Sample records for elastic two-layer objects

  1. Feynman Algorithm Implementation for Comparison with Euler in a Uniform Elastic Two-Layer 2D and 3D Object Dynamic Deformation Framework in OpenGL with GUI

    Song, Miao


    We implement for comparative purposes the Feynman algorithm within a C++-based framework for two-layer uniform facet elastic object for real-time softbody simulation based on physics modeling methods. To facilitate the comparison, we implement initial timing measurements on the same hardware against that of Euler integrator in the softbody framework by varying different algorithm parameters. Due to a relatively large number of such variations we implement a GLUI-based user-interface to allow for much more finer control over the simulation process at real-time, which was lacking completely in the previous versions of the framework. We show our currents results based on the enhanced framework. The two-layered elastic object consists of inner and outer elastic mass-spring surfaces and compressible internal pressure. The density of the inner layer can be set differently from the density of the outer layer; the motion of the inner layer can be opposite to the motion of the outer layer. These special features, whic...

  2. Determination of homeostatic elastic moduli in two layers of the esophagus

    Gregersen, Hans; Liao, Donghua; Fung, Yuan Cheng


    for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments are inflation, axial stretching, circumferential bending, and axial bending. The analysis takes advantage of knowing the esophageal zero-stress state (an open sector with an opening angle of 59......The function of the esophagus is mechanical. To understand the function, it is necessary to know how the stress and strain in the esophagus can be computed, and how to determine the stress-strain relationship of the wall materials. The present article is devoted to the issue of determining...

  3. The Dowling Wall Pressure-Spectrum Analogy Applied to an Isotropic Two-Layered Elastic Medium.


    k,(a-1 4 + k,(a- 11 ) + -.(a-l 4) (18) PRESSURE SPECTRUM RESULTS Since the manual inversion of a 12 by 12 complex matrix is a formidable task, the...LONDON LAS.. C A WAGNER UNCLSSIFIED 14 NOV 84 NUSC-TR-7235 F/O 20/4 ML I flfllflf...lflffl.l.llm l 1111a * 8 11125 111 4 11 =4 NATIONAL BURAU Of... nx ,-boundary-layer shear stresses at the elastic surface. In the final section, we’exami".the tructure of the pressure spectrum on a bare steel plate

  4. Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid

    Indeitsev, Dmitrij; Sorokin, Sergey


    In several technical applications, for example, in the Arctic off-shore oil industry, it is necessary to predict waveguide properties of floating elastic plates in contact with a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular...... concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, we assume that an inhomogeneous fluid may be modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer...... of salty water. The former one produces fluid loading at the plate, whereas the latter one is bounded by the sea bottom. We employ classical asymptotic methods to identify significant regimes of wave motion in the compound three-component waveguide. The roles of parameters involved in the problem...


    Andreev Vladimir Igorevich


    Full Text Available In the paper, the authors provide the results of analysis of a real construction facility performed with the help of a model of a two-layer beam of variable rigidity resting on the elastic bedding. The bottom layer of a two-layer beam simulates the foundation, the upper payer stands for the structure, and the weight of each layer is taken into consideration. The characteristics of the upper layer change alongside its length. Analytical and numerical methods of calculation were applied to solve this problem. The analytical solution is based on the method of initial parameters and backed by the practical data extracted from "Frame and Towerlike Buildings: Mattress Foundation Design Manual". According to the above manual, whenever the length-to-width ratio of a building exceeds 1.5, one-dimensional pattern composed of a composite beam resting on the elastic bedding may be used. The beam is divided into several sections, and deflection of each section is identified. It is equal to the settlements of the bedding surface. The rigidity change alongside the length of each section is assumed to be permanent, i.e. the beam is considered as the one that demonstrates its piecewise-constant rigidity. The following conclusion can be made on the basis of the calculations performed by the authors: the calculation of the «structure-foundation-bedding» system may require a simplified model representing composite beams and plates resting on the elastic bedding. More accurate models, such as sets of finite elements, are recommend for use in conjunction with simplified ones.

  6. Motion estimation of elastic articulated objects from image contours

    PAN Hai-lang; DAI Yue-wei; SHI Lei


    A new method of elastic articulated objects (human bodies) modeling was presented based on a new conic curve. The model includes 3D object deform able curves which can represent the deformation of human occluding contours. The deformation of human occluding contour can be represented by adjusting only four de-formation parameters for each limb. Then, the 3D deformation parameters are determined by corresponding 2Dcontours from a sequence of stereo images. The algorithm presented in this paper includes deform able conic curve parameters determination and the plane, 3D conic curve lying on, parameter determination.

  7. Second strain gradient elasticity of nano-objects

    Cordero, Nicolas M.; Forest, Samuel; Busso, Esteban P.


    Mindlin's second strain gradient continuum theory for isotropic linear elastic materials is used to model two different kinds of size-dependent surface effects observed in the mechanical behaviour of nano-objects. First, the existence of an initial higher order stress represented by Mindlin's cohesion parameter, b0, makes it possible to account for the relaxation behaviour of traction-free surfaces. Second, the higher order elastic moduli, ci, coupling the strain tensor and its second gradient are shown to significantly affect the apparent elastic properties of nano-beams and nano-films under uni-axial loading. These two effects are independent from each other and allow for separated identification of the corresponding material parameters. Analytical results are provided for the size-dependent apparent shear modulus of a nano-thin strip under shear. Finite element simulations are then performed to derive the dependence of the apparent Young modulus and Poisson ratio of nano-films with respect to their thickness, and to illustrate hole free surface relaxation in a periodic nano-porous material.

  8. Elasticity

    Soutas-Little, Robert William


    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  9. Spatio-temporal experiments of volume elastic objects with high speed digital holographic interferometry

    Pérez López, C.; Hernández Montes, M. S.; Mendoza Santoyo, F.; Gutiérrez Hernandez, D. A.


    The optical non-destructive digital holographic interferometry (DHI) technique has proven to be a powerful tool in measuring vibration phenomena with a spatial resolution ranging from a few hundreds of nanometers to tens of micrometers. With the aid of high speed digital cameras it is possible to achieve simultaneously spatial and temporal resolution, and thus capable of measuring the entire object mechanical oscillation trajectory from one to several cycles. It is important to mention that due to faster computers with large data storage capacity there is an increasing interest in applying numerical simulation methods to mimic different real life objects for example, in the field of modern elastic materials and biological systems. The complex algorithms involved cannot render significant results mainly due to the rather large number of variables. In order to test these numerical simulations some experiments using optical techniques have been designed and reported. This is very important for example in measurements of the dynamic elastic properties of materials. In this work we present some preliminary results from experiments that use DHI to measure vibrations of an elastic spherical object subject to a mechanical excitation that induces resonant vibration modes in its volume. We report on the spatial and temporal effects that by their nature have a non-linear mechanical response. The use of a high speed CMOS camera in DHI assures the measurement of this nonlinear behavior as a sum of linear effects that happen during very short time lapses and with very small displacement amplitudes. We conclude by stating that complex numerical models may be compared to results using DHI, thus proposing an alternative method to prove and verify the mathematical models vs. real measurements on volumetric elastic objects.

  10. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects

    Tong, Mei Song; Chew, Weng Cho


    Multilevel fast multipole algorithm (MLFMA) is developed for solving elastic wave scattering by large three-dimensional (3D) objects. Since the governing set of boundary integral equations (BIE) for the problem includes both compressional and shear waves with different wave numbers in one medium, the double-tree structure for each medium is used in the MLFMA implementation. When both the object and surrounding media are elastic, four wave numbers in total and thus four FMA trees are involved. We employ Nyström method to discretize the BIE and generate the corresponding matrix equation. The MLFMA is used to accelerate the solution process by reducing the complexity of matrix-vector product from O(N2) to O(NlogN) in iterative solvers. The multiple-tree structure differs from the single-tree frame in electromagnetics (EM) and acoustics, and greatly complicates the MLFMA implementation due to the different definitions for well-separated groups in different FMA trees. Our Nyström method has made use of the cancellation of leading terms in the series expansion of integral kernels to handle hyper singularities in near terms. This feature is kept in the MLFMA by seeking the common near patches in different FMA trees and treating the involved near terms synergistically. Due to the high cost of the multiple-tree structure, our numerical examples show that we can only solve the elastic wave scattering problems with 0.3-0.4 millions of unknowns on our Dell Precision 690 workstation using one core.

  11. Multi-Objective Demand Response Model Considering the Probabilistic Characteristic of Price Elastic Load

    Shengchun Yang


    Full Text Available Demand response (DR programs provide an effective approach for dealing with the challenge of wind power output fluctuations. Given that uncertain DR, such as price elastic load (PEL, plays an important role, the uncertainty of demand response behavior must be studied. In this paper, a multi-objective stochastic optimization problem of PEL is proposed on the basis of the analysis of the relationship between price elasticity and probabilistic characteristic, which is about stochastic demand models for consumer loads. The analysis aims to improve the capability of accommodating wind output uncertainty. In our approach, the relationship between the amount of demand response and interaction efficiency is developed by actively participating in power grid interaction. The probabilistic representation and uncertainty range of the PEL demand response amount are formulated differently compared with those of previous research. Based on the aforementioned findings, a stochastic optimization model with the combined uncertainties from the wind power output and the demand response scenario is proposed. The proposed model analyzes the demand response behavior of PEL by maximizing the electricity consumption satisfaction and interaction benefit satisfaction of PEL. Finally, a case simulation on the provincial power grid with a 151-bus system verifies the effectiveness and feasibility of the proposed mechanism and models.

  12. A semi-localized elastic net for surface reconstruction of objects from multislice images.

    Damper, Robert I; Gilson, Stuart J; Middleton, Ian


    The traveling salesman problem (TSP) is a prototypical problem of combinatorial optimization and, as such, it has received considerable attention from neural-network researchers seeking quick, heuristic solutions. An early stage in many computer vision tasks is the extraction of object shape from an image consisting of noisy candidate edge points. Since the desired shape will often be a closed contour, this problem can be viewed as a version of the TSP in which we wish to link only a subset of the points/cities (i.e. the "noisefree" ones). None of the extant neural techniques for solving the TSP can deal directly with this case. In this paper, we present a simple but effective modification to the (analog) elastic net of Durbin and Willshaw which shifts emphasis from global to local behavior during convergence, so allowing the net to ignore some image points. Unlike the original elastic net, this semi-localized version is shown to tolerate considerable amounts of noise. As an example practical application, we describe the extraction of "pseudo-3D" human lung outlines from multiple preprocessed magnetic resonance images of the torso. An effectiveness measure (ideally zero) quantifies the difference between the extracted shape and some idealized shape exemplar. Our method produces average effectiveness scores of 0.06 for lung shapes extracted from initial semi-automatic segmentations which define the noisefree case. This deteriorates to 0.1 when extraction is from a noisy edge-point image obtained fully-automatically using a feedforward neural network.

  13. Electromagnetic Scattering in a Two-layered Medium

    FENG LI-XIN; LI YUAN; Ma Fu-ming


    The object of this paper is to investigate the three-dimensional electro-magnetic scattering problems in a two-layered background medium.These problems have an important application in today's technology,such as to detect objects that are buried in soil.Here,we model both the exterior impedance problem and the inhomogeneous medium problem in R3.We establish uniqueness and existence for the solution of the two scattering problems,respectively.

  14. Two-Layer Quantum Key Distribution

    Ramos, Rubens Viana


    Recently a new quantum key distribution protocol using coherent and thermal states was proposed. In this work this kind of two-layer QKD protocol is formalized and its security against the most common attacks, including external control and Trojan horse attacks, is discussed.

  15. Two-Layer Elastographic 3-D Traction Force Microscopy

    Álvarez-González, Begoña; Zhang, Shun; Gómez-González, Manuel; Meili, Ruedi; Firtel, Richard A.; Lasheras, Juan C.; Del Álamo, Juan C.


    Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions.

  16. Measurement of dynamical paths from elastic objects at the entrainment frequencies using high speed digital holographic interferometry

    López, Carlos Pérez; Santoyo, Fernando Mendoza


    Digital holographic interferometry (DHI) is a powerful tool to study the mechanical evolution of vibrating objects. Data obtained from interferometric fringe patterns render results with high spatial resolution amplitudes of the order of few micrometers to sub micrometers. Modern cameras with high speed frame acquisition enable the measurement of several samples of the evolving amplitude within a complete mechanical oscillation period, allowing the study of the temporal mechanical evolution as well. An interesting phenomenon which may be observed and studied with DHI is that of frequency entrainment, a feature that appears in some elastic objects. If a periodic mechanical force of frequency ω is applied to a flat rectangular elastic membrane clamped at its edges, produces a resonant frequency ωR that has a limit cycle, but as the difference between the two frequencies decreases the object frequency falls in synchronicity with the forcing frequency within a certain band of frequencies. In this paper we describe the full field of view experiments to measure these dynamical paths that are forced to oscillate near the resonant frequency where the entrainment is reached. We also discuss the possibility of using these paths as a form of generating spatio-temporal patterns for mathematical biological models simulations, a key subject in the biomedical area.

  17. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina


    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  18. Interfacial Stability in a Two-Layer Benard Problem.


    STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS

  19. Theoretical Permeability of Two-layered Nonwoven Geotextiles

    LIU Li-fang; CHU Cai-yuan


    The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system.Based on Darcy's law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.


    A. R. Baev


    Full Text Available Peculiarities of the plate wave propagation through two-layered thin plate have been analyzed and formulas for velocity determination of the quickest plate mode have been proposed.  The ascertained interaction makes it possible   to determine coating layer thickness in accordance with the given and known elastic parameters of contacting materials. On the basis of the developed methodology experiments have been carried out that revealed qualitative and quantitative correspondence  between theoretical and experimental data. The paper shows a principle possibility for assessment  of  material separation surface by time propagation data of the investigated mode .

  1. Solitary SH waves in two-layered traction-free plates

    Djeran-Maigre, Irini; Kuznetsov, Sergey


    A solitary wave, resembling a soliton wave, is observed when analyzing the linear problem of polarized shear (SH) surface acoustic waves propagating in elastic orthotropic two-layered traction-free plates. The analysis is performed by applying a special complex formalism and the Modified Transfer Matrix (MTM) method. Conditions for the existence of solitary SH waves are obtained. Analytical expressions for the phase speed of the solitary wave are derived. To cite this article: I. Djeran-Maigre, S. Kuznetsov, C. R. Mecanique 336 (2008).

  2. Ultrasound evaluation of the cesarean scar: comparison between one- and two layer uterotomy closure

    Glavind, Julie; Madsen, Lene Duch; Uldbjerg, Niels

    Objectives: To compare the residual myometrial thickness and the size of the cesarean scar defect after one- and two layer uterotomy closure. Methods: From July 2010 a continuous two-layer uterotomy closure technique replaced a continuous one-layer technique after cesarean delivery...... at the Department of Obstetrics and Gynecology at Aarhus University Hospital. A total of 149 consecutively invited women (68 women with one-layer and 81 women with two-layer closure) had their cesarean scar examined with 2D transvaginal sonography (TVS) 6-16 months post partum. Inclusion criteria were non......-pregnant women with one previous elective cesarean, no post-partum uterine infection or uterine re-operation, and no type 1 diabetes. Scar defect width, depth, and residual myometrial thickness were measured on the sagittal plane, and scar defect length was measured on the transverse plane. Results: The median...

  3. Improved efficient routing strategy on two-layer complex networks

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao


    The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.

  4. A Two Layer Approach to the Computability and Complexity of Real Functions

    Lambov, Branimir Zdravkov


    We present a new model for computability and complexity of real functions together with an implementation that it based on it. The model uses a two-layer approach in which low-type basic objects perform the computation of a real function, but, whenever needed, can be complemented with higher type...... in computable analysis, while the efficiency of the implementation is not compromised by the need to create and maintain higher-type objects....

  5. Synchronization of Stochastic Two-Layer Geophysical Flows

    HAN Yongqian


    In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.

  6. Linear waves in two-layer fluids over periodic bottoms

    Yu, J.; Maas, L.R.M.


    A new, exact Floquet theory is presented for linear waves in two-layer fluidsover a periodic bottom of arbitrary shape and amplitude. A method of conformaltransformation is adapted. The solutions are given, in essentially analytical form, forthe dispersion relation between wave frequency and general

  7. Linear waves in two-layer fluids over periodic bottoms

    Yu, Jie; Maas, L.R.M.


    A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and gene

  8. Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid

    Indeitsev, Dmitrij; Sorokin, Sergey


    of salty water. The former one produces fluid loading at the plate, whereas the latter one is bounded by the sea bottom. We employ classical asymptotic methods to identify significant regimes of wave motion in the compound three-component waveguide. The roles of parameters involved in the problem...

  9. Pattern Synchronization in a Two-Layer Neuronal Network

    SUN Xiao-Juan; LU Qi-Shao


    Pattern synchronization in a two-layer neuronal network is studied.For a single-layer network of Rulkov map neurons,there are three kinds of patterns induced by noise.Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way;however,for small and large noise intensities there exist excitable patterns and disordered patterns,respectively.For a neuronal network coupled by two single-layer networks with noise intensity differences between layers,we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases.The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.


    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui


    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  11. Training two-layered feedforward networks with variable projection method.

    Kim, C T; Lee, J J


    The variable projection (VP) method for separable nonlinear least squares (SNLLS) is presented and incorporated into the Levenberg-Marquardt optimization algorithm for training two-layered feedforward neural networks. It is shown that the Jacobian of variable projected networks can be computed by simple modification of the backpropagation algorithm. The suggested algorithm is efficient compared to conventional techniques such as conventional Levenberg-Marquardt algorithm (LMA), hybrid gradient algorithm (HGA), and extreme learning machine (ELM).


    Jelena M Djoković


    Full Text Available In this paper is considered a problem of the semi-infinite crack at the interface between the two elastic isotropic layers in conditions of the environmental temperature change. The energy release rate needed for the crack growth along the interface was determined, for the case when the two-layered sample is cooled from the temperature of the layers joining down to the room temperature. It was noticed that the energy release rate increases with the temperature difference increase. In the paper is also presented the distribution of stresses in layers as a function of the temperature and the layers' thickness variations. Analysis is limited to the case when the bimaterial sample is exposed to uniform temperature.

  13. A two-layer optimization model for high-speed railway line planning

    Li WANG; Li-min JIA; Yong QIN; Jie XU; Wen-ring MO


    Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is to minimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume and minimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.

  14. Two-Layer Feedback Neural Networks with Associative Memories

    WU Gui-Kun; ZHAO Hong


    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.

  15. Tidal modulation of two-layer hydraulic exchange flows

    L. M. Frankcombe


    Full Text Available Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period. Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by Helfrich (1995. Resonance complicates the relationship between exchange flux and height amplitude, but, when tidal strength is characterised by flux amplitude, exchange flux is a monotonic function of γ.

  16. Baroclinic instability in the two-layer model. Interpretations

    Egger, Joseph [Meteorological Inst., Univ. of Munich (Germany)


    Two new interpretations of the wellknown instability criterion of the two-layer model of baroclinic instability are given whereby also a slight generalization of this model is introduced by admitting an interface on top with a reduced gravity g. It is found that instability sets in when the horizontal potential temperature advection by the barotropic mode becomes more important than the vertical temperature advection due to this mode. The second interpretation is based on potential vorticity (PV) thinking. Instability implies a dominance of the vertical PV coupling coefficient compared to horizontal mean state PV advection generated at the same level. The interface damps with decreasing g. (orig.)

  17. Interference testing of a two-layer commingled reservoir

    Onur, M.; Reynolds, A.C. (Tulsa Univ., OK (USA))


    A two-well system in an infinite-acting, commingled, two-layer reservoir is considered. One well, the active well, is produced at a constant total rate, and the second well, the observation well, is shut in at all times. An analytical solution in Laplace space is presented, and the parametric groups that uniquely determine the pressure and rate solutions are identified. Results regarding crossflow through the observation well are presented. Conditions under which the line-source solution can be used to analyze observations-well pressure data are delineated.

  18. Spatial frequency domain spectroscopy of two layer media

    Yudovsky, Dmitry; Durkin, Anthony J.


    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  19. Nonlinear topographic effects in two-layer flows

    Peter George Baines


    Full Text Available We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1, there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm.

  20. Design and analysis of two-layer anonymous communication system

    WANG Wei-ping; WANG Jian-xin


    A new architecture for scalable anonymous communication system(SACS) was proposed. The users were divided into several subgroups managed by different sub-blenders, and all sub-blenders were managed by the main-blender using two layers management scheme. The identity information of members are distributed on different sub-blenders, which makes each member keep much less information and network overload greatly reduce. The anonymity and the overhead of the new scheme were analyzed and compared with that of Crowds, which shows the cost of storage and network overhead for the new scheme largely decreases while the anonymity is little degraded. The experiment results also show that the new system architecture is well scalable. The ratio of management cost of SACS to that of Crowds is about 1:25 while the value of P(I|H1+) only increases by 0.001-0.020, which shows that SACS keeps almost the same anonymity with Crowds.

  1. An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background

    ZHANG; Renhua; SUN; Xiaomin; WANG; Weimin; XU; Jinping; ZH


    Based on the improved interaction mechanism of two-layer model, this paper proposed Pixel Component Arranging and Comparing Algorithm (PCACA) and theoretically positioning algorithm, estimated the true temperature of mixed pixel in four extreme points in combination with the measurements of dry and wet points in calibration fields and improved the reliability of positioning dry and wet line. A new two-layer energy-separation algorithm was proposed,which was simple and direct without resistance network parameters for each pixel. We also proposed a new thought about the effect of advection. The albedo of mixed pixel was also separated with PCACA. In combination with two-layer energy-separation algorithm, the net radiation of mixed pixel was separated to overcome the uncertainty of conventional energy-separation algorithm using Beer's Law. Through the validation of retrieval result, this method is proved to be feasible and operational. At the same time, the uncertainty of this algorithm was objectively analyzed.

  2. In vivo spatial frequency domain spectroscopy of two layer media

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.


    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  3. Designing Two-Layer Optical Networks with Statistical Multiplexing

    Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.

    The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.


    K. S. Kurochka


    Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.

  5. Initial stresses in two-layer metal domes due to imperfections of their production and assemblage

    Lebed Evgeniy Vasil’evich


    Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.

  6. The modeling of the structurefoundation-base system with the use of two-layer beamon an elastic basis with variable coeficcient of subgrade reaction Моделирование системы здание — фундамент — основание двухслойной балкой на упругом основании с переменным коэффициентом постели

    Barmenkova Elena Vjacheslavovna


    Full Text Available In the paper the author presents the results of calculations of the system «structurefoundation-base» in case of using the two-layer and the single-layer beam models on an elastic basis with variable and constant coefficients of subgrade reaction. The analytical solution is obtained using the method of initial parameters. The calculations are carried out in case of building up the structure.The method of calculating two-layer beam with variable flexural rigidity along the length on an elastic foundation was described in the author’s previous articles, while in the present paper variable coefficients of subgrade reaction are taken into account. A two-layer beam is a beam of variable rigidity, the lower layer simulates the foundation, and the upper — the structure, at the same time the weight of each layer is considered.For comparison, the problem is also considered in its traditional statement. That means the problem of single-layer beam bending is solved with cross-section of constant length, which is freely lying on an elastic basis of Winkler’s type.The results of calculations of two-layer and single-layer beams show, that the values of the internal forces and stresses are higher with variable coefficient of subgrade reaction than with the constant one. When comparing the two-layer and the single-layer beam models with the same foundation characteristics, the values of internal forces in two-layer beams are much higher.On the basis of the calculations we can make the following conclusion: in order to obtain more reliable prognosis of the stress-strain state of the system «structure-foundation» on an elastic basis, it is appropriate to carry out calculations with the use of a contact model in the form of a two-layer beam on an elastic basis of Winkler’s type with variable coefficients of subgrade reaction. The model allows us to take account of such factors as rigidity changes in the base and the rigidity of the upper structure

  7. Identification of a Segment of the Yield Surface of a Two-Layer Pa38/M2R Composite

    Uscinowicz, R. R.


    The aim of this study was to identify the initial yield surface of a two-layer aluminum alloy-copper composite in the range of small elastic-plastic deformations. Experimental tests in a plane stress state were conducted by loading tubular composite specimens with various combinations of axial forces and torque. The metal layers were joined together by using an epoxy resin. Independent studies were carried out for component of the composite under identical conditions. The yield surfaces obtained were compared with those given by the Huber-von Mises-Hencky and Tresca-Guest yield criteria. The yield criterion for the tested composite found by using a modified form of the rule of mixtures is presented. The yield surfaces of a Pa38/M2R composite and its components demonstrated the isotropic hardening.

  8. Artery buckling analysis using a two-layered wall model with collagen dispersion.

    Mottahedi, Mohammad; Han, Hai-Chao


    Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging.

  9. Acquired disorders of elastic tissue: Part II. decreased elastic tissue.

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie


    Elastic fibers in the extracellular matrix are integral components of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin are attributable to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood owing to the paucity of reported cases. Several acquired disorders in which loss of dermal elastic tissue produces prominent clinical and histopathologic features have recently been described, including middermal elastolysis, papular elastorrhexis, and pseudoxanthoma-like papillary dermal elastolysis, which must be differentiated from more well-known disorders such as anetoderma, acquired cutis laxa, and acrokeratoelastoidosis. Learning objective At the conclusion of this learning activity, participants should have an understanding of the similarities and differences between acquired disorders of elastic tissue that are characterized by a loss of elastic tissue.

  10. Modeling of PZT-induced Lamb wave propagation in structures by using a novel two-layer spectral finite element

    Liu, Xiaotong; Zhou, Li; Ouyang, Qinghua


    This paper presents a novel two-layer spectral finite element model, consisting of PZT wafer and host structure, to simulate PZT-induced Lamb wave propagation in beam-like and plate-like structures. Based on the idea of equal displacement on the interface between PZT wafer and host structure, the one-dimensional spectral beam element of PZT-host beam and two-dimensional spectral plate element of PZT-host plate are considered as one hybrid element, respectively. A novel approach is proposed by taking the coupling effect of piezoelectric transducers in the thickness direction into account. The dynamic equation of the two-layer spectral element is derived from Hamilton's principle. Validity of the developed spectral finite element is verified through numerical simulation. The result indicates that, compared with the conventional finite element method (FEM) based on elasticity, the proposed spectral finite element is proved to have a high accuracy in modeling Lamb wave propagation, meanwhile, significantly improve the calculation efficiency.

  11. Interaction of water waves with small undulations on a porous bed in a two-layer ice-covered fluid

    Panda, Srikumar; Martha, S. C.


    The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid, is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate. In such a two-layer fluid there exist waves with two different modes, one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface. An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes. Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes. One special type of bottom topography is considered as an example to evaluate the related coefficients in detail. These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.

  12. Transient flexural-and capillary-gravity waves due to disturbances in two-layer density-stratified fluid

    LU Dong-qiang; SUN Cui-zhi


    Generation of the transient flexural-and capillary-gravity waves by impulsive disturbances in a two-layer fluid is investigated analytically.The upper fluid is covered by a thin elastic plate or by an inertial surface with the capillary effect.The density of each of the two immiscible layers is constant.The fluids are assumed to be inviscid and incompressible and the motion be irrotational.A point force on the surface and simple mass sources in the upper and lower fluid layers are considered.A linear system is established within the framework of potential theory.The integral solutions for the surface and interfacial waves are obtained by means of the Laplace-Fourier transform.A new representation for the dispersion relation of flexural-and capillary-gravity waves in a two-layer fluid is derived.The asymptotic representations of the wave motions are derived for large time with a fixed distance-to-time ratio with the Stokes and Scorer methods of stationary phase.It is shown that there are two different modes,namely the surface and interfacial wave modes.The wave systems observed depend on the relation between the observer's moving speed and the intrinsic minimal and maximal group velocities.

  13. Reflected light intensity profile of two-layer tissues: phantom experiments.

    Ankri, Rinat; Taitelbaum, Haim; Fixler, Dror


    Experimental measurements of the reflected light intensity from two-layer phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for the two-layer structure characterized by two different slopes in the reflected light profile of the irradiated tissue. The point in which the first slope changes to the second slope, named as the crossover point, depends on the upper layer thickness as well as on the ratio between the absorption coefficients of the two layers. Since similar experiments from one-layer phantoms present a monotonic decay behavior, the existence and the location of the crossover point can be used as a diagnostic fingerprint for two-layer tissue structures. This pertains to two layers with greater absorptivity in the upper layer, which is the typical biological case in tissues like skin.

  14. Extreme events statistics in a two-layer quasi-geostrophic atmospheric model

    Galfi, Vera Melinda; Bodai, Tamas; Lucarini, Valerio


    Extreme events statistics provides a theoretical framework to analyze and predict extreme events based on the convergence of the distribution of the extremes to some limiting distribution. In this work we analyze the convergence of the distribution of extreme events to the Generalized Extreme Value (GEV) distribution and to the Generalized Pareto Distribution (GPD), using a two-layer quasi-geostrophic atmospheric model, and compare our results with theoretical findings from the field of extreme value theory for dynamical systems. We study the behavior of the GEV shape parameter by increasing the block size and of the GPD shape parameter by increasing the threshold, and compare the inferred parameters with a theoretical shape parameter that depends only on the geometrical properties of the attractor. The main objective is to find out whether this theoretical shape parameter can be used to evaluate extreme event analysis based on model output. For this, we perform very long simulations. We run our system with two different levels of forcing determined by two different meridional temperature gradients, one inducing a medium level of chaos and the other one a high level of chaos. We analyze in both cases extremes of energy variables.

  15. Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization

    Silvia Maria Zanoli


    Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.

  16. Investigations of Two-Layer Earth Parameters at Low Voltage: Measurements and Calculations

    E. Ramdan; N. M. Nor; K. Ramar


    Problem statement: The two-layer soil model at low magnitude voltage is assumed to be accurate for the measurement and calculation of the earth resistance of a combined grid-multiple rods electrode...

  17. Controlling elastic waves with small phononic crystals containing rigid inclusions

    Peng, Pai


    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  18. Biopolymer Elasticity

    Sinha, S


    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  19. Process analysis of two-layered tube hydroforming with analytical and experimental verification

    Seyedkashi, S. M. Hossein [The University of Birjand, Birjand (Iran, Islamic Republic of); Panahizadeh R, Valiollah [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Xu, Haibin; Kim, Sang Yun; Moon, Young Hoon [Pusan National University, Busan (Korea, Republic of)


    Two-layered tubular joints are suitable for special applications. Designing and manufacturing of two layered components require enough knowledge about the tube material behavior during the hydroforming process. In this paper, hydroforming of two-layered tubes is investigated analytically, and the results are verified experimentally. The aim of this study is to derive an analytical model which can be used in the process design. Fundamental equations are written for both of the outer and inner tubes, and the total forming pressure is obtained from these equations. Hydroforming experiments are carried out on two different combinations of materials for inner and outer tubes; case 1: copper/aluminum and case 2: carbon steel/stainless steel. It is observed that experimental results are in good agreement with the theoretical model obtained for estimation of forming pressure able to avoid wrinkling.

  20. Lie symmetry analysis and exact solutions of the quasigeostrophic two-layer problem

    Bihlo, Alexander; Popovych, Roman O.


    The quasigeostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras, we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Wherever possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.

  1. On stratification, barotropic tides, and secular changes in surface tidal elevations: Two-layer analytical models

    Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D


    In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...

  2. Wave scattering by undulating bed topography in a two-layer ocean



    The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape function. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.


