithms for the generation of variates from the specialized probability density functions of Probabilistic Fracture Mechanics are given. 38 refs
Fracture processes and mechanisms of crack growth resistance in human enamel
Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne
2010-07-01
Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.
International Nuclear Information System (INIS)
Montazer, P.
1985-01-01
One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes
Hydraulic and mechanical properties of natural fractures in low-permeability rock
International Nuclear Information System (INIS)
Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.
1987-01-01
The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress
International Nuclear Information System (INIS)
Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.
2015-01-01
The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the
Development of stress-modified fracture strain criterion for ductile fracture of API X65 steel
International Nuclear Information System (INIS)
Oh, Chang Kyun; Kim, Yun Jae; Park, Jin Moo; Kim, Woo Sik; Baek, Jong Hyun
2005-01-01
This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain Finite Element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed
Deformation Mechanisms and Fracture of Ni-Based Metallic Glasses
Directory of Open Access Journals (Sweden)
Lesz S.
2016-06-01
Full Text Available The cracking of materials and fracture surface is of great practical and academic importance. Over the last few years the development of the fractography of crystalline alloys resulted in a useful tool for the prediction or failure analysis. Many attempts have been made to observe cracks using optical microscopy, X-ray topography and transmission electron microscopy (TEM. Of these techniques, the resolution of optical microscopy and X-ray topography is too poor. By contrast, the resolution of TEM is high enough for detailed information to be obtained. However, in order to apply TEM observations, a thin foil specimen must be prepared, and it is usually extremely difficult to prepare such a specimen from a pre-selected region containing a crack.
Fracture mechanics of polymer mortar made with recycled raw materials
Directory of Open Access Journals (Sweden)
Marco Antonio Godoy Jurumenha
2010-12-01
Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.
The mechanical benefit of medial support screws in locking plating of proximal humerus fractures.
Directory of Open Access Journals (Sweden)
Wen Zhang
Full Text Available BACKGROUND: The purpose of this study was to evaluate the biomechanical advantages of medial support screws (MSSs in the locking proximal humeral plate for treating proximal humerus fractures. METHODS: Thirty synthetic left humeri were randomly divided into 3 subgroups to establish two-part surgical neck fracture models of proximal humerus. All fractures were fixed with a locking proximal humerus plate. Group A was fixed with medial cortical support and no MSSs; Group B was fixed with 3 MSSs but without medial cortical support; Group C was fixed with neither medial cortical support nor MSSs. Axial compression, torsional stiffness, shear stiffness, and failure tests were performed. RESULTS: Constructs with medial support from cortical bone showed statistically higher axial and shear stiffness than other subgroups examined (P<0.0001. When the proximal humerus was not supported by medial cortical bone, locking plating with medial support screws exhibited higher axial and torsional stiffness than locking plating without medial support screws (P ≤ 0.0207. Specimens with medial cortical bone failed primarily by fracture of the humeral shaft or humeral head. Specimens without medial cortical bone support failed primarily by significant plate bending at the fracture site followed by humeral head collapse or humeral head fracture. CONCLUSIONS: Anatomic reduction with medial cortical support was the stiffest construct after a simulated two-part fracture. Significant biomechanical benefits of MSSs in locking plating of proximal humerus fractures were identified. The reconstruction of the medial column support for proximal humerus fractures helps to enhance mechanical stability of the humeral head and prevent implant failure.
Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng
2013-08-01
The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.
The use of a path independent integral in non-linear fracture mechanics
International Nuclear Information System (INIS)
Hellen, T.K.