    ZHU Wei


    The Wave-making characteristics of a moving body in a two-layer fluid with free surface is investigated numerically and experimentally. The numerical analysis is based on the modified layered boundary integral equation system. The wave characteristics on the free surface and interface generated by a moving sphere and an ellipsoid is numerically simulated in both finite depth and infinite depth of lower layer model. The numerical results of the sphere are compared with the analytical results for a dipole with the same velocity in a two-layer fluid of finite depth. The dependence of the wave systems and structures on the characteristic quantities is discussed. Three kinds of measurement techniques are used in model experiments on the internal waves generated by a sphere advancing in a two-layer fluid. The effects of the varying velocity and stratification on the wavelength, wave amplitudes and the maximum half angles of internal waves are analyzed qualitatively.

  4. Band splitting and relative spin alignment in two-layer systems

    Ovchinnikov, A A


    It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models

  5. Design of two-layer switching rule for stabilization of switched linear systems with mismatched switching

    Dan MA


    A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given;in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.

  6. Random Boundary Simulation of Pumping Groundwater on Two-layer Soft Soil Structure with Porous Media


    Based on random theory,fluid dynamics,porous media and soil mechanics,the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper.The random seepage coefficient on the two-layer soft soil was analyzed,and the seepage model and its random distribution function were given.The groundwater flow differential equations related to the two layer soft soil structure were also established.The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward.Moreover,with an engineering example,the probability distribution on random boundary prediction for pumping water of foundation pit was computed.

  7. Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    Bihlo, Alexander


    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximum Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given.

  8. Free surface simulation of a two-layer fluid by boundary element method

    Weoncheol Koo


    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  9. The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex


    The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a generalized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super highspeed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different.They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.

  10. Elastic Beanstalk

    Vliet, Jurg; Wel, Steven; Dowd, Dara


    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  11. Photoacoustic elastic bending in thin film—Substrate system

    Todorović, D. M., E-mail: [Institute for Multidisciplinary Research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia); Rabasović, M. D.; Markushev, D. D. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade-Zemun (Serbia)


    Theoretical model for optically excited two-layer elastic plate, which includes plasmaelastic, thermoelastic, and thermodiffusion mechanisms, is given in order to study the dependence of the photoacoustic (PA) elastic bending signal on the optical, thermal, and elastic properties of thin film—substrate system. Thin film-semiconductor sample (in our case Silicon) is modeled by simultaneous analysis of the plasma, thermal, and elastic wave equations. Multireflection effects in thin film are included in theoretical model and analyzed. Relations for the amplitude and phase of electronic and thermal elastic bending in the optically excited two-layer mechanically-supported circular plate are derived. Theoretical analysis of the thermodiffusion, plasmaelastic, and thermoelastic effects in a sample-gas-microphone photoacoustic detection configuration is given. Two normalization procedures of the photoacoustic elastic bending signal in function of the modulation frequency of the optical excitation are established. Given theoretical model can be used for various photoacoustic detection configurations, for example, in the study of optical, thermal, and elastic properties of the dielectric-semiconductor or metal-semiconductor structure, etc., Theoretical analysis shows that it is possible to develop new noncontact and nondestructive experimental method—PA elastic bending method for thin film study, with possibility to obtain the optical, thermal, and elastic parameters of the film thinner than 1 μm.

  12. Rotational elasticity

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  13. A two-layered approach to recognize high-level human activities

    N. Hu; G. Englebienne; B. Kröse


    Automated human activity recognition is an essential task for Human Robot Interaction (HRI). A successful activity recognition system enables an assistant robot to provide precise services. In this paper, we present a two-layered approach that can recognize sub-level activities and high-level activi

  14. Novel procedure to compute a contact zone magnitude of vibrations of two-layered uncoupled plates

    Awrejcewicz J.


    Full Text Available A novel iteration procedure for dynamical problems, where in each time step, a contacting plates' zone is improved, is proposed. Therefore, a zone and magnitude of a contact load are also improved. Investigations of boundary conditions' influence on externally driven vibrations of uncoupled two-layer plates, where for each of the layers, the Kirchhoff hypothesis holds, are carried out.

  15. Learning behavior and temporary minima of two-layer neural networks

    Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans


    This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of

  16. Bilateral telemanipulation With time delays: a two-layer approach combining passivity and transparency

    Franken, Michel; Stramigioli, Stefano; Misra, Sarthak; Secchi, Cristian; Macchelli, Alessandro


    In this paper, a two-layer approach is presented to guarantee the stable behavior of bilateral telemanipulation sys- tems in the presence of time-varying destabilizing factors such as hard contacts, relaxed user grasps, stiff control settings, and/or communication delays. The approach splits the con

  17. Coupling of Flexural and Longitudinal Damped Vibration in a Two-Layered Beam

    F. Pourroy


    Full Text Available In dynamics, the effect of varying the constitutive materials’ thickness of a two-layered beam is investigated. Resonance frequencies and damping variations are determined. It is shown that for specific thicknesses the coupling of longitudinal and flexural vibrations influences the global modal damping ratio significantly.

  18. Two-layer sheet of gelatin: A new topical hemostatic agent.

    Takagi, Toshitaka; Tsujimoto, Hiroyuki; Torii, Hiroko; Ozamoto, Yuki; Hagiwara, Akeo


    Uncontrolled surgical bleeding is associated with increased morbidity, mortality, and hospital cost. Topical hemostatic agents available today have problems controlling hemostatic effects; furthermore, their handling is difficult and they are unsafe. We devised a new hemostatic agent comprising gelatin sponge and film designed to be applied to the bleeding site, thereby creating a topical hemostatic agent made of gelatin alone. The gelatin was prepared by alkali treatment to eliminate viral activity. Hemostatic effects, surgical handling, and tissue reactions of the materials, namely a two-layer sheet of gelatin, TachoSil, and gelatin sponge, were evaluated using 21 dogs' spleens. The two-layer gelatin sheet and gelatin sponge exhibited superior hemostatic effects (100% hemostasis completed) compared with TachoSil (0-17% hemostasis). The gelatin matrix immediately absorbed blood flowing from wounds and activated the autologous components in the absorbed blood that promoted coagulation at the bleeding site. The two-layer gelatin sheet had the best surgical handling among the evaluated materials. Materials made of gelatin were associated with fewer inflammatory reactions compared with materials of TachoSil. The two-layer sheet of gelatin is a useful topical agent because of its superior hemostatic effects and usability, and is associated with a lower risk of transmitting diseases and inflammatory reactions. Copyright © 2016. Published by Elsevier Taiwan.

  19. Single-layer versus two-layer stamps for reduced pressure thermal nanoimprint

    Papenheim, Marc; Dhima, Khalid; Wang, Si; Steinberg, Christian; Scheer, Hella-Christin


    Low-pressure imprint is interesting to avoid stamp deformation, stamp failure as well as polymer recovery. When large-area stamps are prepared with a stepping procedure, low pressure is required to optimize the stitching. However, with low-pressure imprint, conformal contact between stamp and substrate is critical. Admittedly, the imprint pressure required for conformal contact depends on the stamp material and its thickness. To get an idea to which extent the imprint pressure can be reduced with a flexible stamp, we compared different stamp materials and stamp architectures, single-layer stamps and two-layer stamps. The two-layer stamps are replica stamps, where the structures were replicated in a thin layer of OrmoStamp, fixed by a backplane. On the background of plate theory, we deduce the pressure reduction compared to a Si stamp by calculating the respective pressure ratio, independent from geometries. In addition, temperature-induced issues are addressed which are of relevance for a thermal imprint process. These issues are related to the mismatch between the thermal expansion coefficients of the stamp and the substrate, and in case of a two-layer stamp, to the mismatch between the backplane material and the top layer. The latter results in temperature-induced stamp bending. On the basis of simple analytical calculations, the potential of single-layer stamps and two-layer stamps with respect to thermal imprint at reduced pressure is discussed and guidelines are provided to assess the imprint situation when replica stamps are used for imprint. The results demonstrate the attractiveness of two-layer stamps for reduced pressure nanoimprint, even in a temperature-based process.

  20. Waves induced by a submerged moving dipole in a two-layer fluid of finite depth

    Gang Wei; Dongqiang Lu; Shiqiang Dai


    The waves induced by a moving dipole in a twofluid system are analytically and experimentally investigated.The velocity potential of a dipole moving horizontally in the lower layer of a two-layer fluid with finite depth is derived by superposing Green's functions of sources (or sinks). The far-field waves are studied by using the method of stationary phase. The effects of two resulting modes, i.e. the surfaceand internal-wave modes, on both the surface divergence field and the interfacial elevation are analyzed. A laboratory study on the internal waves generated by a moving sphere in a two-layer fluid is conducted in a towing tank under the same conditions as in the theoretical approach. The qualitative consistency between the present theory and the laboratory study is examined and confirmed.

  1. Analysis of Two-Layered Random Interfaces for Two Dimensional Widom-Rowlinson's Model

    Jun Wang


    Full Text Available The statistical behaviors of two-layered random-phase interfaces in two-dimensional Widom-Rowlinson's model are investigated. The phase interfaces separate two coexisting phases of the lattice Widom-Rowlinson model; when the chemical potential μ of the model is large enough, the convergence of the probability distributions which describe the fluctuations of the phase interfaces is studied. In this paper, the backbones of interfaces are introduced in the model, and the corresponding polymer chains and cluster expansions are developed and analyzed for the polymer weights. And the existence of the free energy for two-layered random-phase interfaces of the two-dimensional Widom-Rowlinson model is given.

  2. Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles

    Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M


    The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...

  3. Nonstationary Axisymmetric Temperature Field in a Two-Layer Slab Under Mixed Heating Conditions

    Turchin, I. N.; Timar, I.; Kolodii, Yu. A.


    With the use of the Laguerre and Hankel integral transforms, the solution of a two-dimensional initial-boundary-value heat conduction problem for a two-layer slab under mixed boundary conditions is constructed: one of the surfaces is heated by a heat flux distributed axisymmetrically in a circle of radius R and is cooled by the Newton law outside this circle. The solution of the problem is reduced to a sequence of infinite quasi-regular systems of algebraic equations. The results of numerical analysis of the temperature field in the two-layer slab made from an aluminum alloy and ceramicsare presented depending on the relative geometric properties of the components and cooling intensity.

  4. A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer

    Young, Wen-Bin


    Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.

  5. Estimation of apparent soil resistivity for two-layer soil structure

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)


    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.


    Xu Zhaoting; Xu Hao; Samuel Shan-pu Shen


    A theory of tailing wavetrain generation for the precursor soliton generation in two-layer flow is presented by using averaged KdV equations(AKdV),which are derived by the authors in terms of Whitham's method of averaging[1,2].From the AKdV equations,group velocities of the tailing wavetrain generation are obtained by means of generating conditions of the tailing wavetrains,furthermore an analytical solution of the tailing wavetrain generation is found theoretically.A comparison between the theoretical and numerical results is carried out in the present paper,which shows that the theoretical results are in good agreement with the numerical ones,obtained from the fKdV equation in two-layer flow with the depth of unity in the rest.

  7. Asymptotic Modelling of Crystallisation in Two Layers Systems. Application to Methane Hydrate Formation in Batch Reactor.

    Cournil, Michel; Herri, Jean-Michel


    6 pages; This paper proposes to re-visit the problem of gas-liquid crystallization in the framework of a two-layer model and with the help of data coming from experiments on methane hydrate crystallization in a semi-batch reactor. Preliminary quantitative discussion of the order of magnitude of different effects makes possible realistic simplifications in the theoretical models. In particular, the role of the interfacial film is clearly defined. As previous authors did, we use a formulation i...

  8. Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions

    Naruse, Makoto; Ishii, Satoshi; Drezet, Aurélien; Huant, Serge; Hoga, Morihisa; Ohyagi, Yasuyuki; Matsumoto, Tsutomu; Tate, Naoya; Ohtsu, Motoichi


    We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provides results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities.

  9. Two-layer cold storage method for pancreas and islet cell transplantation

    Yasuhiro; Fujino


    The two-layer cold storage method (TLM) was f irst reported in 1988, consisting of a perfluorochemical (PFC) and initially Euro-Collins' solution, which was later replaced by University of Wisconsin solution (UW). PFC is a biologically inert liquid and acts as an oxygen-supplying agent. A pancreas preserved using the TLM is oxygenated through the PFC and substrates are supplied by the UW solution. This allows the pancreas preserved using the TLM to generate adenosine triphosphate during storage, prolonging ...

  10. SH-TM mathematical analogy for the two-layer case. A magnetotellurics application

    J. Carcione; F. Poletto


    The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission) problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised) and TM (transverse-magnetic) waves. In particular, w...

  11. On Theory of Dispersive Transport in a Two-Layer Polymer Structure

    Sibatov, R. T.; Morozova, E. V.


    Dispersive transport of charge carriers in a two-layer polymer structure is modeled on the basis of the integrodifferential equation of hereditary diffusion. The model of multiple trapping in a bilayer is generalized to the case of an arbitrary density of localized states. With the help of an efficient Monte Carlo algorithm, curves of the transient current are calculated and their features are explained within the framework of a stochastic interpretation of the process.

  12. On two-layer models and the similarity functions for the PBL

    Brown, R. A.


    An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.

  13. Two-layer cold storage method for pancreas and islet cell transplantation

    Fujino, Yasuhiro


    The two-layer cold storage method (TLM) was first reported in 1988, consisting of a perfluorochemical (PFC) and initially Euro-Collins’ solution, which was later replaced by University of Wisconsin solution (UW). PFC is a biologically inert liquid and acts as an oxygen-supplying agent. A pancreas preserved using the TLM is oxygenated through the PFC and substrates are supplied by the UW solution. This allows the pancreas preserved using the TLM to generate adenosine triphosphate during storag...

  14. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun


    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  15. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches

    Li, Hailong; Boufadel, Michel C.


    Oil spilled from the tanker Exxon Valdez in 1989 (refs 1, 2) persists in the subsurface of gravel beaches in Prince William Sound, Alaska. The contamination includes considerable amounts of chemicals that are harmful to the local fauna. However, remediation of the beaches was stopped in 1992, because it was assumed that the disappearance rate of oil was large enough to ensure a complete removal of oil within a few years. Here we present field data and numerical simulations of a two-layered beach with a small freshwater recharge in the contaminated area, where a high-permeability upper layer is underlain by a low-permeability lower layer. We find that the upper layer temporarily stored the oil, while it slowly and continuously filled the lower layer wherever the water table dropped below the interface of the two layers, as a result of low freshwater recharge from the land. Once the oil entered the lower layer, it became entrapped by capillary forces and persisted there in nearly anoxic conditions that are a result of the tidal hydraulics in the two-layered beaches. We suggest that similar dynamics could operate on tidal gravel beaches around the world, which are particularly common in mid- and high-latitude regions, with implications for locating spilled oil and for its biological remediation.

  16. Steady internal waves in an exponentially stratified two-layer fluid

    Makarenko, Nikolay; Maltseva, Janna; Ivanova, Kseniya


    The problem on internal waves in a weakly stratified two-layered fluid is studied analytically. We suppose that the fluid possess exponential stratification in both the layers, and the fluid density has discontinuity jump at the interface. By that, we take into account the influence of weak continuous stratification outside of sharp pycnocline. The model equation of strongly nonlinear interfacial waves propagating along the pycnocline is considered. This equation extends approximate models [1-3] suggested for a two-layer fluid with one homogeneous layer. The derivation method uses asymptotic analysis of fully nonlinear Euler equations. The perturbation scheme involves the long wave procedure with a pair of the Boussinesq parameters. First of these parameters characterizes small density slope outside of pycnocline and the second one defines small density jump at the interface. Parametric range of solitary wave solutions is characterized, including extreme regimes such as plateau-shape solitary waves. This work was supported by RFBR (grant No 15-01-03942). References [1] N. Makarenko, J. Maltseva. Asymptotic models of internal stationary waves, J. Appl. Mech. Techn. Phys, 2008, 49(4), 646-654. [2] N. Makarenko, J. Maltseva. Phase velocity spectrum of internal waves in a weakly-stratified two-layer fluid, Fluid Dynamics, 2009, 44(2), 278-294. [3] N. Makarenko, J. Maltseva. An analytical model of large amplitude internal solitary waves, Extreme Ocean Waves, 2nd ed. Springer 2015, E.Pelinovsky and C.Kharif (Eds), 191-201.

  17. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Lee, V.; Payne, A. J.; Gregory, J. M.


    We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  18. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    V. Lee


    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  19. Diffraction of Water Waves by A Vertically Floating Cylinder in A Two-Layer Fluid


    In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer luid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid include not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and internal-wave modes, and transfer of energy between modes.

  20. Solitons, Bäcklund transformation and Lax pair for a generalized variable-coefficient Boussinesq system in the two-layered fluid flow

    Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Yu-Xiao; Guo, Yong-Jiang


    Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients α1, α3 and α4 during the propagation, kink- and anti-bell-shape solitons are obtained when α3 > 0, anti-kink- and bell-shape solitons are obtained when α3 < 0; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.

  1. Method for Solving Multi-objective Fuzzy Linear Programming with Elastic Constraints%含弹性约束的多目标模糊线性规划求解

    刘云志; 郭嗣琮


    In this paper,a class of multi-objective fuzzy linear programming problem with elastic constraints is discussed.The authors introduce the concept of the weighted characteristic number and an order relation based on the fuzzy structured element method,apply Verdegay' s method of the fuzzy linear programming and the weighted characteristic number in the model transformation.Then,such multi-objective fuzzy linear programming problem is transformed into a class of clear multi-objective linear programming model with parameter constrains.The authors calculate the α quasi-optimal feasible solution of the above model by the method based on a class of linear weighted function.Finally,a numerical example is given to illustrate the general method for solving such multi-objective fuzzy linear programming problem.%本文讨论了一类含弹性约束的多目标模糊线性规划问题.利用模糊结构元方法引入模糊数的加权特征数概念和序关系,应用Verdegay的模糊线性规划方法及模糊数的加权特征数将此类多目标模糊线性规划问题转化成一类含参数约束条件的清晰多目标线性规划模型,并应用一种基于线性加权函数的规划算法求其α-拟最优可行解.最后,给出了一个数值实例来说明如何求解此类多目标模糊线性规划问题.

  2. A novel two-layer compact electromagnetic bandgap (EBG) structure and its applications in microwave circuits

    YANG; Ning(杨宁); CHEN; Zhining; (陈志宁); WANG; Yunyi; (王蕴仪); Chia; M.; Y.; W.


    This paper presents a novel two-layer electromagnetic bandgap (EBG) structure. The studies on the characteristics of the cell are carried out numerically and experimentally. A lumped-LC equivalent circuit extracted from the numerical simulation is used to model the bandgap characteristics of the proposed EBG structure. The influences of geometric parameters on the operation frequency and equivalent LC parameters are discussed. A meander line high performance bandstop filter and a notch type duplexer are designed and measured. These EBG structures are shown to have potential applications in microwave and RF systems.

  3. A Two-Layered Model for Dynamic Supply Chain Management Considering Transportation Constraint

    Tanimizu, Yoshitaka; Harada, Kana; Ozawa, Chisato; Iwamura, Koji; Sugimura, Nobuhiro

    This research proposes a two-layered model for dynamic supply chain management considering transportation constraint. The model provides a method for suppliers to estimate suitable prices and delivery times of products based on not only production schedules but also transportation plans in consideration of constraints about shipping times and loading capacities for transportation. A prototype of dynamic supply chain simulation system was developed and some computational experiments were carried out in order to verify the effectiveness of the model. The prototype system is available to determine suitable shipping times and loading capacities of transportation vehicles.

  4. Flows induced by sorption on fibrous material in a two-layer oil-water system

    Chaplina, T. O.; Chashechkin, Yu. D.; Stepanova, E. V.


    The processes of sorption on fibrous materials in the open elliptic cell filled with a two-layer oil-water liquid at rest are investigated experimentally. When the sorption efficiency dependent on the type of material proves to be reasonably high, large-scale flows are formed in the liquid. In this case, the uniformity of distribution of oil is violated and the free surface of the water is partially restored. The trajectories of motion of individual oil droplets on a released water surface are tracked, and the transfer rates are calculated in various phases of the process.

  5. SH-TM mathematical analogy for the two-layer case. A magnetotellurics application

    J. Carcione


    Full Text Available The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised and TM (transverse-magnetic waves. In particular, we illustrate examples related to the magnetotelluric method applied to geothermal systems and consider the effects of anisotropy. The solution is tested with the classical solution for stratified isotropic media.

  6. Theories of multiple equilibria and weather regimes : A critical reexamination. II - Baroclinic two-layer models

    Cehelsky, Priscilla; Tung, Ka Kit


    Previous results based on low- and intermediate-order truncations of the two-layer model suggest the existence of multiple equilibria and/or multiple weather regimes for the extratropical large-scale flow. The importance of the transient waves in the synoptic scales in organizing the large-scale flow and in the maintenance of weather regimes was emphasized. The result shows that multiple equilibria/weather regimes that are present in lower-order models examined disappear when a sufficient number of modes are kept in the spectral expansion of the solution to the governing partial differential equations. Much of the chaotic behavior of the large-scale flow that is present in intermediate-order models is now found to be spurious. Physical reasons for the drastic modification are offered. A peculiarity in the formulation of most existing two-layer models is noted that also tends to exaggerate the importance of baroclinic processes and increase the degree of unpredictability of the large-scale flow.

  7. Photoacoustic investigation of the effective diffusivity of two-layer semiconductors

    Medina, J; Gurevich, Yu. G; Logvinov G, N; Rodriguez, P; Gonzalez de la Cruz, G. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)


    In this work, the problem of the effective thermal diffusivity of two-layer systems is investigated using the photoacoustic spectroscopy. The experimental results are examined in terms of the effective thermal parameters of the composite system determined from an homogeneous material which produces the same physical response under an external perturbation in the detector device. It is shown, that the effective thermal conductivity is not symmetric under exchange of the two layers of the composite; i.e., the effective thermal parameters depend upon which layer is illuminated in the photoacoustic experiments. Particular emphasis is given to the characterization of the interface thermal conductivity between the layer-system. [Spanish] En el presente trabajo se utiliza la espectroscopia fotoacustica para medir la difusividad termica de un sistema de dos capas. Los resultados experimentales son analizados en terminos de los parametros termicos efectivos determinados a partir de un material homogeneo, el cual produce la misma respuesta fisica bajo una perturbacion externa. Se puso particular enfasis en la caracterizacion de los efectos de interfase en el flujo de calor en el sistema de dos capas. Los resultados experimentales se comparan con el modelo teorico propuesto en este trabajo.

  8. Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes

    I Balagansky


    Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.

  9. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas


    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  10. Risks of an epidemic in a two-layered railway-local area traveling network

    Ruan, Zhongyuan; Hui, Pakming; Lin, Haiqing; Liu, Zonghua


    In view of the huge investments into the construction of high speed rails systems in USA, Japan, and China, we present a two-layer traveling network model to study the risks that the railway network poses in case of an epidemic outbreak. The model consists of two layers with one layer representing the railway network and the other representing the local-area transportation subnetworks. To reveal the underlying mechanism, we also study a simplified model that focuses on how a major railway affects an epidemic. We assume that the individuals, when they travel, take on the shortest path to the destination and become non-travelers upon arrival. When an infection process co-evolves with the traveling dynamics, the railway serves to gather a crowd, transmit the disease, and spread infected agents to local area subnetworks. The railway leads to a faster initial increase in infected agents and a higher steady state infection, and thus poses risks; and frequent traveling leads to a more severe infection. These features revealed in simulations are in agreement with analytic results of a simplified version of the model.

  11. Traffic dynamics on two-layer complex networks with limited delivering capacity

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong


    The traffic dynamics of multi-layer networks has attracted a great deal of interest since many real networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the average delivery capacity allocation strategy is susceptible to congestion with the wildly used shortest path routing protocol on two-layer complex networks. In this paper, we introduce a delivery capacity allocation strategy into the traffic dynamics on two-layer complex networks and focus on its effect on the traffic capacity measured by the critical point Rc of phase transition from free flow to congestion. When the total nodes delivering capacity is fixed, the delivering capacity of each node in physical layer is assigned to the degree distributions of both the physical and logical layers. Simulation results show that the proposed strategy can bring much better traffic capacity than that with the average delivery capacity allocation strategy. Because of the significantly improved traffic performance, this work may be useful for optimal design of networked traffic dynamics.

  12. Investigations of Two-Layer Earth Parameters at Low Voltage: Measurements and Calculations

    E. Ramdan


    Full Text Available Problem statement: The two-layer soil model at low magnitude voltage is assumed to be accurate for the measurement and calculation of the earth resistance of a combined grid-multiple rods electrode. The aim of this study is to measure and calculate the earth resistance of a combined grid-multiple rods electrode buried in a two-layer soil and to confirm the simplicity and accuracy of the used formula. Approach: Soil resistivity was measured using Wenner four point method. Advanced earth resistivity measurement interpretation techniques which include graphical curve matching based on master curves and an advanced computer program based on a genetic algorithm are used in this study. Results: Based on the resistivity data, the earth resistance value was calculated using the formulas obtained from the literature. Measurements of the earth resistance of the earthing system were also conducted using the fall of potential method. Conclusion/Recommendations: A very good agreement was obtained between the measured and calculated earth resistance values. This research is the first time ever conducted where the measured earth resistance values are compared directly with the calculated earth values.

  13. Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system

    李新政; 白占国; 李燕; 贺亚峰; 赵昆


    The resonance interaction between two modes is investigated using a two-layer coupled Brusselator model. When two different wavelength modes satisfy resonance conditions, new modes will appear, and a variety of superlattice patterns can be obtained in a short wavelength mode subsystem. We find that even though the wavenumbers of two Turing modes are fixed, the parameter changes have infl uences on wave intensity and pattern selection. When a hexagon pattern occurs in the short wavelength mode layer and a stripe pattern appears in the long wavelength mode layer, the Hopf instability may happen in a nonlinearly coupled model, and twinkling-eye hexagon and travelling hexagon patterns will be obtained. The symmetries of patterns resulting from the coupled modes may be different from those of their parents, such as the cluster hexagon pattern and square pattern. With the increase of perturbation and coupling intensity, the nonlinear system will con-vert between a static pattern and a dynamic pattern when the Turing instability and Hopf instability happen in the nonlinear system. Besides the wavenumber ratio and intensity ratio of the two different wavelength Turing modes, perturbation and coupling intensity play an important role in the pattern formation and selection. According to the simulation results, we find that two modes with different symmetries can also be in the spatial resonance under certain conditions, and complex patterns appear in the two-layer coupled reaction diffusion systems.

  14. Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging

    Peng, Xi; Dong, Pei


    Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to either lack of adaptability, high complexity of the training, or insufficient sparsity promotion. To properly balance the three factors, this paper proposes a two-layer tight frame sparsifying (TRIMS) model for CSMRI by sparsifying the image with a product of a fixed tight frame and an adaptively learned tight frame. The two-layer sparsifying and adaptive learning nature of TRIMS has enabled accurate MR reconstruction from highly undersampled data with efficiency. To solve the reconstruction problem, a three-level Bregman numerical algorithm is developed. The proposed approach has been compared to three state-of-the-art methods over scanned physical phantom and in vivo MR datasets and encouraging performances have been achieved. PMID:27747226

  15. Analysis and Control of Two-Layer Frenkel-Kontorova Model

    TANG Wen-Yan; QU Zhi-Hua; GUO Yi


    A one-dimensional two-layer Frenkel-Kontorova model is studied.Firstly,a feedback tracking control law is given.Then,the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method.Especially,the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity.Simulations illustrate the accuracy of the derived results.Recently,the Frenkel-Kontorova (FK) model,which describes a chain of classical particles interacting with its nearest neighbors and subjected to a periodic one-site potential,has become a useful tool to study nanotribology.[1-6] There are several generalizations of the FK model that have been introduced with the hope of understanding friction dynamics at nanoscale.These models include a manylayer model with harmonic interactions,the FrenkelKontorova-Tomlinson model (FKT) and the singlelayer model with harmonic interactions.%A one-dimensional two-layer Frenkel-Kontorova model is studied. Firstly, a feedback tracking control law is given. Then, the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method. Especially, the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity. Simulations illustrate the accuracy of the derived results.

  16. Reverse-feeding effect of epidemic by propagators in two-layered networks

    Dayu, Wu; Yanping, Zhao; Muhua, Zheng; Jie, Zhou; Zonghua, Liu


    Epidemic spreading has been studied for a long time and is currently focused on the spreading of multiple pathogens, especially in multiplex networks. However, little attention has been paid to the case where the mutual influence between different pathogens comes from a fraction of epidemic propagators, such as bisexual people in two separated groups of heterosexual and homosexual people. We here study this topic by presenting a network model of two layers connected by impulsive links, in contrast to the persistent links in each layer. We let each layer have a distinct pathogen and their interactive infection is implemented by a fraction of propagators jumping between the corresponding pairs of nodes in the two layers. By this model we show that (i) the propagators take the key role to transmit pathogens from one layer to the other, which significantly influences the stabilized epidemics; (ii) the epidemic thresholds will be changed by the propagators; and (iii) a reverse-feeding effect can be expected when the infective rate is smaller than its threshold of isolated spreading. A theoretical analysis is presented to explain the numerical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001, 11375066, and 11405059) and the National Basic Key Program of China (Grant No. 2013CB834100).



    Gully erosion is one of the main causes of top soil loss, land deterioration and sources of sediment deposition in streams. Headcut often occurs in the gully erosion process when erodability of the soil layers varies, and the gully cuts through a hard layer at a point. A scouring hole appears downstream of the head cut which migrates upstream due to strong erosion in the scour hole. This paper presents numerical analyses of turbulent flow and sediment transport processes of a head-cut associated with a two-layer soil stratigraphic formation. The flow in the scour hole is three-dimensional induced by the water jet from the brink of the top layer; the sediment transport model considers sediment entrainment by the impinging jet, erosion underneath the hard layer and the retreat of the brink of the hard layer. The 3D flow simulation in the scour hole and the scouring process was verified with physical model data. The two-layer head cut migration is simulated with different flow and soil parameters, the trends of the simulated results reasonably revealed contributions of these parameters to the scouring and migration process.

  18. Two-layer wireless distributed sensor/control network based on RF

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo


    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  19. Objective thermomechanics

    Fülöp, Tamás


    An irreversible thermodynamical theory of solids is presented where the kinematic quantities are defined in an automatically objective way. Namely, auxiliary elements like reference frame, reference time and reference configuration are avoided by formulating the motion of the continuum on spacetime directly, utilizing the Weyl-Matolcsi description of spacetime. This restricts the range of definable kinematic quantities heavily. Solids are distinguished from fluids by possessing not only an instantaneous metric tensor but a relaxed metric, too, that represents the natural geometric structure of the solid. The comparison of the instantaneous metric to the relaxed one is the basis of the definition of the elastic state variable, the elastic deformedness tensor. Thermal expansion is conceived as the temperature dependence of the relaxed metric. As opposed to this reversible type of change, plasticity means an irreversible change in the relaxed metric, and is describable via a plastic change rate tensor. The relat...

  20. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves

    Issenmann, Bruno; Falcon, Eric


    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain most of these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths.s.

  1. Spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    Erhan Albayrak; Ali Yigit


    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in the pairwise approach for given coordination numbers q = 3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state, (GS) phase diagrams are obtained on the different planes in detail and then the temperature-dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It is also found that the system exhibits double-critical end points and isolated points. The model aiso presents two Néel temperatures, T_N, and the existence of which leads to the reentrant behaviour.

  2. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    Camassa, R.; Falqui, G.; Ortenzi, G.


    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  3. Central-Upwind Schemes for Two-Layer Shallow Water Equations

    Kurganov, Alexander


    We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.

  4. Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

    Khalil, Mohammed S; Kurniawan, Fajri; Khan, Muhammad Khurram; Alginahi, Yasser M


    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

  5. Transient response of a vertical electric dipole (VED) on a two-layer medium

    Poh, S. Y.; Kong, J. A.

    The transient electromagnetic radiation by a vertical electric dipole on a two-layer medium is analyzed using the double deformation technique, which is a modal technique based on identification of singularities in the complex frequency and wavenumber planes. Previous application of the double deformation technique to the solution of this problem is incomplete in the early time response. In this paper it is shown that the existence of a pole locus on the negative imaginary frequency axis, which dominates the early time response, proves crucial in obtaining the solution for all times. A variety of combinations of parameters are used to illustrate the double deformation technique, and results will be compared with those obtained via explicit inversion, and a single deformation method.

  6. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    Sun, Fan


    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two......-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  7. The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene

    Şarlı, Numan, E-mail: [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Akbudak, Salih [Department of Physics, Adiyaman University, 02100 Adiyaman (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Ankara (Turkey); Ellialtıoğlu, Mehmet Recai [Department of Physics Engineering, Hacettepe University, 06800 Ankara (Turkey)


    In this work, the magnetic properties of the ferromagnetic and antiferromagnetic two layer spin-1/2 Ising nanographene systems are investigated within the effective field theory. We find that the magnetizations and the hysteresis behaviors of the central graphene atoms are similar to those of the edge graphene atoms in the ferromagnetic case. But, they are quite different in the antiferromagnetic case. The antiferromagnetic central graphene atoms exhibit type II superconductivity and they have triple hysteresis loop. The peak effect (PE) region is observed on the hysteresis curves of the antiferromagnetic Ising nanographene system. Therefore, we suggest that there is a strong relationship between the antiferromagnetism and the peak effect. Our results are in agreement with some experimental works in recent literature.




    Full Text Available Multilayer pressure vessel is designed to work under high-pressure condition. This paper introduces the stress analysis and the burst pressure calculation of a two-layer shrink fitted pressure vessel. In the shrink-fitting problems, considering long hollow cylinders, the plane strain hypothesis can be regarded as more natural. Generally hoops stress distribution is non-linear and sharply reduced toward the outer surface. By shrink fitting concentric shells towards the inner shells are placed in residual compression so that the initial compressive hoop stress must be relieved by internal pressure before hoop tensile stress are developed. Therefore the maximum hoop stress will be reduced, resulting more burst pressure. The analytical results of stress distribution and burst pressure is calculated and validated by ANSYS Workbench results.

  9. Testing the Two-Layer Model for Correcting Clear Sky Reflectance near Clouds

    Wen, Guoyong; Marshak, Alexander; Evans, Frank; Varnai, Tamas; Levy, Rob


    A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.

  10. Study of electronic and optical properties of two-layered hydrogenated aluminum nitrate nanosheet

    Faghihzadeh, Somayeh; Shahtahmasebi, Nasser; Rezaee Roknabadi, Mahmood


    First principle calculations based on density functional theory using GW approximation and two particle Bethe-Salpeter equation with electron-hole effect were performed to investigate electronic structure and optical properties of two-layered hydrogenated AlN. According to many body green function due to decrease in dimension and considering electron-electron effect, direct (indirect) band gap change from 2 (1.01) eV to 4.83 (3.62) eV. The first peak in imaginary part of dielectric function was observed in parallel direction to a plane obtaining 3.4 was achieved by bound exciton states possess 1.39 eV. The first absorption peak was seen in two parallel and perpendicular directions to a plane which are in UV region.

  11. Analysis of data recorded by the LCTPC equipped with a two layer GEM-system

    Ljunggren, M


    wire based readout. The prototype TPC is placed in a 1 Tesla magnet at DESY and tested using an electron beam. Analyses of data taken during two different measurement series, in 2009 and 2010, are presented here. The TPC was instrumented with a two layer GEM system and read out using modified electronics from the ALICE experiment, including the programmable charge sensitive preamp-shaper PCA16. The PCA16 chip has a number of programmable parameters which allows studies to determine the settings optimal to the final TPC. Here, the impact of the shaping time on the space resolution in the drift direction was studied. It was found that a shaping time of 60 ns is the b...

  12. High Performance Hybrid Two Layer Router Architecture for FPGAs Using Network On Chip

    Ezhumalai, P; Arun, C; Sakthivel, P; Sridharan, D


    Networks on Chip is a recent solution paradigm adopted to increase the performance of Multicore designs. The key idea is to interconnect various computation modules (IP cores) in a network fashion and transport packets simultaneously across them, thereby gaining performance. In addition to improving performance by having multiple packets in flight, NoCs also present a host of other advantages including scalability, power efficiency, and component reuse through modular design. This work focuses on design and development of high performance communication architectures for FPGAs using NoCs Once completely developed, the above methodology could be used to augment the current FPGA design flow for implementing multicore SoC applications. We design and implement an NoC framework for FPGAs, MultiClock OnChip Network for Reconfigurable Systems (MoCReS). We propose a novel microarchitecture for a hybrid two layer router that supports both packetswitched communications, across its local and directional ports, as well as...

  13. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush.

    Wegmann, Susanne; Medalsy, Izhar D; Mandelkow, Eckhard; Müller, Daniel J


    The structure and properties of amyloid-like Tau fibrils accumulating in neurodegenerative diseases have been debated for decades. Although the core of Tau fibrils assembles from short β-strands, the properties of the much longer unstructured Tau domains protruding from the fibril core remain largely obscure. Applying immunogold transmission EM, and force-volume atomic force microscopy (AFM), we imaged human Tau fibrils at high resolution and simultaneously mapped their mechanical and adhesive properties. Tau fibrils showed a ≈ 16-nm-thick fuzzy coat that resembles a two-layered polyelectrolyte brush, which is formed by the unstructured short C-terminal and long N-terminal Tau domains. The mechanical and adhesive properties of the fuzzy coat are modulated by electrolytes and pH, and thus by the cellular environment. These unique properties of the fuzzy coat help in understanding how Tau fibrils disturb cellular interactions and accumulate in neurofibrillary tangles.

  14. Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.

    Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay


    In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.

  15. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    Chen, C. P.; Shang, H. M.; Huang, J.


    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  16. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    Xiang Yan-Xun; Deng Ming-Xi


    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface.In general,the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur.However,the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied.Through boundary condition and initial condition of excitation,the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined.Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.

  17. Convergent flow in a two-layer system and mountain building

    Perazzo, Carlos Alberto


    With the purpose of modelling the process of mountain building, we investigate the evolution of the ridge produced by the convergent motion of a system consisting of two layers of liquids that differ in density and viscosity to simulate the crust and the upper mantle that form a lithospheric plate. We assume that the motion is driven by basal traction. Assuming isostasy, we derive a nonlinear differential equation for the evolution of the thickness of the crust. We solve this equation numerically to obtain the profile of the range. We find an approximate self-similar solution that describes reasonably well the process and predicts simple scaling laws for the height and width of the range as well as the shape of the transversal profile. We compare the theoretical results with the profiles of real mountain belts and find and excellent agreement.


    Sen-Tarng Lai


    Full Text Available E-commerce is an important information system in the network and digital age. However, the network intrusion, malicious users, virus attack and system security vulnerabilities have continued to threaten the operation of the e-commerce, making e-commerce security encounter serious test. How to improve ecommerce security has become a topic worthy of further exploration. Combining routine security test and security event detection procedures, this paper proposes the Two-Layer Secure Prevention Mechanism (TLSPM. Applying TLSPM, routine security test procedure can identify security vulnerability and defect, and develop repair operations. Security event detection procedure can timely detect security event, and assist follow repair. TLSPM can enhance the e-commerce security and effectively reduce the security risk of e-commerce critical data and asset.

  19. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Erdogan, Muzaffer


    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  20. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.

    Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen


    Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.

  1. A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues

    Chakravarty, Koyel


    Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles...

  2. Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models

    Sarno, L.; Carravetta, A.; Martino, R.; Papa, M. N.; Tai, Y.-C.


    Multi-layer depth-averaged models are widely employed in various hydraulic engineering applications. Yet, such models are not strictly hyperbolic. Their equation systems typically lose hyperbolicity when the relative velocities between layers become too large, which is associated with Kelvin-Helmholtz instabilities involving turbulent momentum exchanges between the layers. Focusing on the two-layer case, we present a numerical improvement that locally avoids the loss of hyperbolicity. The proposed modification introduces an additional momentum exchange between layers, whose value is iteratively calculated to be strictly sufficient to keep the system hyperbolic. The approach can be easily implemented in any finite volume scheme and there is no limitation concerning the density ratio between layers. Numerical examples, employing both HLL-type and Roe-type approximate Riemann solvers, are reported to validate the method and its key features.


    Liu Shidong; Zhang Shunyi; Zhou Jinquan; Qiu Gong'an


    Overlay multicast has become one of the most promising multicast solutions for IP network, and Neutral Network(NN) has been a good candidate for searching optimal solutions to the constrained shortest routing path in virtue of its powerful capacity for parallel computation. Though traditional Hopfield NN can tackle the optimization problem, it is incapable of dealing with large scale networks due to the large number of neurons. In this paper, a neural network for overlay multicast tree computation is presented to reliably implement routing algorithm in real time. The neural network is constructed as a two-layer recurrent architecture, which is comprised of Independent Variable Neurons (IDVN) and Dependent Variable Neurons (DVN), according to the independence of the decision variables associated with the edges in directed graph. Compared with the heuristic routing algorithms, it is characterized as shorter computational time, fewer neurons, and better precision.

  4. Two-layer networked learning control using self-learning fuzzy control algorithms


    Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system.

  5. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick


    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  6. Calculation of the outcomes of remodeling of arteries subjected to sustained hypertension using a 3D two-layered model.

    Rachev, Alexander; Taylor, W Robert; Vito, Raymond P


    Arteries manifest a remodeling response to long-term alterations in arterial pressure and blood flow by changing geometry, structure, and composition through processes driven by perturbations of the local stresses in the vascular wall from their baseline values. The objective of this study is twofold--to develop a general method for calculating the remodeling responses of an artery considered as a two-layered tube; and to provide results for adaptive and maladaptive remodeling of a coronary artery. By formulating an inverse problem of vascular mechanics, the geometrical dimensions and mechanical properties of an artery are calculated from a prescribed deformed configuration, stress field, structural stiffness, and applied load. As an illustrative example we consider a human LAD coronary artery in both a perfect and incomplete adaptive response to a sustained step-wise change in pressure and a maladaptive response due to impaired remodeling of adventitia. The results obtained show that adventitia plays an important role in vascular mechanics when an artery is subjected to high arterial pressure. In addition to its well-known short term function of preventing over-inflation of an artery, it seems reasonable to accept that the manner by which adventitia remodels in response to a chronic increase in pressure is essential for preserving normal arterial function or may lead to an increased risk of developing vascular disorders.

  7. Single- and Two-Layer Coatings of Metal Blends onto Carbon Steel: Mechanical, Wear, and Friction Characterizations

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat


    Single- and two-layer coatings were deposited onto carbon steel using a high-velocity oxy-fuel deposition gun. The two-layer coating consisted of a top layer of tungsten carbide cobalt/nickel alloy blend that provides wear resistance and a bottom layer of iron/molybdenum blend that provides corrosion resistance. The morphological changes in the single- and two-layer coatings were examined using scanning electron microscopy. The residual stresses formed on the surface of various coatings were determined from x-ray diffraction data. Nanomechanical properties were measured using the nanoindentation technique. Microhardness and fracture toughness were measured incorporating the microindentation tests. Macrowear and macrofriction characteristics were measured using the pin-on-disk testing apparatus. The goal of this study was to ensure that the mechanical properties, friction, and wear resistance of the two-layer coating are similar to that of the single-layer coating.

  8. Computational Elastic Knots

    Zhao, Xin


    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  9. Storage capacity and learning algorithms for two-layer neural networks

    Engel, A.; Köhler, H. M.; Tschepke, F.; Vollmayr, H.; Zippelius, A.


    A two-layer feedforward network of McCulloch-Pitts neurons with N inputs and K hidden units is analyzed for N-->∞ and K finite with respect to its ability to implement p=αN random input-output relations. Special emphasis is put on the case where all hidden units are coupled to the output with the same strength (committee machine) and the receptive fields of the hidden units either enclose all input units (fully connected) or are nonoverlapping (tree structure). The storage capacity is determined generalizing Gardner's treatment [J. Phys. A 21, 257 (1988); Europhys. Lett. 4, 481 (1987)] of the single-layer perceptron. For the treelike architecture, a replica-symmetric calculation yields αc~ √K for a large number K of hidden units. This result violates an upper bound derived by Mitchison and Durbin [Biol. Cybern. 60, 345 (1989)]. One-step replica-symmetry breaking gives lower values of αc. In the fully connected committee machine there are in general correlations among different hidden units. As the limit of capacity is approached, the hidden units are anticorrelated: One hidden unit attempts to learn those patterns which have not been learned by the others. These correlations decrease as 1/K, so that for K-->∞ the capacity per synapse is the same as for the tree architecture, whereas for small K we find a considerable enhancement for the storage per synapse. Numerical simulations were performed to explicitly construct solutions for the tree as well as the fully connected architecture. A learning algorithm is suggested. It is based on the least-action algorithm, which is modified to take advantage of the two-layer structure. The numerical simulations yield capacities p that are slightly more than twice the number of degrees of freedom, while the fully connected net can store relatively more patterns than the tree. Various generalizations are discussed. Variable weights from hidden to output give the same results for the storage capacity as does the committee

  10. Optical measurements of absorption changes in two-layered diffusive media

    Fabbri, Francesco [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Sassaroli, Angelo [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Henry, Michael E [McLean Hospital and Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478 (United States); Fantini, Sergio [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States)


    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is {approx}0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of {approx}4% for the superficial layer and {approx}10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  11. Thermal properties of composite two-layer systems with a fractal inclusion structure

    Reyes-Salgado, J. J.; Dossetti, V.; Bonilla-Capilla, B.; Carrillo, J. L.


    In this work, we study the thermal transport properties of platelike composite two-layer samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, their effective thermal diffusivity and conductivity were experimentally measured. The composite layers were prepared under the action of a static magnetic field, resulting in anisotropic (fractal) inclusion structures with the formation of chain-like magnetite aggregates parallel to the faces of the layers. In one kind of the bilayers, a composite layer was formed on top of a resin layer while their relative thickness was varied. These samples can be described by known models. In contrast, bilayers with the same concentration of inclusions and the same thickness on both sides, where only the angle between their inclusion structures was systematically varied, show a nontrivial behaviour of their thermal conductivity as a function of this angle. Through a multifractal and lacunarity analysis, we explain the observed thermal response in terms of the complexity of the interface between the layers.

  12. Two layer asymptotic model for the wave propagation in the presence of vorticity

    Kazakova, M. Yu; Noble, P.


    In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.

  13. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    Camassa, R; Ortenzi, G


    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite 2D channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids' inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, and thence, in a non-trivial way, to the dispersionless non-linear Schr\\"odinger equation. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, it is shown that at first order the deformed system possesses an infinite sequence of constants of the motion, thus casting this system within the framework of comp...

  14. Method of the Moulding Sands Binding Power Assessment in Two-Layer Moulds Systems

    M. Holtzer


    Full Text Available More and more foundry plants applying moulding sands with water-glass or its substitutes for obtaining the high-quality casting surface at the smallest costs, consider the possibility of implementing two-layer moulds, in which e.g. the facing sand is a sand with an organic binder (no-bake type and the backing sand is a sand with inorganic binder. Both kinds of sands must have the same chemical reaction. The most often applied system is the moulding sand on the water-glass or geopolymer bases - as the backing sand and the moulding sand from the group of self-hardening sands with a resol resin - as the facing sand. Investigations were performed for the system: moulding sand with inorganic GEOPOL binder or moulding sand with water glass (as a backing sand and moulding sand, no-bake type, with a resol resin originated from various producers: Rezolit AM, Estrofen, Avenol NB 700 (as a facing sand. The LUZ apparatus, produced by Multiserw Morek, was adapted for investigations. A special partition with cuts was mounted in the attachment for making test specimens for measuring the tensile strength. This partition allowed a simultaneous compaction of two kinds of moulding sands. After 24 hours of hardening the highest values were obtained for the system: Geopol binder - Avenol resin.

  15. Display of the β-effect in the Black Sea Two-Layer Model

    A.A. Pavlushin


    Full Text Available The research is a continuation of a series of numerical experiments on modeling formation of wind currents and eddies in the Black Sea within the framework of a two-layer eddy-resolving model. The main attention is focused on studying the β-effect role. The stationary cyclonic wind is used as an external forcing and the bottom topography is not considered. It is shown that at the β-effect being taken into account, the Rossby waves propagating from east to west are observed both during the currents’ formation and at the statistical equilibrium mode when the mesoscale eddies are formed. In the integral flows’ field the waves are visually manifested in a form of the alternate large-scale cyclonic gyres and zones in which the meso-scale anti-cyclones are formed. This spatial pattern constantly propagates to the west that differs from the results of calculations using the constant Coriolis parameter when the spatially alternate cyclonic and anti-cyclonic vortices are formed, but hold a quasi-stationary position. The waves with the parameters of the Rossby wave first barotropic mode for the closed basin are most clearly pronounced. Interaction of the Rossby waves with large-scale circulation results in intensification of the of the currents’ hydrodynamic instability and in formation of the mesoscale eddies. Significant decrease of kinetic and available potential energy as compared to the values obtained at the constant Coriolis parameter is also a consequence of the eddy formation intensification.

  16. Inferring topologies via driving-based generalized synchronization of two-layer networks

    Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua


    The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.

  17. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK.

    Durham, John W; Rabiei, Afsaneh


    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength.

  18. A novel approach to ECG classification based upon two-layered HMMs in body sensor networks.

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang


    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  19. Dynamics and flow-coupling in two-layer turbulent thermal convection

    Xie, Yi-Chao


    We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...

  20. MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between

    Raju T. Linga


    Full Text Available An unsteady magnetohydrodynamic (MHD two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  1. A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.

    Cerón, Jesús D; López, Diego M; Hofmann, Christian


    Among the factors that outline the health of populations, person's lifestyle is the more important one. This work focuses on the caracterization and prevention of sedentary lifestyles. A sedentary behavior is defined as "any waking behavior characterized by an energy expenditure of 1.5 METs (Metabolic Equivalent) or less while in a sitting or reclining posture". To propose a method for sedentary behaviors classification using a smartphone and Bluetooth beacons considering different types of classification models: personal, hybrid or impersonal. Following the CRISP-DM methodology, a method based on a two-layer approach for the classification of sedentary behaviors is proposed. Using data collected from a smartphones' accelerometer, gyroscope and barometer; the first layer classifies between performing a sedentary behavior and not. The second layer of the method classifies the specific sedentary activity performed using only the smartphone's accelerometer and barometer data, but adding indoor location data, using Bluetooth Low Energy (BLE) beacons. To improve the precision of the classification, both layers implemented the Random Forest algorithm and the personal model. This study presents the first available method for the automatic classification of specific sedentary behaviors. The layered classification approach has the potential to improve processing, memory and energy consumption of mobile devices and wearables used.

  2. Long-time Behavior of a Two-layer Model of Baroclinic Quasi-geostrophic Turbulence

    Farhat, Aseel; Titi, Edriss S; Ziane, Mohammed


    We study a viscous two-layer quasi-geostrophic beta-plane model that is forced by imposition of a spatially uniform vertical shear in the eastward (zonal) component of the layer flows, or equivalently a spatially uniform north-south temperature gradient. We prove that the model is linearly unstable, but that non-linear solutions are bounded in time by a bound which is independent of the initial data and is determined only by the physical parameters of the model. We further prove, using arguments first presented in the study of the Kuramoto-Sivashinsky equation, the existence of an absorbing ball in appropriate function spaces, and in fact the existence of a compact finite-dimensional attractor, and provide upper bounds for the fractal and Hausdorff dimensions of the attractor. Finally, we show the existence of an inertial manifold for the dynamical system generated by the model's solution operator. Our results provide rigorous justification for observations made by Panetta based on long-time numerical integra...

  3. A two-layer $\\alpha\\omega$ dynamo model, and its implications for 1-D dynamos

    Roald, C B


    I will discuss an attempt at representing an interface dynamo in a simplified, essentially 1D framework. The operation of the dynamo is broken up into two 1D layers, one containing the $\\alpha$ effect and the other containing the $\\omega$ effect, and these two layers are allowed to communicate with each other by the simplest possible representation of diffusion, an analogue of Newton's law of cooling. Dynamical back-reaction of the magnetic field on them with diagrams I computed for a comparable purely 1D model. The bifurcation structure shows remarkable similarity, but a couple of subtle changes imply dramatically different physical behaviour for the model. In particular, the solar-like dynamo mode found in the 1-layer model is not stable in the 2-layer version; instead there is an (apparent) homoclinic bifurcation and a sequence of periodic, quasiperiodic, and chaotic modes. I argue that the fragility of these models makes them effectively useless as predictors or interpreters of more complex dynamos.

  4. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.


    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  5. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Wei Liang


    Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  6. A two-layer recurrent neural network for nonsmooth convex optimization problems.

    Qin, Sitian; Xue, Xiaoping


    In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.

  7. Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model

    Vera Melinda Gálfi


    Full Text Available We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value and GP (Generalized Pareto shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy. We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude. Due to the limited (though very large data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.

  8. Critical properties of XY model on two-layer Villain-ferromagnetic lattice

    Wang Yi; R. Quartu; Liu Xiao-Yan; Han Ru-Qi; Horiguchi Tsuyoshi


    We investigate phase transitions of the XY model on a two-layer square lattice which consists of a Villain plane(J) and a ferromagnetic plane (I), using Monte Carlo simulations and a histogram method. Depending on the values of interaction parameters (I, J), the system presents three phases: namely, a Kosterlitz-Thouless (KT) phase in which the two planes are critical for I predominant over J, a chiral phase in which the two planes have a chiral order for J predominant over I and a new phase in which only the Villain plane has a chiral order and the ferromagnetic plane is paramagnetic with a small value of chirality. We clarify the nature of phase transitions by using a finite size scaling method. We find three different kinds of transitions according to the values of (I, J): the KT transition, the Ising transition and an XY-Ising transition with v = 0.849(3). It turns out that the Ising or XY-Ising transition is associated with the disappearance of the chiral order in the Villain plane.

  9. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin


    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity.

  10. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    Pustovalov, V. K.; Astafyeva, L. G.; Zharov, V. P.


    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core-shell NPs in the ranges of core radii r00=5-40 nm and of relative NP radii r1/r00=1-8 were calculated (r1-radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n1=0.2-1.5 and absorption k1=0-3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r00 and relative NP r1/r00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs.



    In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostrophic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.

  12. Convective instability in a two-layer system of reacting fluids with concentration-dependent diffusion

    Aitova, E. V.; Bratsun, D. A.; Kostarev, K. G.; Mizev, A. I.; Mosheva, E. A.


    The development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap has been studied theoretically and experimentally. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability, which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid-base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction-diffusion-convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction-diffusion-convection equations written in the Hele-Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and nonlinear development of the instability are presented. It is also shown that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of an almost immobile fluid. Good agreement between the

  13. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    Ryzhov, Evgeny A., E-mail: [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Koshel, Konstantin V., E-mail: [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation)


    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  14. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    Tsang, L.; Kong, J. A.


    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  15. [Two-layer adhesive film Diplen-denta C--a new compound containing polymer base and active component Solcoseryl].

    Abakarova, D S


    Characteristics of the main components of a new effective long-lasting dosage form--biopolymer two-layer adhesive solcoseryl containing film Diplen-denta C--are presented. It has a potent wound-healing action on oral mucosa, retains therapeutic properties during long time, is self dissolving and can be easily fixed on oral mucous membrane.

  16. Screen-Capturing System with Two-Layer Display for PowerPoint Presentation to Enhance Classroom Education

    Lai, Yen-Shou; Tsai, Hung-Hsu; Yu, Pao-Ta


    This paper proposes a new presentation system integrating a Microsoft PowerPoint presentation in a two-layer method, called the TL system, to promote learning in a physical classroom. With the TL system, teachers can readily control hints or annotations as a way of making them visible or invisible to students so as to reduce information load. In…

  17. Hamiltonian Particle-Mesh Method for Two-Layer Shallow-Water Equations Subject to the Rigid-Lid Approximation

    Cotter, C.J.; Frank, J.E.; Reich, S.


    We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s


    A.M.Ferouani M. Ferouani


    Full Text Available Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray results in a lamellar structure granting a low thermal conductivity, but with a low thermal expansion compliance. Electron Beam Physical Vapour Deposition generates a columnar structure allowing a better accommodation of the thermal expansion stresses, entailing improved lifetime of the coating, but with a higher thermal conductivity. The aim of the paper presented here is to develop a procedure of analysis based on the micro structural observation for the prediction of the properties of new coatings in court of industrial development and to predict the effect of the posterior thermal treatment on the properties of the coatings carried out. For a given coating, one has to calculate linear elasticity and its evolution with the temperature as well as thermal expansion, aiming at predicting different parameters related to the in service deterioration.  

  19. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies.

    Kao, C M; Chen, S C; Wang, J Y; Chen, Y L; Lee, S Z


    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop an in situ two-layer biobarrier system consisting of an organic-releasing material layer followed by an oxygen-releasing material layer. The organic-releasing material, which contained sludge cakes from a domestic wastewater treatment plant, is able to release biodegradable organics continuously. The oxygen-releasing material, which contained calcium peroxide, is able to release oxygen continuously upon contact with water. The first organic-releasing material layer was to supply organics (primary substrates) to reductively dechlorinate PCE in situ. The second oxygen-releasing material layer was to release oxygen to aerobic biodegrade or cometabolize PCE degradation byproducts from the first anaerobic layer. Batch experiments were conducted to design and identify the components of the organic and oxygen-releasing materials, and evaluate the organic substrate (presented as chemical oxygen demand (COD) equivalent) and oxygen release rates from the organic-releasing material and oxygen-releasing materials, respectively. The observed oxygen and COD release rates were approximately 0.0368 and 0.0416 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of PCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an organic-releasing material column, two consecutive soil columns, and an oxygen-releasing material column, followed by two other consecutive soil columns. Anaerobic acclimated sludges were inoculated in the first four columns, and aerobic acclimated sludges were inoculated in the last three columns to provide microbial consortia for contaminant biodegradation. Simulated PCE-contaminated groundwater with a

  20. Elastically Decoupling Dark Matter

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai


    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  1. Elastically Decoupling Dark Matter.

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai


    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  2. ElasticSearch cookbook

    Paro, Alberto


    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  3. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.


    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  4. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Lucie Zarybnicka


    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  5. Tensile Properties with or without Heat Dispersion of Automotive Needlepunched Carpets Made up of Two Layers of Different Materials

    ZHANG Yunqing; GUO Zhiying; DONG Xianghuai; LI Dequn


    Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore,contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation.On the other hand, their influences on the overall deformation are relatively complicated.

  6. Determining particle size distribution and refractive index in a two-layer tissue phantom by linearly polarized light

    Yong Deng; Qiang Lu; Qingming Luo


    We report a new method for measuring particle size distribution (PSD) and refractive index of the top layer in a two-layer tissue phantom simulated epithelium tissue by varying the azimuth angle of incident linearly polarized light. The polarization gating technique is used to decouple the single and multiple scattering components in the returned signal. The theoretical model based on Mie theory is presented and a nonlinear inversion method - floating genetic algorithm - is applied to inverting the azimuth dependence of component of polarization light backscattered. The experiment results demonstrate that the size distribution and refractive index of the scatters of the top layer can be determined by measuring and analyzing the differential signal of the parallel and perpendicular components from a two-layer tissue phantom. The method implies to detect precancerous changes in human epithelial tissue.

  7. Two-layer critical dimensions and overlay process window characterization and improvement in full-chip computational lithography

    Sturtevant, John L.; Liubich, Vlad; Gupta, Rachit


    Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target for a single design layer. Strictly speaking, this quantity is not directly measurable in the fab. What is of vital importance is the relative edge placement errors between different design layers, and in the era of multipatterning, the different constituent mask sublayers for a single design layer. The critical dimensions (CD) and overlay between two layers can be measured in the fab, and there has always been a strong emphasis on control of overlay between design layers. The progress in this realm has been remarkable, accelerated in part at least by the proliferation of multipatterning, which reduces the available overlay budget by introducing a coupling of overlay and CD errors for the target layer. Computational lithography makes possible the full-chip assessment of two-layer edge to edge distances and two-layer contact overlap area. We will investigate examples of via-metal model-based analysis of CD and overlay errors. We will investigate both single patterning and double patterning. For single patterning, we show the advantage of contour-to-contour simulation over contour to target simulation, and how the addition of aberrations in the optical models can provide a more realistic CD-overlay process window (PW) for edge placement errors. For double patterning, the interaction of 4-layer CD and overlay errors is very complex, but we illustrate that not only can full-chip verification identify potential two-layer hotspots, the optical proximity correction engine can act to mitigate such hotspots and enlarge the joint CD-overlay PW.

  8. Dynamics of the outflow and its effect on the hydraulics of two-layer exchange flows in a channel


    This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The experiments reveal the generation of Kelvin-Helmholtz (KH) instabilities within the hydraulically sub-critical flow region of the channel. During maximal exchange, those KH instabilities develops into large-amplitude KH waves as they escape the channel exit into the reservoir. The propagation speed ...

  9. Two-Layer Microstructures Fabricated by One-Step Anisotropic Wet Etching of Si in KOH Solution

    Han Lu


    Full Text Available Anisotropic etching of silicon in potassium hydroxide (KOH is an important technology in micromachining. The residue deposition from KOH etching of Si is typically regarded as a disadvantage of this technology. In this report, we make use of this residue as a second masking layer to fabricate two-layer complex structures. Square patterns with size in the range of 15–150 μm and gap distance of 5 μm have been designed and tested. The residue masking layer appears when the substrate is over-etched in hydrofluoric acid (HF solution over a threshold. The two-layer structures of micropyramids surrounded by wall-like structures are obtained according to the two different masking layers of SiO2 and residue. The residue masking layer is stable and can survive over KOH etching for long time to achieve deep Si etching. The process parameters of etchant concentration, temperature, etching time and pattern size have been investigated. With well-controlled two-layer structures, useful structures could be designed for applications in plasmonic and microfluidic devices in the future.

  10. Laboratory Research of the Two-Layer Liquid Dynamics at the Wind Surge in a Strait Canal

    S.F. Dotsenko


    Full Text Available The results of laboratory experiments in a straight aerohydrocanal of the rectangular cross-section filled with the two-layer (fresh-salty liquid are represented. The disturbance generator is the air flow directed to the area above the canal. The cases of the two-layer liquid dynamics in the canal with the horizontal flat bottom and in the presence of the bottom obstacle of finite width are considered. It is shown that during the surge in the straight canal, one of the possible exchange mechanisms on the boundary of fresh and salty layers may consist in the salt water emissions (resulted from the Kelvin-Helmholtz instability to the upper freshwater layer. The subsequent eviction can possibly be accompanied by occurrence of undulations at the interface. Besides, the evictions can be followed by formation of the oscillating layer, i.e. the layer with maximum density gradient the oscillations of which propagate to the overlying layers. Presence of the bottom obstacle complicates the structure of the two-layer liquid motions. In particular, it results in emergence of the mixed layers and transformation of the flow behind the obstacle into a turbulent one, formation of the wave-like disturbances over the obstacle, sharp change of the interface position and occurrence of large-scale vortices with the horizontal axes. It is revealed that the maximum peak of the flow velocity horizontal component is shifted upstream from the obstacle.