1977-01-01
A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. Numerical examples are presented comparing the J and J* integrals for a number of cracked plates under thermal, plastic and creep environments. To demonstrate the accuracy for a simple thermo-elastic case, a centre cracked plate subject to a symmetric quadratic gradient is included. Here, the J integral is shown to be path dependent whereas good independence is seen for the J* integral. The case of an elastic-plastic plate is invetigated to demonstrate path independence for both integrals in non-linear elasticity, and the effects of unloading are discussed. An alternative method for obtaining the change of potential energy over a small crack extension is briefly mentioned and compared to the J and J* results in this case. An axisymmetric bar with an internal penny-shaped crack subjected to tension is discussed under elastic-plastic materials behavior
Computational simulation for creep fracture properties taking microscopic mechanism into account
International Nuclear Information System (INIS)
Tabuchi, Masaaki
2003-01-01
Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)
Proceedings of the 20th meeting of the working group on fracture mechanisms
International Nuclear Information System (INIS)
1988-01-01
This volume contains 41 contributions presented at the 20th meeting of the working group on fracture mechanisms. The contributions dealt with the following topics: 1.) mechanical and test fundamentals of crack initiating corrosion processes; 2.) crack formation in water and seawater; 3.) crack formation in the process industry; 4.) hydrogen-induced crack formation; 5.) stress and crack corrosion of rustproof cast alloys; 6.) corrosion-induced crack formation at high temperatures; 7.) experimental and numerical studies on fracture behaviour. 30 contributions were separately integrated in the data base 'ENERGY'. (MM) [de
Combining NDE and fracture mechanics by artifical intelligence expert systems techniques
International Nuclear Information System (INIS)
Mucciardi, A.N.; Riccardella, P.C.
1986-01-01
This paper reports on the development of a PC-based expert system for non-destructive evaluation. Software tools from the expert systems subfield of artificial intelligence are being used to combine both NDE and fracture mechanics algorithms into one, unified package. The system incorporates elements of computer-enhanced ultrasonic signal processing, featuring artificial intelligence learning capability, state-of-the-art fracture mechanics analytical tools, and all relevant metallurgical and design data necessary to emulate the decisions of the panel(s) of experts typically involved in generating and dispositioning NDE data
Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN
Wang, Lulu; Tan, Yefa; Wang, Haitao; Gao, Li; Xiao, Chufan
2018-05-01
Carboxyl-terminated butadiene-co-acrylonitrile (CTBN) was used as the toughener to improve the mechanical performance and fracture toughness of diglycidyl ether of bisphenol F (DGEBF) by prereacted approach. The results show that the chemical bonding interface was formed between DGEBF and CTBN particles in the prepolymerization reaction process, which remarkably enhances the fracture toughness of the composites. Based on the qualitative and quantitative analyses, it shows the main toughening mechanisms are the plastic shear banding effect resulted from the plastic deformation of the EP matrix and the plastic void expansion because of the debonding of CTBN particles from the EP matrix.
International Nuclear Information System (INIS)
Sorenson, K.B.
1986-01-01
Sandia National Laboratories (SNL), under contract to the Department of Energy, is conducting a research program to develop and validate a fracture mechanics approach to cask design. A series of drop tests of a transportation cask is planned for the summer of 1986 as the method for benchmarking and, thereby, validating the fracture mechanics approach. This paper presents the drop test plan and background leading to the development of the test plan including structural analyses, material characterization, and non-destructive evaluation (NDE) techniques necessary for defining the test plan properly
An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center
Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.
2010-01-01
Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures
Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels
International Nuclear Information System (INIS)
Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.
1997-01-01
The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in
Shallow crack effect on brittle fracture of RPV during pressurised thermal shock
International Nuclear Information System (INIS)
Ikonen, K.
1995-12-01
This report describes the study on behaviour of postulated shallow surface cracks in embrittled reactor pressure vessel subjected to pressurised thermal shock loading in an emergency core cooling. The study is related to the pressure vessel of a VVER-440 type reactor. Instead of a conventional fracture parameter like stress intensity factor or J integral the maximum principal stress distribution on a crack tip area is used as a fracture criteria. The postulated cracks locate circumferentially at the inner surface of the reactor pressure wall and they penetrate the cladding layer and open to the inner surface. Axisymmetric and semielliptical crack shapes were studied. Load is formed of an internal pressure acting also on crack faces and of a thermal gradient in the pressure vessel wall. Physical properties of material and loading data correspond real conditions in VVER-440 RPV. The study was carried out by making lot of 2D- and 3D- finite element calculations. Analysing principles and computer programs are explained. Except of studying the shallow crack effect, one objective of the study has also been to develop further expertise and the in-house developed computing system to make effectively elastic-plastic fracture mechanical analyses for real structures under complicated loads. Though the study concerns VVER-440 RPV, the results are of more general interest especially related to thermal loads. (orig.) (11 refs.)
Effect of reverse cyclic loading on the fracture resistance curve in C(T) specimen
International Nuclear Information System (INIS)
Sung Seok, C.; Jin Kim, Y.; Il Weon, J.
1999-01-01
Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to investigate the effect of reverse cyclic loading on the J-R curves in C(T) specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δ cycle /δ i ), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance tests on C(T) specimens with varying the load ratio and the incremental plastic displacement were performed, and the test results showed that the J-R curves were decreased with decreasing the load ratio and decreasing the incremental plastic displacement. Direct current potential drop (DCPD) method was used for the detection of crack initiation and crack growth in typical laboratory J-R tests. The values of crack initiation J-integral (J I ) and crack initiation displacement (δ i ) were also obtained by using the DCPD method. (orig.)
Effect of reverse cyclic loading on the fracture resistance curve of nuclear piping material
International Nuclear Information System (INIS)
Weon, Jong Il; Seok, Chang Sung
1999-01-01
Fracture resistance (J-R) curves, which are used for the elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to study the effect of reverse cyclic loading on J-R curves in CT specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δ cycle /δ i ), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance test on CT specimens with varying load ratio and incremental plastic displacement were performed. For the SA 516 Gr. 70 steel, the results showed that the J-R curves were decreased with decreasing the load ratio and the incremental plastic displacement. When the load ratio was set to -1, the results of the J-R curves and the J i value were about 40-50 percent of those for the monotonic loading condition. Also on condition that the incremental plastic displacement reached 1/40, the J-R curves and the J i value were about 50-60 percent of those for the incremental plastic displacement of 1/10
Statistical analyses of fracture toughness results for two irradiated high-copper welds
International Nuclear Information System (INIS)
Nanstad, R.K.; McCabe, D.E.; Haggag, F.M.; Bowman, K.O.; Downing, D.J.
1990-01-01
The objectives of the Heavy-Section Steel Irradiation Program Fifth Irradiation Series were to determine the effects of neutron irradiation on the transition temperature shift and the shape of the K Ic curve described in Sect. 6 of the ASME Boiler and Pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31% were commercially fabricated in 215-mm-thick plates. Charpy V-notch (CVN) impact, tensile, drop-weight, and compact specimens up to 203.2 mm thick [1T, 2T, 4T, 6T, and 8T C(T)] were tested to provide a large data base for unirradiated material. Similar specimens with compacts up to 4T were irradiated at about 288 degrees C to a mean fluence of about 1.5 x 10 19 neutrons/cm 2 (>1 MeV) in the Oak Ridge Research Reactor. Both linear-elastic and elastic-plastic fracture mechanics methods were used to analyze all cleavage fracture results and local cleavage instabilities (pop-ins). Evaluation of the results showed that the cleavage fracture toughness values determined at initial pop-ins fall within the same scatter band as the values from failed specimens; thus, they were included in the data base for analysis (all data are designated K Jc )
International Nuclear Information System (INIS)
Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun
2017-01-01
The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.
Energy Technology Data Exchange (ETDEWEB)
Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun [Jilin University, Changchun (China)
2017-05-15
The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.
Fracture mechanics of thin wall cylindrical pressure vessels: an interim review
International Nuclear Information System (INIS)
Kurtz, R.J.; Olson, N.J.