  11. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  12. Elastic limit of silicane.

    Peng, Qing; De, Suvranu


    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers.

  13. ElasticSearch cookbook

    Paro, Alberto


    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  14. Construction of Wave-free Potentials and Multipoles in a Two-layer Fluid Having Free-surface Boundary Condition with Higher-order Derivatives

    Dilip Das


    There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.

  15. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    Sun, Fan


    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two...... different system performance requirements. For different objectives, two optimization problems are formulated and solutions are presented. One is to minimize the outage probability given the efficiency requirement, while the other one is to maximize the transmission efficiency given the outage probability...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  16. Effect of slip boundary conditions on interfacial stability of two-layer viscous fluids under shear

    Patlazhan, Stanislav


    The traditional approach in the study of hydrodynamic stability of stratified fluids includes the stick boundary conditions between layers. However, this rule may be violated in polymer systems and as a consequence various instabilities may arise. The main objective of this paper is to analyze theoretically the influence of slip boundary conditions on the hydrodynamic stability of the interface between two immiscible viscous layers subjected to simple shear flow. It is found that the growth rate of long-wave disturbances is fairly sensitive to the slip at the interface between layers as well as at the external boundary. These phenomena are shown to give different contributions to the stability of shear flow depending on viscosity, thickness, and density ratios of the layers. Particularly, the interfacial slip can increase the perturbation growth rate and lead to unstable flow. An important consequence of this effect is the violation of stability for sheared layers with equal viscosities and densities in a bro...

  17. Actin network architecture and elasticity in lamellipodia of melanoma cells

    Fleischer, Frank [Medical Data Services/Biostatistics, Boehringer Ingelheim Pharma GmbH and Co KG, D-88397 Biberach, Baden-Wuerttemberg (Germany); Ananthakrishnan, Revathi [Laboratory of Cell and Computational Biology, Section of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616 (United States); Eckel, Stefanie [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Schmidt, Hendrik [France Telecom R and D RESA/NET/NSO, F-92131 Issy les Moulineaux, Cedex 9, France (France); Kaes, Josef [Division of Soft Matter Physics, Department of Physics, University of Leipzig, D-04103 Leipzig (Germany); Svitkina, Tatyana [Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Schmidt, Volker [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine I, University Hospital, D-89070 Ulm (Germany)


    Cell migration is an essential element in the immune response on the one hand and in cancer metastasis on the other hand. The architecture of the actin network in lamellipodia determines the elasticity of the leading edge and contributes to the regulation of migration. We have implemented a new method for the analysis of actin network morphology in the lamellipodia of B16F1 mouse melanoma cells. This method is based on fitting multi-layer geometrical models to electron microscopy images of lamellipodial actin networks. The chosen model and F-actin concentrations are thereby deterministic parameters. Using this approach, we identified distinct structural features of actin networks in lamellipodia. The mesh size which defines the elasticity of the lamellipodium was determined as 34 and 78 nm for a two-layer network at a total actin concentration of 9.6 mg ml{sup -1}. These data lead to estimates of the low frequency elastic shear moduli which differ by more than a magnitude between the two layers. These findings indicate an anisotropic shear modulus of the lamellipodium with the stiffer layer being the dominant structure against deformations in the lamellipodial plane and the softer layer contributing significantly at lower indentations perpendicular to the lamellipodial plane. This combination creates a material that is optimal for pushing forward as well as squeezing through narrow spaces.

  18. Flexible Touch Sensors Made of Two Layers of Printed Conductive Flexible Adhesives

    Sungwon Seo


    Full Text Available Touch sensors are crucial in controlling robotic manipulation when a robot interacts with environmental objects. In this study, multilayer flexible touch sensors in the form of an array were developed. The sensors use ink-type conductive flexible adhesives as electrodes which were printed on polyethylene terephthalate (PET films in a parallel equidistance stripe pattern. Between the two printed layers, a double-sided adhesive film was used to combine each layer and was perforated at the junctions of the top and bottom electrodes with different-sized circles. These holes represent switching mechanisms between the top and bottom electrodes, and their sizes make the sensor respond to different levels of external pressure. We showed the durability of the fabricated sensor with 1 mm diameter holes by repeated experiments of exerting normal pressure ranging from 0 to 159.15 kPa for 1000 cycles. In case of 1 mm diameter holes, the state of each sensor node was reliably determined by the threshold pressures of 127.3 kPa for increasing pressure and 111.4 kPa for decreasing pressure. On the other hand, decreasing the hole size from 3 to 0.5 mm caused an increase in the threshold pressure from 1.41 to 214 kPa. The relation between the hole size and the threshold pressure was analyzed by a mechanical model. The sensor performance was also verified on curved surfaces up to 60 mm radius of curvatures. Additionally, we fabricated a sensor with three levels of sensitivity with a conventional method which was a thermal evaporation to show the extendibility of the idea.

  19. Flexible Touch Sensors Made of Two Layers of Printed Conductive Flexible Adhesives

    Seo, Sungwon; Kim, Seonggi; Jung, Jiyeon; Ma, Rujun; Baik, Seunghyun; Moon, Hyungpil


    Touch sensors are crucial in controlling robotic manipulation when a robot interacts with environmental objects. In this study, multilayer flexible touch sensors in the form of an array were developed. The sensors use ink-type conductive flexible adhesives as electrodes which were printed on polyethylene terephthalate (PET) films in a parallel equidistance stripe pattern. Between the two printed layers, a double-sided adhesive film was used to combine each layer and was perforated at the junctions of the top and bottom electrodes with different-sized circles. These holes represent switching mechanisms between the top and bottom electrodes, and their sizes make the sensor respond to different levels of external pressure. We showed the durability of the fabricated sensor with 1 mm diameter holes by repeated experiments of exerting normal pressure ranging from 0 to 159.15 kPa for 1000 cycles. In case of 1 mm diameter holes, the state of each sensor node was reliably determined by the threshold pressures of 127.3 kPa for increasing pressure and 111.4 kPa for decreasing pressure. On the other hand, decreasing the hole size from 3 to 0.5 mm caused an increase in the threshold pressure from 1.41 to 214 kPa. The relation between the hole size and the threshold pressure was analyzed by a mechanical model. The sensor performance was also verified on curved surfaces up to 60 mm radius of curvatures. Additionally, we fabricated a sensor with three levels of sensitivity with a conventional method which was a thermal evaporation to show the extendibility of the idea. PMID:27649205

  20. Acquired disorders of elastic tissue: part I. Increased elastic tissue and solar elastotic syndromes.

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie


    Elastic fibers in the extracellular matrix are an integral component of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin may be attributed to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood due to the paucity of reported cases. Several acquired disorders in which accumulation or elastotic degeneration of dermal elastic fibers produces prominent clinical and histopathologic features have recently been described. They include elastoderma, linear focal elastosis, and late-onset focal dermal elastosis and must be differentiated from better-known disorders, among them acquired pseudoxanthoma elasticum, elastosis perforans serpiginosa, and Favré-Racouchot syndrome. Learning objective At the conclusion of this learning activity, participants should understand the similarities and differences between acquired disorders of elastic tissue that are characterized by an increase in elastic tissue, as well as the spectrum of solar elastotic dermatoses.

  1. Elastic scattering phenomenology

    Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)


    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)

  2. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.

    Bertan Hallacoglu

    Full Text Available We introduce a multi-distance, frequency-domain, near-infrared spectroscopy (NIRS method to measure the optical coefficients of two-layered media and the thickness of the top layer from diffuse reflectance measurements. This method features a direct solution based on diffusion theory and an inversion procedure based on the Levenberg-Marquardt algorithm. We have validated our method through Monte Carlo simulations, experiments on tissue-like phantoms, and measurements on the forehead of three human subjects. The Monte Carlo simulations and phantom measurements have shown that, in ideal two-layered samples, our method accurately recovers the top layer thickness (L, the absorption coefficient (µ a and the reduced scattering coefficient (µ' s of both layers with deviations that are typically less than 10% for all parameters. Our method is aimed at absolute measurements of hemoglobin concentration and saturation in cerebral and extracerebral tissue of adult human subjects, where the top layer (layer 1 represents extracerebral tissue (scalp, skull, dura mater, subarachnoid space, etc. and the bottom layer (layer 2 represents cerebral tissue. Human subject measurements have shown a significantly greater total hemoglobin concentration in cerebral tissue (82±14 µM with respect to extracerebral tissue (30±7 µM. By contrast, there was no significant difference between the hemoglobin saturation measured in cerebral tissue (56%±10% and extracerebral tissue (62%±6%. To our knowledge, this is the first time that an inversion procedure in the frequency domain with six unknown parameters with no other prior knowledge is used for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  3. Radiative transfer theory for passive microwave remote sensing of a two-layer random medium with cylindrical structures

    Chuang, S. L.; Kong, J. A.; Tsang, L.


    A model of the vegetation layer as a two-layer random medium with a small correlation length l sub rho in the horizontal direction, and a large correlation length l sub z in the vertical direction, is presented for fields with cylindrical structures. As l sub z approaches infinity, closed form solutions are derived for the brightness temperatures; the kernels in the scattering terms of the radiative transfer equations result in delta functions showing that forward scattering is dominant over all other directions. The results are compared with the Gaussian quadrature method data for numerical solution of the radiative transfer equations.


    ZHU Wei; YOU Yun-xiang; MIAO Guo-ping; ZHAO Feng; ZHANG Jun


    This paper is concerned with the waves generated by a 3-D body advancing beneath the free surface with constant speed in a two-layer fluid of finite depth. By applying Green's theorem, a layered integral equation system based on the Rankine source for the perturbed velocity potential generated by the moving body was derived with the potential flow theory. A four-node isoparametric element method was used to treat with the solution of the layered integral equation system. The surface and interface waves generated by a moving ball were calculated numerically. The results were compared with the analytical results for a moving source with constant velocity.

  5. Statistical mechanics of elasticity

    Weiner, JH


    Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.

  6. Mastering ElasticSearch

    Kuc, Rafal


    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  7. Quasi-two-layer finite-volume scheme for modeling shallow water flows with the presence of external forces

    Karelsky, K V; Slavin, A G


    The numerical method for study of hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. This method takes into account the external force effect, it uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with consideration of features of the flow near the step. A distinctive feature of the proposed method is the consideration of the properties of the process of the waterfall, namely the fluid flow on the step in which the fluid does not wet part of the vertical wall of the step. The presence of dry zones in the vertical part of the step indicates violation of the conditions of hydrostatic flow. The quasi-two-layer approach allows to determine the size of the dry zone of the vertical component of the step. Consequently it gives an opportunity to figure out the amount of kinetic energy dissipation. There are performed the numerical simulations based on the proposed algorithm of various physical phenomena, such as a breakdown of the r...

  8. Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow

    Bai, Yefei; Cheung, Kwok Fai


    A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.

  9. Acoustic scattering by a two-layer cylindrical tube immersed in a fluid medium: Existence of a pseudo wave.

    Elhanaoui, Abdelkader; Aassif, Elhoucein; Maze, Gérard; Décultot, Dominique


    The present paper studies the acoustic signal backscattered by an air-filled copper–solid polymer two-layer cylindrical tube immersed in water. The work is done from the calculation of the backscattered pressure, an inverse Fourier Transform, which allows us to obtain an impulse signal. Smoothed pseudo Wigner–Ville and Concentrated spectrogram representations have been chosen to analyze the scattering phenomenon. For reduced frequencies ranging from 0.1 to 200, the resonance trajectories and time–frequency images have shown the presence of the guided waves. The bifurcation of the A0 wave into the A0(-) and the A0(+) waves has also been observed. The authors provide the phase and the group velocities of guided waves and investigate the differences between curves. The findings are then compared with those obtained for the copper and the solid polymer one-layer cylindrical tubes. Group velocity values have also been extracted from smoothed pseudo Wigner–Ville and Concentrated spectrogram time–frequency images. A good agreement with the theory has, therefore, been observed. The study of acoustic backscattering by a copper–solid polymer two-layer tube has revealed the interaction and the coupling of guided waves, specially the presence of a pseudo A1 wave; which is a very interesting, remarkable phenomenon.

  10. A Numerical Study on Water Waves Generated by A Submerged Moving Body in A Two-Layer Fluid System

    YANG Jia-Zhen; NG Chiu-On; ZHANG Dao-Hua


    This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier-Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water-mud interface waves as functions of time. The numerical model is validated by mimick-ing a reported experiment in a one-layer system before it is applied to a two-layer system, it is found that the presence of bottom mud in a water layer can lead to large viscous damping of the surface waves. For the investigation of the problem systematically, the effects of the Froude number and the mud layer thickness, density and viscosity relative to those of water are evaluated and discussed in detail.

  11. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells

    Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao


    In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm-2 and a fill factor of 0.67.

  12. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    U. Marschner


    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  13. A constructive algorithm to solve "convex recursive deletion" (CoRD) classification problems via two-layer perceptron networks.

    Cabrelli, C; Molter, U; Shonkwiler, R


    A sufficient condition that a region be classifiable by a two-layer feedforward neural net (a two-layer perceptron) using threshold activation functions is that either it be a convex polytope or that intersected with the complement of a convex polytope in its interior, or that intersected with the complement of a convex polytope in its interior or ... recursively. These have been called convex recursive deletion (CoRD) regions.We give a simple algorithm for finding the weights and thresholds in both layers for a feedforward net that implements such a region. The results of this work help in understanding the relationship between the decision region of a perceptron and its corresponding geometry in input space. Our construction extends in a simple way to the case that the decision region is the disjoint union of CoRD regions (requiring three layers). Therefore this work also helps in understanding how many neurons are needed in the second layer of a general three-layer network. In the event that the decision region of a network is known and is the union of CoRD regions, our results enable the calculation of the weights and thresholds of the implementing network directly and rapidly without the need for thousands of backpropagation iterations.

  14. TOPICAL REVIEW: Inverse problems in elasticity

    Bonnet, Marc; Constantinescu, Andrei


    This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.

  15. Nonlinear elastic waves in materials

    Rushchitsky, Jeremiah J


    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  16. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    Kamra, A.


    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In certai

  17. The theory of elastic waves and waveguides

    Miklowitz, J


    The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.

  18. Elasticity reconstructive imaging by means of stimulated echo MRI.

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y


    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  19. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters.

    Inoue, Yuki; Hamada, Takaho; Hasegawa, Masaya; Hazumi, Masashi; Hori, Yasuto; Suzuki, Aritoki; Tomaru, Takayuki; Matsumura, Tomotake; Sakata, Toshifumi; Minamoto, Tomoyuki; Hirai, Tohru


    We have developed a novel two-layer anti-reflection (AR) coating method for large-diameter infrared (IR) filters made of alumina, for use at cryogenic temperatures in millimeter wave measurements. Thermally sprayed mullite and polyimide foam (Skybond Foam) are used as the AR material. An advantage of the Skybond Foam is that the index of refraction is chosen between 1.1 and 1.7 by changing the filling factor. Combination with mullite is suitable for wide-band millimeter wave measurements with sufficient IR cutoff capability. We present the material properties, fabrication of a large-diameter IR filter made of alumina with this AR coating method, and characterizations at cryogenic temperatures. This technology can be applied to a low-temperature receiver system with a large-diameter focal plane for next-generation cosmic microwave background polarization measurements, such as POLARBEAR-2 (PB-2).

  20. Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications

    Elshurafa, Amro M.


    In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.

  1. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters

    Inoue, Yuki; Hasegawa, Masaya; Hazumi, Masashi; Hori, Yasuto; Suzuki, Aritoki; Tomaru, Takayuki; Matsumura, Tomotake; Sakata, Toshifumi; Minamoto, Tomoyuki; Hirai, Tohru


    We have developed a novel two-layer anti-reflection (AR) coating method for large-diameter infrared (IR) filters made of alumina, for the use at cryogenic temperatures in millimeter wave measurements. Thermally- sprayed mullite and polyimide foam (Skybond Foam) are used as the AR material. An advantage of the Skybond Foam is that the index of refraction is chosen between 1.1 and 1.7 by changing the filling factor. Combination with mullite is suitable for wide-band millimeter wave measurements with sufficient IR cutoff capability. We present the material properties, fabrication of a large-diameter IR filter made of alumina with this AR coating method, and characterizations at cryogenic temperatures. This technology can be applied to a low-temperature receiver system with a large-diameter focal plane for next-generation cosmic microwave background (CMB) polarization measurements, such as POLARBEAR-2 (PB-2).

  2. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China) and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871 (China); Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Am Coulombwall 1, 85748 Garching (Germany) and Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany)


    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  3. Hierarchical modeling and control of hybrid systems with two layers; Hierarchische Modellierung und Regelung hybrider Systeme auf zwei Ebenen

    Stursberg, Olaf; Paschedag, Tina; Rungger, Matthias; Ding, Hao [Kassel Univ. (Germany). Fachgebiet Regelungs- und Systemtheorie


    While hybrid dynamic models are, to a certain degree, established for modeling systems with heterogeneous dynamics, most approaches for design and analysis of hybrid systems are restricted to monolithic models without hierarchy. This contribution first shows, how modular hybrid systems with two layers of decision, as appropriate for representing manufacturing systems for example, can be modeled systematically. The second part proposes a technique for fixing discrete inputs (for coordinating control) and continuous inputs (for embedded continuous controllers) in combination. The method uses a graph-based search on the upper decision layer, while principles of predictive control are used on the lower layer. The procedure of modeling and control is illustrated for a manufacturing process. (orig.)

  4. Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent


    Foot ulceration is a debilitating comorbidity of diabetes that may result in loss of mobility and amputation. Optical detection of cutaneous tissue changes due to inflammation and necrosis at the preulcer site could constitute a preventative strategy. A commercial hyperspectral oximetry system was used to measure tissue oxygenation on the feet of diabetic patients. A previously developed predictive index was used to differentiate preulcer tissue from surrounding healthy tissue with a sensitivity of 92% and specificity of 80%. To improve prediction accuracy, an optical skin model was developed treating skin as a two-layer medium and explicitly accounting for (i) melanin content and thickness of the epidermis, (ii) blood content and hemoglobin saturation of the dermis, and (iii) tissue scattering in both layers. Using this forward model, an iterative inverse method was used to determine the skin properties from hyperspectral images of preulcerative areas. The use of this information in lowering the false positive rate was discussed.

  5. Oblique wave scattering by an undulating porous bottom in a two-layer ice-covered fluid

    Panda, Srikumar


    The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated and permeable. By using regular perturbation analysis and Fourier transform technique, the problem is solved and the first order reflection and transmission coefficients are determined. It is found that these coefficients depend on the shape as well as the permeability of the undulating bottom. Therefore, from the practical viewpoint, an undulating bottom topography is considered to determine all the aforesaid coefficients. The role of various system parameters, such as porosity, angle of incidence and ice parameters, are discussed to analyze the transformation of incident water wave energy from one layer to another layer. The outcomes are demonstrated in graphical forms.

  6. Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron

    Ding, Qingwei; Zhang, Mingang; Zhang, Cunrui; Qian, Tianwei


    Polycrystalline iron fibers were fabricated by α-FeOOH fiber precursors. Two-layer microwave absorber had been prepared by as-prepared polycrystalline iron fibers and carbonyl iron. The structure, morphology and properties of the composites were characterized with X-ray diffraction, scanning electron microscope and Network Analyzer. The complex permittivity and reflection loss (dB) of the composites were measured employing vector network analyzer model PNA 3629D vector in the frequency range between 30 and 6000 MHz. The thickness effect of the carbonyl iron layer on the microwave loss properties of the composites was investigated. A possible microwave-absorbing mechanism of polycrystalline iron fibers/carbonyl iron composite was proposed. The polycrystalline iron fibers/carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  7. Synchronization in a coupled two-layer quasigeostrophic model of baroclinic instability – Part 1: Master-slave configuration

    P. L. Read


    Full Text Available Synchronization is studied using a pair of diffusively-coupled, two-layer quasi-geostrophic systems each comprising a single baroclinic wave and a zonal flow. In particular, the coupling between the systems is in the well-known master-slave or one-way configuration. Nonlinear time series analysis, phase dynamics, and bifurcation diagrams are used to study the dynamics of the coupled system. Phase synchronization, imperfect synchronization (phase slips, or complete synchronization are found, depending upon the strength of coupling, when the systems are either in a periodic or a chaotic regime. The results of investigations when the dynamics of each system are in different regimes are also presented. These results also show evidence of phase synchronization and signs of chaos control.

  8. Monte carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain.

    Alexandrakis, G; Farrell, T J; Patterson, M S


    We propose a hybrid Monte Carlo (MC) diffusion model for calculating the spatially resolved reflectance amplitude and phase delay resulting from an intensity-modulated pencil beam vertically incident on a two-layer turbid medium. The model combines the accuracy of MC at radial distances near the incident beam with the computational efficiency afforded by a diffusion calculation at further distances. This results in a single forward calculation several hundred times faster than pure MC, depending primarily on model parameters. Model predictions are compared with MC data for two cases that span the extremes of physiologically relevant optical properties: skin overlying fat and skin overlying muscle, both in the presence of an exogenous absorber. It is shown that good agreement can be achieved for radial distances from 0.5 to 20 mm in both cases. However, in the skin-on-muscle case the choice of model parameters and the definition of the diffusion coefficient can lead to some interesting discrepancies.

  9. A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns

    Sarno, L.; Carravetta, A.; Martino, R.; Tai, Y. C.


    The dynamics of dry granular flows is still insufficiently understood. Several depth-averaged approaches, where the flow motion is described through hydrodynamic-like models with suitable resistance laws, have been proposed in the last decades to describe the propagation of avalanches and debris flows. Yet, some important features of the granular flow dynamics cannot be well delivered. For example, it is very challenging to capture the progressive deposition process, observed in collapses and dam-break flows over rough beds, where an upper surface flow is found to coexist with a lower creeping flow. The experimental observations of such flows suggest the existence of a flow regime stratification caused by different momentum transfer mechanisms. In this work, we propose a two-layer depth-averaged model, aiming at describing such a stratification regime inside the flowing granular mass. The model equations are derived for both two-dimensional plane and axi-symmetric flows. Mass and momentum balances of each layer are considered separately, so that different constitutive laws are introduced. The proposed model is equipped with a closure equation accounting for the mass flux at the interface between the layers. Numerical results are compared with experimental data of axi-symmetric granular collapses to validate the proposed approach. The model delivers sound agreement with experimental data when the initial aspect ratios are small. In case of large initial aspect ratios, it yields a significant improvement in predicting the final shape of deposit and also the run-out distances. Further comparisons with different numerical models show that the two-layer approach is capable of correctly describing the main features of the final deposit also in the case of two-dimensional granular collapses.

  10. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan


    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at

  11. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    Silva, Alice Cunha da; Su, Jian, E-mail:, E-mail: [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)


    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  12. Elastic anisotropy of crystals

    Christopher M. Kube


    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  13. Elastic constants of calcite

    Peselnick, L.; Robie, R.A.


    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  14. Elastic scattering of hadrons

    Dremin, I M


    When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...

  15. An elastic second skin

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert


    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  16. Anisotropic elastic plates

    Hwu, Chyanbin


    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  17. Hybrid elastic solids

    Lai, Yun


    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  18. Mechanics of elastic composites

    Cristescu, Nicolaie Dan; Soós, Eugen


    This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book''s many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading

  19. ElasticSearch server

    Rogozinski, Marek


    This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.


    A. V. Chernyshev


    Full Text Available In carrying out eddy current thickness measurement of two-layer conductive objects one from the interfering factors is the presence of variations in the value of the electrical conductivity of the material of the upper layer (coating when moving from point to point on the surface of object of control or when passing from one object of control to another. The aim of this work is to evaluate the accuracy of determining the thickness of the conductive coating disposed on a conducting ferromagnetic basis, using the phase method of eddy current testing. The reason of the error is variation of the electrical conductivity of the material of coating.Determination of the error is based on calculations using known analytical expressions for the loop with current of sinusoidal form arranged over the infinite half space with a covering as a thin layer. Selected in calculating electromagnetic parameters of coating and substrate approximately correspond to the case -chromium layer on a nickel base. Calculations are performed for different frequencies of current passed through coil.It is shown that at reduction of frequency of the current passes through the coil the error is reduced. The value of the lowest possible operating frequency of the excitation current is determined by the condition of absence influence on the phase introduced into the superimposed transducer emf variations in the thickness of the basis.To reduce the indicated error it is proposed to determine, on the basis of phase method at a relatively high frequency transducer current excitation, conductivity of the material of coating. After this, at a low frequency excitation current and using phase method, the coating thickness is determined, taking into consideration the previously determined value of the conductivity of coating. Also discussed ways to improve the accuracy of phase measurements in the MHz region of the excitation current frequency. 

  1. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    M. Holtzer


    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  2. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine


    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  3. Two-layer ZnO nanowire arrays: Fabrication and its photovoltaic property sensitized by CdSe and CdS quantum dots

    Yin, Jingzhi [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Wang, Jianxiong; Sun, Xiaowei [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)


    Two-layer ZnO nanowire arrays have been synthesized by a low temperature hydrothermal method. The two-layer structure enables the absorption of CdSe and CdS quantum dots (QDs) on different nanostructured layers, respectively. Solar cell based on the QD sensitized ZnO nanowire arrays is fabricated. Because sequential light adsorption of different sensitizers happens in two different layers, the photoanode can reduce the interaction possibility among different QDs and extend the absorption range, and result in improved photovoltaic properties. - Highlights: • Two-layer ZnO nanowire array has been synthesized by a low temperature hydrothermal. • A two-layer quantum dot sensitized ZnO nanowire array solar cell has been fabricated. • The structure can reduce interaction possibility among different quantum dots. • The structure can extend the range of light absorption.

  4. bessel functions for axisymmetric elasticity problems of the elastic ...



  5. Object and Objective Lost?

    Lopdrup-Hjorth, Thomas


    This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...

  6. Price elasticity of demand for psychiatric consultation in a Nigerian ...

    African Health Sciences Vol 16 Issue 4, December, 2016. Abstract: Objective: This paper addresses price elasticity of demand (PED) in a region ... Accordingly, such commodities ... In low- and middle-income countries removing or reduc-.

  7. Decreased arterial elasticity in formerly early-onset preeclamptic women

    Souwer, Esteban T. D.; Blaauw, Judith; Coffeng, Sophie M.; Smit, Andries J.; Van Doormaal, Jasper J.; Faas, Marijke M.; Van Pampus, Maria G.


    Objective. Preeclampsia is associated with cardiovascular atherosclerotic events later in life. Impaired arterial elasticity is considered to be a marker of vascular (endothelial) dysfunction and to be involved in the atherosclerotic process. We investigated whether previously preeclamptic women hav

  8. Non-linear elastic deformations

    Ogden, R W


    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  9. Mathematical methods in elasticity imaging

    Ammari, Habib; Garnier, Josselin; Wahab, Abdul


    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertai

  10. Approximation by planar elastic curves

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge


    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  11. High-Performanced Cathode with a Two-Layered R-P Structure for Intermediate Temperature Solid Oxide Fuel Cells.

    Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Lu, Yalin


    Driven by the mounting concerns on global warming and energy crisis, intermediate temperature solid-oxide fuel cells (IT-SOFCs) have attracted special attention for their high fuel efficiency, low toxic gas emission, and great fuel flexibility. A key obstacle to the practical operation of IT-SOFCs is their sluggish oxygen reduction reaction (ORR) kinetics. In this work, we applied a new two-layered Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7-δ (SFO), as the material for oxygen ion conducting IT-SOFCs. Density functional theory calculation suggested that SFO has extremely low oxygen ion formation energy and considerable energy barrier for O(2-) diffusion. Unfortunately, the stable SrO surface of SFO was demonstrated to be inert to O2 adsorption and dissociation reaction, and thus restricts its catalytic activity toward ORR. Based on this observation, Co partially substituted SFO (SFCO) was then synthesized and applied to improve its surface vacancy concentration to accelerate the oxygen adsorptive reduction reaction rate. Electrochemical performance results suggested that the cell using the SFCO single phase cathode has a peak power density of 685 mW cm(-2) at 650 °C, about 15% higher than those when using LSCF cathode. Operating at 200 mA cm(-2), the new cell using SFCO is quite stable within the 100-h' test.

  12. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    Kazantsev, Victor; Pimashkin, Alexey


    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales.

  13. Spin torque driven dynamics of a coupled two-layer structure: Interplay between conservative and dissipative coupling

    Romera, M.; Lacoste, B.; Ebels, U.; Buda-Prejbeanu, L. D.


    The general concepts of spin wave theory are adapted to the spin torque driven dynamics of a self-polarized system based on two layers coupled via interlayer exchange (conservative coupling) and mutual spin torque (dissipative coupling). An analytical description of the nonlinear dynamics is proposed and validated through numerical simulations. In contrast to the single layer model, the phase equation of the coupled system has a contribution coming from the dissipative part of the LLGS equation. It is shown that this is a major contribution to the frequency mandatory to describe well the most basic features of the dynamics of this coupled system. Using the proposed model a specific feature of coupled dynamics is addressed: the redshift to blueshift transition observed in the frequency current dependence of this kind of exchange coupled systems upon increasing the applied field. It is found that the blueshift regime can only occur in a region of field where the two linear eigenmodes contribute equally to the steady state mode (i.e., high mode hybridization). Finally, a general perturbed Hamiltonian equation for the coupled system is proposed.

  14. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun


    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: .

  15. A novel technique for chest drain removal using a two layer method with triclosan-coated sutures

    Yokoyama, Yujiro; Nakagomi, Takahiro; Shikata, Daichi


    In thoracic surgery, a thoracic drain is always inserted after the surgical procedure. Repair of the wound after removal of the thoracic tube is performed postoperatively, but no universally standard methods currently exists for this tube removal. Here we report a technique using triclosan-coated sutures that is used in thoracic surgery in our hospital. There are several advantages of this technique. First, there is no need for stitches removal on follow-up. Second, it prevents the leakage of pleural exudate because of the tight two-layer sutures. In addition, it was observed to be superior in terms of both wound healing and cosmetic aspects, due to the layer-to-layer sutures. The use of triclosan-coated sutures helps prevent infection and empyema is quite unlikely to occur as the result of the tight ligating of the muscular layer using these sutures. We applied this method in 168 patients over a period of 24 months. There were no complications on removal of the chest tube such as infection, fluid leakage or opening of the surgical wound. PMID:28203426

  16. Diffraction of Oblique Water Waves by Small Uneven Channel-bed in a Two-layer Fluid

    Smrutiranjan Mohapatra


    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  17. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation.

    Guan, C; Xie, H J; Wang, Y Z; Chen, Y M; Jiang, Y S; Tang, X W


    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems.

  18. Multiresidue analysis of pesticides in vegetables and fruits using two-layered column with graphitized carbon and water absorbent polymer.

    Obana, H; Akutsu, K; Okihashi, M; Hori, S


    A high-throughput multiresidue analysis of pesticides in non-fatty vegetables and fruits was developed. The method consisted of a single extraction and a single clean-up procedure. Food samples were extracted with ethyl acetate and the mixture of extract and food dregs were poured directly into the clean-up column. The clean-up column consisted of two layers of water-absorbent polymer (upper) and graphitized carbon (lower), which were packed in a reservoir (75 ml ) of a cartridge column. The polymer removed water in the extract while the carbon performed clean-up. In a recovery test, 110 pesticides were spiked and average recoveries were more than 95% from spinach and orange. Most pesticides were recovered in the range 70-115% with RSD usually < 10% for five experiments. The residue analyses were performed by the extraction of 12 pesticides from 13 samples. The two methods resulted in similar residue levels except chlorothalonil in celery, for which the result was lower with the proposed method. The results confirmed that the proposed method could be applied to monitoring of pesticide residue in foods.

  19. Thickness Determination for a Two-Layered Composite of a Film and a Plate by Low-Frequency Ultrasound

    MAO Jie; LI Ming-Xuan; WANG Xiao-Min


    We present an ultrasonic method for determining the thickness of a composite consisting of a soft thin film attached to a hard plate substrate, by resonance spectra in the low frequency region. The interrogating waves can be incident only to the two-layered composite from the substrate side. The reflection spectra are obtained by FFT analysis of the compressive pulsed echoes from the composite, and the thicknesses of the film and the substrate are simultaneously inversed by the simulated annealing method from the resonant frequencies knowing other acoustical parameters in prior. The sensitivity of the method to individual thickness, its convergence and stability against experimental noises are studied. Experiment with interrogating wavelength 4 times larger than the film thickness in a sample of a polymer film (0.054 mm) on an aluminium plate (6.24 mm) verifies the validity of the method. The average relative errors in the measurement of the thicknesses of the film and the substrate are found to be -4.1% and -0.62%, respectively.

  20. Diffraction of oblique water waves by small uneven channel-bed in a two-layer fluid

    Mohapatra, Smrutiranjan


    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  1. Reflection of a plane wave from a two-layered seafloor with non-parallel interface between the layers.

    Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A


    This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.

  2. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    grosse Austing, Jan; Nunes Kirchner, Carolina; Hammer, Eva-Maria; Komsiyska, Lidiya; Wittstock, Gunther


    The performance of a unitised bidirectional vanadium/air redox flow battery (VARFB) is described. It contains a two-layered cathode consisting of a gas diffusion electrode (GDE) with Pt/C catalyst for discharging and of an IrO2 modified graphite felt for charging. A simple routine is shown for the modification of a graphite felt with IrO2. A maximum energy efficiency of 41.7% at a current density of 20 mA cm-2 as well as an average discharge power density of 34.6 mW cm-2 at 40 mA cm-2 were obtained for VARFB operation at room temperature with the novel cathode setup. A dynamic hydrogen electrode was used to monitor half cell potentials during operation allowing to quantify the contribution of the cathode to the overall performance of the VARFB. Four consecutive cycles revealed that crossover of vanadium ions took place and irreversible degradation processes within the reaction unit lead to a performance decrease.

  3. Elastic platonic shells.

    Yong, Ee Hou; Nelson, David R; Mahadevan, L


    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  4. Series elastic actuators

    Williamson, Matthew M.


    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  5. Introduction to linear elasticity

    Gould, Phillip L


    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  6. Elastic plate spallation

    Oline, L.; Medaglia, J.


    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  7. Elastic scattering of hadrons

    Dremin, I. M.


    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  8. On the stability of discrete tripole, quadrupole, Thomson' vortex triangle and square in a two-layer/homogeneous rotating fluid

    Kurakin, Leonid G.; Ostrovskaya, Irina V.; Sokolovskiy, Mikhail A.


    A two-layer quasigeostrophic model is considered in the f-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity Γ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius R in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters ( R, Γ, α), where α is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group G is applied. The two definitions of stability used in the study are Routh stability and G-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the G-stability is the stability of a three-parameter invariant set O G , formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.

  9. Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances

    Wen, Guoyong; Marshak, Alexander; Várnai, Tamás.; Levy, Robert


    A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64% of the total reflectance enhancement and the new model (2LM + CSI) that also includes cloud-surface interactions accounts for nearly 80%. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20% of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.

  10. Oblique Water Wave Scattering by Bottom Undulation in a Two-layer Fluid Flowing Through a Channel

    Smrutiranjan Mohapatra; Swaroop Nandan Bora


    The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of tipples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal tipples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to π / 4.These theoretical observations are supported by graphical results.

  11. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite.

    Sun, Yingxin; Mao, Xinfeng; Pei, Supeng


    A two-layer ONIOM study on the hydrodesulfurization mechanism of thiophene in H-FAU and M-FAU (M = Li(+), Na(+), and K(+)) has been carried out. The calculated results reveal that in H-FAU, for a unimolecular mechanism, the rate-determining step is hydrogenation of alkoxide intermediate. The assistance of H2O and H2S molecules does not reduce the difficulty of the C-S bond cracking step more effectively. A bimolecular hydrodesulfurization mechanism is more favorable due to the lower activation barriers. The rate-determining step is the formation of 2-methylthiophene, not the C-S bond cracking of thiophene. Moreover, the ring opening of thiophene is much easier to occur than the desulfurization step. A careful analysis of energetics indicates that H2S, propene, and methyl thiophene are the major products for the hydrodesulfurization process of thiophene over H-FAU zeolite, in good agreement with experimental findings. In M-FAU zeolites, both unimolecular and bimolecular cracking processes are difficult to occur because of the high energy barriers. Compared to the case on H-FAU, the metal cations on M-FAU increase the difficulty of occurrence of bimolecular polymerization and subsequent C-S bond cracking steps. Graphical abstract Hydrodesulfurization process of thiophene can take place in H-FAU zeolite. Two different mechanisms, unimolecular and bimolecular ones, have been proposed and evaluated in detail. The bimolecular mechanism is more favorable due to lower activation barrier as described in the picture above. Our calculated data indicate that H2S, propene, and methylthiophene are the major products, in good agreement with experimental observations. The effect of metal cations on the reaction mechanism is also investigated in this work.

  12. Synchronization and chaos control in a periodically forced quasi-geostrophic two-layer model of baroclinic instability

    F. J. R. Eccles


    Full Text Available Cyclic forcing on many timescales is believed to have a significant effect on various quasi-periodic, geophysical phenomena such as El Niño, the Quasi-Biennial Oscillation, and glacial cycles. This variability has been investigated by numerous previous workers, in models ranging from simple energy balance constructions to full general circulation models. We present a numerical study in which periodic forcing is applied to a highly idealised, two-layer, quasi-geostrophic model on a β-plane. The bifurcation structure and (unforced behaviour of this particular model has been extensively examined by Lovegrove et al. (2001 and Lovegrove et al. (2002. We identify from their work three distinct regimes on which we perform our investigations: a steady, travelling wave regime, a quasi-periodic, modulated wave regime and a chaotic regime. In the travelling wave regime a nonlinear resonance is found. In the periodic regime, Arnol'd tongues, frequency locking and a Devil's staircase is seen for small amplitudes of forcing. As the forcing is increased the Arnol'd tongues undergo a period doubling route to chaos, and for larger forcings still, the parameter space we explored is dominated by either period 1 behaviour or chaotic behaviour. In the chaotic regime we extract unstable periodic orbits (UPOs and add the periodic forcing at periods corresponding to integer multiples of the UPO periods. We find regions of synchronization, similar to Arnol'd tongue behaviour but more skewed and centred approximately on these periods. The regions where chaos suppression took place are smaller than the synchronization regions, and are contained within them.

  13. Using stable water isotopes in a two-layer soil moisture conceptual framework to understand transpiration dynamics in a semiarid shrubland

    Szutu, D. J.; Papuga, S. A.; Wehr, R.


    Semiarid shrublands and other dryland ecosystems are highly sensitive to precipitation pulses. Because the frequency and magnitude of precipitation events have been projected to change for these ecosystems, the nature of these pulses and how they are distributed as moisture in the soil profile are also expected to change. Previous research has suggested that transpiration dynamics in drylands are associated with deep soil moisture, which accumulates after large rainfall events. Because transpiration is the productive component of evapotranspiration in that it is water used toward biomass accumulation, a hypothetical decrease in large rainfall events would have major consequences for the health and functioning of dryland ecosystems. Furthermore, as drylands account for nearly 40% of terrestrial biomes, these cascading changes have the potential to impact global water and carbon budgets. Still, in pulse-dependent dryland ecosystems, the relative contribution of transpiration to evapotranspiration and the temporal dynamics of this contribution are not well understood. The objective of this research is to better characterize the temporal dynamics of transpiration in dryland ecosystems. We present the relative contribution of transpiration to evapotranspiration over the course of a year from eddy covariance and sap flow measurements taken at a creosotebush-dominated shrubland ecosystem in southern Arizona. We analyze soil moisture and stable water isotopes within the context of a two-layer soil moisture conceptual framework in an attempt to identify the source water for transpiration. We use these results to explain the temporal dynamics of transpiration in this semiarid shrubland. Finally, we put our results in the context of regional climate projections to suggest how this dryland ecosystem might be impacted in the future. We expect our study will contribute to understanding where precipitation pulses are distributed in the soil moisture profile and when these pulses

  14. On a character of the forced vibrations of two-layer plate in the second boundary value problem

    Poghosyan H. M.


    Full Text Available The three-dimensional dynamic problem of the elasticity theory on forced vibration of orthotropic plate at coulomb friction between layers is solved by the asymptotic method. The bottom obverse surface is subject to external dynamic influences, and top - is rigidly fixed. The common asymptotic solution of the problem is found. The closed solution for particular type of problems is found. The resonance arising conditions are established. It is known, that constant tangential displacements acting to the second layer do not influence in stress-strain state of the first layer. It is shown, that the same phenomenon with the big accuracy remains in force at linearly varying on coordinates influences.

  15. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    Sahu, K. C.; Matar, O. K.


    The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  16. Theoretical research on enhancement of gain for Ni-like Ag 13.9 nm x-ray laser using a new two-layer target

    Zhang Guo-Ping; Zhang Tan-Xin; Zheng Wu-Di; Qiao Xiu-Mei


    For experiments such as on Ni-like Ag x-ray laser, driven by 1ω laser, the gain region is only several nrn depth near the target surface, this paper proposes a new two-layer target, in which a thin layer (several nm depth) of silver is plated on the surface of some other materials. Furthermore, the Ni-like Ag 13.9 nm x-ray laser produced by three new kinds of two-layer target with CH, Al and Ge as foundation, was theoretically studied.

  17. Models for elastic shells with incompatible strains


    The three-dimensional shapes of thin lamina such as leaves, flowers, feathers, wings etc, are driven by the differential strain induced by the relative growth. The growth takes place through variations in the Riemannian metric, given on the thin sheet as a function of location in the central plane and also across its thickness. The shape is then a consequence of elastic energy minimization on the frustrated geometrical object. Here we provide a rigorous derivation of the asymptotic theories f...

  18. Mathematical foundations of elasticity

    Marsden, Jerrold E


    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  19. A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes

    Wang, Jia; Ikeda, Moto; Saucier, Francois J.


    A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes has been developed to investigate the dynamics of bottom dense water plumes. The model is nonsteady state and includes vertical viscosity, the Coriolis force, and bottom friction. An integral solution rather than a perfect analytical expression is derived and, thus, the Simpson's 1/3 rule to approximate the integral is applied. At the very bottom, the dense water plume moves about 45° to the right (left) in the Northern (Southern) Hemisphere, looking downslope. From the bottom, the velocity vector rotates anticyclonically upward, indicating a bottom Ekman spiral that mimics the atmospheric Ekman boundary layer. The dense water within the bottom Ekman layer obeys a three-force balance, while the dense water above the bottom Ekman layer is governed by a two-force balance, which is a geostrophic flow with superimposed cycloidal inertial oscillations oriented from about 25° to 140° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere. The transport within the bottom Ekman layer is directed about 60-70° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere, forming an offshore (cross-isobath) transport in the absence of eddy flux and wind-forcing. The ratio of offshore transport to alongshore transport within the bottom Ekman layer is about 0.19 (19%), while the ratio above the bottom Ekman layer (i.e., geostrophic layer of the dense water) is only 3% (negligible compared to its alongshore transport), which, however, is equivalent in magnitude to its counterpart in the bottom Ekman layer if O(DE/h) ˜ 0.1 (where DE is the bottom Ekman layer thickness and h is the dense water layer thickness). In other words, the bottom Ekman layer and the geostrophic (dense) layer contribute equivalent dense water offshore (each contributes 50%). The magnitude of the descending dense water velocity depends

  20. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Salavat R. Aglyamov


    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  1. Polysoaps: Configurations and Elasticity

    Halperin, A.


    Simple polymers are very long, flexible, linear molecules. Amphiphiles, soaps, are small molecules comprising of a part that prefers water over oil and a part that prefers oil over water. By combining the two we arrive at an interesting, little explored, class of materials: Polysoaps. These comprise of a water soluble backbone incorporating, at intervals, covalently bound amphiphilic monomers. In water, the polymerised amphiphiles aggregate into self assembled units known as micelles. This induces a dramatic modification of the spatial configurations of the polymers. What were featureless random coils now exhibit intramolecular, hierachial self organisation. Due to this self organisation it is necessary to modify the paradigms describing the large scale behaviour of these polymers: Their configurations, dimensions and elasticity. Understanding the behaviour of these polymers is of practical interest because of their wide range of industrial applications, ranging from cosmetics to paper coating. It is of fundamental interest because polysoaps are characterised by a rugged free energy landscape that is reminiscent of complex systems such as proteins and glasses. The talk concerns theoretical arguments regarding the following issues: (i) The design parameters that govern the spatial configurations of the polysoaps, (ii) The interaction between polysoaps and free amphiphiles, (iii) The effect of the intramolecular self organisation on the elasticity of the chains.

  2. Elastic emission polishing

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.


    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  3. Elastic Bottom Propagation Mechanisms Investigated by Parabolic Equation Methods


    environments in the form of scattering at an elastic interface, oceanic T - waves , and Scholte waves . OBJECTIVES To implement explosive and earthquake...of the the deep ocean where there is no significant sloping bottom. It is believed that ocean bottom roughness scatters the elastic waves up into...Scholte interface waves are excited by seismic sources and have been observed by seismometers at the ocean bottom.[12, 13] Energy from interface waves has

  4. A Home Experiment in Elasticity

    Aguirregabiria, J M; Rivas, M


    We analyze a simple problem in elasticity: the \\emph{initial} motion of an elastic bar that after being hanged from an end is suddenly released. In a second problem a point mass is attached on the top of the bar. The analytical solutions uncover some unexpected properties, which can be checked, with a digital camera or camcorder, in an alternative setup in which a spring is substituted for the bar. The theoretical model and the experiments are useful to understand the similarities and differences between the elastic properties of bar and spring. Students can take advantage of the home experiments to improve their understanding of elastic waves.

  5. A two Layer Convecting Mantle With Exchange : A Unified Model Based on Geochemical, Seismic and Heat Flow Observations

    Allègre, C. J.; Jaupart, C.; Nolet, G.


    -penetrating slabs as emphasized by Fukao and al.(2001) and the recent observation of the large energy spectrum differences at 670 km depth (Gu and al., 2006). We discuss the problem of return flow, which is crucial for both energy budget and convection regime. The recent work on plume by Montelli and al. (2004, 2006) shows the existence of broad plumes in the lower mantle and thin plumes in the upper mantle. d) The estimate of heat flow coming from the lower mantle of 35-32 TW. The work of Davies(1990) and Sleep(1992) shows clearly that this transfer is not the result of plumes reaching the surface, because they correspond at most to 3TW. At the reverse the estimated heat flow carried by the lower mantle plumes is much higher (Nolet and al., 2006). We also discuss the heat flow paradox to explain a Urey ratio of 0.4 with whole mantle convection. In conclusion, we propose mantle with two layers convecting separately but with some exchange of matter, this global exchange corresponding to 1.1024kg since 4.4 Gy. Plume genesis is a two-stage process. Lower mantle plumes heat the Mesosphere boundary layer generating second generation plumes which reach the surface (Allègre and Turcotte; 1983; Allègre, 1987). In the upper mantle itself, we have to distinguish between a vigorously convecting asthenosphere and a sluggish convecting transition zone, both convecting in same cells.

  6. Questions about elastic waves

    Engelbrecht, Jüri


    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  7. The optimal elastic flagellum

    Spagnolie, Saverio E.; Lauga, Eric


    Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal low-Reynolds number locomotion when the angle between its local tangent and the swimming direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in three dimensions (smooth) and that of a sawtooth in two dimensions (nonsmooth). Physically, biological organisms (or engineered microswimmers) must expend internal energy in order to produce the waves of deformation responsible for the motion. Here we propose a physically motivated derivation of the optimal flagellum shape. We determine analytically and numerically the shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined energetic expenditure. Our novel approach is to define an energy which includes not only the work against the surrounding fluid, but also (1) the energy stored elastically in the bending of the flagellum, (2) the energy stored elastically in the internal sliding of the polymeric filaments which are responsible for the generation of the bending waves (microtubules), and (3) the viscous dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency. The optimal waveforms of finite-size flagella are shown to depend on a competition between rotational motions and bending costs, and we observe a surprising bias toward half-integer wave numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of swimming cells, therefore indicating available room for further biological tuning.

  8. Relativistic elasticity of stationary fluid branes

    Armas, J.; Obers, N.A.


    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show...... under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...... of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations....

  9. Relativistic Elasticity of Stationary Fluid Branes

    Armas, Jay


    Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  10. The First Law of Elasticity

    Girill, T. R.


    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  11. PAGOSA Sample Problem. Elastic Precursor

    Weseloh, Wayne N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clancy, Sean Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.

  12. Elastic model of dry friction

    Larkin, A. I.; Khmelnitskii, D. E., E-mail: [Landau Institute for Theoretical Physics (Russian Federation)


    Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.

  13. Study of elastic system fibers in human gingiva

    Walter Augusto Soares Machado

    Full Text Available Objective: To map the participation of the elastic system fibers of human gingiva. Methods: To conduct this study, fragments of human gingiva from ten individuals aged between 18 and 60 years, removed after periodontal surgery for prosthetic purposes, were analyzed by the histochemical and immuno-histochemical methods, to evaluate the participation of the elastic system fibers in this tissue. Results: The results demonstrated the presence of three type of elastic system fibers, that is to say, oxitalan, elaunin and elastic fibers,distributed as follows: 1 the oxitalan fibers form a network of thin fibers, located close to the basal membrane, at the level of the conjunctive tissue papillae; 2 elaunin fibers are found in close contact with the oxitalan fibers in the papillary and submaxillary regions, following the collagen fiber bundles; 3 a small quantity of elastic fibers were observed, dispersed throughout the deeper conjunctive tissue and around the blood vessels. Conclusion: The three types of elastic system fibers, that is, oxitalan, elaunin and elastic fibers are normal constituents of the extracellular matrixof human gingiva conjunctive tissue.

  14. Cell elasticity determines macrophage function.

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  15. Histomorphometric analysis of collagen and elastic fibres in the cranial and caudal fold of the porcine glottis.

    Lang, A; Koch, R; Rohn, K; Gasse, H


    The porcine glottis differs from the human glottis in its cranial and caudal vocal folds (CraF, CauF). The fibre apparatus of these folds was studied histomorphometrically in adult minipigs. For object definition and quantification, the colour-selection tools of the Adobe-Photoshop program were used. Another key feature was the subdivision of the cross-sections of the folds into proportional subunits. This allowed a statistical analysis irrespective of differences in thickness of the folds. Both folds had a distinct, dense subepithelial layer equivalent to the basement membrane zone in humans. The subsequent, loose layer was interpreted - in principle - as being equivalent to Reinke's space of the human vocal fold. The next two layers were not clearly separated. Due to this, the concept of a true vocal ligament did not appear applicable to neither CauF nor CraF. Instead, the body-cover model was emphasized by our findings. The missing vocalis muscle in the CraF is substituted by large collagen fibre bundles in a proportional depth corresponding to the position of the muscle of the CauF. The distribution of elastic fibres made the CraF rather than the CauF more similar to the human vocal fold. We suggest that these data are useful for those wishing to use the porcine glottis as a model for studying oscillatory properties during phonation.

  16. Object crowding.

    Wallace, Julian M; Tjan, Bosco S


    Crowding occurs when stimuli in the peripheral fields become harder to identify when flanked by other items. This phenomenon has been demonstrated extensively with simple patterns (e.g., Gabors and letters). Here, we characterize crowding for everyday objects. We presented three-item arrays of objects and letters, arranged radially and tangentially in the lower visual field. Observers identified the central target, and we measured contrast energy thresholds as a function of target-to-flanker spacing. Object crowding was similar to letter crowding in spatial extent but was much weaker. The average elevation in threshold contrast energy was in the order of 1 log unit for objects as compared to 2 log units for letters and silhouette objects. Furthermore, we examined whether the exterior and interior features of an object are differentially affected by crowding. We used a circular aperture to present or exclude the object interior. Critical spacings for these aperture and "donut" objects were similar to those of intact objects. Taken together, these findings suggest that crowding between letters and objects are essentially due to the same mechanism, which affects equally the interior and exterior features of an object. However, for objects defined with varying shades of gray, it is much easier to overcome crowding by increasing contrast.

  17. Performance Objectives


    objectives may direct students’ learning (Duchastel and Merrill, 1973; Kapfer , 1970; Kibler et al., 1974), since such objectives may provide...matter learning. Journal of Educational Psychology, 62(1): 67-70 (1971). Kapfer , P. G. Behavioral objectives and the curriculum processor. Educational

  18. Rate limit of protein elastic response is tether dependent

    Berkovich, Ronen; Hermans, Rodolfo I.; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J.; Fernandez, Julio M.


    The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient Deff ∼ 1,200 nm2/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at Deff ∼ 108 nm2/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with Deff ∼ 104–106 nm2/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk. PMID:22895787

  19. Eikonal model analysis of elastic hadron collisions at high energies

    Prochazka, Jiri


    Elastic collisions of protons at different energies represent main background in studying the structure of fundamental particles at the present. On the basis of standardly used model proposed by West and Yennie the protons have been then interpreted as transparent objects; elastic events have been interpreted as more central than inelastic ones. It will be shown that using eikonal model the protons may be interpreted in agreement with usual ontological conception; elastic processes being more peripheral than inelastic ones. The corresponding results (differing fundamentally from those of WY model) will be presented by analyzing the most ample elastic data set measured at ISR energy of 53 GeV. Detailed analysis of measured differential cross section will be performed and different alternatives of peripheral behavior on the basis of eikonal model will be presented. The impact of recently established electromagnetic form factors on determination of quantities specifying hadron interaction determined from the fit...

  20. Mathematical modeling of elastic inverted pendulum control system

    Chao XU; Xin YU


    Inverted pendulums are important objects of theoretical investigation and experiment in the area of control theory and engineering.The researches concentrate on the rigid finite dimensional models which are described by ordinary differential equations(ODEs).Complete rigidity is the approximation of practical models;Elasticity should be introduced into mathematical models in the analysis of system dynamics and integration of highly precise controller.A new kind of inverted pendulum,elastic inverted pendulum was proposed,and elasticity was considered.Mathematical model was derived from Hamiltonian principle and variational methods,which were formulated by the coupling of partial differential equations(PDE) and ODE.Because of infinite dimensional,system analysis and control of elastic inverted pendulum is more sophisticated than the rigid one.

  1. Elastic stability of high dose neutron irradiated spinel

    Li, Z.; Chan, S.K. [Argonne National Lab., Chicago, IL (United States); Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States)] [and others


    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  2. Physics of cell elasticity, shape and adhesion

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.


    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  3. Creating and controlling overlap in two-layer networks. Application to a mean-field SIS epidemic model with awareness dissemination

    Juher, David


    We study the properties of the potential overlap between two networks $A,B$ sharing the same set of $N$ nodes (a two-layer network) whose respective degree distributions $p_A(k), p_B(k)$ are given. Defining the overlap coefficient $\\alpha$ as the Jaccard index, we derive upper bounds for the minimum and maximum overlap coefficient in terms of $p_A(k)$, $p_B(k)$ and $N$. We also present an algorithm based on cross-rewiring of links to obtain a two-layer network with any prescribed $\\alpha$ inside the permitted range. Finally, to illustrate the importance of the overlap for the dynamics of interacting contagious processes, we derive a mean-field model for the spread of an SIS epidemic with awareness against infection over a two-layer network, containing $\\alpha$ as a parameter. A simple analytical relationship between $\\alpha$ and the basic reproduction number follows. Stochastic simulations are presented to assess the accuracy of the upper bounds of $\\alpha$ and the predictions of the mean-field epidemic model...

  4. Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate.

    Lee, Seung-Hoon; Shin, Muncheol; Hwang, Seongpil; Jang, Jae-Won


    Previous research has shown that disorder, dislocation, and carrier concentration are the main factors impacting transitions in the traditional metal-insulator transition (MIT) and metal-semiconductor transition (MST). In this study, it is demonstrated that a non-traditional metal-semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method we produced Au nanofeatures (AuNFs) on p-type silicon (p-Si) as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (p c). Even when the AuNF coverage percentage is larger than p c, the resistivities of the AuNFs on p-Si show MST as the temperature increases. To demonstrate this finding, we present a conduction model based upon two predominant parallel conductions by AuNFs and p-Si in the present paper. In the results, we show how the temperature of the MST (T MST) is tuned from 145 to 232 K as Au% is changed from 82.7 to 54.3%.

  5. Optimisation on the two-layer stack gamma detectors of CsI(Tl) coupled with a pin photodiode for non-destructive testing.

    Bai, Jin Hyoung; Whang, Joo Ho


    This paper proposed the two-layer stack scintillator-coupled photodiode detector to improve the measurement accuracy of the gamma-ray scanning. Both MCNPX and DETECT97 code were used to design the detector. The two manufactured two-layer stack gamma detectors were used to measure the density profile of the distillation column of the radiographic non-intrusive process diagnostic area. To compare the measurement accuracy of the density profile through the non-destructive transmission test, the relative error of the four fluids used for the process diagnostics was analysed. To summarise the measurement results with regard to the relative error of the NaI(Tl) detector and the manufactured detector by material as well as the total relative error, the total relative error of the NaI(Tl) detector was about 15.7 %, whereas that of the two-layer stack CsI(Tl) with photodiode detectors were about 5 %. This paper confirmed that the measurement accuracy of the detector proposed was improved by about three times as compared with the NaI(Tl) detector mostly used for non-destructive testing.

  6. Agile Objects

    German, Senta; Harris, Jim


    In this article, the authors argue that the art-historical canon, however it is construed, has little relevance to the selection of objects for museum-based teaching. Their contention is that all objects are fundamentally agile and capable of interrogation from any number of disciplinary standpoints, and that the canon of museum education,…

  7. Uniqueness theorems in linear elasticity

    Knops, Robin John


    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  8. Hilbert complexes of nonlinear elasticity

    Angoshtari, Arzhang; Yavari, Arash


    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  9. 尼莫地平双层渗透泵片的制备及其体外释放度考察%Preparation and in Vitro Release of Nimodipine Two-layer Osmotic Pump Tablets

    张冠男; 白靖; 曹德英


    目的:制备尼莫地平双层渗透泵控释片,并考察其体外释放度.方法:以体外累积释放度作为评价指标,以含药层助悬剂聚氧化乙烯(PEO)200000的用量、促渗剂氯化钠的用量、致孔剂聚乙二醇(PEG)2000的含量及包衣增重为考察因素,采用正交设计优化尼莫地平双层渗透泵控释片的处方;参照《中国药典》释放度测定法第二法测定其体外释放度.结果:最优处方为含药层PEO 200000 80 mg,氯化钠10 mg,助推层PEO 5000000 40 mg,PEG 2000用量8%,包衣增重8%.所制片剂释药速率恒定,12 h的体外累积释放度达90%以上.结论:尼莫地平双层渗透泵片工艺稳定,体外释放行为在12 h内具有明显的零级释放特征(r=0.990 3),达到了控释要求.%OBJECTIVE: To prepare Nimodipine two-layer osomatic pump tablets and to study the in vitro release of it. METHODS: The preparation formula of Nimodipine two-layer osomatic pump tablets was optimized by orthogonal design with accumulative release rate as index using the amount of PEO 200000 and osmotic promoter NaCl, the content of PEG 2000 and the weight growth of coating membrane as factors. The in vitro release of preparation was determined in accordance with the method stated in Chinese Pharmacopeia. RESULTS: The optimal formula was as follows: PEO 200000 in drug-containing layer of 80 mg, NaCl of 10 mg, PEO 5000000 in push layer of 40 mg, PEG 2000 of 8%, weight gain for coating membrane of 8%. The release rate was constant, the accumulative release rate was above 90% in 12 h. CONCLUSION: The preparation of Nimodipine two-layer osomatic pump tablets is stable, and the in vitro drug release shows excellent zero-release profile within 12 h (r=0.990 3), and in line with controlled requirements.

  10. DNA Bending elasticity

    Sivak, David Alexander

    DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections

  11. Integrodifferential relations in linear elasticity

    Kostin, Georgy V


    This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.

  12. Electrodynamic forces in elastic matter

    Antoci, S.; Mihich, L.


    A macroscopic theory for the dynamics of elastic, isotropic matter in presence of electromagnetic fields is proposed here. We avail of Gordon's general relativistic derivation of Abraham's electromagnetic energy tensor as starting point. The necessary description of the elastic and of the inertial behaviour of matter is provided through a four dimensional generalisation of Hooke's law, made possible by the introduction of a four dimensional ``displacement'' vector. As intimated by Nordstroem,...

  13. Elastic Behavior of Polymer Chains

    Teng Lu; Tao Chen; Hao-jun Liang


    The elastic behavior of the polymer chain was investigated in a three-dimensional off-lattice model. We sample more than 109 conformations of each kind of polymer chain by using a Monte Carlo algorithm, then analyze them with the non-Gaussian theory of rubberlike elasticity, and end with a statistical study. Through observing the effect of the chain flexibility and the stretching ratio on the mean-square end-to-end distance,the average energy, the average Helmholtz free energy, the elastic force, the contribution of energy to the elastic force, and the entropy contribution to elastic force of the polymer chain, we find that a rigid polymer chain is much easier to stretch than a flexible polymer chain. Also, a rigid polymer chain will become difficult to stretch only at a quite high stretching ratio because of the effect of the entropy contribution.These results of our simulation calculation may explain some of the macroscopic phenomena of polymer and biomacromolecular elasticity.

  14. Trusted Objects



    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  15. Object theatre

    Ryöppy, Merja; Heiberg, Andreas


    possibilities to emerge. We present a study in which the Object Theatre approach is applied to redesign socially shared everyday products that are located in public places. This project demonstrates how Object Theatre offers a broad perspective form which to explore and present product interactions....... In particular, it emphasises the understanding of a product by relating and changing perspectives, and takes into account context of use and diverse social settings....

  16. Elastic-plastic deformation of sandwich rod on elastic basis

    GU Yu


    Sandwich composite material possesses advantages of both light weight and high strength.Although the mechanical behaviors of sandwich composite material with the influence of single external environment have been intensively studied,little work has been done in the study of mechanical property,in view of the nonlinear behavior of sandwich composites in the complicated external environments.In this paper,the problem about the bending of the three-layer elastic-plastic rod located on the elastic base,with a compressibly physical nonlinear core,has been studied.The mechanical response of the designed three-layer elements consisting of two bearing layers and a core has been examined.The complicated problem about curving of the three-layer rod located on the elastic base has been solved.The convergence of the proposed method of elastic solutions is examined to convince that the solution is acceptable.The calculated results indicate that the plasticity and physical nonlinearity of materials have a great influence on the deformation of the sandwich rod on the elastic basis.