1977-08-01
The report is a result of activities in the LMFBR Fuel Rod Transient Performance Program sponsored by the LMFBR Branch of the Division of Project Management, U.S. Nuclear Regulatory Commission. One of the objectives is to develop predictions relative to the length, direction, and rate of growth of cladding rips subsequent to (or concurrent with) the initial cladding breach during unprotected transients. To provide a basis for evaluation, Battelle, Pacific Northwest Laboratories has reviewed most available fracture mechanics assessments relative to thin-wall cylindrical pressure vessels. The purpose of the report is to review the various fracture mechanics models and to describe the pertinent fracture parameters. It is intended to provide a formal basis for assessing future analytical predictions of fracture behavior of materials exposed to transient LMFBR thermal and mechanical loading conditions. In addition, the report is expected to provide reference material for evaluating or developing experimental programs required to properly address the problem of predicting fracture behavior of materials during transient events
Rock mechanics in the disposal of radioactive wastes by hydraulic fracturing
Energy Technology Data Exchange (ETDEWEB)
McClain, W C
1968-01-01
The ultimate capacity of a hydraulic-fracturing waste disposal facility is governed primarily by the integrity of the rocks overlying the injected wastes. The objective of this study is to analyze theoretically the stresses and strains generated by the injected wastes in an effort to understand the behavior of the system sufficiently well that the failure mechanism can be predicted and the capacity of the injection well estimated. The surface uplifts at Oak Ridge National Laboratory's fracturing site were compared with theoretical curves obtained by assuming the uplifts to be inversely analogous to the subsidence which occurs over mining excavations. This analysis, based on assumptions of homogeneity, isotropy, and linear elasticity, provided considerable insight into the mechanics of the process. The most probable mechanism of failure of the rock appears to be by the formation of a vertical instead of a horizontal fracture. Fracture orientation is controlled primarily by the orientation of the principal stress field in the rock. Each successive waste injection slightly modifies this stress field toward a condition more favorable to the formation of a vertical fracture. (16 refs.)
Caputo, Riccardo; Hancock, Paul L.
1998-11-01
It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.
An experimental analysis of fracture mechanisms by acoustic ...
African Journals Online (AJOL)
Afin d'analyser le comportement mécanique globale de l'assemblage, des essais de traction .... named as Groups A, B and C (Tab. 5). Table.1: Mechanical properties of epoxy matrix Vicotex 914. Table.2: Mechanical properties of fibers T300. Young. 's modul us. E. Poisson's ratio. Ν shear modulus. G. Tensile strength yield.
Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture
International Nuclear Information System (INIS)
Xu, Lanqing; Wei, Ning; Zheng, Yongping
2013-01-01
Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone–Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp–sp 2 bonding network and an sp–sp 2 –sp 3 bonding network are observed in vacancy-defected and Stone–Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending–saturating–improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp–sp 2 and sp–sp 2 –sp 3 rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone–Wales defects account for their distinctive rules of the evolution of the fracture strain. (paper)
Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
Xu, Lanqing; Wei, Ning; Zheng, Yongping
2013-12-20
Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.
OCA-P, a deterministic and probabilistic fracture-mechanics code for application to pressure vessels
International Nuclear Information System (INIS)
Cheverton, R.D.; Ball, D.G.
1984-05-01
The OCA-P code is a probabilistic fracture-mechanics code that was prepared specifically for evaluating the integrity of pressurized-water reactor vessels when subjected to overcooling-accident loading conditions. The code has two-dimensional- and some three-dimensional-flaw capability; it is based on linear-elastic fracture mechanics; and it can treat cladding as a discrete region. Both deterministic and probabilistic analyses can be performed. For the former analysis, it is possible to conduct a search for critical values of the fluence and the nil-ductility reference temperature corresponding to incipient initiation of the initial flaw. The probabilistic portion of OCA-P is based on Monte Carlo techniques, and simulated parameters include fluence, flaw depth, fracture toughness, nil-ductility reference temperature, and concentrations of copper, nickel, and phosphorous. Plotting capabilities include the construction of critical-crack-depth diagrams (deterministic analysis) and various histograms (probabilistic analysis)
Energy Technology Data Exchange (ETDEWEB)
Scheider, I.
2001-07-01
This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)
Effects of chemical alteration on fracture mechanical properties in hydrothermal systems
Callahan, O. A.; Eichhubl, P.; Olson, J. E.
2015-12-01
Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture
Microscale fracture mechanisms of a Cr{sub 3}C{sub 2}-NiCr HVOF coating
Energy Technology Data Exchange (ETDEWEB)
Robertson, Andrew L., E-mail: Andrew.robertson99987@gmail.com; White, Ken W.
2017-03-14
Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr{sub 3}C{sub 2}-NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.