  17. A replication study for genome-wide gene expression levels in two layer lines elucidates differentially expressed genes of pathways involved in bone remodeling and immune responsiveness.

    Christin Habig

    Full Text Available The current replication study confirmed significant differences in gene expression profiles of the cerebrum among the two commercial layer lines Lohmann Selected Leghorn (LSL and Lohmann Brown (LB. Microarray analyses were performed for 30 LSL and another 30 LB laying hens kept in the small group housing system Eurovent German. A total of 14,103 microarray probe sets using customized Affymetrix ChiGene-1_0-st Arrays with 20,399 probe sets were differentially expressed among the two layer lines LSL and LB (FDR adjusted P-value <0.05. An at least 2-fold change in expression levels could be observed for 388 of these probe sets. In LSL, 214 of the 388 probe sets were down- and 174 were up-regulated and vice versa for the LB layer line. Among the 174 up-regulated probe sets in LSL, we identified 51 significantly enriched Gene ontology (GO terms of the biological process category. A total of 63 enriched GO-terms could be identified for the 214 down-regulated probe sets of the layer line LSL. We identified nine genes significantly differentially expressed between the two layer lines in both microarray experiments. These genes play a crucial role in protection of neuronal cells from oxidative stress, bone mineral density and immune response among the two layer lines LSL and LB. Thus, the different regulation of these genes may significantly contribute to phenotypic trait differences among these layer lines. In conclusion, these novel findings provide a basis for further research to improve animal welfare in laying hens and these layer lines may be of general interest as an animal model.

  18. Heat absorbtion by earth coil systems placed in two layers in one trench. [Heat pumps]. Varmeoptagelse fra jordslanger i to lag i samme grav

    Willumsen, O.


    The aim of the project is to evaluate the performance of a new technique of installing earth coil systems for heat pumps. In order to reduce the costs of an efficient heat absorber, two coils were placed in the same trench in two different levels, generally in a depth of 0.7 and 1.1 metres. Usually the total pipe length was increased with 20 - 30% compared to the one-layer design. The digging expences, however, were still smaller than those of the one-layer design. The evaluation is based on measurements on 4 heat pump installations using the two-layer concept, where the extracted heat energy from the higher and lower earth coils were metered individually on a monthly basis. Furthermore, the in- and outlet temperature of the coils and the energy comsumption of the heat pump was measured. The main conclusions of the project are: - A two-layer design leads to a slightly cheaper earth coil. The performance of the earth coil is not negatively affected by this technique, provided that the vertical distance between the coils is at least 0.4 metres at any place. - Two-layer coils may be designed with the same total length as used in one-layer coils - which means half the trench length. This design gives a more intensive exploitation of the available soil area, without decreasing the performance of the heat pump. - The disadvantage of the technique is an increasing risk of earth elevation due to freezing. This risk should be minimized by keeping a minimum distance of 0.40 meters between the individual pipes and thermal insulation if more than two pipes are placed near to each other. (AB).

  19. Fashion Objects

    Andersen, Bjørn Schiermer


    This article attempts to create a framework for understanding modern fashion phenomena on the basis of Durkheim's sociology of religion. It focuses on Durkheim's conception of the relation between the cult and the sacred object, on his notion of 'exteriorisation', and on his theory of the social...... symbol in an attempt to describe the peculiar attraction of the fashion object and its social constitution. However, Durkheim's notions of cult and ritual must undergo profound changes if they are to be used in an analysis of fashion. The article tries to expand the Durkheimian cult, radically enlarging...... it without totally dispersing it; depicting it as held together exclusively by the sheer 'force' of the sacred object. Firstly, the article introduces the themes and problems surrounding Durkheim's conception of the sacred. Next, it briefly sketches an outline of fashion phenomena in Durkheimian categories...

  20. 双层界面重磁联合反演方法研究%Joint inversion of gravity and magnetic data for a two-layer model

    江凡; 吴健生; 王家林


    Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion method for two-layer models by concentrating on the relationship between the change of thickness and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.

  1. Protein fold recognition with a two-layer method based on SVM-SA, WP-NN and C4.5 (TLM-SNC).

    Zangooei, Mohammad Hossein; Jalili, Saeed


    The structural knowledge of protein is crucial in understanding its biological role. An effort is made to assign a fold to a given protein in a protein fold recognition problem. A computational Two-Layer Method (TLM) based on the Support Vector Machine (SVM), the Neural Network (NN) and the Decision Tree (C4.5) has been developed in this study for the assignment of a protein sequence to a folding class in SCOP. Prediction accuracy is measured on a dataset and the accuracy of the proposed method is very promising in comparison with other classification methods.

  2. Buckling modes of elastic thin films on elastic substrates

    Mei, Haixia; Huang, Rui; Chung, Jun Young; Stafford, Christopher M.; Yu, Hong-Hui


    Two buckling modes have been observed in thin films: buckle delamination and wrinkling. This letter identifies the conditions for selecting the favored buckling modes for elastic films on elastic substrates. Transition from one buckling mode to another is predicted as the stiffness ratio between the substrate and the film or is predicted for variation of the stiffness ratio between the substrate and the film or variation of theinterfacial defect size. The theoretical results are demonstrated experimentally by observing the coexistence of both buckling modes and mode transition in one film-substrate system.

  3. Topology optimization problems for reflection and dissipation of elastic waves

    Jensen, Jakob Søndergaard


    This paper is devoted to topology optimization problems for elastic wave propagation. The objective of the study is to maximize the reflection or the dissipation in a finite slab of material for pressure and shear waves in a range of frequencies. The optimized designs consist of two or three mate...

  4. Confocal microscopy for automatic texture analysis of elastic fibers in histologic preparations

    Adam, R. L.; Vieira, G.; Ferro, D. P.; de Thomaz, A. A.; Cesar, C., L.; Metze, K.


    Elastic fibers are an important component of many organs and tissues, such as skin, lungs, arteries, ligaments, intervertebral discs and cartilage Their function is to endow tissues with elastic recoil and resilience, to act as an important adhesion template for cells, and to regulate growth factor availability (1,2). Loss or remodeling of the elastic fiber texture occurs in many diseases. Degeneration and fragmentation of elastic fibers and aging are intimately related (3). Recently, the importance of elastin for the study of malignant tumor progression has been emphasized (4,5). Elastic tissue may be a significant reservoir of angiostatic molecules and soluble elastin as well as elastin peptides, that are inhibitors of the metastatic process in experimental tumor models (4). Elastic fibers are involved in the anatomic remodeling of chronic pulmonary diseases (6) and, especially, of diseases of the arterial wall (7, 8). The study of these phenomena is important for the understanding of the pathophysiologic basis of the diseases. Recently the role of elastic fibers in small diameter vascular graft design has been emphasized (2). The possibility to regenerate or engineer elastic fibres and tissues creates an important challenge, not only to understand the molecular basis of elastic-fibre biology (1,2), but also of its spatial arrangement and remodeling in the diseased tissues. Subtle changes of the complex elastic fiber network may be involved in the pathogenesis of diseases. Therefore a precise and objective histopathologic description is necessary.

  5. Photoacoustic elastic oscillation and characterization.

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin


    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

  6. Elastic actuation for legged locomotion

    Cao, Chongjing; Conn, Andrew


    The inherent elasticity of dielectric elastomer actuators (DEAs) gives this technology great potential in energy efficient locomotion applications. In this work, a modular double cone DEA is developed with reduced manufacturing and maintenance time costs. This actuator can lift 45 g of mass (5 times its own weight) while producing a stroke of 10.4 mm (23.6% its height). The contribution of the elastic energy stored in antagonistic DEA membranes to the mechanical work output is experimentally investigated by adding delay into the DEA driving voltage. Increasing the delay time in actuation voltage and hence reducing the duty cycle is found to increase the amount of elastic energy being recovered but an upper limit is also noticed. The DEA is then applied to a three-segment leg that is able to move up and down by 17.9 mm (9% its initial height), which demonstrates the feasibility of utilizing this DEA design in legged locomotion.

  7. Photoacoustic elastic oscillation and characterization

    Gao, Fei; Zheng, Yuanjin


    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ra...

  8. Efficient calculation of potential distribution in two-layer earth; Niso kozo daichikei ni okeru denki tansa no tame no koritsuteki den`i keisan shuho

    Kataoka, M.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Endo, M.; Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y.; Akabane, H. [University of Industrial Technology, Kanagawa (Japan); Agu, M. [Ibaraki University, Ibaraki (Japan)


    An efficient calculation method of potential distribution in the presence of an embedded body in multi-layer earth has been proposed by expanding the method of image with a consideration of multiple reflection between the ground surface and each underground boundary. For this method, when solving boundary integral equation with the potential of embedded body surface as only one unknown, i.e., when obtaining discretization equation, ordinary boundary element program developed for analyzing the finite closed region can be used. As an example, numerical calculation was conducted for the two-layer earth. The analysis expression of potential distribution in the case of the certain embedded body in two-layer earth has never published. Accordingly, the calculated results were compared with those by the integral equation method. As a result, it was concluded that the primary potential obtained from the present method agreed well with that obtained from the integral equation method. However, there was a disregarded difference in the secondary potential. For confirming the effectiveness, it was necessary to compare with another numerical calculation method, such as finite element method. 5 refs., 5 figs.

  9. 两层损耗土壤媒质附近HEMP环境%HEMP Environment Over Two-layer Lossy Soil

    孙蓓云; 周辉


    To understand the HEMP environment near ground is important for HEMP effects research of ground -base electrical system.The methods to calculate the reflection wave of plane wave and electromagnetic environment over two-layer lossy media are presented.The reflection wave and electromagnetic environment of HEMP over two-layered soil are calculated.The results indicate that there are two peaks in the reflection wave and the time of the second peak is determined by the thickness of the first layer soil.The tail-wave amplitude of x-direction HEMP environment is reduced than one layer's,and the tail-wave amplitude of z-direction is increased.%介绍了分层损耗媒质反射波的计算方法,计算了大地由一定厚度的干土和湿土构成时,x方向和z方向的HEMP反射波及地面附近电磁环境.计算结果表明x方向和z方向的反射波都有双峰,第2个峰出现的时间与第1层土壤的厚度有关;地面附近x方向HEMP环境场波尾的幅度较单层的会有下降,而z方向较单层的会有增加.

  10. On the Transformation Mechanism for Formulating a Multiproduct Two-Layer Supply Chain Network Design Problem as a Network Flow Model

    Mi Gan


    Full Text Available The multiproduct two-layer supply chain is very common in various industries. In this paper, we introduce a possible modeling and algorithms to solve a multiproduct two-layer supply chain network design problem. The decisions involved are the DCs location and capacity design decision and the initial distribution planning decision. First we describe the problem and give a mixed integer programming (MIP model; such problem is NP-hard and it is not easy to reduce the complexity. Inspired by it, we develop a transformation mechanism of relaxing the fixed cost and adding some virtual nodes and arcs to the original network. Thus, a network flow problem (NFP corresponding to the original problem has been formulated. Given that we could solve the NFP as a minimal cost flow problem. The solution procedures and network simplex algorithm (INS are discussed. To verify the effectiveness and efficiency of the model and algorithms, the performance measure experimental has been conducted. The experiments and result showed that comparing with MIP model solved by genetic algorithm (GA and Benders, decomposition algorithm (BD the NFP model and INS are also effective and even more efficient for both small-scale and large-scale problems.

  11. A Two-Layered Diffusion Model Traces the Dynamics of Information Processing in the Valuation-and-Choice Circuit of Decision Making

    Pietro Piu


    Full Text Available A circuit of evaluation and selection of the alternatives is considered a reliable model in neurobiology. The prominent contributions of the literature to this topic are reported. In this study, valuation and choice of a decisional process during Two-Alternative Forced-Choice (TAFC task are represented as a two-layered network of computational cells, where information accrual and processing progress in nonlinear diffusion dynamics. The evolution of the response-to-stimulus map is thus modeled by two linked diffusive modules (2LDM representing the neuronal populations involved in the valuation-and-decision circuit of decision making. Diffusion models are naturally appropriate for describing accumulation of evidence over the time. This allows the computation of the response times (RTs in valuation and choice, under the hypothesis of ex-Wald distribution. A nonlinear transfer function integrates the activities of the two layers. The input-output map based on the infomax principle makes the 2LDM consistent with the reinforcement learning approach. Results from simulated likelihood time series indicate that 2LDM may account for the activity-dependent modulatory component of effective connectivity between the neuronal populations. Rhythmic fluctuations of the estimate gain functions in the delta-beta bands also support the compatibility of 2LDM with the neurobiology of DM.

  12. Objective becoming

    Skow, Bradford


    Bradford Skow presents an original defense of the 'block universe' theory of time, often said to be a theory according to which time does not pass. Along the way, he provides in-depth discussions of alternative theories of time, including those in which there is 'robust passage' of time or 'objective becoming': presentism, the moving spotlight theory of time, the growing block theory of time, and the 'branching time' theory of time. Skow explains why the moving spotlight theory is the best of these arguments, and rebuts several popular arguments against the thesis that time passes. He surveys the problems that the special theory of relativity has been thought to raise for objective becoming, and suggests ways in which fans of objective becoming may reconcile their view with relativistic physics. The last third of the book aims to clarify and evaluate the argument that we should believe that time passes because, somehow, the passage of time is given to us in experience. He isolates three separate arguments thi...

  13. Dynamics of Elastic Excitable Media

    Cartwright, J H E; Hernández-García, E; Piro, O; Cartwright, Julyan H. E.; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Piro, Oreste


    The Burridge-Knopoff model of earthquake faults with viscous friction is equivalent to a van der Pol-FitzHugh-Nagumo model for excitable media with elastic coupling. The lubricated creep-slip friction law we use in the Burridge-Knopoff model describes the frictional sliding dynamics of a range of real materials. Low-dimensional structures including synchronized oscillations and propagating fronts are dominant, in agreement with the results of laboratory friction experiments. Here we explore the dynamics of fronts in elastic excitable media.

  14. Complex variable methods in elasticity

    England, A H


    The plane strain and generalized plane stress boundary value problems of linear elasticity are the focus of this graduate-level text, which formulates and solves these problems by employing complex variable theory. The text presents detailed descriptions of the three basic methods that rely on series representation, Cauchy integral representation, and the solution via continuation. Its five-part treatment covers functions of a complex variable, the basic equations of two-dimensional elasticity, plane and half-plane problems, regions with circular boundaries, and regions with curvilinear bounda

  15. A Convergent Iterative Algorithm for Solving Elastic Waveform Inversion



    The numerical method for elastic waveform inversion is studied and a convergent iterative algorithm is achieved by designing vinual source and altering objective function of the optimization solution in the computational process, which enables the solutions to converge to the real values and improves the convergence rate by changing the property of curved surface of the objective function, thus opening a new way for further developing the optimization solution of inverse problems.

  16. varying elastic parameters distributions

    Moussawi, Ali


    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  17. Surviving Objects

    Murjas, Teresa


    Surviving Objects (2012) is a devised multi-media practice-as-research performance based on extensive interviews conducted with my elderly mother and recorded on a hand-held device. Our conversations concern her experiences as a child refugee following violent deportation by the Soviet Army from Eastern Poland to Siberia (1941), and her subsequent route, via Persia, to a British-run refugee camp in Northern Rhodesia, where she remained for 6 years before arriving in the UK. In order to aid my...

  18. Mathematical modeling of spinning elastic bodies for modal analysis.

    Likins, P. W.; Barbera, F. J.; Baddeley, V.


    The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.

  19. Dependence of elastic hadron collisions on impact parameter

    Prochazka, Jiri; Kundrat, Vojtech


    Elastic proton-proton collisions represent probably the greatest ensemble of available measured data, the analysis of which may provide large amount of new physical results concerning fundamental particles. However, it is necessary to analyze first some conclusions concerning pp collisions and following from the conviction that the behavior of microscopic objects differs significantly from that of macroscopic ones. It has been argued that elastic hadron collisions have been more central than inelastic ones. However, the given conclusion has started from approaches based on a greater number of simplifying mathematical assumptions (done already in earlier calculations), without their influence on physical interpretation having been analyzed and entitled. This influence has started to be studied in the approach based on eikonal model. The possibility of peripheral interpretation of elastic collisions will be demonstrated and corresponding results summarized. The arguments will be given why no preference may be g...

  20. Piezoelectric Resonator with Two Layers

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)


    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  1. Pilot Study of Debt Elasticity

    Greiner, Keith; Girardi, Tony


    This report examines the relationship between student loan debt and the manner in which that debt is described. It focuses on three forms of description: (1) monthly payments, (2) total debt, and (3) income after graduation. The authors used the term elasticity to describe the relationship between consumers' college choices and the retention…

  2. Deuteron-deuteron elastic scattering at high energies

    Fazal-e-Aleem; Ali, S. (Univ. of the Punjab, Lahore (Pakistan))


    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at {radical}s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used.

  3. Heart transplantation and arterial elasticity

    Colvin-Adams M


    Full Text Available Monica Colvin-Adams,1 Nonyelum Harcourt,1 Robert LeDuc,2 Ganesh Raveendran,1 Yassir Sonbol,3 Robert Wilson,1 Daniel Duprez11Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA; 2Division of Biostatistics University of Minnesota, Minneapolis, MN, USA; 3Cardiovascular Division, St Luke's Hospital System, Sugar Land, TX, USAObjective: Arterial elasticity is a functional biomarker that has predictive value for cardiovascular morbidity and mortality in nontransplant populations. There is little information regarding arterial elasticity in heart transplant recipients. This study aimed to characterize small (SAE and large (LAE artery elasticity in heart transplant recipients in comparison with an asymptomatic population free of overt cardiovascular disease. A second goal was to identify demographic and clinical factors associated with arterial elasticity in this unique population.Methods: Arterial pulse waveform was registered noninvasively at the radial artery in 71 heart transplant recipients between 2008 and 2010. SAEs and LAEs were derived from diastolic pulse contour analysis. Comparisons were made to a healthy cohort of 1,808 participants selected from our prevention clinic database. Multiple regression analyses were performed to evaluate associations between risk factors and SAE and LAE within the heart transplant recipients.Results: LAE and SAE were significantly lower in heart transplant recipients than in the normal cohort (P <0.01 and P < 0.0001, respectively. Female sex and history of ischemic cardiomyopathy were significantly associated with reduced LAE and SAE. Older age and the presence of moderate cardiac allograft vasculopathy were also significantly associated with reduced SAE. Transplant duration was associated with increased SAE.Conclusion: Heart transplants are associated with peripheral endothelial dysfunction and arterial stiffness, as demonstrated by a significant reduction in SAE and LAE when compared with a

  4. Thermodynamic parameters of elasticity and electrical conductivity ...

    Thermodynamic parameters of elasticity and electrical conductivity of reinforced natural rubber (nr) vulca nizates. ... Bulletin of the Chemical Society of Ethiopia ... The thermodynamic parameters (change in free energy of elasticity, DGe; ...

  5. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    Li-Chun Wang


    Full Text Available In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.

  6. Convergence Improved Lax-Friedrichs Scheme Based Numerical Schemes and Their Applications in Solving the One-Layer and Two-Layer Shallow-Water Equations

    Xinhua Lu


    Full Text Available The first-order Lax-Friedrichs (LF scheme is commonly used in conjunction with other schemes to achieve monotone and stable properties with lower numerical diffusion. Nevertheless, the LF scheme and the schemes devised based on it, for example, the first-order centered (FORCE and the slope-limited centered (SLIC schemes, cannot achieve a time-step-independence solution due to the excessive numerical diffusion at a small time step. In this work, two time-step-convergence improved schemes, the C-FORCE and C-SLIC schemes, are proposed to resolve this problem. The performance of the proposed schemes is validated in solving the one-layer and two-layer shallow-water equations, verifying their capabilities in attaining time-step-independence solutions and showing robustness of them in resolving discontinuities with high-resolution.

  7. Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain.

    Guo, Yahui; Cheng, Junjie; Wang, Jine; Zhou, Xiaodong; Hu, Jiming; Pei, Renjun


    A simple, versatile, and label-free DNA computing strategy was designed by using toehold-mediated strand displacement and stem-loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two-layer logic cascade were constructed. The probes contain a G-quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light-up fluorescent signal of G-quadruplex/NMM complex was used as the output readout. The inputs are the disease-specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label-free and modular strategy might be adapted in multi-target diagnosis through DNA hybridization and aptamer-target interaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.


    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  9. If mechanics of cells can be described by elastic modulus in AFM indentation experiments?

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Kalaparthi, Vivekanand


    We study the question if cells, being highly heterogeneous objects, can be described with an elastic modulus (the Young's modulus) in a self-consistent way. We analyze the elastic modulus using indentation done with AFM of human cervical epithelial cells. Both sharp (cone) and dull AFM probes were used. The indentation data collected were processed through different elastic models. The cell was considered as a homogeneous elastic medium which had either smooth spherical boundary (Hertz/Sneddon models) or the boundary covered with a layer of glycocalyx and membrane protrusions (``brush'' models). Validity of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrate that only one model shows consistency with treating cells as homogeneous elastic medium, the bush model when processing the indentation data collected with the dull probe. The elastic modulus demonstrates strong depth dependence in all other three models. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus in a self-consistent way when using the brush model to analyze data collected with a dull AFM probe.

  10. Two-layer hierarchical control solutions for traffic signal%面向交通信号的两层递阶控制解决方案

    戈军; 周莲英


    针对现有交通信号控制系统的诸多不足,提出了一种用于交通信号控制的两层递阶多Agent系统解决方案。通过将交通网络进行区域划分,利用底层Agent控制各交叉口,顶层Agent控制区域,从而实现两层递阶控制。底层Agent采用经典Q学习同步学习最优策略,顶层Agent利用Tile Coding非凡的连续空间处理能力,实现Q学习的动作值函数逼近方法。仿真实验结果表明,该分层递阶控制不但提高了交通信号控制系统效率,而且也为大规模应用提供了很好的可伸缩解决方案。%In view of the existing deficiencies of traffic signal control system, this paper proposes two-layer hierarchical multi-Agent system solution for traffic signal control. Through regional division of the traffic network, it uses the bottom level Agent to control the intersection, the top level Agent to control areas, so as to achieve the two-layer hierarchical con-trol. The bottom level Agent uses the classical Q-learning to synchronize the optimal strategy, the top level Agent utilizes the special continuous space processing ability of Tile Coding to achieve Q learning of action value function approxima-tion method. The simulation test results show that, the hierarchical control not only improves the efficiency of traffic signal control system, but also provides a good scalable solution for large-scale applications.

  11. A hybrid algorithm for solving inverse problems in elasticity

    Barabasz Barbara


    Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.

  12. On Elasticity Measurement in Cloud Computing

    Wei Ai


    Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.

  13. Some Measurements of Elasticities of Substitution

    J. Tinbergen (Jan)


    textabstractSo far, when measuring elasticities of demand, most econometricians have concentrated upon the plain elasticity of total demand for a given commodity. For many important problems we should, in addition, like to know something of "partial elasticities," as I might provisionally call them.

  14. Complementary energy principle for large elastic deformation

    GAO; Yuchen


    Using the "base forces" as the fundamental unknowns to determine the state of an elastic system, the complementary energy principle for large elastic deformation is constructed for the conjugate quantities being displacement gradients, which possesses exactly the same form as that of classical linear elasticity. It is revealed that the complementary energy contains deformation part and rotation part.

  15. Tactile object exploration using cursor navigation sensors

    Kraft, Dirk; Bierbaum, Alexander; Kjaergaard, Morten


    of this sensor for active haptic exploration. More specifically, we present experiments and results which demonstrate the extraction of relevant object properties such as local shape, weight and elasticity using this technology. Besides its low price due to mass production and its modularity, an interesting...

  16. Electrodynamic forces in elastic matter

    Antoci, S


    A macroscopic theory for the dynamics of elastic, isotropic matter in presence of electromagnetic fields is proposed here. We avail of Gordon's general relativistic derivation of Abraham's electromagnetic energy tensor as starting point. The necessary description of the elastic and of the inertial behaviour of matter is provided through a four dimensional generalisation of Hooke's law, made possible by the introduction of a four dimensional ``displacement'' vector. As intimated by Nordstroem, the physical origin of electrostriction and of magnetostriction is attributed to the change in the constitutive equation of electromagnetism caused by the deformation of matter. The part of the electromagnetic Lagrangian that depends on that deformation is given explicitly for the case of an isotropic medium and the resulting expression of the electrostrictive force is derived, thus showing how more realistic equations of motion for matter subjected to electromagnetic fields can be constructed.

  17. Elastic deformations of compact stars

    Andersson, Lars; Schmidt, Bernd G


    We prove existence of solutions for an elastic body interacting with itself through its Newtonian gravitational field. Our construction works for configurations near one given by a self-gravitating ball of perfect fluid. We use an implicit function argument. In so doing we have to revisit some classical work in the astrophysical literature concerning linear stability of perfect fluid stars. The results presented here extend previous work by the authors, which was restricted to the astrophysically insignificant situation of configurations near one of vanishing stress. In particular, "mountains on neutron stars", which are made possible by the presence of an elastic crust in neutron stars, can be treated using the techniques developed here.

  18. Elastic modulus of viral nanotubes

    Zhao, Yue; Ge, Zhibin; Fang, Jiyu


    We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5nm indentation depths and Hertz theory in 1.5nm indentation depths. The derived radial Young’s modulus of TMV nanotubes is 0.92±0.15GPa from finite-element analysis and 1.0±0.2GPa from the Hertz model, which are comparable with the reported axial Young’s modulus of 1.1GPa [Falvo , Biophys. J. 72, 1396 (1997)].

  19. Elastic cone for Chinese calligraphy

    Cai, Fenglei; Li, Haisheng


    The brush plays an important role in creating Chinese calligraphy. We regard a single bristle of a writing brush as an elastic rod and the brush tuft absorbing ink as an elastic cone, which naturally deforms according to the force exerted on it when painting on a paper, and the brush footprint is formed by the intersection region between the deformed tuft and the paper plane. To efficiently generate brush strokes, this paper introduces interpolation and texture mapping approach between two adjacent footprints, and automatically applies bristle-splitting texture to the stroke after long-time painting. Experimental results demonstrate that our method is effective and reliable. Users can create realistic calligraphy in real time.

  20. Elastic scattering in geometrical model

    Plebaniak, Zbigniew; Wibig, Tadeusz


    The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.

  1. Variants of lumbosacral elastic band.

    Carlos Cesar Santín Alfaro


    Full Text Available It is made an intervention research, qualitative and quantitative of two variants of lumbosacral elastic bands used in Provincial Laboratory of Technical Orthopedics in Sancti Spiritus Province, taking into account the high demand for this device and that the laboratory do not often count with the raw material needed for the original lumbosacral belt made by denim cloth which is the conventional belt. The main goal of this research is to explain the technological process and to compare the cost of production of both elastic variants with lumbosacral belt made by cloth which are offer to patients who look for this service , giving them a rapid solution so that they can feel comfortable.

  2. Elasticity of Long Distance Travelling

    Knudsen, Mette Aagaard


    With data from the Danish expenditure survey for 12 years 1996 through 2007, this study analyses household expenditures for long distance travelling. Household expenditures are examined at two levels of aggregation having the general expenditures on transportation and leisure relative to five other...... aggregated commodities at the highest level, and the specific expenditures on plane tickets and travel packages at the lowest level. The Almost Ideal Demand System is applied to determine the relationship between expenditures on transportation and leisure and all other purchased non-durables within...... packages has higher income elasticity of demand than plane tickets but also higher than transportation and leisure in general. The findings within price sensitiveness are not as sufficient estimated, but the model results indicate that travel packages is far more price elastic than plane tickets which...

  3. Elastic Curves on the Sphere


    12 = (K,, + )- (29) K 2 (see [3]). The parameter KM represents the amplitude of the periodic curva - ture function and sm denotes the value at which K...Additamentum De curvis elasticis. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Ser. 1., Vol. 24, Lausanne 1744. 17 [10...Mathematical Theory of Elasticity. 4th. ed., Cambridge University Press, 1927. [12] G. Nielson. Bernstein/ Bezier Curves and Splines on Spheres based upon

  4. Teaching nonlinear dynamics through elastic cords

    Chacon, R; Galan, C A; Sanchez-Bajo, F, E-mail: rchacon@unex.e [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)


    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  5. Transient waves in visco-elastic media

    Ricker, Norman


    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  6. Phase diagram of elastic spheres.

    Athanasopoulou, L; Ziherl, P


    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  7. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    Lapin, M R; Gonzalez, J M; Johnson, S E


    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  8. Elastic fibres in health and disease.

    Baldwin, Andrew K; Simpson, Andreja; Steer, Ruth; Cain, Stuart A; Kielty, Cay M


    Elastic fibres are insoluble components of the extracellular matrix of dynamic connective tissues such as skin, arteries, lungs and ligaments. They are laid down during development, and comprise a cross-linked elastin core within a template of fibrillin-based microfibrils. Their function is to endow tissues with the property of elastic recoil, and they also regulate the bioavailability of transforming growth factor β. Severe heritable elastic fibre diseases are caused by mutations in elastic fibre components; for example, mutations in elastin cause supravalvular aortic stenosis and autosomal dominant cutis laxa, mutations in fibrillin-1 cause Marfan syndrome and Weill-Marchesani syndrome, and mutations in fibulins-4 and -5 cause autosomal recessive cutis laxa. Acquired elastic fibre defects include dermal elastosis, whereas inflammatory damage to fibres contributes to pathologies such as pulmonary emphysema and vascular disease. This review outlines the latest understanding of the composition and assembly of elastic fibres, and describes elastic fibre diseases and current therapeutic approaches.

  9. Motivation and compliance with intraoral elastics.

    Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C


    Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Desert shrub responses to experimental modification of precipitation seasonality and soil depth: relationship to the two-layer model and ecohydrological niche

    Germino, Matthew J.; Reinhardt, Keith


    1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that

  11. Bulk solitary waves in elastic solids

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.


    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the


    dos Santos, Rogério Lacerda; Pithon, Matheus Melo; Mendes, Gabriella da Silva; Romanos, Maria Teresa Villela; Ruellas, Antônio Carlos de Oliveira


    Objectives: Natural latex does not fall into the category of materials known to be entirely inoffensive. The purpose of this in vitro study was to test the hypothesis that there is no difference in the cytotoxicity between elastics of different colors and those from different manufacturers. Material and Methods: Different latex intraoral elastics of different colors (5/16 = 7.9 mm, mean load) were compared. The sample was divided into 7 groups of 24 elastics each: Group T (TP Orthodontics, natural latex elastics, control); Groups U1, U2, U3, U4, U5 and U6 (Uniden, natural latex elastics and colored elastics, namely, green, pink, yellow, red and purple, respectively). Cytotoxicity assays were performed by using cell culture medium containing epithelioid-type cells (Hep-2 line) derived from human laryngeal carcinoma. The cytotoxicity was evaluated by using the "dye-uptake" test, which was employed at two different moments (0 and 24 h). Data were compared by analysis of variance (ANOVA) and Tukey's test (pOrthodontics elastics promoted less cell lysis compared to the Uniden elastics regardless of their color. PMID:19668992

  13. Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements

    Martelli, Fabrizio; Del Bianco, Samuele; Spinelli, Lorenzo; Cavalieri, Stefano; Di Ninni, Paola; Binzoni, Tiziano; Jelzow, Alexander; Macdonald, Rainer; Wabnitz, Heidrun


    In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg-Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.

  14. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.

    Faraggi, Eshel; Xue, Bin; Zhou, Yaoqi


    This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in

  15. Integration of Ground and Multi-Resolution Satellite Data for Predicting the Water Balance of a Mediterranean Two-Layer Agro-Ecosystem

    Piero Battista


    Full Text Available The estimation of site water budget is important in Mediterranean areas, where it represents a crucial factor affecting the quantity and quality of traditional crop production. This is particularly the case for spatially fragmented, multi-layer agricultural ecosystems such as olive groves, which are traditional cultivations of the Mediterranean basin. The current paper aims at demonstrating the effectiveness of spatialized meteorological data and remote sensing techniques to estimate the actual evapotranspiration (ETA and the soil water content (SWC of an olive orchard in Central Italy. The relatively small size of this orchard (about 0.1 ha and its two-layer structure (i.e., olive trees and grasses require the integration of remotely sensed data with different spatial and temporal resolutions (Terra-MODIS, Landsat 8-OLI and Ikonos. These data are used to drive a recently proposed water balance method (NDVI-Cws and predict ETA and then site SWC, which are assessed through comparison with sap flow and soil wetness measurements taken in 2013. The results obtained indicate the importance of integrating satellite imageries having different spatio-temporal properties in order to properly characterize the examined olive orchard. More generally, the experimental evidences support the possibility of using widely available remotely sensed and ancillary datasets for the operational estimation of ETA and SWC in olive tree cultivation systems.

  16. MHD Heat Transfer in Two-Layered Flow of Conducting Fluids through a Channel Bounded by Two Parallel Porous Plates in a Rotating System

    Linga Raju, T.; Neela Rao, B.


    The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.

  17. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread.

    Izydorczyk, M S; Chornick, T L; Paulley, F G; Edwards, N M; Dexter, J E


    The performance of barley fibre-rich fractions (FRF), as high dietary fibre ingredients, in two-layer flat bread was investigated. In addition, the effects of particle size reduction by pin milling on functional properties of FRF were studied. FRF enriched in non-starch polysaccharides (β-glucans and arabinoxylans) were obtained by roller milling of hull-less barley. Pin milling (PM) of FRF significantly reduced their particle size, slightly increased the solubility of β-glucans and arabinoxylans, and increased the viscosity of water slurries containing FRF. The addition of 20% of barley FRF to wheat flour significantly increased dough water absorption and weakened the dough properties, as indicated by farinograph mixing curves, but the FRF-enriched doughs exhibited good handling characteristics at the dividing and sheeting stages. The appearance, diameter, layer separation, crumb, and aroma of the FRF-enriched flat breads were comparable to that of the control. The PM of FRF did not significantly affect the dough handling or the quality characteristics of flat breads. The addition of 20% of barley FRF to wheat flour flat bread provided substantial health benefits by significantly increasing the total and soluble dietary fibre contents and by decreasing starch digestibility.

  18. Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms

    Celine Gerard; Laurent Pizzagalli


    Nano-objects often exhibit drastically different properties compared to their bulk counterpart, opening avenues for new applications in many fields, such as in advanced composite materials, nanomanufacturing, nanoelectromechanical systems etc. As such, related research topics have become increasingly prominent in recent years. In this review on the mechanical behaviour of nanoparticles, the main investigation approaches are first briefly presented. The main results in terms of elasticity and plastic deformation mechanisms are then reported and discussed.

  19. Indentation metrology of clamped, ultra-thin elastic sheets

    Vella, Dominic; Davidovitch, Benny


    We study the indentation of ultrathin elastic sheets clamped to the edge of a circular hole. This classical setup has received considerable attention lately, being used by various experimental groups as a probe to measure the surface properties and stretching modulus of thin solid films. Despite the apparent simplicity of this method, the geometric nonlinearity inherent in the mechanical response of thin solid objects renders the analysis of the resulting data a nontrivial task. Importantly, ...

  20. Euler-Lagrange Elasticity: elasticity without stress or strain

    Hardy, Humphrey


    A Euler-Lagrange (E-L) approach to elasticity is proposed that produces differential equations of elasticity without the need to define stress or strain tensors. The positions of the points within the body are the independent parameters instead of strain. Force replaces stress. The advantage of this approach is that the E-L differential equations are the same for both infinitesimal and finite deformations. Material properties are expressed in terms of the energy of deformation. The energy is expressed as a function of the principal invariants of the deformation gradient tensor. This scalar invariant representation of the energy of deformation enters directly into the E-L differential equations so that there is no need to define fourth order tensor material properties. By experimentally measuring the force and displacement of materials the functional form of the energy of deformation can be determined. The E-L differential equations can be input directly into finite element, finite difference, or other numerical models. If desired, stress and stain can be calculated as dependent parameters.

  1. Dispersion of Rayleigh, Scholte, Stoneley and Love waves in a model consisting of a liquid layer overlying a two-layer transversely isotropic solid medium

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad


    The dispersion of interface waves is studied theoretically in a model consisting of a liquid layer of finite thickness overlying a transversely isotropic solid layer which is itself underlain by a transversely isotropic solid of dissimilar elastic properties. The method of potential functions and Hankel transformation was utilized to solve the equations of motion. Two frequency equations were developed: one for Love waves and the other for the remaining surface and interface waves. Numerical group and phase velocity dispersion curves were computed for four different classes of model, in which the substratum is stiffer or weaker than the overlying layer, and for various thickness combinations of the layers. Dispersion curves are presented for generalized Rayleigh, Scholte, Stoneley and Love waves, each of which are possible in all proposed models. They show the dependence of the velocity on layer thicknesses and material properties (elastic constants). Special cases involving zero thickness for the water layer or the solid layer, and/or isotropic material properties for the solid exhibit interesting features and agree favourably with previously published results for these simpler cases, thus validating the new formulation.

  2. Numerical study of interfacial solitary waves propagating under an elastic sheet

    Wang, Zhan; Părău, Emilian I.; Milewski, Paul A.; Vanden-Broeck, Jean-Marc


    Steady solitary and generalized solitary waves of a two-fluid problem where the upper layer is under a flexible elastic sheet are considered as a model for internal waves under an ice-covered ocean. The fluid consists of two layers of constant densities, separated by an interface. The elastic sheet resists bending forces and is mathematically described by a fully nonlinear thin shell model. Fully localized solitary waves are computed via a boundary integral method. Progression along the various branches of solutions shows that barotropic (i.e. surface modes) wave-packet solitary wave branches end with the free surface approaching the interface. On the other hand, the limiting configurations of long baroclinic (i.e. internal) solitary waves are characterized by an infinite broadening in the horizontal direction. Baroclinic wave-packet modes also exist for a large range of amplitudes and generalized solitary waves are computed in a case of a long internal mode in resonance with surface modes. In contrast to the pure gravity case (i.e without an elastic cover), these generalized solitary waves exhibit new Wilton-ripple-like periodic trains in the far field. PMID:25104909

  3. Elastic reflection based waveform inversion with a nonlinear approach

    Guo, Qiang


    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  4. Elastic modulus of posts and the risk of root fracture.

    Meira, Josete B C; Espósito, Camila O M; Quitero, Mayra F Z; Poiate, Isis A V P; Pfeifer, Carmem Silvia C; Tanaka, Carina B; Ballester, Rafael Y


    The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts' elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post's long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.

  5. Wave propagation in elastic solids

    Achenbach, Jan


    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  6. Wave motion in elastic solids

    Graff, Karl F


    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  7. Variable Joint Elasticities in Running

    Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre

    In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.

  8. Computation of Modulus of Elasticity of Concrete

    Onwuka, D.O


    Full Text Available - In this presentation, a computer based method which uses a set of algebraic equations and statistical data, were used to compute concrete mixes for prescribeable elastic concrete modulus, and vice versa. The computer programs based on Simplex and Regression theories can be used to predict several mix proportions for obtaining a desired modulus of elasticity of concrete made from crushed granite rock and other materials. The modulus of elasticity of concrete predicted by these programs agreed with experimentally obtained values. The programs are easy and inexpensive to use, and give instant and accurate results. For example, if the modulus of elasticity is specified as input, the computer instantly prints out all possible concrete mix ratios that can yield concrete having the specified elastic modulus. When the concrete mix ratio is specified as input, the computer quickly prints out the elastic modulus of the concrete obtainable from a given concrete mix ratio.

  9. ELASTIC: A Large Scale Dynamic Tuning Environment

    Andrea Martínez


    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  10. Multi-spectral photoacoustic elasticity tomography

    Liu, Yubin; Yuan, Zhen


    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  11. Study on elastic modulus of individual ferritin

    ZHANG JinHai; CUI ChengYi; ZHOU XingFei


    The mechanical property of individual ferriUn was measured with force-volume mapping (FV) under contact mode of atomic force microscopy (AFM) in this work. The elastic modulus of individual ferritin was estimated by the Hertz mode. The estimated value of the elastic modulus of individual ferritin was about 250-800 MPs under a small deformation. In addition, the elastic modulus of individual ferritin was compared with that of the colloid gold nanoparticle.

  12. Continuously-Variable Series-Elastic Actuator

    Mooney, Luke M.; Herr, Hugh M.


    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic el...

  13. Eulerian formulation of elastic rods

    Huynen, Alexandre; Detournay, Emmanuel; Denoël, Vincent


    In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff normal ringed surface. This reformulation hinges on describing the rod-deformed configuration by means of its relative position with respect to a reference curve, defined as the axis or spine curve of the constraint, and on restating the rod local equilibrium in terms of the curvilinear coordinate parametrizing this curve. Associated with a segmentation strategy, which partitions the global problem into a sequence of rod segments either in continuous contact with the constraint or free of contact (except for their extremities), this re-parametrization not only trivializes the detection of new contacts but also transforms these free boundary problems into classic two-points boundary-value problems and suppresses the isoperimetric constraints resulting from the imposition of the rod position at the extremities of each rod segment.

  14. Pneumatic Variable Series Elastic Actuator.

    Zheng, Hao; Wu, Molei; Shen, Xiangrong


    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  15. Odhad cenové elasticity poptávky po ropě

    Jonák, Ondřej


    Objective of this diploma thesis is estimation of price elasticity of crude oil demand. In order to calculation of such elasticity crude oil demand is estimated with econometrical methods. The choice of suitable model, which sufficiently and accurately models crude oil demand, is initial position of analysis. Consequently, crude oil demand is estimated from market data obtainable from public sources. This estimated model is verified from economic, statistic and econometric point of view. Cons...

  16. Elastic moduli of pyrope rich garnets

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.


    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  17. Elastic properties of solids at high pressure

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.


    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  18. Application Service Program (ASP Price Elasticities

    Hong Jaeweon


    Full Text Available Although the price elasticities for off-line industry are well documented in academic field, the report of price elasticities for on-line to a given brand or industry in practice have beenrelatively rare. The researcher aims to try to full this gap by applying a price response function to Home Trading System’s on-line transaction data for the first time in Korean securities market. The different price elasticities among seven brands were found from -0.819 to -1.811. These results suggested that marketers should understand the price elasticity of their own HTS, before making a price decision.

  19. Faraday wave lattice as an elastic metamaterial.

    Domino, L; Tarpin, M; Patinet, S; Eddi, A


    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  20. Faraday wave lattice as an elastic metamaterial

    Domino, L; Patinet, Sylvain; Eddi, A


    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying sub-wavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  1. A Two Layers Novel Low-Cost and Optimized Embedded Board Based on TMS320C6713 DSP and Spartan-3 FPGA

    Bahram Rashidi


    Full Text Available This paper presents the design and implementation of a new low-cost and minimum embedded board based on TMS320C6713 (PYP 208-PIN (PQFP DSP and Spartan-3 (XCS400-4PQG208C FPGA in two layers with mount elements on two sides of the board. The proposed embedded board was developed satisfactorily for different applications such as data acquisition of sensor’s with serial port, control units, finite state machines, signal processing algorithms, navigation computing, Kalman filtering etc. Goal of the design was to implement as many as possible low-cost and minimum sizes of the board, also to receive input signals in a short time period and as real time. The board features are include: mount elements in two side of the board for minimization of the proposed board and also placed decoupling capacitors (by pass for the DSP and FPGA in bottom layer of board strictly below these two ICs because should be placed as close as possible to the power supply pins DSP and FPGA, GND polygon layer is used in total top layer and microcomputer ground for DSP & FPGA in bottom layer, use FPGA for two aim ones for implementation of glue logic total of board and interface between serial connectors, use three RS-232 serial port, one RS-422, and SPI serial port on FPGA, use MT48LC16M16A SDRAM-256MB(4*4MB*16, Am29LV400B Flash memory 4 Megabit (512 K x 8-Bit/256 K x 16-Bit and XCF02S configuration PROM. The size of the proposed embedded board is 11.1cm*17. 7cm so this board is optimized of aspect cost, performance, power, weight, and size.

  2. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia


    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe3O4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA)3(TPPO)2/polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe3O4 NP contents, and the highest electrical conductivity can reach up to the order of 10(-2) S cm(-1), and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe3O4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  3. Supervised Learning of Two-Layer Perceptron under the Existence of External Noise — Learning Curve of Boolean Functions of Two Variables in Tree-Like Architecture —

    Uezu, Tatsuya; Kiyokawa, Shuji


    We investigate the supervised batch learning of Boolean functions expressed by a two-layer perceptron with a tree-like structure. We adopt continuous weights (spherical model) and the Gibbs algorithm. We study the Parity and And machines and two types of noise, input and output noise, together with the noiseless case. We assume that only the teacher suffers from noise. By using the replica method, we derive the saddle point equations for order parameters under the replica symmetric (RS) ansatz. We study the critical value αC of the loading rate α above which the learning phase exists for cases with and without noise. We find that αC is nonzero for the Parity machine, while it is zero for the And machine. We derive the exponents barβ of order parameters expressed as (α - α C)bar{β} when α is near to αC. Furthermore, in the Parity machine, when noise exists, we find a spin glass solution, in which the overlap between the teacher and student vectors is zero but that between student vectors is nonzero. We perform Markov chain Monte Carlo simulations by simulated annealing and also by exchange Monte Carlo simulations in both machines. In the Parity machine, we study the de Almeida-Thouless stability, and by comparing theoretical and numerical results, we find that there exist parameter regions where the RS solution is unstable, and that the spin glass solution is metastable or unstable. We also study asymptotic learning behavior for large α and derive the exponents hat{β } of order parameters expressed as α - hat{β } when α is large in both machines. By simulated annealing simulations, we confirm these results and conclude that learning takes place for the input noise case with any noise amplitude and for the output noise case when the probability that the teacher's output is reversed is less than one-half.

  4. Long-term effects of dietary supplementation with an essential oil mixture on the growth and laying performance of two layer strains

    Abdullah U. Çatli


    Full Text Available One thousand two hundred 1-day-old Lohmann LSL white and Lohmann Brown layer chickens were fed diets supplemented with either an antibiotic growth promoter (AGP or an herbal essential oil mixture (EOM till 58 wk of age to reveal the long-term effects of those additives on growth, performance and wholesome egg quality parameters. The study was arranged in a 2x3 factorial design with two layer strains and three feed additive regimens. Thus, the layer birds of both strains were randomly assigned to the three dietary treatments, i.e., standard basal diet (control, control with AGP (specifically, avilamycin, 10 mg/kg diet and control with EOM (24 mg/kg diet. The data regarding egg production were recorded between 22 to 58 weeks of age. Neither the dietary treatments nor the bird strain influenced the body weight and mortality of the birds in both the growing and laying period. AGP or EOM supplementation to the laying hen diet significantly increased the egg production rate and egg weight as compared to the control  diet alone, but egg mass output, feed consumption, and feed conversion ratio were not effected  by the dietary treatments. Neither dietary treatment created any statistically significantly differences in egg quality parameters with the exception of Haugh unit. The research findings have confirmed the beneficial effects of supplementation with feed-grade EOM on the laying rate and egg weight of both white and brown layers. Indeed, EOM, being a novel feed additive natural origin, proved to be as efficacious as AGP in promoting egg yield.

  5. Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system

    Linga Raju T.


    Full Text Available An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.

  6. 异经多纬双层织物的生产%Production of Two-layer Fabric with Different Warp and Multiple Weft

    郭凯军; 刘渊民; 邓红卫


    Design and key points in producing two-layer fabric with different warp and multiple wefts were discussed. The differences between warp and weft were larger,the production difficulties were larger than that of traditional fabric,two kinds of warp tension should be controlled well in warping. Slub yarn was dyed in sizing process to ensure correct reed-in. In weaving process, weft-inserting pressure of main nozzle was adjusted properly, loom tension was increased properly, loom processing was optimized rationally to prevent weft movement in back and weft shrinkage et al After adjusting processing, loom efficiency can be reached above 87% , storage rate of first-class product can be reached above 99. 8% , design and production demands can be reached.%探讨异经多纬双层织物的设计与生产技术要点.针对织物经纬纱差异、生产难度比传统织物大的特点,整经工序要控制好两种经纱的张力;浆纱时对其中的竹节纱进行上色,确保穿筘工序按工艺排列正确穿筘;织造工序合理调节主喷嘴引纬气压,适当增加上机张力,合理调试上机工艺,防止反面纬纱游移、纬缩等疵点造成染整后布面风格与质量变差.通过对工艺进行调整后,织机效率达到87%以上,产品入库一等品率达99.8%以上,满足了设计及生产要求.

  7. Sandbox modelling of sequential thrusting in a mechanically two-layered system and its implications in fold-and-thrust belts

    Saha, Puspendu; Bose, Santanu; Mandal, Nibir


    Many fold-and-thrust belts display multi-storied thrust sequences, characterizing a composite architecture of the thrust wedges. Despite dramatic progress in sandbox modelling over the last three decades, our understanding of such composite thrust-wedge mechanics is limited and demands a re-visit to the problem of sequential thrusting in mechanically layered systems. This study offers a new approach to sandbox modelling, designed with a two-layered sandpack simulating a mechanically weak Coulomb layer, resting coherently upon a stronger Coulomb layer. Our experimental models reproduce strikingly similar styles of the multi-storied frontal thrust sequences observed in natural fold-and- thrust belts. The upper weak horizon undergoes sequential thrusting at a high spatial frequency, forming numerous, closely spaced frontal thrusts, whereas the lower strong horizon produces widely spaced thrusts with progressive horizontal shortening. This contrasting thrust progression behaviour gives rise to composite thrust architecture in the layered sandpack. We show the evolution of such composite thrust sequences as a function of frictional strength (μb) at the basal detachment and thickness ratio (Tr) between the weak and strong layers. For any given values of Tr and μb, the two thrust sequences progress at different rates; the closely-spaced, upper thrust sequence advances forelandward at a faster rate than the widely-spaced, lower thrust sequence. Basal friction (μb) has little effects on the vergence of thrusts in the upper weak layer; they verge always towards foreland, irrespective of Tr values. But, the lower strong layer develops back-vergent thrusts when μb is low (∼0.36). In our experiments, closely spaced thrusts in the upper sequence experience intense reactivation due to their interaction with widely spaced thrusts in the lower sequence. The interaction eventually affects the wedge topography, leading to two distinct parts: inner and outer wedges

  8. Price elasticity estimates for tobacco products in India.

    John, Rijo M


    The tax base of tobacco in India is heavily dependent on about 14% of tobacco users, who smoke cigarettes. Non-cigarette tobacco products accounting for 85% of the tobacco consumption contributes only 15% of the total tobacco taxes. Though taxation is an important tool to regulate consumption of tobacco, there have been no estimates of price elasticities for different tobacco products in India to date, which can guide tax policy on tobacco. This paper, for the first time in India, examines the price elasticity of demand for bidis, cigarettes and leaf tobacco at the national level using a representative cross-section of households. This study found that own-price elasticity estimates of different tobacco products in India ranged between -0.4 to -0.9, with bidis (an indigenous hand-rolled smoked tobacco preparation in India) and leaf tobacco having elasticities close to unity. Cigarettes were the least price elastic of all. With some assumptions, it is shown that the tax on bidis can be increased to Rs. 100 per 1000 sticks compared with the current Rs. 14 and the tax on an average cigarette can be increased to Rs. 3.5 per stick without any fear of losing revenue. The paper argues that the current system of taxing cigarettes in India based on the presence of filters and the length of cigarettes has no justification on health grounds, and should be abolished, if reducing tobacco consumption and the consequent disease burden is one of the objectives of tobacco taxation policy. It also argues that attempts to regulate tobacco use without effecting significant tax increases on bidis may not produce desired results.

  9. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava


    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  10. Vibration of an Elastic Circular Plate on an Elastic Half Space

    Krenk, Steen; Schmidt, H.


    The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved by a direct method, in which the contact stresses and the normal displacements of the plate are taken as the unknown functions. First, the influence functions that give the displacements in terms...... influence from the elastic properties of the plate....

  11. An information-based machine learning approach to elasticity imaging.

    Hoerig, Cameron; Ghaboussi, Jamshid; Insana, Michael F


    An information-based technique is described for applications in mechanical property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force-displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model.

  12. Add-on unidirectional elastic metamaterial plate cloak.

    Lee, Min Kyung; Kim, Yoon Young


    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called "stress bandage", the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.

  13. Guided Waves in a Multi-Layered Cylindrical Elastic Solid Medium

    ZHANG Bi-Xing; CUI Han-Yin; XIAO Bo-Xun; ZHANG Cheng-Guang


    We investigate the guided waves in a multi-layered cylindrical elastic solid medium. The dispersion function of guided waves is usually complex and the dispersion curves of all modes are not conveniently obtained. Here we present an effective method to obtain the dispersion curves of all modes. First, the dispersion function of the guided waves is transformed into a real function. The dispersion curves are then calculated for all the modes of the guided waves by the bisection method. The modes with the orders n= 0, 1, and 2 are analysed in two- and three-layer media. The existence condition of Stoneley wave is discussed. The modes of the guided waves are also investigated in a two-layer medium, in which the velocity of shear wave in the outer layer is less than that in the inner layer.

  14. Homogenization method for elastic materials

    Seifrt F.


    Full Text Available In the paper we study the homogenization method and its potential for research of some phenomenons connected with periodic elastic materials. This method will be applied on partial differential equations that describe the deformation of a periodic composite material. The next part of the paper will deal with applications of the homogenization method. The importance of the method will be discussed more detailed for the exploration of the so called bandgaps. Bandgap is a phenomenon which may appear during vibrations of some periodically heterogeneous materials. This phenomenon is not only observable during vibrations for the aforementioned materials, but we may also observe similar effects by propagation of electromagnetic waves of heterogeneous dielectric medias.

  15. Mathematical methods for elastic plates

    Constanda, Christian


    Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

  16. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic


    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  17. Multidiscipline simulation of elastic manipulators

    T. Rølvåg


    Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.

  18. Jourdain Principle of a Super-Thin Elastic Rod Dynamics

    XUE Yun; SHANG Hui-Lin


    A super thin elastic rod is modeled with a background of DNA super coiling structure, and its dynamics is discussed based on the Jourdain variation. The cross section of the rod is taken as the object of this study and two velocity spaces about arc coordinate and the time are obtained respectively. Virtual displacements of the section on the two velocity spaces are defined and can be expressed in terms of Jourdaln variation. Jourdain principles of a super thin elastic rod dynamics on arc coordinate and the time velocity space are established,respectively, which show that there are two ways to realize the constraint conditions. If the constitutive relation of the rod is linear, the Jourdaln principle takes the Euler-Lagrange form with generalized coordinates. The Kirchhoff equation, Lagrange equation and Appell equation can be derived from the present Jourdaln principle.While the rod subjected to a surface constraint, Lagrange equation with undetermined multipliers may be derived.

  19. The visco-elastic multilayer program VEROAD

    Hopman, P.C.


    The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of p

  20. Acoustic signal analysis of underwater elastic cylinder

    LI Xiukun; YANG Shi'e


    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  1. Celestial mechanics of elastic bodies II

    Beig, Robert; Schmidt, Bernd G


    We construct time independent configurations describing a small elastic body moving in a circular orbit in the Schwarzschild spacetime. These configurations are relativistic versions of Newtonian solutions constructed by two of us (R.B.,B.G.S.). In the process we simplify and sharpen previous results of ours concerning elastic bodies in rigid rotation.

  2. Elastic least-squares reverse time migration

    Feng, Zongcai


    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  3. Wave propagation in elastic layers with damping

    Sorokin, Sergey; Darula, Radoslav


    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...

  4. Solitary waves on nonlinear elastic rods. I

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.


    Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...

  5. Simulation and control problems in elastic robots

    Tadikonda, S. S. K.; Baruh, H.


    Computational issues associated with modeling and control of robots with revolute joints and elastic arms are considered. A manipulator with one arm and pinned at one end is considered to investigate various aspects of the modeling procedure and the model, and the effect of coupling between the rigid-body and the elastic motions. The rigid-body motion of a manipulator arm is described by means of a reference frame attached to the shadow beam, and the linear elastic operator denoting flexibility is defined with respect to this reference frame. The small elastic motion assumption coupled with the method of assumed modes is used to model the elasticity in the arm. It is shown that only terms up to quadratic in these model amplitudes need to be retained. An important aspect of the coupling between the rigid-body and the elastic motion is the centrifugal stiffening effect. This effect stiffens the elastic structure, as to be expected on physical grounds, gives rise to a time-varying inertia term for the rigid-body motion, and, in general, results in an effective inertia term smaller than the rigid-body inertia term. Simulation results are presented for an elastic beam pinned at one end and free at the other, and rotating in a horizontal plane, and control issues such as the order of the model, number of sensors, and modal extraction are examined within this context.

  6. 7 CFR 29.6013 - Elasticity.


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.6013 Section 29.6013 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6013 Elasticity. The flexible, springy nature of the tobacco leaf...

  7. Monopoly price discrimination with constant elasticity demand

    Aguirre Pérez, Iñaki; Cowan, Simon George


    This paper presents new results on the welfare e¤ects of third-degree price discrimination under constant elasticity demand. We show that when both the share of the strong market under uniform pricing and the elasticity di¤erence between markets are high enough,then price discrimination not only can increase social welfare but also consumer surplus.

  8. Monopoly price discrimination with constant elasticity demand

    Aguirre Pérez, Iñaki; Cowan, Simon George


    This paper presents new results on the welfare e¤ects of third-degree price discrimination under constant elasticity demand. We show that when both the share of the strong market under uniform pricing and the elasticity di¤erence between markets are high enough,then price discrimination not only can increase social welfare but also consumer surplus.

  9. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume


    International audience; The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10−7 to 10−5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi...

  10. Interface pressure and stiffness of various elastic stockings during posture changes and exercise.

    Hirai, Masafumi; Iwata, Hirohide; Ishibashi, Hiroyuki; Ota, Takashi; Nakamura, Hisako


    The importance of measuring interface pressure and stiffness to characterize the elastic properties of materials has been stressed with regard to elastic stockings and elastic bandages. The objective of this study was to compare the pressure profiles of nine different elastic stockings and to quantify the effects of posture changes and exercise on compression. Using a pressure transducer (Air Pack Type Analyzer), the interface pressure associated with nine different elastic stockings was measured at level B1 during supine resting, standing, and exercise. The elastic stockings examined could be divided into two categories according to extensibility: short stretch ( 105% extensibility). Short-stretch stockings include thick round-knitted stockings, firm round-knitted stockings, and flat-knitted stockings. Short-stretch stockings showed a higher peak working pressure and a larger pressure amplitude during exercise than long-stretch stockings. Short-stretch stockings can be expected to have more pronounced benefits for augmenting muscle pumping in the same way as short-stretch bandages. In selecting suitable elastic stockings for patients, the stiffness should be taken into account in addition to interface pressure.

  11. Income-elasticity of poultry meat consumption in metropolitan areas of Brazil

    Bacchi Miriam Rumenos Piedade


    Full Text Available Studies on the meat market behavior may result in interesting parameters for the market and public policy agents. The definition of the income-elasticity of poultry consumption enables the elaboration of prospective analysis on the potential demand of this product. Thus, the main objective of the present study is to estimate the income-elasticities of poultry consumption. Data from the 1995-96 and 1987-88 Consumer Expenditure Survey, published by IBGE (Brazilian Institute of Geography and Statistics, were used in the analysis. The elasticities were obtained by fitting a three-segment polygonal curve relating the logarithm of the per capita poultry meat consumption as a function of the per capita family income. Generalized Least Squares method was used for the econometric model fitting. The elasticities were obtained considering the total, carcasses and selected individual poultry parts consumption. Average income elasticity of the total consumption enables the classification of poultry meat as a normal product. The observed average income elasticities showed that breast and thighs are superior products. In the last period, a negative elasticity was observed for carcasses.

  12. Measurement of third-order elastic constants and applications to loaded structural materials.

    Takahashi, Sennosuke; Motegi, Ryohei


    The objective of this study is to obtain the propagation velocity of an elastic wave in a loaded isotropic solid and to show the usefulness of the third-order elastic constant in determining properties of practical materials. As is well known, the infinitesimal elastic theory is unable to express the influence of stress on elastic wave propagating in loaded materials. To solve this problem, the authors derive an equation of motion for elastic wave in a finitely deformed state and use the Lagrangian description where the state before deformation is used as a reference, and Murnaghans finite deformation theory for the unidirectional deformed isotropic solid. Ordinary derivatives were used for the mathematical treatment and although the formulas are long the content is simple. The theory is applied to the measurement of the third-order elastic constants of common steels containing carbon of 0.22 and 0.32 wt%. Care is taken in preparing specimens to precise dimensions, in properly adhering of transducer to the surface of the specimen, and in having good temperature control during the measurements to obtain precise data. As a result, the stress at various sites in the structural materials could be estimated by measuring the elastic wave propagation times. The results obtained are graphed for illustration.

  13. Traveling Lamb wave in elastic metamaterial layer

    Shu, Haisheng; Xu, Lihuan; Shi, Xiaona; Zhao, Lei; Zhu, Jie


    The propagation of traveling Lamb wave in single layer of elastic metamaterial is investigated in this paper. We first categorized the traveling Lamb wave modes inside an elastic metamaterial layer according to different combinations (positive or negative) of effective medium parameters. Then the impacts of the frequency dependence of effective parameters on dispersion characteristics of traveling Lamb wave were studied. Distinct differences could be observed when comparing the traveling Lamb wave along an elastic metamaterial layer with one inside the traditional elastic layer. We further examined in detail the traveling Lamb wave mode supported in elastic metamaterial layer, when the effective P and S wave velocities were simultaneously imaginary. It was found that the effective modulus ratio is the key factor for the existence of special traveling wave mode, and the main results were verified by FEM simulations from two levels: the level of effective medium and the level of microstructure unit cell.

  14. Breakdown of elasticity in amorphous solids

    Biroli, Giulio; Urbani, Pierfrancesco


    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  15. New empirical generalizations on the determinants of price elasticity

    Bijmolt, THA; Van Heerde, HJ; Pieters, RGM

    The importance of pricing decisions for firms has fueled an extensive stream of research on price elasticities. In an influential meta-analytical study, Tellis (1988) summarized price elasticity research findings until 1986. However, empirical generalizations on price elasticity require

  16. Optimized analysis and experimental study for two-layer contact of crystalline silicon solar cells%晶体硅太阳电池双层电极优化分析与实验研究

    李涛; 周春兰; 刘振刚; 赵雷; 李海玲; 刁宏伟; 王文静


    相对于单层电极结构,优化的前表面双层电极能够明显减小功率损失,改善晶体硅太阳电池的电学特性.本文对晶体硅太阳电池的双层电极进行了优化分析和实验研究.通过扫描电子显微镜观测将双层电极的截面抽象为更接近于实际的半椭圆型,建立了太阳电池前表面的双层电极模型,理论分析了双层电极的电学损失和光学损失.结合丝网印刷后光诱导电镀太阳电池的实验,得到了理论和实验上的最优化光诱导电镀增厚电极厚度与丝网印刷电极宽度的关系.所得到的理论和实验结果符合良好.由于并不涉及电极制备的具体技术,双层电极理论模型普遍适用于多种类型的双层电极结构.%Compared with single-layer contact,optimized two-layer contact of front side could diminish power losses distinctly and improve the electrical performance of crystalline silicon solar cell.In this paper,the optimized analysis and experimental study for two-layer contact of crystalline silicon solar cell are carried out.The model of two-layer contact is established by abstracting the crosssection of two-layer contact into semi-elliptical shape closer to the realistic situation according to the SEM observation.The electrical losses and the optical losses of two-layer contact are analyzed in theory.In combination with experimental screen-printed contact thickened by light-induced electroplating solar cell,the relationship between the optimum thickening contact thickness by light-induced electroplating and the screen-printed contact width is achieved in theory and experiment.The corresponding theory and experimental results are in good agreement with each other.Due to involving no concrete technology of contact preparation,the theoretical model of two-layer contact is generally appticable for many types of two-layer contact structures in consequence.

  17. Differences in price elasticities of demand for health insurance: a systematic review.

    Pendzialek, Jonas B; Simic, Dusan; Stock, Stephanie


    Many health insurance systems apply managed competition principles to control costs and quality of health care. Besides other factors, managed competition relies on a sufficient price-elastic demand. This paper presents a systematic review of empirical studies on price elasticity of demand for health insurance. The objective was to identify the differing international ranges of price elasticity and to find socio-economic as well as setting-oriented factors that influence price elasticity. Relevant literature for the topic was identified through a two-step identification process including a systematic search in appropriate databases and further searches within the references of the results. A total of 45 studies from countries such as the USA, Germany, the Netherlands, and Switzerland were found. Clear differences in price elasticity by countries were identified. While empirical studies showed a range between -0.2 and -1.0 for optional primary health insurance in the US, higher price elasticities between -0.6 and -4.2 for Germany and around -2 for Switzerland were calculated for mandatory primary health insurance. Dutch studies found price elasticities below -0.5. In consideration of all relevant studies, age and poorer health status were identified to decrease price elasticity. Other socio-economic factors had an unclear impact or too limited evidence. Premium level, range of premiums, homogeneity of benefits/coverage and degree of forced decision were found to have a major influence on price elasticity in their settings. Further influence was found from supplementary insurance and premium-dependent employer contribution.

  18. Elastic metamaterial beam with remotely tunable stiffness

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)


    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  19. Application of numerical methods to elasticity imaging.

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J


    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.

  20. Estimation of In vivo Cancellous Bone Elasticity

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi


    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  1. Elastic metamaterial beam with remotely tunable stiffness

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.


    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  2. 面向个性化推荐的两层混合图模型%Hybrid Graph Model with Two Layers for Personalized Recommendation

    张少中; 陈德人


    A hybrid graph model for personalized recom-mendation,which is based on small world network and Bayesian network,is presented.The hybrid graph model has two-layers.The bottom level means user's layer and the upper one means merchandise's layer.The user's layer is an undirected arcs graph,which describes the relation of the user's nodes by small world network.The undirected arcs inside the connected nodes of user's layer mean the similarity of the preference of users.These arcs are weighted by relational strength.The weight represents node's similarity or link's strength and intensity.Nodes in the same group are more similar to each other or more strongly connected.Users in a produce to others.It is connected by directed links,which means an implicated definition among merchandises,a user that purchase certain merchandise also tends to purchase another.The properties and content of merchandise can be used to show the similarity of the merchandise.The relations between user's layer and merchandise's layer are connected by directed links.The start nede of the directed links is a user node in user's layer belonging to some node group,which is gained by small world network.The end node of links is the node of some merchandise of the merchandise's layer.The directed links between the user's layer and the merchandise's layer are connected based on trade information of users.The strength of the relation between users and merchandises can be denoted by the probability parameter.The probability parameter shows a possibility of some users selecting for some merchandises. Firstly,algorithms for users clustering and for analysis of new user interest are presented to construct a hybrid graph model.Two important characteristic parameters,which are in small-world network,are introduced.These are characteristic path length and clustering coefficient.New user interest analysis is to judge which clustering group is the best match by calculating the distance of the new user node to

  3. Sound objects – Auditory objects – Musical objects

    Hjortkjær, Jens


    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  4. Sound objects – Auditory objects – Musical objects

    Hjortkjær, Jens


    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  5. Capillary stretching of elastic fibers

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille


    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  6. Elastic/Inelastic Measurement Project

    Yates, Steven [Univ. of Kentucky, Lexington, KY (United States); Hicks, Sally [Univ. of Dallas, TX (United States); Vanhoy, Jeffrey [U.S. Naval Academy, Annapolis, MD (United States); McEllistrem, Marcus [Univ. of Kentucky, Lexington, KY (United States)


    The work scope involves the measurement of neutron scattering from natural sodium (23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-­energy (few MeV) fast-­neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-­region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.

  7. Reversible Simulations of Elastic Collisions

    Perumalla, Kalyan S


    Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, with essentially no memory overhead. The challenge in achieving reversibility for an n-particle collision (where, n << N) arises from the presence of nd-d-1 degrees of freedom during each collision, and from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom during the forward simulation must be saved. This limitation is addressed here by first performing a pseudo-randomization of angles, ensuring determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed whic...

  8. Free vibration of semi-rigid connected Reddy–Bickford piles embedded in elastic soil

    Yusuf Yesilce; Hikmet H Catal


    The literature on free vibration analysis of Bernoulli–Euler and timoshenko piles embedded in elastic soil is plenty, but that of Reddy–Bickford piles partially embedded in elastic soil with/without axial force effect is fewer. The soil that the pile partially embedded in is idealized by Winkler model and is assumed to be two-layered. The pile part above the soil is called the first region and the parts embedded in the soil are called the second and the third region, respectively. It is assumed that the behaviour of the material is linear-elastic, that axial force along the pile length to be constant and the upper end of the pile that is semi-rigid supported against rotation is modelled by an elastic spring. The governing differential equations of motion of the rectangular pile in free vibration are derived using Hamilton’s principle and Winkler hypothesis. The terms are found directly from the solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. The models have six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments. Natural frequencies of the pile are calculated using transfer matrix and the secant method for non-trivial solution of linear homogeneous system of equations obtained due to values of axial forces acting on the pile, total and embedded lengths of the pile, the linear-elastic rotational restraining stiffness at the upper end of the pile and to the boundary conditions of the pile. Two different boundary conditions are considered in the study. For the first boundary condition, the pile’s end at the first region is semi-rigid connected and not restricted for horizontal displacement and the end at the third region is free and for the second boundary condition, the pile’s end at the first region is semi-rigid connected and restricted for horizontal displacement and the end at the

  9. A new paradigm for the molecular basis of rubber elasticity

    Hanson, David E.; Barber, John L.


    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There are serious conceptual objections to this assumption and others, such as the assumption that all network nodes undergo a simple volume-preserving linear motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, Quantum Chemistry, and Molecular Dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model (EPnet). When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high

  10. Marangoni elasticity of flowing soap films

    Kim, Ildoo


    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm is likely applicable to other similarly constructed flowing soap films.

  11. Marangoni elasticity of flowing soap films

    Kim, Ildoo; Mandre, Shreyas


    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  12. DAEs and PDEs in elastic multibody systems

    Simeon, B.


    Elastic multibody systems arise in the simulation of vehicles, robots, air- and spacecrafts. They feature a mixed structure with differential-algebraic equations (DAEs) governing the gross motion and partial differential equations (PDEs) describing the elastic deformation of particular bodies. We introduce a general modelling framework for this new application field and discuss numerical simulation techniques from several points of view. Due to different time scales, singular perturbation theory and model reduction play an important role. A slider crank mechanism with a 2D FE grid for the elastic connecting rod illustrates the techniques.

  13. Elasticity of Substitution and Antidumping Measures

    Drud Hansen, Jørgen; Meinen, Philipp; Nielsen, Jørgen Ulff-Møller

    Abstract This paper analyzes the role of the elasticity of substitution for anti-dumping decisions across countries. In monopolistic competition models with cost heterogeneous firms across countries, price differences vary inversely with the elasticity of substitution. Anti-dumping duties should...... therefore also vary inversely with the elasticity of substitution at least for countries which have a strong focus on prices in the determination of their anti-dumping measures. We test this for ten countries from 1990 to 2009 using data on anti-dumping from Chad Bown (2010) and US-data at 8-digit level...

  14. Full Elasticity Tensor from Thermal Diffuse Scattering

    Wehinger, Björn; Mirone, Alessandro; Krisch, Michael; Bosak, Alexeï


    We present a method for the precise determination of the full elasticity tensor from a single crystal diffraction experiment using monochromatic x rays. For the two benchmark systems calcite and magnesium oxide, we show that the measurement of thermal diffuse scattering in the proximity of Bragg reflections provides accurate values of the complete set of elastic constants. This approach allows for a reliable and model-free determination of the elastic properties and can be performed together with crystal structure investigation in the same experiment.

  15. Love Wave Propagation in Poro elasticity

    Y.V. Rama Rao


    Full Text Available It is observed that on similar reasons as in classical theory of elasticity, SH wave propagation in a semi infinite poroelastic body is not possible and is possible when there is a layer of another poro elastic medium over it i.e., Love waves. Two particular cases are considered in one of which phase velocity can be determined for a given wave length. In the same case, equation for phase velocity is of the same form as that of the classical theory of Elasticity.

  16. Acoustic scattering reduction using layers of elastic materials

    Dutrion, Cécile; Simon, Frank


    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  17. Do alcoholic beverages interfere in the force of orthodontic elastics?

    Matheus Melo PITHON

    Full Text Available Objective: To evaluate the effects of different alcoholic beverages on the decline in force of orthodontic elastics. Material and method: In a laboratory study, 6 groups of alcoholic beverages were tested. Control group (Group 1 was composed of distilled water. Experimental groups were Whisky (Group 2, Brandy (Group 3, Vodka (Group 4, Beer (Group 5, Sugar Cane Spirit/Rum (Group 6, Wine (Group 7. In the experimental groups, templates were used to enable elastics to be submerged in the alcoholic beverages for 30 seconds once a day. Force was measured with a digital dynamometer in six different time intervals: baseline, 1, 7, 14, 21 and 28 days. Result: There were no significant differences between the treatments in the time intervals: baseline, 7, 14 and 28 days. There were statistical differences between Group 7 and the others in the first 24 hours, and between Group 1 and the others after 21 days. After 28 days, there were no significant differences in the force pattern among all groups (p<0.05. Conclusion: Alcoholic beverages had no influence on the decline in force of the chain elastics.

  18. pp Elastic Scattering at LHC in Near Forward Direction

    Islam, M M; Prokudin, A V


    We predict pp elastic differential cross section at LHC at the c.m. energy sqrt(s) = 14 TeV and momentum transfer range |t| = 0 - 10 GeV^2, which is planned to be measured by the TOTEM group. The field theory model underlying our phenomenological investigation describes the nucleon as a composite object with an outer cloud of quark-antiquark condensate, an inner core of topological baryonic charge, and a still smaller quark-bag of valence quarks. The model satisfactorily describes the asymptotic behavior of total cross section as a function of s and the real to imaginary ratio of the forward scattering amplitude as a function of s. It also describes well the the measured antiproton-proton elastic differential cross sections at sqrt(s)= 546 GeV, 630 GeV, and 1.8 TeV. The large |t| elastic amplitude of the model incorporates the BFKL Pomeron in next to leading order approximation, the perturbative dimensional counting behavior, and the confinement of valence quarks in a small region within the nucleon.

  19. A nonlinear approach of elastic reflection waveform inversion

    Guo, Qiang


    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  20. Transition of polymers from rubbery elastic state to fluid state

    Renyuan QIAN; Yansheng YU


    On increasing the temperature of a polymer,the transition of the polymer from a rubbery elastic state to a fluid state could occur. The transition temperature is termed the fluid temperature of the polymer, Tf, which has a direct relationship with the polymer molecular weight.As one of polymer parameters, Tf is as important as the glass transition temperature of a polymer, Tg. Moreover,special attention to Tf should be paid for polymer processing. In research on the transition of a polymer from a rubbery elastic state to a fluid state, the concept of Tfwould be more reasonable and more effective than the concept of T1,1 because it is neglected in the concept of T1,1in that the molecular weight of a polymer may affect the transition of the polymer. In this paper the discussion on the fluid temperature involves the characters of polymers,such as the deformation-temperature curve, the tempera-ture range of the rubbery state and the shear viscosity of polymer melt. From the viewpoint of the cohesional state of polymers, the transition of a polymer from a rubbery elastic state to a fluid state responds to destruction and construction of the cohesional entanglement network in the polymer. The relaxing network of polymer melt would be worthy to be considered as an object of study.

  1. Elasticities of substitution and functional separability of the maquiladora industry

    Jorge Ibarra Salazar


    Full Text Available Previous studies about the demand of productive factors of the Maquiladora Industry have focused in the labor demand. Such literature has advanced in two directions: specifying dynamic models of labor demand; or deriving the demand of productive factors from production functions that assume constant returns to scale, functional separability or certain substitution patterns among them. In this paper we estimate a translog production function without imposing a priori these restrictions. Our objective is to determine whether there is evidence supporting those assumptions. In particular, we analyze the hypotheses of constant returns to scale, and the different forms of functional separability in a three inputs production function. We use data that combines annual time series (1990– 2006 with cross section of nine economic sectors of the Mexican maquiladora. We find no evidence supporting the assumptions that have been used in previous studies of factor demand. Specifically, we find evidence of decreasing returns to scale, and that the elasticities of substitution between the productive factors are all different. The estimated elasticity of substitution between labor and capital is below one; between labor and materials fluctuates between 1 and 1.5; whereas the elasticity of substitution between capital and materials is above 2.

  2. Inverse method for the determination of elastic properties of coating layers by the surface ultrasonic waves

    CHANG Jun; YANG Zhen; XU Jin-quan


    As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space,an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.

  3. Rayleigh scattering and nonlinear inversion of elastic waves

    Gritto, R.


    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  4. Quasi-objects, Cult Objects and Fashion Objects

    Andersen, Bjørn Schiermer


    This article attempts to rehabilitate the concept of fetishism and to contribute to the debate on the social role of objects as well as to fashion theory. Extrapolating from Michel Serres’ theory of the quasi-objects, I distinguish two phenomenologies possessing almost opposite characteristics....... These two phenomenologies are, so I argue, essential to quasi-object theory, yet largely ignored by Serres’ sociological interpreters. They correspond with the two different theories of fetishism found in Marx and Durkheim, respectively. In the second half of the article, I introduce the fashion object...... as a unique opportunity for studying the interchange between these two forms of fetishism and their respective phenomenologies. Finally, returning to Serres, I briefly consider the theoretical consequences of introducing the fashion object as a quasi-object....

  5. Monocular 3D Reconstruction and Augmentation of Elastic Surfaces with Self-Occlusion Handling.

    Haouchine, Nazim; Dequidt, Jeremie; Berger, Marie-Odile; Cotin, Stephane


    This paper focuses on the 3D shape recovery and augmented reality on elastic objects with self-occlusions handling, using only single view images. Shape recovery from a monocular video sequence is an underconstrained problem and many approaches have been proposed to enforce constraints and resolve the ambiguities. State-of-the art solutions enforce smoothness or geometric constraints, consider specific deformation properties such as inextensibility or resort to shading constraints. However, few of them can handle properly large elastic deformations. We propose in this paper a real-time method that uses a mechanical model and able to handle highly elastic objects. The problem is formulated as an energy minimization problem accounting for a non-linear elastic model constrained by external image points acquired from a monocular camera. This method prevents us from formulating restrictive assumptions and specific constraint terms in the minimization. In addition, we propose to handle self-occluded regions thanks to the ability of mechanical models to provide appropriate predictions of the shape. Our method is compared to existing techniques with experiments conducted on computer-generated and real data that show the effectiveness of recovering and augmenting 3D elastic objects. Additionally, experiments in the context of minimally invasive liver surgery are also provided and results on deformations with the presence of self-occlusions are exposed.

  6. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity

    Juan, Pierre-Alexandre; Dingreville, Rémi


    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive "interferences" are directly affected by the interface structure and its elastic response. This general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.


    Adriano Wagner Ballarin


    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  8. Theories for Elastic Plates via Orthogonal Polynomials

    Krenk, Steen


    A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori...

  9. Measuring Moduli Of Elasticity At High Temperatures

    Wolfenden, Alan


    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  10. Equivalent boundary integral equations for plane elasticity

    胡海昌; 丁皓江; 何文军


    Indirect and direct boundary integral equations equivalent to the original boundary value problem of differential equation of plane elasticity are established rigorously. The unnecessity or deficiency of some customary boundary integral equations is indicated by examples and numerical comparison.

  11. Dynamic response of visco-elastic plates

    Kadıoǧlu, Fethi; Tekin, Gülçin


    In this study, a comprehensive analysis about the dynamic response characteristics of visco-elastic plates is given. To construct the functional in the Laplace-Carson domain for the analysis of visco-elastic plates based on the Kirchhoff hypothesis, functional analysis method is employed. By using this new energy functional in the Laplace-Carson domain, moment values that are important for engineers can be obtained directly with excellent accuracy and element equations can be written explicitly. Three-element model is considered for modelling the visco-elastic material behavior. The solutions obtained in the Laplace-Carson domain by utilizing mixed finite element formulation are transformed to the time domain using the Durbin's inverse Laplace transform technique. The proposed mixed finite element formulation is shown to be simple to implement and gives satisfactory results for dynamic response of visco-elastic plates.

  12. Extremal Overall Elastic Response of Polycrystalline Materials

    Bendsøe, Martin P; Lipton, Robert


    Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...

  13. Characterizing the elasticity of hollow metal nanowires

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)


    We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.

  14. Quantitative endoscopic imaging elastic scattering spectroscopy: model system/tissue phantom validation

    Lindsley, E. H.; Farkas, D. L.


    We have designed and built an imaging elastic scattering spectroscopy endoscopic instrument for the purpose of detecting cancer in vivo. As part of our testing and validation of the system, known targets representing potential disease states of interest were constructed using polystyrene beads of known average diameter and TiO II crystals embedded in a two-layer agarose gel. Final construction geometry was verified using a dissection microscope. The phantoms were then imaged using the endoscopic probe at a known incident angle, and the results compared to model predictions. The mathematical model that was used combines classic ray-tracing optics with Mie scattering to predict the images that would be observed by the probe at a given physical distance from a Mie-regime scattering media. This model was used generate the expected observed response for a broad range of parameter values, and these results were then used as a library to fit the observed data from the phantoms. Compared against the theoretical library, the best matching signal correlated well with known phantom material dimensions. These results lead us to believe that imaging elastic scattering can be useful in detection/diagnosis, but further refinement of the device will be necessary to detect the weak signals in a real clinical setting.

  15. Integration of renewable generation and elastic loads into distribution grids

    Ardakanian, Omid; Rosenberg, Catherine


    This brief examines the challenges of integrating distributed energy resources and high-power elastic loads into low-voltage distribution grids, as well as the potential for pervasive measurement. It explores the control needed to address these challenges and achieve various system-level and user-level objectives. A mathematical framework is presented for the joint control of active end-nodes at scale, and extensive numerical simulations demonstrate that proper control of active end-nodes can significantly enhance reliable and economical operation of the power grid.

  16. Peristaltic pumping in an elastic tube: feeding the hungry python

    Takagi, Daisuke; Balmforth, Neil


    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  17. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume


    The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10-7 to 10-5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10-4 and can reach 10-2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elastic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak amplitude of the dynamic applied strain is 8 × 10-6. The method is shown to be particularly suitable for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static acousto-elastic experiments in such materials are often performed outside the domain of validity of the third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapolated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty of the evaluation of the third-order elastic constants is assessed by repeating multiple times the measurements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic constants are l = -73 GPa ± 9%, m = -34 GPa ± 9%, and n = -61 GPa ± 10% for polymethyl methacrylate, and l = -17 000 GPa ± 20%, m = -11 000 GPa ± 10%, and n = -30 000 GPa ± 20% for dry Berea sandstone.

  18. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    Tattersall, Wade [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Chiari, Luca [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Machacek, J. R.; Anderson, Emma; Sullivan, James P. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); White, Ron D. [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Brunger, M. J. [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Buckman, Stephen J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Garcia, Gustavo [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, Francisco [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)


    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  19. Positron interactions with water-total elastic, total inelastic, and elastic differential cross section measurements.

    Tattersall, Wade; Chiari, Luca; Machacek, J R; Anderson, Emma; White, Ron D; Brunger, M J; Buckman, Stephen J; Garcia, Gustavo; Blanco, Francisco; Sullivan, James P


    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  20. On Some Elastic Instabilities in Biaxial Nematics

    Sukumaran, Sreejith; G. Ranganath


    Within the framework of the continuum elastic theory of biaxial nematic liquid crystals, we have addressed ourselves to the structure, stability and energetics of some singular and non–singular topological defects, and certain director configurations. We find that certain non–singular hybrid disclinations could be energetically favourable relative to certain half–strength disclinations. The interaction between singular hybrids depends strongly on the biaxial elastic anisotropy. We suggest pos...

  1. Fracture imaging with converted elastic waves

    Nihei, K.T.; Nakagawa, S.; Myer, L.R.


    This paper examines the seismic signatures of discrete, finite-length fractures, and outlines an approach for elastic, prestack reverse-time imaging of discrete fractures. The results of this study highlight the importance of incorporating fracture-generated P-S converted waves into the imaging method, and presents an alternate imaging condition that can be used in elastic reverse-time imaging when a direct wave is recorded (e.g., for crosswell and VSP acquisition geometries).

  2. Import price elasticities: reconsidering the evidence

    Hélène Erkel-Rousse; Daniel Mirza


    Recent economic geography and trade empirical studies based on monopolistic competition suggest high levels of trade price elasticities (between 3 and 11). However, price elasticity estimations in trade equations using unit values as price proxies usually lead to lower values of around unity. We show that those inconclusive results may be due to some misspecification in these equations as well as measurement errors in prices. When suitable instrumental variables are used, within a panel of in...

  3. Visco-elastic response of thermoplastics

    Kristensen, Vegard Berge


    In this study a recently developed visco-elastic visco-plastic material model has been evaluated with the intention of improving the simulated behaviour of polymers. In order for polymers to become a more reliable construction material the behaviour has to be rendered realistically in simulations. A set of eleven experimental tests have been conducted to establish a database for further simulations. By use of some of these experimental tests the visco-elastic visco-plastic material model has ...

  4. Control Plane Strategies for Elastic Optical Networks

    Turus, Ioan

    The goal of this Ph.d. project is to present and address selected challenges related to the increasing traffic demand and limited available capacity in core optical fiber infrastructure in parallel with tighter requirements of reducing energy consumption and operational costs. Elastic Optical...... consumption. EONs offer the opportunity of deploying energy efficiency strategies, which benefit from the flexible nature of elastic optoelectronic devices. This thesis proposes and investigates different approaches for reducing power consumption based on EONs in realistic dynamic traffic scenarios....

  5. Elastic form factors at higher CEBAF energies

    Petratos, G.G. [Kent State Univ., OH (United States)


    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  6. Elasticity of a quantum monolayer solid

    Bruch, Ludwig Walter


    A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symmetry relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the two elastic constants of the triangular lattice with central-pair-potential interactions is gi...... is given for the quantum solid. The first-order quantum corrections are rederived in this formalism, and previous calculations are reanalyzed....

  7. Import price elasticities: reconsidering the evidence

    Hélène Erkel-Rousse; Daniel Mirza


    Recent economic geography and trade empirical studies based on monopolistic competition suggest high levels of trade price elasticities (between 3 and 11). However, price elasticity estimations in trade equations using unit values as price proxies usually lead to lower values of around unity. We show that those inconclusive results may be due to some misspecification in these equations as well as measurement errors in prices. When suitable instrumental variables are used, within a panel of in...

  8. Plane strain problem in microstretch elastic solid

    Rajneesh Kumar; Ranjit Singh; T K Chadha


    The eigenvalue approach is developed for the two-dimensional plane strain problem in a microstretch elastic medium. Applying Laplace and Fourier transforms, an infinite space subjected to a concentrated force is studied. The integral transforms are inverted using a numerical technique to get displacement, force stress, couple stress and first moment, which are also shown graphically. The results of micropolar elasticity are deduced as a special case from the present formulation.

  9. A constant elasticity of profit production function

    Beard, Rodney


    Impact analysis of changes in production inputs may be simplified if one can apply a constant adjustment factor to profit. In particular, if a production function can be found for which the elasticity of profit is constant and this function has desirable properties, then one can use the input elasticity of profit to study the impact of input changes on profit. In this paper such a production function is derived from first principles.

  10. Income Elasticity Literature Review | Science Inventory | US ...

    Following advice from the SAB Council, when estimating the economic value of reductions in air pollution-related mortality and morbidity risk, EPA accounts for the effect of personal income on the willingness to pay to reduce the risk of adverse health outcomes. These income growth adjustment factors are calculated using a combination of income elasticity estimates and income growth projections, both of which have remained essentially unchanged since 1999. These income elasticity estimates vary according to the severity of illness. EPA recently received advice from the SAB regarding the range of income elasticities to apply as well as the research standards to use when selecting income elasticity estimates. Following this advice, EPA consulted with a contractor to update its income elasticity and income growth projections, and generate new income growth adjustment factors. The SAB would evaluate the income elasticity estimates identified in the EPA-provided literature review, determining the extent to which these estimates are appropriate to use in human health benefits assessments.

  11. Elastic modulus of cetacean auditory ossicles.

    Tubelli, Andrew A; Zosuls, Aleks; Ketten, Darlene R; Mountain, David C


    In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing.

  12. Twelve Elastic Constants of Betula platyphylla Suk.

    Wang Liyu; Lu Zhenyou


    Wood elastic constants are needed to describe the elastic behaviors of wood and be taken as an important design parameter for wood-based composite materials and structural materials. This paper clarified the relationships between compliance coefficients and engineering elastic constants combined with orthotropic properties of wood, and twelve elastic constants of Betula platyphylla Suk. were measured by electrical strain gauges. Spreading the adhesive quantity cannot be excessive or too little when the strain flakes were glued. If excessive, the glue layer was too thick which would influence the strain flakes' performance, and if too little, glues plastered were not firm, which could not accurately transmit the strain. Wood as an orthotropic material, its modulus of elasticity and poisson's ratios are related by two formulas:μij /Ei =μji /Ej and μij 0.95) between the reciprocal of elastic modulus MOE-1 and the square of the ratio of depth to length (h/l)2, which indicate that shear modulus values measured were reliable by three point bending experiment.

  13. Elastic reflection waveform inversion with variable density

    Li, Yuanyuan


    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  14. Fluid flow of incompressible viscous fluid through a non-linear elastic tube

    Lazopoulos, A.; Tsangaris, S. [National Technical University of Athens, Fluids Section, School of Mechanical Engineering, Zografou, Athens (Greece)


    The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung's (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain-energy density function. The fluid is described through a Navier-Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response. (orig.)

  15. Numerical simulation of hydro-elastic problems with smoothed particle hydro-dynamics method

    刘谋斌; 邵家儒; 李慧琦


    Violent free surface flows with strong fluid-solid interactions can produce a tremendous pressure load on structures, resu-lting in elastic and even plastic deformations. Modeling hydro-elastic problems with structure deformations and a free surface break-up is difficult by using routine numerical methods. This paper presents an improved Smoothed Particle Hydrodynamics (SPH) method for modeling hydro-elastic problems. The fluid particles are used to model the free surface flows governed by Navier-Stokes equations, and the solid particles are used to model the dynamic movement and deformation of the elastic solid objects. The impro-ved SPH method employs a Kernel Gradient Correction (KGC) technique to improve the computational accuracy and a Fluid-Solid Interface Treatment (FSIT) algorithm with the interface fluid and solid particles being treated as the virtual particles against their counterparts and a soft repulsive force to prevent the penetration and a corrective density approximation scheme to remove the nume-rical oscillations. Three typical numerical examples are simulated, including a head-on collision of two rubber rings, the dam break with an elastic gate and the water impact onto a forefront elastic plate. The obtained SPH results agree well with experimental obse-rvations and numerical results from other sources.

  16. Elastic deformation behaviour of Palaeogene clay from Fehmarn Belt area

    Awadalkarim, Ahmed; Foged, Niels Nielsen; Fabricius, Ida Lykke


    clays. Elastic wave velocities are influenced by the elastic stiffness and the density of a material. We used geotechnical and elastic wave velocity data to model the elasticity and then to relate it to mineralogy and BET surface area. We measured the mineralogy, BET surface area, bulk density, porosity...

  17. Parameter Optimisation for the Behaviour of Elastic Models over Time

    Mosegaard, Jesper


    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method...... that will optimise parameters based on the behaviour of the elastic models over time....

  18. Core Muscle Activity, Exercise Preference, and Perceived Exertion during Core Exercise with Elastic Resistance versus Machine

    Jonas Vinstrup


    Full Text Available Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26–67 years participated in surface electromyography (EMG measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG to maximum voluntary isometric contraction (MVC. Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36–64] versus 32% [95% CI 18–46] nEMG was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64–90] versus 54% [95% CI 40–67] nEMG. For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10 was not significantly different between machine (5.8 [95% CI 4.88–6.72] and elastic exercise (5.7 [95% CI 4.81–6.59]. Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.

  19. Cytotoxicity of intermaxillary orthodontic elastics of different colors: an in vitro study

    Rogério Lacerda dos Santos


    Full Text Available OBJECTIVES: Natural latex does not fall into the category of materials known to be entirely inoffensive. The purpose of this in vitro study was to test the hypothesis that there is no difference in the cytotoxicity between elastics of different colors and those from different manufacturers. MATERIAL AND METHODS: Different latex intraoral elastics of different colors (5/16 = 7.9 mm, mean load were compared. The sample was divided into 7 groups of 24 elastics each: Group T (TP Orthodontics, natural latex elastics, control; Groups U1, U2, U3, U4, U5 and U6 (Uniden, natural latex elastics and colored elastics, namely, green, pink, yellow, red and purple, respectively. Cytotoxicity assays were performed by using cell culture medium containing epithelioid-type cells (Hep-2 line derived from human laryngeal carcinoma. The cytotoxicity was evaluated by using the "dye-uptake" test, which was employed at two different moments (0 and 24 h. Data were compared by analysis of variance (ANOVA and Tukey's test (p<0.05. RESULTS: There was statistically significant difference (p<0.05 between Group T and all other groups (U1, U2, U3, U4, U5 and U6 at 0 and 24 h. No statistically significant difference (p<0.05 was found between Groups U1 and U5, U1 and U6, U2 and U3, U2 and U4, U2 and U5, U2 and U6, U3 and U4, U3 and U5, U3 and U6, U4 and U5, U4 and U6, and U5 and U6 at 0 and 24 h. CONCLUSIONS: The TP Orthodontics elastics promoted less cell lysis compared to the Uniden elastics regardless of their color.

  20. Elastic Properties of Sedimentary Rocks

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic