Sample records for elastic stress concentration

  1. Boundary element analysis for elastic and elastoplastic problems of 2D orthotropic media with stress concentration

    Xiushan Sun; Lixin Huang; Yinghua Liu; Zhangzhi Cen; Keren Wang


    Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions.Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media.

  2. Determination of Stress Concentration factor in Linearly Elastic Structures with Different Stress-Raisers Using FEM

    Dheeraj Gunwant


    Full Text Available Stress concentration is the localization of stress around stress raisers. Sudden changes in the geometry of structures give rise to stress values that are higher than those obtained by elementary equations of solid mechanics. Therefore the evaluation of stress state at such locations needs specialized techniques such as Finite Element Method (FEM.The finite element method is a numerical procedure that can be used to obtain solution to a large variety of engineering problems such as structural, thermal, heat transfer, electromagnetism and fluid flow. In the present investigation, focus has been kept on the finite element modeling and determination of stress concentration factor (SCF in linearly elastic structures with different stress-raisers such as circular and elliptical holes and double semicircular notch at different locations in a finite plate. The results obtained from FEM are compared with those obtained by analytical relations as given in literature. A commercially available finite element solver ANSYS has been used for the modeling and analysis in the investigation. Throughout the investigation, plane82, which is an eight node two-dimensional element is used for the discretization.

  3. Micro-mechanics of fiber reinforced bounded and unbounded solids: effective local and non-local thermo-elastic properties, stress concentration factors, and edge effect


    thermo-elastic properties, stress concentration factors, and edge effect 5. FUNDING NUMBERS FA8655-05-1-5008 6. AUTHOR(S) 7...unbounded solids, Thermo-elastic properties, Stress concentration factors, edge effect , Non-linear elastic stress, Inclusion-reinforced materials...factors, and edge effect Project manager: Maslov Borys Petrovich, Dr. Sc. in Physics and Mathematics Phone: +380-44-454-7764, Fax: –, E-mail

  4. Stress concentration at notches

    Savruk, Mykhaylo P


    This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation ...

  5. On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration.

    Yang, Jiashi; Jin, Zhihe; Li, Jiangyu


    Recent advances in material processing technologies allow the production of piezoelectric materials with functionally graded material properties. We investigate the implications of functionally graded piezoelectric materials when used as actuators for structural control by examining the distribution of the actuating shear stress under a piezoelectric actuator of a functionally graded material (FGM) on an isotropic elastic half-space. It is shown that FGM materials can be used to adjust the shear stress distribution. In particular, the concentration near the edges of a conventional homogeneous piezoelectric actuator can be significantly reduced in an FGM actuator.

  6. Estimation of C*-Integral in Thin T-Sections Subjected to Projection and Remote Loading Base on Elastic Stress Concentration Factor

    A. R. Gowhari-Anaraki


    Full Text Available The finite element method has been used to predict the creep rupture parameter, C*-Integral of flat T-section bar subjected to loaded projection and remote loading with a crack or crack-like flaw introduced in the fillet (i.e., high stress region of the component. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power low creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometric parameters. These parameters are chosen to be representative of typical practical situations and have been determined from evidence presented in the open literature. The extensive range of Q* obtained from the analyses are then used to obtain equivalent prediction equations using a statistical multiple non-linear regression model. The predictive equations for Q*, which are based on the elastic stress concentration factor, can also be used easily to calculate the C*-Integral values for extensive range of geometric parameters. The C*-Integral values obtained from predictive equations were also compared with those obtained from Reference Stress Method (RSM. Finally, creep zone growth behavior was studied in the component during transient time.

  7. Euler-Lagrange Elasticity: elasticity without stress or strain

    Hardy, Humphrey


    A Euler-Lagrange (E-L) approach to elasticity is proposed that produces differential equations of elasticity without the need to define stress or strain tensors. The positions of the points within the body are the independent parameters instead of strain. Force replaces stress. The advantage of this approach is that the E-L differential equations are the same for both infinitesimal and finite deformations. Material properties are expressed in terms of the energy of deformation. The energy is expressed as a function of the principal invariants of the deformation gradient tensor. This scalar invariant representation of the energy of deformation enters directly into the E-L differential equations so that there is no need to define fourth order tensor material properties. By experimentally measuring the force and displacement of materials the functional form of the energy of deformation can be determined. The E-L differential equations can be input directly into finite element, finite difference, or other numerical models. If desired, stress and stain can be calculated as dependent parameters.

  8. Stress Concentration around Holes in Anistropic Sheets

    Krenk, Steen


    The formulation of stress concentration problems of plane anisotropic elasticity in terms of integral equations is discussed. First the singular solutions of a concentrated force and a dislocation are formulated so that they remain valid in the case of double roots. The distribution...


    Stelian ALACI,


    Full Text Available The present paper presents the method of estimating the stress concentrator effect of a spherical void from an elastic half-space. An essential part consists in estimation of FEM error by finding the contact pressure from half-plane using an analytical method. Next, the stress concentrator effect of the same void, except for placed into elastic space, is found.


    胡超; 李凤明; 黄文虎


    Based on the theory of elastic dynamics, multiple scattering of elastic waves and dynamic stress concentrations in fiber-reinforced composite were studied. The analyticalexpressions of elastic waves in different region were presented and an analytic method tosolve this problem was established. The mode coefficients of elastic waves were determinedin accordance with the continuous conditiors of displacement and stress on the boundary ofthe multi-interfaces. By making use of the addition theorem of Hankel functions, theformulations of scattered wave fields in different local coordinates were transformed intothose in one local coordinate to determine the unknown coefficients and dynamic stressconcentration factors. The influence of distance between two inclusions, material propertiesand structural size on the dynamic stress concentration factors near the interfaces wasanalyzed. It indicates in the analysis that distance between two inclusions, materialproperties and structural size has great influence on the dynamic properties of fiber-reinforced composite near the interfaces. As examples, the numerical results of dynamicstress concentration factors near the interfaces in a fiber- reinforced composite are presentedand discussed.

  11. Cubic Single Crystal Representations in Classical and Size-dependent Couple Stress Elasticity

    Bansal, Dipanshu; Aref, Amjad J; Hadjesfandiari, Ali R


    Beginning with Cosserat theory in the early 20th century, there have been several different formulations for size-dependent elastic response. In this paper, we concentrate on the application of classical Cauchy theory and the recent parsimonious consistent couple stress theory to model a homogeneous linear elastic solid, exemplified by a pure single crystal with cubic structure. The focus is on an examination of elastodynamic response based upon wave velocities from ultrasonic excitation and phonon dispersion curves, along with adiabatic bulk moduli measurements. In particular, we consider in detail elastic parameter estimation within classical elasticity and consistent couple stress theory for four different cubic single crystals (NaCl, KCl, Cu, CuZn). The classical theory requires the estimation of three independent material parameters, while only one additional parameter relating skew-symmetric mean curvature to skew-symmetric couple-stress is needed for the size-dependent consistent couple stress theory. ...

  12. Elastic Stability of Concentric Tube Robots Subject to External Loads.

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E


    Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released. External loads on the robot also influence elastic stability. In this paper, we provide a second-order sufficient condition, and also a separate necessary condition, for elastic stability. Using methods of optimal control theory, we show that these conditions apply to general concentric tube robot designs subject to arbitrary conservative external loads. They can be used to assess the stability of candidate robot configurations. Our results are validated via comparison with other known stability criteria, and their utility is demonstrated by an application to stable path planning.

  13. Response to Concentrated Moving Masses of Elastically Supported Rectangular Plates Resting on Winkler Elastic Foundation

    Awodola T. O.


    Full Text Available The dynamic response to moving concentrated masses of elastically supported rectangular plates resting on Winkler elastic foundation is investigated in this work. This problem, involving non-classical boundary conditions, is solved and illustrated with two common examples often encountered in engineering practice. Analysis of the closed form solutions shows that, for the same natural frequency (i the response amplitude for the moving mass problem is greater than that one of the moving force problem for fixed Rotatory inertia correction factor R0 and foundation modulus F0, (ii The critical speed for the moving mass problem is smaller than that for the moving force problem and so resonance is reached earlier in the former. The numerical results in plotted curves show that, for the elastically supported plate, as the value of R0 increases, the response amplitudes of the plate decrease and that, for fixed value of R0, the displacements of the plate decrease as F0 increases. The results also show that for fixed R0 and F0, the transverse deflections of the plates under the actions of moving masses are higher than those when only the force effects of the moving load are considered. Hence, the moving force solution is not a save approximation to the moving mass problem. Also, as the mass ratio Γ approaches zero, the response amplitude of the moving mass problem approaches that one of the moving force problem of the elastically supported rectangular plate resting on constant Winkler elastic foundation.

  14. Stress in Thin Films; Diffraction Elastic Constants and Grain Interaction


    Untextured bulk polycrystals usually possess macroscopically isotropic elastic properties whereas for most thin films transverse isotropy is expected, owing to the limited dimensionality. The usually applied models for the calculation of elastic constants of polycrystals from single crystal elastic constants (so-called grain interaction models) erroneously predict macroscopic isotropy for an (untextured) thin film. This paper presents a summary of recent work where it has been demonstrated for the first time by X-ray diffraction analysis of stresses in thin films that elastic grain interaction can lead to macroscopically elastically anisotropic behaviour (shown by non-linear sin2ψ plots). A new grain interaction model, predicting the macroscopically anisotropic behaviour of thin films, is proposed.


    闫琨; 何陵辉; 刘人怀


    A geometrically nonlinear analysis was proposed for the deformation of a freestanding elastically isotropic wafer caused by the surface stress change on one surface. Thelink between the curvature and the change in surface stress was obtained analytically fromenergetic consideration. In contrast to the existing linear analysis, a remarkableconsequence is that, when the wafer is very thin or the surface stress difference between thetwo major surfaces is large enough, the shape of the wafer will bifurcate.

  16. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Holmes Amey J


    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.


    李凤明; 胡超; 徐敏强; 黄文虎


    Based on the theory of elastic dynamics,multiple scattering of elastic waves and dynamic stress concentrations in fiber-reinforced composite are studied.The analytical expressions of elastic waves in different regions are presented.The mode coefficients of elastic waves are determined in accordance with the continuous conditions of displacement and stress on the boundary of the multiinterfaces.By using the addition theorem of Hankel functions,the formula of scattered wave fields in different local coordinates are transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors (DSCFs).The influences of the distance between two inclusions,material properties and structural size on the DSCFs near the interfaces are analyzed.As examples,the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforced composites are presented and discussed.

  18. Stress transmission through a model system of cohesionless elastic grains

    Da Silva, Miguel; Rajchenbach, Jean


    Understanding the mechanical properties of granular materials is important for applications in civil and chemical engineering, geophysical sciences and the food industry, as well as for the control or prevention of avalanches and landslides. Unlike continuous media, granular materials lack cohesion, and cannot resist tensile stresses. Current descriptions of the mechanical properties of collections of cohesionless grains have relied either on elasto-plastic models classically used in civil engineering, or on a recent model involving hyperbolic equations. The former models suggest that collections of elastic grains submitted to a compressive load will behave elastically. Here we present the results of an experiment on a two-dimensional model system-made of discrete square cells submitted to a point load-in which the region in which the stress is confined is photoelastically visualized as a parabola. These results, which can be interpreted within a statistical framework, demonstrate that the collective response of the pile contradicts the standard elastic predictions and supports a diffusive description of stress transmission. We expect that these findings will be applicable to problems in soil mechanics, such as the behaviour of cohesionless soils or sand piles.

  19. Stress-enhanced Gelation: A Dynamic Nonlinearity of Elasticity

    Yao, Norman Y.; Broedersz, Chase P.; Depken, Martin; Becker, Daniel J.; Pollak, Martin R.; MacKintosh, Frederick C.; Weitz, David A.


    A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of F-actin cross-linked by α-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solid-like behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. PMID:23383843

  20. Stress effects on the elastic properties of amorphous polymeric materials

    Caponi, S., E-mail:, E-mail: [Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100 (Italy); Corezzi, S., E-mail:, E-mail: [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); CNR-ISC (Istituto dei Sistemi Complessi), c/o Università di Roma “LaSapienza,” Piazzale A. Moro 2, I-00185 Roma (Italy); Mattarelli, M. [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); Fioretto, D. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy)


    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

  1. Elastic Plastic Stress Distributions in Weld-bonded Lap Joint under Axial Loading

    Essam A. Al-Bahkali


    Full Text Available Weld-bonding process is increasingly used in many industries such like automobile and aerospace. It offers significant improvements of sheet metal joints in static, dynamic, corrosion, noise resistance, stiffness and impact toughness properties. A full understanding of this process, including the elastic-plastic stress distribution in the joint, is a must for joints design and automation of manufacturing. Also, the modelling and analysis of this process, though it is complex, proves to be of prime importance. Thus, in this study a systematic experimental and theoretical study employing Finite Element Analysis (FEA is conducted on the weld-bonded joint, fabricated from Austenitic Stainless steel (AISI 304 sheets of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading. Complete 3-D finite element models are developed to evaluate the normal, shear and triaxial Von Mises stresses distributions across the entire joint, in both the elastic and plastic regions. The, needed quantities and properties, for the FE modelling and analysis, of the base metals and the adhesive, such like the elastic-plastic properties, modulus of elasticity, fracture limit, the nugget and Heat Affected Zones (HAZ properties, etc., are obtained from the experiments. The stress distribution curves obtained are found to be consistent with those obtained from the FE models and in excellent agreement with the experimental and theoretical published data, particularly in the elastic region. Furthermore, the stress distribution curves obtained for the weld-bonded joint display the best uniform smooth distribution curves compared to those obtained for the spot and bonded joint cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint.

  2. Burial stress and elastic strain of carbonate rocks

    Fabricius, Ida Lykke


    mechanisms. The principle is illustrated by comparing carbonate sediments and sedimentary rocks from the North Sea Basin and three oceanic settings: a relatively shallow water setting dominated by coarse carbonate packstones and grainstones and two deep water settings dominated by fine‐grained carbonate......Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...


    李凤明; 胡超; 徐敏强; 黄文虎


    Based on the theory of elastic dynamics, multiple scattering of elastic waves anddynamic stress concentrations in fiber-reinforced composite are studied. The analytical expressions ofelastic waves in different regions are presented. The mode coefficients of elastic waves are determinedin accordance with the continuous conditions of displacement and stress on the boundary of the multi-interfaces. By using the addition theorem of Hankel functions, the formula of scattered wave fields indifferent local coordinates are transformed into those in one local coordinate to determine the unknowncoefficients and dynamic stress concentration factors (DSCFs). The influences of the distance betweentwo inclusions, material properties and structural size on the DSCFs near the interfaces are analyzed.As examples, the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforcedcomposites are presented and discussed.

  4. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    Schiferl, S.K.


    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.

  5. Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    Khani, M M; Tafazzoli-Shadpour, M; Aghajani, F; Naderi, P


    Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second premolar due to physiological cyclic loading, and dependency of pulsatile stress characteristics to visco-elastic property of dental components by finite element modelling. Results show that visco-elastic property markedly influences stress determinants in major anatomical sites including dentin, cementum-enamel and dentin-enamel junctions. Reduction of visco-elastic parameter leads to mechanical vulnerability through elevation of stress pulse amplitude, maximum stress value; and reduction of stress phase shift as a determinant of stress wave propagation. The results may be applied in situations in which visco-elasticity is reduced such as root canal therapy and post and core restoration in which teeth are more vulnerable to fracture.

  6. Elastic stress transmission and transformation (ESTT) by confined liquid: A new mechanics for fracture in elastic lithosphere of the earth

    Xu, Xing-Wang; Peters, Stephen; Liang, Guang-He; Zhang, Bao-Lin


    We report on a new mechanical principle, which suggests that a confined liquid in the elastic lithosphere has the potential to transmit a maximum applied compressive stress. This stress can be transmitted to the internal contacts between rock and liquid and would then be transformed into a normal compressive stress with tangential tensile stress components. During this process, both effective compressive normal stress and tensile tangential stresses arise along the liquid–rock contact. The minimum effective tensile tangential stress causes the surrounding rock to rupture. Liquid-driven fracture initiates at the point along the rock–liquid boundary where the maximum compressive stress is applied and propagates along a plane that is perpendicular to the minimum effective tensile tangential stress and also is perpendicular to the minimum principal stress.

  7. X-Ray Elastic Constants and Residual Stress Distributions of Zirconia Thermal Barrier Coating

    鈴木, 賢治; 町屋, 修太郎; 田中, 啓介; 坂井田, 喜久; SUZUKI, Kenji; Machiya, Syutaro; Tanaka, Keisuke; Sakaida, Yoshihisa


    Accurate values of X-ray elastic constants are required for a reliable stress measurement of thermal barrier coating films (TBC films). In this paper, atmosphere and pressureless plasma sprayed TBC films were removed from substrates, then X-ray elastic constants of both TBC films were determained by using newly developed tensile jig. For the atmosphere plasma sprayed film, the value of the mechanical elastic constant was much smaller than the X-ray elastic constant owing to cracks or pores ex...

  8. Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction

    Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.


    We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.

  9. Conformal analysis of fundamental frequency of vibration of simple-supported elastic ellipse-plates with concentrated substance

    QI Hong-yuan; ZHU Heng-jun


    Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elasticplates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipseplates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant inplane stress, as well as the concentrated substance mass and positions are analyzed respectively.

  10. Surface stress, surface elasticity, and the size effect in surface segregation

    Schmid, M.; Hofer, W.; Varga, P.;


    Surface stress and surface elasticity of low-index fcc surfaces have been studied using effective-medium theory potentials. In addition to total-energy calculations giving stress components and elastic data for the surface as a whole, the use of artificial atoms with modified size allows us...

  11. Elasticity

    Soutas-Little, Robert William


    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  12. Use of elastic stresses for a multiaxial fatigue prediction

    Růžička M.


    Full Text Available A new computational method derived from Papuga PCr multiaxial criterion is presented in the paper. While the PCr criterion is suitable for a comparison of a local multiaxial loading with a fatigue limit, the PCF criterion derived is focused on computation within a finite life. Its use is intended for a variable amplitude multiaxial loading, where the Palmgren-Miner damage cumulation law is applied. The PCF method is based on local elastic stresses and their action within the standard S-N curves of smooth specimens. No arrangement concerning the stress gradient effect was applied, since the experiments serving for comparison were carried on smooth and unnotched specimens. The experimental set covers different load paths applied to specimens manufactured of CSN 41 1523 structural steel. Computational results are promising for cases with load paths formed from single unclosed lines, but for the cases with load paths related to closed constructs it provides too conservative solution. A need for a further term counting for the multiaxial hardening is discussed.

  13. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    P. Pal Roy


    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  14. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function

    LI Lian-He; FAN Tian-You


    @@ The stress potential function theory for plane elasticity of icosahedral quasicrystals is developed. By introducing stress functions, huge numbers of basic equations involving elasticity of icosahedral quasicrystals are reduced to a single partial differential equation of the 12th order.

  15. Mapping analysis of vibrating fundamental frequency for simple-supported elastic rectangle-plates with concentrated mass


    By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between complicated region and unite dish region was carried out. Aiming at calculating the vibrating fundamental frequency of special-shaped, elastic simple-supported rectangle-plates, in the in-plane state of constant stress, the vibration function of this complicated plate was depicted by unit dish region. The coefficient of fundamental frequency was calculated. Whilst, taking simple-supported elastic rectangle-plates with arc radius as an example, the effects on fundamental frequency caused by the concentrated mass and position, the ratio of the length to width of rectangle, as well as the coefficient of constant in-plane stress were analyzed respectively.

  16. Effect of T-stress on crack growth along an interface between ductile and elastic solids

    Tvergaard, Viggo


    properties across the interface the corresponding oscillating stress singularity fields are applied as boundary conditions on the outer edge of the region analysed. The fracture process is represented in terms of a cohesive zone model. It is shown that the interface fracture toughness is significantly...... increased by a negative T-stress in the elastic-plastic solid, while a positive T-stress in the elastic-plastic solid leads to a reduced fracture toughness....

  17. Displacements and stresses in composite multi-layered media due to varying temperature and concentrated load

    M. K. Ghosh; M. Kanoria


    This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.

  18. Stress Wave Propagation in a Gradient Elastic Medium

    赵亚溥; 赵涵; 胡宇群


    The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determinethe monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equationof motion, together with the internal material length, has been derived. Various dispersion relations have beendetermined. We present explicit expressions for the relationship between various wave speeds, wavenumber andinternal material length.

  19. Pseudo-Casimir stresses and elasticity of a confined elastomer film

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Here, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied, for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation.

  20. X-ray elastic constants and residual stress of textured titanium nitride coating

    Sue, J.A. (Union Carbide Coatings Service Corp., Indianapolis, IN (United States))


    X-ray elastic constants for the (422) and (333)/(511) reflections of the [l brace]111[r brace] textured TiN coating were determined. The coating exhibited high elastic anisotropy. The X-ray elastic constant of the (422) reflection was comparable with those predicted from single crystal elastic compliances on the basis of the Voigt and Reuss models, whereas a significant deviation from these models was found for (333)/(511). The residual stress of the coating was determined by X-ray diffraction and bi-metal deflection techniques. The magnitude of residual stress in the coating calculated using the measured X-ray elastic constants was in good agreement with these two reflections and, within experimental scatter, the values were also consistent with those obtained from the deflection measurement.

  1. Non-uniform Stress Field and Stress Concentration Induced by Grain Boundary and Triple Junction of Tricrystal

    Jiansong WAN; Zhufeng YUE


    The stress characteristics in the anisotropic bicrystal and tricrystal specimens were analyzed using the anisotropic elastic model, orthotropic Hill's model and rate-dependent crystallographic model. The finite element analysis results show that non-uniform stresses are induced by the grain boundary. For bicrystal specimens in different crystallographic orientations, there exist stress concentrations and high stress gradients nearby the boundaries. The activation and slipping of the slip systems are dependent on the crystallographic orientations of the grains and also on the relative crystallographic orientations of the two adjoining grains. For the tricrystal specimens, there is not always any stress concentrations in the triple junction, and the concentration degree depends on the relative crystallographic orientations of the three grains. Different from the bicrystal specimens, there may be or no stress concentration in the vicinity of grain boundaries for the tricrystal specimens, which depends on the relative crystallographic orientations of the three grains. The stress concentration near to the grain boundaries and triple junction can be high enough for the local plastic deformation, damage and voiding or cracking even when the whole specimen is still under the elastic state.It can be further concluded that homogeneous assumption for polycrystalline materials is not suitable to study the detailed meso- or micro-mechanisms for damaging and fracturing.

  2. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Duan, Yuanyuan; Griggs, Jason A


    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influence of Residual Stress on the Elastic-plastic Response to Indentation

    SUN Yuan; WANG Qing-ming


    The indentation method is usefuI in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materials was studied by using the finite element method to find better indentation parameters which are strongly induced by the residual stress.The results show that load-depth curve,plastic pile-up,indentation shape,indentation contact stress and indentation residual stress are affected by different residual stress,and these parameters can be used to deduce the residual stress.Also,a special indentation equipment was developed to analyze the elastic-plastic properties of materials with different residual stress,and the experimental results show a good agreement with the FEM results.For practical application,the elastic-plastic indentation properties of materials with unknown residual stress could be obtained by the developed equipment to deduce the residual stress comprehensively.

  4. Existence of longitudinal waves in pre-stressed anisotropic elastic medium

    Neetu Garg


    In a pre-stressed anisotropic elastic medium, three types of quasi-waves propagate along an arbitrary direction. In general, none of the waves is truly longitudinal. The present study finds the specific directions in a pre-stressed anisotropic elastic medium along which longitudinal waves may propagate. This paper demonstrates how the propagation of longitudinal waves is affected by various pre-stresses present in the medium. The study establishes the explicit expressions defining the existence and propagation of longitudinal waves in pre-stressed anisotropic elastic medium. These expressions involve not only the direction and elastic stiffness of the medium, but also the prestresses present in the medium. Changes in conditions for the existence of longitudinal waves in orthotropic, monoclinic and triclinic anisotropies are discussed in detail. The most important part of the paper is a practical aspect suggested to calculate the specific directions for the existence of longitudinal waves in pre-stressed anisotropic elastic medium. In this approach, only those parameters are used that can be observed by the receiver in a geophysical experiment of wave propagation. The existence of longitudinal waves has been shown graphically using a numerical example for three types of anisotropic symmetries in elastic medium.

  5. Research on working clearance optimization for non-contact stress detection with magneto-elastic stress sensor

    Guo, Yingfu; Tang, Guiqing; Wang, Wenyun


    In order to acquire the optimal working clearance for non-contact detecting stress of steel members with magneto-elastic stress sensor, a magneto-elastic sensor probe with E-shaped structure is adopted for carrying out the relevant research. Firstly, the principle of non-contact stress detection is discussed based on magneto-elastic effect, and the magnetic circuit of the magneto-elastic stress sensor is analyzed for deducing the basic output voltage equation of sensor when tested pieces (low carbon steel Q235) is loaded with uniaxial stress, on the basis of ferromagnetism and presented references, the technical parameter of sensor is determined for designing non-contact stress detection system. After that, focusing on the design of the testing program with different excitation frequencies and air gap, actual experiments are carried out to optimize working clearance when tested pieces are loaded with uniaxial stress. Results of the test show that this kind of sensor is not only simple in structure but also valuable with non-destructive, convenient and fast measurement of stress in application.

  6. Diffraction plane dependence of elastic constants in residual stress measurement by neutron diffraction

    Okido, Shinobu; Hayashi, Makoto [Hitachi Ltd., Tokyo (Japan); Morii, Yukio; Minakawa, Nobuaki; Tsuchiya, Yoshinori


    In a residual stress measurement by x-ray diffraction method and a neutron diffraction method, strictly speaking, the strain measurement of various diffracted surface was conducted and it is necessary to use its elastic modulus to convert from the strain to the stress. Then, in order to establish the residual stress measuring technique using neutron diffraction, it is an aim at first to make clear a diffraction surface dependency of elastic modulus for the stress conversion in various alloys. As a result of investigations the diffraction surface dependency of elastic module on SUS304 and STS410 steels by using RESA (Neutron diffractometer for residual stress analysis) installed at JRR-3M in Tokai Establishment of JAERI, following results are obtained. The elastic modulus of each diffraction surface considering till plastic region could be confirmed to be in a region of {+-}20% of that calculated by Kroner`s model and to be useful for that used on conversion to the stress. And, error of this elastic modulus was thought to cause the transition and defect formed at inner portion of the materials due to a plastic deformation. (G.K.)

  7. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    Woller, K.B.; Whyte, D. G.; Wright, G. M.; Doerner, R. P.; De Temmerman, G.


    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PI

  8. On the flexural vibration of an elastic plate carrying a concentrated mass

    Sadiku, S. (Federal Univ. of Technology, Minna (Nigeria). Dept. of Civil Engineering)


    The dynamic response of an elastic plate carrying a concentrated mass is analysed. Despite the presence of a singular mass distribtion function, a rigorous analysis leading to a closed-form solution in the form of an infinite series has been made. By developing Green's function for the associated partial differential equation, any form of dynamic excitation is easily considered. (orig.).

  9. Stress and fold localization in thin elastic membranes

    Pocivavsek, Luka; Dellsy, Robert; Kern, Andrew; Johnson, Sebastián; Lin, Binhua; Lee, Ka Yee C.; Cerda, Enrique (Universidad de Santiago); (UC)


    Thin elastic membranes supported on a much softer elastic solid or a fluid deviate from their flat geometries upon compression. We demonstrate that periodic wrinkling is only one possible solution for such strained membranes. Folds, which involve highly localized curvature, appear whenever the membrane is compressed beyond a third of its initial wrinkle wavelength. Eventually the surface transforms into a symmetry-broken state with flat regions of membrane coexisting with locally folded points, reminiscent of a crumpled, unsupported membrane. We provide general scaling laws for the wrinkled and folded states and proved the transition with numerical and experimental supported membranes. Our work provides insight into the interfacial stability of such diverse systems as biological membranes such as lung surfactant and nanoparticle thin films.

  10. [Thermo-elastic stress analysis of human bones].

    Krüger-Franke, M; Heiland, A; Plitz, W; Refior, H J


    The Thermoelastic Stress Analysis (THESA) is a widely used procedure in motorcar- and airplane engineering. This study investigated the reliability of THESA for stress analysis of human bone. A human femur was cyclic stressed and the resulting stress pattern was scanned from the surface of the bone by means of the thermoelastic stress measuring instrument SPATE 9000. To proof whether the scan of SPATE 9000 is equivalent to the stress distribution of human femur surface, strain gauges are used to control the results at two different regions of the femur diaphysis under equal but static conditions. It could be shown, that both measuring methods lead to corresponding results of stress pattern on human femur surface.

  11. Analysis of a Beam Made of Physical Nonlinear Material on Nonlinear Elastic Foundation under a Moving Concentrated Load

    E. Mardani


    Full Text Available A prismatic beam made of a behaviorally nonlinear material was analyzed under a concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction the vibration equation of motion was derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculated by the presented solution. Considering the response of the beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of the beam and foundation material is assumed to be physically nonlinear and there are finite values for the deflection, stress and bending moment of the beam when

  12. Contraction stress, elastic modulus, and degree of conversion of three flowable composites.

    Cadenaro, Milena; Codan, Barbara; Navarra, Chiara O; Marchesi, Giulio; Turco, Gianluca; Di Lenarda, Roberto; Breschi, Lorenzo


    The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.

  13. Axial Creeping Flow in the Gap between a Rigid Cylinder and a Concentric Elastic Tube

    Elbaz, Shai B


    We examine transient axial creeping flow in the annular gap between a rigid cylinder and a concentric elastic tube. The gap is initially filled with a thin fluid layer. The study focuses on viscous-elastic time-scales for which the rate of solid deformation is of the same order-of-magnitude as the velocity of the fluid. We employ an elastic shell model and the lubrication approximation to obtain a forced nonlinear diffusion equation governing the viscous-elastic interaction. In the case of an advancing liquid front into a configuration with a negligible film layer (compared with the radial deformation of the elastic tube), the governing equation degenerates into a forced porous medium equation, for which several closed-form solutions are presented. In the case where the initial film layer is non-negligible, self-similarity is used to devise propagation laws for a pressure driven liquid front. When advancing external forces are applied on the tube, the formation of dipole structures is shown to dominate the in...

  14. Surface Wave Speed of Functionally Graded Magneto-Electro-Elastic Materials with Initial Stresses

    Li Li


    Full Text Available The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.

  15. An interaction stress analysis of nanoscale elastic asperity contacts.

    Rahmat, Meysam; Ghiasi, Hossein; Hubert, Pascal


    A new contact mechanics model is presented and experimentally examined at the nanoscale. The current work addresses the well-established field of contact mechanics, but at the nanoscale where interaction stresses seem to be effective. The new model combines the classic Hertz theory with the new interaction stress concept to provide the stress field in contact bodies with adhesion. Hence, it benefits from the simplicity of non-adhesive models, while offering the same applicability as more complicated models. In order to examine the model, a set of atomic force microscopy experiments were performed on substrates made from single-walled carbon nanotube buckypaper. The stress field in the substrate was obtained by superposition of the Hertzian stress field and the interaction stress field, and then compared to other contact models. Finally, the effect of indentation depth on the stress field was studied for the interaction model as well as for the Hertz, Derjaguin-Muller-Toporov, and Johnson-Kendall-Roberts models. Thus, the amount of error introduced by using the Hertz theory to model contacts with adhesion was found for different indentation depths. It was observed that in the absence of interaction stress data, the Hertz theory predictions led to smaller errors compared to other contact-with-adhesion models.

  16. The exact solution of the problem on a concentrated-force action on the isotropic half-space with the boundary fixed elastically

    Nelly S. Khapilova


    Full Text Available We present the analytical solution of the axisymmetric mixed problem for the isotropic half-space with the surface fixed elastically outside the circular area of the application of a distributed load. In the solution of the problem, the transition procedure from a distributed load to the concentrated force has been justified. A compact form of the exact analytical solution of the problem on the concentrated force applied to the half-space with the surface fixed elastically was obtained. In the specific case when the proportionality factor of normal stresses and displacements vanishing under the condition of the elastic fixing of the boundary, the constructed analytical solution was shown to coincide with the well-known Boussinesq formulae.

  17. 2-D elastic FEM simulation on stress state in the deep part of a subducted slab

    毛兴华; 刘亚静; 叶国扬; 宁杰远


    Based upon some simplified numerical models, a 2-D plain strain elastic FEM program is compiled to study the distributions of the stress fields produced by the volume change of the phase transformation from olivine to spinel, by the volume change from temperature variation, and by density difference and boundary action in a piece of subducted slab located in transition zone of the mantle. Thermal stress could explain the fault plane solutions of deep focus earthquakes, but could not explain the distribution of deep seismicity. When large extent metastable olivine is included, the stress field produced by the density difference contradicts with the results of fault plane solutions and with the distribution of deep seismicity. Although the stress produced by volume change of the phase transformation from olivine to spinel dominates the stress state, its main direction is different from the observed results. We conclude that the deep seismicity could not be simply explained by elastic simulation.

  18. Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal

    GAO Yu; XIAO Qinghua; ZHOU Qigang; DAI Xiaolin; TU Hailing


    The thermal elastic stresses induced in 300 mm Si crystal may be great troubles because it can incur the generation of dislocations and undesirable excessive residual stresses.A special thermal modeling tool, CrysVUn, was used for numerical analysis of thermal elastic stresses and stress distribution of 300 mm Si crystal under the consideration of different thermal shields and gas flow conditions.The adopted governing partial equations for stress calculation are Cauchy's first and second laws of motion.It is demonstrated that the presence and shape of thermal shield, the gas pressure and velocity can strongly affect von Mises stress distribution in Si crystal.With steep-wall shield, however, the maximal stress and ratio of high stress area are relatively low.With slope-wall shield or without shield, both maximal stress and ratio of high stress area are increased in evidence.Whether thermal shields are used or not, the increase of gas flow velocity could raise the stress level.In contrast, the increase of gas pressure cannot result in so significant effect.The influence of thermal shield and gas flow should be attributed to the modification of heat conduction and heat radiation by them.

  19. Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates

    Destrade, Michel; Fu, Yibin; Nobili, Andrea


    The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.

  20. Third-order elastic solution of the stress field around a wellbore

    Elata, D.


    Within a certain range of strain, consolidated granular materials may be characterized as nonlinear elastic solids. The nonlinearity can be easily observed by examining the effect of stress on the acoustical properties of the material. Ignoring damage evolution and failure that occur in higher strains and the hysteretic behavior due to intercyranular friction, the material can be modeled as a nonlinear hyperelastic solid. A simple example of such a model is formulating the strain energy as a third-order polynomial of the strain invariants. This model is limited in the sense that the material is assumed to be isotropic with respect to the stress free state, and that the mechanical response of the material is described by only five material constants. Nevertheless, this model is appealing because it naturally exhibits stress dependent stiffness and stress induced anisotropy, and it allows a different mechanical response to positive and negative volume changes. In this work, this model is used to calculate the stress field around a wellbore. Many well logging tools use acoustics (e.g., tube, surface, torsion, and flexural waves) to detect pore fluids and ore in the surrounding granular rock. By modeling the rock as an isotropic third-order elastic material the effects of the inhomogeneous stiffness and the stress induced anisotropy may be examined. Analysis of the tangential stress around a wellbore in an isotropic third-order elastic (TOE) material yields different results than the same analysis in the related isotropic linear elastic (LE) material (i.e., both materials have the same stiffness tensor at the stress free state). This difference modifies the far-field stress that is interpreted of from hydraulic fracturing data. The analysis in the present work is static and pore fluid effects are ignored.

  1. Mapping residual stresses in PbWO$_{4}$ crystals using photo-elastic analysis

    Lebeau, Michel; Majni, G; Paone, N; Pietroni, P; Rinaldi, D


    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO/sub 4/slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residu...

  2. Visco-elastic stress triggering model of Tangshan earthquake sequence

    WAN Yong-ge; SHEN Zheng-kang; ZENG Yue-hua; SHENG Shu-zhong; XU Xiao-feng


    We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks. Results of previous studies on the seismic failure distribution, crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints. Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered. Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb failure stress produced by the Tangshan earthquake. To study the triggering effect of the Tangshan, Luanxian, and Ninghe earthquakes on the follow-up small earthquakes, we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies, assuming the amplitude of regional tectonic stress as 10 MPa. By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes, we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes, and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase, indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence. This result has some significance in rapid assessment of aftershock hazard after a large earthquake. If detailed failure distribution, seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake, our algorithm can be used to predict the locations of large aftershocks.


    HUANG; Zhen-yu(


    [1]Williams M L.Oh the stress distribution at the base of a stationary crack[J].ASME J App Mech,1957,24:109~114.[2]Creager M,Paris P C,Elastic field equations for blunt cracks with reference to stress corrosion crack-ing[J].Int J Fracture,1967,3:247~251[3]Kuang Z B.The stress field near the blunt crack tip and the fracture criterion[J].Engng Fracture Mech,1982,16:19~33.[4]Ting T C T.Anisotropic Elasticity and its applica-tion[M].London:Oxford University Press,1996.[5]Ting T C T ,Hwu C.Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N[J].Int J S olids Structures,1988,24:65~76.[6]Yang X X,Shen S,Kuang Z B.The degenerate so-lution for piezothermoelastic materials[J].Eur J Mech A/Solid,1997,16:779~793[7]Hwu C,Yen W J.On the anisotropic elastic inclu-sions in plane elastostatics[J].ASME J A pp Mech,1993,60:626~632.[8]Lekhnitskii S G.Theory of elasticity of an anisotrop-ic elastic body[M].Moscow:Mir Publishers,1981.[9]Hoenig A.Near-tip behavior of a crack in a plane anisotropic elastic body[J].Engng Fracture Mech,1982,16:393~403.[10]匡震邦,马法尚。裂纹端部场[M].西安:西安交通大学出版社,2001

  4. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Qi Wang


    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  5. Stress-induced cardiac autonomic reactivity and preclinical atherosclerosis: does arterial elasticity modify the association?

    Chumaeva, Nadja; Hintsanen, Mirka; Pulkki-Råback, Laura; Merjonen, Päivi; Elovainio, Marko; Hintsa, Taina; Juonala, Markus; Kähönen, Mika; Raitakari, Olli T; Keltikangas-Järvinen, Liisa


    The effect of acute mental stress on atherosclerosis can be estimated using arterial elasticity measured by carotid artery distensibility (Cdist). We examined the interactive effect of acute stress-induced cardiac reactivity and Cdist to preclinical atherosclerosis assessed by carotid intima-media thickness (IMT) in 58 healthy adults aged 24-39 years participated in the epidemiological Young Finns Study. Cdist and IMT were measured ultrasonographically. Impedance electrocardiography was used to measure acute mental stress-induced cardiac autonomic responses: heart rate (HR), respiratory sinus arrhythmia and pre-ejection period after the mental arithmetic and the public speaking tasks. Interactions between HR reactivity and Cdist in relation to preclinical atherosclerosis were found. The results imply that elevated HR reactivity to acute mental stress is related to less atherosclerosis among healthy participants with higher arterial elasticity. Possibly, increased cardiac reactivity in response to challenging tasks is an adaptive reaction related to better cardiovascular health.

  6. Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids

    Dailidonis, Vladimir; Ilyin, Valery; Procaccia, Itamar; Shor, Carmel A. B. Z.


    In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that grow without bound with the system size. More relevant, however, for experiments are the conditions of stress control. In the present Rapid Communication we show that also under stress control the shear modulus exists, but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus rather than with nonlinear expansions.

  7. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    Ciarletta, P.; Destrade, M.; Gower, A. L.


    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  8. Finite element simulation of stress intensity factors in elastic-plastic crack growth

    ALSHOAIBI Abdulnaser M.; ARIFFIN Ahmad Kamal


    A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions.Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.

  9. Wave velocities in a pre-stressed anisotropic elastic medium

    M D Sharma; Neetu Garg


    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase velocities.These derivatives are,further,used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium.Effect of initial stress on wave propagation is observed through the deviations in phase velocity,group velocity and ray direction for each of the quasi-waves.The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry.

  10. Dynamic buckling of elastic-plastic cylindrical shells and axial stress waves

    徐新生; 苏先樾; 王仁


    The mechanism for bifurcation of elastic-plastic buckling of the semi-infinite cylindrical shell under impacting axial loads is proposed based on the theory of stress wave. Numerical results on three kinds of end supports and step and impulse loads are given.

  11. Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance

    Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.


    One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.

  12. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy


    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  13. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.

    Nam, Sungmin; Hu, Kenneth H; Butte, Manish J; Chaudhuri, Ovijit


    The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.

  14. Three-dimensional elastic stress and displacement analysis of finite geometry solids containing cracks

    Kring, J.; Gyekenyesi, J.; Mendelson, A.


    The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement fields in finite geometry bars containing central, surface, and double-edge cracks under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Normal stresses and the stress intensity factor variation along the crack periphery are calculated using the obtained displacement field. The reported results demonstrate the usefulness of this method in calculating stress intensity factors for commonly encountered crack geometries in finite solids.

  15. The model of solid phase crystallization of amorphous silicon under elastic stress


    Solid phase crystallization of an amorphous silicon (a-Si) film stressed by a Si3N4 cap was studied by laser Raman spectroscopy. The a-Si films were deposited on Si3N4 (50 nm)/Si(100) substrate by rf sputtering. The stress in an a-Si film was controlled by thickness of a Si3N4 cap layer. The Si3N4 films were also deposited by rf sputtering. It was observed that the crystallization was affected by the stress in a-Si films introduced by the Si3N4 cap layer. The study suggests that the elastic s...

  16. Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition

    Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.


    Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.

  17. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test

    Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.


    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170

  18. Comparison of theoretical elastic couple stress predictions with physical experiments for pure torsion

    Hadjesfandiari, Ali R


    Several different versions of couple stress theory have appeared in the literature, including the indeterminate Mindlin-Tiersten-Koiter couple stress theory (MTK-CST), indeterminate symmetric modified couple stress theory (M-CST) and determinate skew-symmetric consistent couple stress theory (C-CST). First, the solutions within each of these theories for pure torsion of cylindrical bars composed of isotropic elastic material are presented and found to provide a remarkable basis for comparison with observed physical response. In particular, recent novel physical experiments to characterize torsion of micro-diameter copper wires in quasi-static tests show no significant size effect in the elastic range. This result agrees with the prediction of the skew-symmetric C-CST that there is no size effect for torsion of an elastic circular bar in quasi-static loading, because the mean curvature tensor vanishes in a pure twist deformation. On the other hand, solutions within the other two theories exhibit size-dependent...

  19. Nonlinear effect of elastic vortexlike motion on the dynamic stress state of solids

    Shilko, Evgeny V.; Grinyaev, Yurii V.; Popov, Mikhail V.; Popov, Valentin L.; Psakhie, Sergey G.


    We present a theoretical analysis of the dynamic stress-strain state of regions in a solid body that are involved in a collective elastic vortexlike motion. It is shown that the initiation of elastic vortexlike motion in the material is accompanied by the appearance of dilatancy and equivalent strain, the magnitudes of which are proportional to the square of the ratio of linear velocity on the periphery of the elastic vortex to the velocity of longitudinal elastic waves (P wave). Under conditions of dynamic loading the described dynamic effects are able to initiate inelastic deformation or destruction of the material at loading speeds of a few percent of the P -wave speed. The obtained analytical estimates suggest that dynamic nonlinear strains can make a significant contribution in a number of widely studied nonlinear dynamic phenomena in solids. Among them are the effect of acoustic (dynamic) dilatancy in solids and granular media, which leads to the generation of longitudinal elastic waves by transverse waves [V. Tournat et al., Phys. Rev. Lett. 92, 085502 (2004), 10.1103/PhysRevLett.92.085502] and the formation of an array of intense "hot spots" (reminiscent of shear-induced hydrodynamic instabilities in fluids) in adiabatic shear bands [P. R. Guduru et al., Phys. Rev. E 64, 036128 (2001), 10.1103/PhysRevE.64.036128].

  20. Deformation of a super-elastic NiTiNb alloy with controllable stress hysteresis

    Cai, S.; Schaffer, J. E.; Ren, Y.; Wang, L.


    Room temperature deformation of a Ni46.7Ti42.8Nb10.5 alloy was studied by in-situ synchrotron X-ray diffraction. Compared to binary NiTi alloy, the Nb dissolved in the matrix significantly increased the onset stress for Stress-Induced Martensite Transformation (SIMT). The secondary phase, effectively a Nb-nanowire dispersion in a NiTi-Nb matrix, increased the elastic stiffness of the bulk material, reduced the strain anisotropy in austenite families by loading sharing during SIMT, and increased the stress hysteresis by resisting reverse phase transformation during unloading. The stress hysteresis can be controlled over a wide range by changing the heat treatment temperature through its influences on the residual stress-strain state of the Nb-nanowire dispersion.

  1. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail:; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)


    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  2. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza


    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  3. Finite element modelling of elastic intraplate stresses due to heterogeneities in crustal density and mechanical properties for the Jabalpur earthquake region, central India

    A Manglik; S Thiagarajan; A V Mikhailova; Yu Rebetsky


    Deep lower crustal intraplate earthquakes are infrequent and the mechanism of their occurrence is not well understood. The Narmada–Son-lineament region in central India has experienced two such events, the 1938 Satpura earthquake and the 1997 Jabalpur earthquake, having a focal depth of more than 35 km. We have estimated elastic stresses due to the crustal density and mechanical properties heterogeneities along the Hirapur–Mandla profile passing through the Jabalpur earthquake region to analyse conditions suitable for the concentration of shear stresses in the hypocentral region of this earthquake. Elastic stresses have been computed by a finite element method for a range of material parameters. The results indicate that the shear stresses generated by the density heterogeneities alone are not able to locally enhance the stress concentration in the hypocentral region. The role of mechanical properties of various crustal layers is important in achieving this localization of stresses. Among a range of material parameters analysed, the model with a mechanically strong lower crust overlying a relatively weak sub-Moho layer is able to enhance the stress concentration in the hypocentral region, implying a weaker mantle in comparison to the lower crust for this region of central India.

  4. Effect of Surface Topography on Stress Concentration Factor

    CHENG Zhengkun; LIAO Ridong


    Neuber rule and Arola-Ramulu model are widely used to predict the stress concentration factor of rough specimens. However, the height parameters and effective valley radius used in these two models depend strongly on the resolution of the roughness-measuring instruments and are easily introduce measuring errors. Besides, it is difficult to find a suitable parameter to characterize surface topography to quantitatively describe its effect on stress concentration factor. In order to overcome these disadvantages, profile moments are carried out to characterize surface topography, surface topography is simulated by superposing series of cosine components, the stress concentration factors of different micro cosine-shaped surface topographies are investigated by finite element analysis. In terms of micro cosine-shaped surface topography, an equation using the second profile moment to estimate the stress concentration factor is proposed, predictions for the stress concentration factor using the proposed expression are within 10% error compared with the results of finite element analysis, which are more accurate than other models. Moreover, the proposed equation is applied to the real surface topography machined by turning. Predictions for the stress concentration factor using the proposed expression are within 10% of the maximum stress concentration factors and about 5% of the effective stress concentration factors estimated from the finite element analysis for three levels of turning surface topographies under different simulated scales. The proposed model is feasible in predicting the stress concentration factors of real machined surface topographies.

  5. Optimization of bolt thread stress concentrations

    Pedersen, Niels Leergaard


    Designs of threaded fasteners are controlled by different standards, and the number of different thread definitions is large. The most commonly used thread is probably the metric ISO thread, and this design is therefore used in the present paper. Thread root design controls the stress concentrati...... are found in the optimized designs leading to the proposal of a new standard. The reductions in the stress are achieved by rather simple changes made to the cutting tool....

  6. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E


    Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length. Stability conditions for a planar tube pair are derived and used to formulate an optimal design problem. An analytic formulation of the optimal precurvature function is derived that achieves a desired tip orientation range while maximizing stability and respecting bending strain limits. This formulation also includes straight transmission segments at the proximal ends of the tubes. The result, confirmed by both numerical and physical experiment, enables designs with enhanced stability in comparison to designs of constant precurvature.

  7. Superelastic stress-strain behavior in ferrogels of different types of magneto-elastic coupling

    Cremer, Peet; Menzel, Andreas M


    Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We ...

  8. Adjoint-weighted variational formulation for the direct solution of plane stress inverse elasticity problems

    Barbone, Paul E; Rivas, Carlos E [College of Engineering, Boston University, Boston, MA (United States); Harari, Isaac; Albocher, Uri [Faculty of Engineering, Tel Aviv University, 69978 Ramat Aviv (Israel); Oberai, Assad A; Goenzen, Sevan [Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Inst., Troy, NY (United States)], E-mail:, E-mail:, E-mail:


    We describe a novel variational formulation of the inverse elasticity problem given interior data. The strong form of this problem is governed by equations of pure advective transport. To address this problem, we generalize the adjoint-weighted variational equation (AWE) formulation, originally developed for flow of a passive scalar. Here, we shall study the properties of the AWE formulation in the context of inverse plane stress elasticity imaging. We show that the solution of the AWE formulation is equivalent to that of the strong form when both are well posed. We prove that the Galerkin discretization of the AWE formulation leads to a stable, convergent numerical method, and prove optimal rates of convergence.

  9. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids.

    Zhang, Rui; Schweizer, Kenneth S


    We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.

  10. Deformation effect on plastic and elastic stress components in grains with different bending

    Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina


    The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.

  11. Influence of elastic properties of substrate and coating on the residual stress distribution of FGM coatings

    Teixeira, V. [Univ. of Minho, IMAT, Materials Inst., Physics Dept., Braga (Portugal)


    The major problem in thermal barrier coatings (TBC) applied to gas turbine components is the spallation of ceramic coating under thermal cycling processes. In order to prevent spallation and improve the thermo-mechanical behaviour of the TBC, graded ceramic coatings can be fabricated. Therefore, a detailed study of the optimization of the gradient profile is necessary in respect to thermal stress relief. In this paper a numerical model of elastic thermal stress distribution within a multilayered system which consists of a functionally gradient material (FGM), is presented. The structure of the graded coating system is made of a ceramic layer and a metallic layer, where between them there is an interlayer which is a graded composite made of the metal (NiCr-alloy) and the ceramic (ZrO{sub 2}Y{sub 2}O{sub 3}). The effects of elastic modulus of the alloy substrate, the graded interlayer thickness and ceramic layer porosity on residual stress distribution were studied for the case of a graded TBC using a linear compositional profile for the FGM. (orig.)

  12. Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end

    Miha Brojan; Matjaz Cebron; Franc Kosel


    This work studies large deflections of slender,non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed continuous load and a concentrated load at the free end of the beam.The material of the cantilever is assumed to be nonlinearly elastic.Different nonlinear relations between stress and strain in tensile and compressive domain are considered.The accuracy of numerical solutions is evaluated by comparing them with results from previous studies and with a laboratory experiment.

  13. Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting

    Junchao Li∗,Yanyan Zang; Wei Wang


    The mismatch of elasticity modulus has limited the application of titanium alloys in medical implants, and porous structures have been proved effective to deal with this problem. However, the manufacturing of porous structures has been restricted from conventional technologies. In this study, selective laser melting ( SLM) technology was employed to produce a set of Ti⁃6Al⁃4V porous samples based on cubic lattices with varying size of strut width from 200 μm to 600 μm. Then the compression tests were conducted to analyze the influence of the strut width on the elasticity modulus and the ultimate strength. The result shows both of them increases linearly with the growth of strut width or with the decrease of porosity, and the elasticity modulus of porous parts is largely reduced and actually meets the requirement of clinical application. Additionally, a finite element model was established to verify the un⁃uniform stress distribution of porous parts. It reveals that fractures always initially occur at the vertical struts along the force direction which suffer from the main deformation.

  14. Stress-Strain State Of Elastic Plate With An Arbitrary Smooth Notch

    Kuz Ihor


    Full Text Available The paper contains comparing calculations of the stress fields in an elastic plate with notch along the arc of a circle, ellipse or parabola obtained by analytic method based on complex Kolosov-Muskhelishvili potentials and by numerical variation-difference method. These fields differ by no more than 2%, which, in particular, indicates the reliability of such numerical implementation. This discrepancy can be explained by the fact that in the analytical solution domain is unbounded, while the numerical calculation was carried out, obviously, for a finite field. The given stresses at the top of the notch along the arc of an ellipse or a parabola significantly increase with increasing of the relative depth of the notch (while increasing its depth or decreasing width.

  15. Mode III interfacial crack in the presence of couple stress elastic materials

    Piccolroaz, Andrea; Radi, Enrico


    In this paper we are concerned with the problem of a crack lying at the interface between dissimilar materials with microstructure undergoing antiplane deformations. The micropolar behaviour of the materials is described by the theory of couple stress elasticity developed by Koiter (1964). This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the two materials. We perform an asymptotic analysis to investigate the behaviour of the solution near the crack tip. It turns out that the stress singularity at the crack tip is strongly influenced by the microstructural parameters and it may or may not show oscillatory behaviour depending on the ratio between the characteristic lengths.

  16. Dynamic stress concentrations in thick plates with two holes based on refined theory

    周伟平; 胡超; 刘殿魁


    Based on complex variables and conformal mapping, the elastic wave scat-tering and dynamic stress concentrations in the plates with two holes are studied by the refined dynamic equation of plate bending. The problem to be solved is changed to a set of infinite algebraic equations by an orthogonal function expansion method. As examples, under free boundary conditions, the numerical results of the dynamic moment concen-tration factors in the plates with two circular holes are computed. The results indicate that the parameters such as the incident wave number, the thickness of plates, and the spacing between holes have great effects on the dynamic stress distributions. The results are accurate because the refined equation is derived without any engineering hypothese.

  17. [Physics of materials and female stress urinary continence: New concepts: I) Elasticity under bladder].

    Guerquin, B


    Improving the understanding of the adaptation to stress of urinary continence. A transversal analysis between physics of materials and the female anatomy. Laws of physics of the materials and of their viscoelastic behavior are applied to the anatomy of the anterior vaginal wall. The anterior vaginal wall may be divided into two segments of different viscoelastic behavior, the vertical segment below the urethra and the horizontal segment below the bladder. If the urethra gets crushed on the first segment according to the hammock theory, the crushing of the bladder on the second segment is, on the other hand, damped by its important elasticity. The importance of this elasticity evokes an unknown function: damping under the bladder that moderates and delays the increase of intravesical pressure. This damping function below the bladder is increased in the cystocele, which is therefore a continence factor; on the other hand, it is impaired in obesity, which is therefore a factor of SUI. It is necessary to include in the theory of stress continence, the notion of a damping function below the bladder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Evaluation of Interlaminar Stresses in Composite Laminates with a Bolt-Filled Hole Using a Linear Elastic Traction-Separation Description

    Yong Cao


    Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.

  19. Effect of initial stress on reflection at the free surface of anisotropic elastic medium

    M D Sharma


    The propagation of plane waves is considered in a general anisotropic elastic medium in the presence of initial stress. The Christoffel equations are solved into a polynomial of degree six. The roots of this polynomial represent the vertical slowness values for the six quasi-waves resulting from the presence of a discontinuity in the medium. Three of these six values are identified with the three quasi-waves traveling in the medium but away from its boundary. Reflection at the free plane surface is studied for partition of energy among the three reflected waves. For post-critical incidence, the reflected waves are inhomogeneous (evanescent) waves. Numerical examples are considered to exhibit the effects of initial stress on the phase direction, attenuation and reflection coefficients of the reflected waves. The phase velocities and energy shares of the reflected waves change significantly with initial stress as well as anisotropic symmetry. The presence of initial stress, however, has a negligible effect on the phase directions of reflected waves.

  20. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres

    Oakes, Patrick W.; Wagner, Elizabeth; Brand, Christoph A.; Probst, Dimitri; Linke, Marco; Schwarz, Ulrich S.; Glotzer, Michael; Gardel, Margaret L.


    Cytoskeletal mechanics regulates cell morphodynamics and many physiological processes. While contractility is known to be largely RhoA-dependent, the process by which localized biochemical signals are translated into cell-level responses is poorly understood. Here we combine optogenetic control of RhoA, live-cell imaging and traction force microscopy to investigate the dynamics of actomyosin-based force generation. Local activation of RhoA not only stimulates local recruitment of actin and myosin but also increased traction forces that rapidly propagate across the cell via stress fibres and drive increased actin flow. Surprisingly, this flow reverses direction when local RhoA activation stops. We identify zyxin as a regulator of stress fibre mechanics, as stress fibres are fluid-like without flow reversal in its absence. Using a physical model, we demonstrate that stress fibres behave elastic-like, even at timescales exceeding turnover of constituent proteins. Such molecular control of actin mechanics likely plays critical roles in regulating morphodynamic events.

  1. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.


    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  2. The effect of arterial wall shear stress on the incremental elasticity of a conduit artery.

    Kelly, R F; Snow, H M


    The purpose of this investigation was to determine the effects of flow mediated dilatation on arterial incremental elasticity (E(inc) ).   In four female anaesthetized pigs, the iliac artery and vein were connected by a shunt with a variable resistance which allowed blood flow and therefore shear stress to be regulated. E(inc) was calculated from simultaneous records of diameter and pressure throughout a minimum of four cardiac cycles. Passive increases in diameter (∼1-2%) throughout a cardiac cycle, brought about by pressure, resulted in a two- to threefold increase in E(inc) . In contrast, increases in shear stress caused active smooth muscle relaxation and a significant increase in diameter from 3.663 ± 0.215 mm to 4.488 ± 0.163 mm (mean ± SEM, P stress, the interaction between smooth muscle and collagen operates so as to maintain E(inc) relatively constant over much of the working range of dilatation. This is consistent with a model of the arterial wall in which collagen is recruited both by passive stretch, in response to an increase in pressure and therefore wall stress, and also by active contraction of smooth muscle. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  3. Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon

    Jia, Zheng; Li, Teng


    Recent experiments and first-principles calculations show the two-step lithiation of amorphous silicon (a-Si). In the first step, the lithiation progresses by the movement of a sharp phase boundary between a pristine a-Si phase and an intermediate L iη Si phase until the a-Si phase is fully consumed. Then the second step sets in without a visible interface, with the L iη Si phase continuously lithiating to a L i3.75 Si phase. This unique feature of lithiation is believed to have important consequences for mechanical durability of a-Si anodes in lithium ion batteries, however the mechanistic understanding of such consequences is still elusive so far. Here, we reveal an intrinsic stress mitigation mechanism due to elastic softening during two-step lithiation of a-Si, via chemo-mechanical modeling. We find that lithiation-induced elastic softening of a-Si leads to effective stress mitigation in the second step of lithiation. These mechanistic findings allow for the first time to quantitatively predict the critical size of an a-Si anode below which the anode becomes immune to lithiation-induced fracture, which is in good agreement with experimental observations. Further studies on lithiation kinetics suggest that the two-step lithiation also results in a lower stress-induced energy barrier for lithiation. The present study reveals the physical underpinnings of previously unexplained favorable lithiation kinetics and fracture behavior of a-Si anodes, and thus sheds light on quantitative design guidelines toward high-performance anodes for lithium ion batteries.

  4. Elastic-plastic analysis of the PVRC burst disk tests with comparison to the ASME code -- Primary stress limits

    Jones, D.P.; Holliday, J.E.


    This paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 years ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this re-analysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (1998) and to qualify the use of elastic-plastic (EP-FEA) for limit load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low strength high ductility material, a medium strength medium ductility material, and a high strength low ductility low alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks.

  5. Suggested benchmarks for shape optimization for minimum stress concentration

    Pedersen, Pauli


    Shape optimization for minimum stress concentration is vital, important, and difficult. New formulations and numerical procedures imply the need for good benchmarks. The available analytical shape solutions rely on assumptions that are seldom satisfied, so here, we suggest alternative benchmarks....... The existence of singularities forces us to separate the design modeling (parameterization) from the analysis modeling, which from a practical point of view, is finite element (FE) modeling. Furthermore, the obtained stress concentrations depend highly on the FE modeling and cannot be used as a primary...... procedure is avoided. As examples, we use a sensitive stress concentration problem for fillets or cavities in tension (or compression). These problems are solved as three dimensional (axisymmetric) and as plane stress and plane strain cases. Further cases with design of shapes for a T-head fillet are also...

  6. Non-linear Elasticity and Monitoring of Stress in the Focus of an Earthquake

    Bakulin, V.; Bakulin, A.


    Non-linear elasticity proved to give comprehensive framework for relating seismic velocities in rocks to stress. This powerful theory allows attacking the problem of estimating stress state at the focus of earthquakes. Such idea has been proposed long time ago [Kostrov and Nikitin, 1968] however its implementation requires a-priori knowledge of non-linear rock properties. Three non-linear constants needed to describe variation of any velocity with stress are typically estimated from core measurements [Bakulin et al., 2000]. More reliable estimates can be obtained from multi-mode inversions of borehole acoustic data [Sinha, 1996]. Nevertheless database of non-linear formation constants is still very limited. More measurements are required to estimate non-linear rock properties on larger scale and with independent stress constraints. Such measurements can be done in mines [Bakulin and Bakulin, 1999] or in hydrocarbon reservoirs where time-dependent pressure measurements are available. Without knowledge of non-linear rock properties seismic waves can still bring information about directions of tectonic stresses. In particular, shear wave polarizations can deliver directions of principal stresses in the focus of an earthquake, provided the overburden effects were removed. If rock non-linear properties are independently derived then estimation of stress magnitudes becomes feasible. Such techniques were applied in mining environment [Bakulin and Bakulin, 1999]. They may become routine for monitoring stress state in the focus of earthquakes and therefore can be used for forecasting the seismic activity. Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., 2000, Acoustoelasticity of rocks, St. Petersburg (in Russian). Bakulin, V. and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual Internat. Mtg., Soc. Expl. Geophys., 1971-1974. Kostrov, B.V., and Nikitin, L.V., 1968, Influence of initial

  7. Estimation of transient creep crack-tip stress fields for SE(B) specimen under elastic-plastic-creep conditions

    Lee, Han Sang; Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)


    This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

  8. Steady-state propagation of a Mode III crack in couple stress elastic materials

    Mishuris, G; Radi, E


    This paper is concerned with the problem of a semi-infinite crack steadily propagating in an elastic solid with microstructures subject to antiplane loading applied on the crack surfaces. The loading is moving with the same constant velocity as that of the crack tip. We assume subsonic regime, that is the crack velocity is smaller than the shear wave velocity. The material behaviour is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales and observed when the representative scale of the deformation field becomes comparable with the length scale of the microstructure, such as the grain size in a polycrystalline or granular aggregate. The present analysis confirms and extends earlier results on the static case by including the effects of crack velocity an...

  9. On the stress investigation at the edges of the fixed elastic semi-strip

    N. Vaysfeld


    Full Text Available The stress state of the elastic fixed semi-strip with the regarding of the singularities at its edge is investigated in the article. The initial boundary problem is reduced to a vector boundary problem in the transformation’s domain by the use of integral Fourier transformation. The one-dimensional vector boundary problem is solved exactly with the help of matrix differential calculations and Green’s matrix apparatus. The problem’s solving was focused at the solving of the singular integral equation (SIE with the two fixed singularities at the ends of the integration’s interval. The symbol of SIE was constructed and the generalized method of the SIE solving was applied. The stress’ distributions of the semi-strip are investigated

  10. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    You, J.H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)]. E-mail:; Hoeschen, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)


    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  11. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    You, J. H.; Höschen, T.; Lindig, S.


    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  12. Stress concentrations in keyways and optimization of keyway design

    Pedersen, Niels Leergaard


    analysis. The present paper shows how numerical finite element (FE) analysis can improve the prediction of stress concentration in the keyway. Using shape optimization and the simple super elliptical shape, it is shown that the fatigue life of a keyway can be greatly improved with up to a 50 per cent...... reduction in the maximum stress level. The design changes are simple and therefore practical to realize with only two active design parameters....


    曾庆敦; 黄小清; 林雪慧


    A reasonably, simply and accurately modified shear-lag model was proposed.Based on the model, the stress redistributions due to the failure of some fibers in an intraply hybrid composite under tension were analyzed. The results show that the present calculating stress concentration factors very coincide with Fukuda and Chou' s results, thus verifying the reasonableness and correctness of the present model and methods.

  14. Estimation of dispersion curves by combining Effective Elastic Constants and SAFE Method: A case study in a plate under stress

    Quiroga, J. E.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J.


    This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.

  15. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    Joseph Antony, S.


    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.

  16. Shear stress distribution and characteristics of deformation for shear band-elastic body system at pre-peak and post-peak

    WANG Xue-bin


    The distributed shear stress and the displacement across shear band, the evolution of plastic zones, and the load-carrying capacity of rock specimen were investigated in plane strain direct shear test according to Fast Lagrangian Analysis of Continua (FLAC). And then the shear displacement distribution in normal direction of system composed of localized shear band and elastic rock was analyzed based on gradient-dependent plasticity. The adopted failure criterion was a composite of Mohr-Coulomb criterion, that is, the relation between tension cut-off and post-peak constitutive of rock was linear strain-softening. Numerical results show that shear stress field approximately undergoes three different stages. At first, shear stress is only concentrated in the middle of top and base of specimen. Next, shear stress in the middle of specimen tends to increase, owing to superposition of shear stresses. Interestingly, two peaks of shear stress appear far from the loading ends of specimen, and the peaks approach with the increase in timestep until elements at the center of specimen yield. Finally, relatively lower shear stress level is reached in large part of specimen except in the regions near the two ends. As flow stress decreases, the analytical shear displacement distribution in shear band based on gradient-dependent plasticity becomes steep; outside the band, it is linear and its slope tends to decrease. These theoretical results qualitatively agree with that of the present numerical predicted results. Main advantage of the analytical solution over the numerical results according to FLAC is that it is continuous, smooth and non-linear (except at elastic stage).

  17. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    Saravana Kumar, Gurunathan; George, Subin Philip


    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  18. Closed form stress distribution in 2D elasticity for all boundary conditions


    This paper applies a Hamiltonian method to study analytically the stress distributions of orthotropic two-dimensional elasticity in (x, z) plane for arbitrary boundary conditions without beam assumptions. It is a method of separable variables for partial differential equations using displacements and their conjugate stresses as unknowns. Since coordinates (x, z) can not be easily separated, an alternative symplectic expansion is used.Similar to the Hamiltonian formulation in classical dynamics, we treat the x coordinate as time variable so that z becomes the only independent coordinate in the Hamiltonian matrix differential operator. The exponential of the Hamiltonian matrix is symplectic. There are homogenous solutions with constants to be determined by the boundary conditions and particular integrals satisfying the loading conditions. The homogenous solutions consist of the eigen-solutions of the derogatory zero eigenvalues (zero eigen-solutions)and that of the well-behaved nonzero eigenvalues (nonzero eigen-solutions). The Jordan chains at zero eigenvalues give the classical Saint-Venant solutions associated with averaged global behaviors such as rigid-body translation, rigid-body rotation or bending. On the other hand, the nonzero eigen-solutions describe the exponentially decaying localized solutions usually ignored by Saint-Venant's principle. Completed numerical examples are newly given to compare with established results.

  19. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression



    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  20. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    Matveev, A. D.


    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  1. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code



    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  2. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    Minkoff, S.E.


    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  3. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    Donegan, Sean; Rolett, Anthony


    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  4. Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy

    Schiemer, Jason; Spalek, Leszek J.; Saxena, Siddharth S.; Panagopoulos, Christos; Katsufuji, Takuro; Bussmann-Holder, Annette; Köhler, Jürgen; Carpenter, Michael A.


    Magnetoelectric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here, the magnetoelastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature T s to below the antiferromagnetic ordering temperature T n. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behavior of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low-temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low-temperature coupling.

  5. Crack nucleation near stress concentrators in quasi-brittle materials

    Demeshkin, A. G.; Kornev, V. M.; Kurguzov, V. D.


    The results of combined tension (compression) and shear experiments with plexiglass specimens are used to construct a Coulomb-Mohr-type strength curve. Fracture experiments were performed with plexiglass square plates with internal through cuts. The specimens were subjected to compression on a Zwick/Roell testing machine until cracks appeared. In the process of testing, nucleation of symmetric cracks was observed, which propagated as the load was further increased. The fracture character (tensile or shear) could not be decided until a subsequent numerical analysis of the plate stress-strain state was performed by the finite elementmethod. The stress concentration loci were found to coincide with the crack nucleation loci. In the plane ( σ, τ ), Mohr's circles were constructed for the stress states at the stress concentration points. If the point at which Mohr's curve touches the limit curve is known, then one can determine the plane on which the normal and tangential stresses attain critical values, and hence one can determine the crack propagation direction. The experimental results and numerical solutions were found to be in good agreement.

  6. Reliability assessment of stress concentration performance state for a perforated composite plate under traction

    Jabbouri A.


    Full Text Available Considering a perforated sandwich plate made from two elastic homogenous and isotropic layers, and having a square hole, reliability assessment of stress concentration limit state for which the stress should not exceed a given threshold is performed in this work. Assuming that the plate dimensions and the applied loading are deterministic, focus is done on the square hole centre position and edge length considered to be random variables. The means and the standard deviations of these variables are assumed to be known, but no information is so far available about their densities of probabilities. To assess reliability of the performance state, reliability analysis known methods are applied to a response surface representation of the stress concentration factor of the perforated plate which is obtained through quadratic polynomial regression of finite element results. A parametric study is performed regarding the influence of the distributions of probabilities chosen to model the hole dimensions uncertainties. It is shown that the probability of failure depends largely on the selected densities of probabilities.

  7. Non-Classical Stress Concentration Behavior in a Radically Stretched Hyperelastic Sheet Containing a Circular Hole

    Ko, William L.; Lung, Shun-Fat


    Non-classical stress concentration behavior in a stretched circular hyperelastic sheet (outer radius b = 10 in., thickness t = 0.0625 in.) containing a central hole (radius a = 0.5 in.) was analyzed. The hyperelastic sheet was subjected to different levels of remote radial stretchings. Nastran large-strain large-deformation analysis and the Blatz-Ko large deformation theory were used to calculate the equal-biaxial stress concentration factors K. The results show that the values of K calculated from the Blatz-Ko theory and Nastran are extremely close. Unlike the classical linear elasticity theory, which gives the constant K = 2 for the equal-biaxial stress field, the hyperelastic K values were found to increase with increased stretching and can exceed the value K = 6 at a remote radial extension ratio of 2.35. The present K-values compare fairly well with the K-values obtained by previous works. The effect of the hole-size on K-values was investigated. The values of K start to decrease from a hole radius a = 0.125 in. down to K = 1 (no stress concentration) as a shrinks to a = 0 in. (no hole). Also, the newly introduced stretch and strain magnification factors {K(sub ?),K(sub e) } are also material- and deformation-dependent, and can increase from linear levels of {1.0, 4.0} and reaching {3.07, 4.61}, respectively at a remote radial extension ratio of 2.35.

  8. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias.

    Levine, Lyle E; Okoro, Chukwudi; Xu, Ruqing


    Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

  9. Plane strain problem in microstretch elastic solid

    Rajneesh Kumar; Ranjit Singh; T K Chadha


    The eigenvalue approach is developed for the two-dimensional plane strain problem in a microstretch elastic medium. Applying Laplace and Fourier transforms, an infinite space subjected to a concentrated force is studied. The integral transforms are inverted using a numerical technique to get displacement, force stress, couple stress and first moment, which are also shown graphically. The results of micropolar elasticity are deduced as a special case from the present formulation.

  10. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress

    Le Page, Yvon; Saxe, Paul


    A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for strained materials is reported. It analyzes stresses calculated ab initio for properly selected strains. The problem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach that we published last year, but the normal equations turn out to be amenable to the same constrainment scheme that makes both approaches symmetry general. The symmetry considerations governing the automated selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials under general stress is discussed and implemented. VASP was used for ab initio calculation of stresses. A comprehensive range of examples includes a triclinic material (kyanite) and simple materials with a range of symmetries at zero pressure, MgO under hydrostatic pressure, Ti4As3 under [001] uniaxial strain, and Si under [001] uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33 compliance coefficient, leading to a collapse of the material at -11.7 GPa, compared with -12.0 GPa experimentally. Interpretation of results for Be using two approximations [local density (LDA), generalized gradient (GGA)], two approaches (stress strain and energy strain), two potential types (projector augmented wave and ultrasoft), and two quantum engines (VASP and ORESTES) expose the utmost importance of the cell data used for the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data, differences are shown to originate mostly in the considerable overestimation of the residual compressive stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness coefficients. The symmetry


    Sun Yuguo; Zhou Zhengong


    In this paper, the behavior of two collinear cracks in magneto-electro-elastic composite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress field is independent of the electric field and the magnetic flux.

  12. Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work

    Khan, Sujit Kumar; Abel, M. Subhas [Department of Mathematics, Gulbarga University, Gulbarga - 585 106, Karnataka (India); Sonth, Ravi M. [Department of Mathematics, K.C.T. Engineering College, Gulbarga - 585 104, Karnataka (India)


    The present paper deals with the study of momentum, heat and mass transfer characteristics in a viso-elastic fluid flow over a porous sheet, where the flow is generated due to linear stretching of the sheet and influenced by a uniform magnetic field applied vertically and a continuous injection of the fluid through porous boundary. In the flow region, heat balance is maintained with a temperature dependent heat source/sink, viscous dissipation, dissipation due to elastic deformation and stress work produced as the result of magnetic field on the non-Newtonian fluid. In mass transfer analysis we have taken into account the loss of mass of the chemically reactive diffusive species by means of first order chemical conversion rate. Using suitable similarity transformations on the highly non-linear partial differential equations we derive several closed form analytical solutions for non-dimensional temperature, concentration, heat flux, mass flux profiles in the form of confluent hyper geometric (Kummer's) functions and some other elementary functions as its special form, for two different cases of the boundary conditions, namely, (i) wall with prescribed second order power law temperature (PST) and prescribed second order power law concentration (ii) wall with prescribed second order power law heat flux (PHF) and prescribed second order power law mass flux. The effect of the non-dimensional magnetic parameter on momentum, heat and mass transfer characteristics for non-isothermal boundary condition and different physical situations of the fluid, having various degrees of visco-elasticity, Prandtl number, heat source/sink strength and Schmidt number, are discussed in detail. Some of the several important findings reported in this paper are: (i) The combined effect of magnetic field, visco-elasticity and impermeability of the wall is to increase skin-friction largely at the wall; (ii) maximum enhancement of wall-temperature profile due to the application of

  13. Stress exposure and psychological stress responses are related to glucose concentrations during pregnancy.

    Horsch, Antje; Kang, Ji Seon; Vial, Yvan; Ehlert, Ulrike; Borghini, Ayala; Marques-Vidal, Pedro; Jacobs, Ingo; Puder, Jardena J


    The role of stress in the development of gestational diabetes mellitus (GDM) has so far been neglected. We investigated the impact of stress exposure (pregnancy-related and pregnancy-unrelated major life events), psychological stress responses (perceived stress, subjective experience of stress, anxiety, depression, sleep), and physiological stress responses (salivary cortisol, plasma copeptin levels) on glucose concentrations during pregnancy. Cross-sectional study, including 203 pregnant women at the maternity department of a Swiss university hospital. All women underwent routine screening for GDM with a 75-g oral glucose-tolerance test at 24-30 weeks of gestation. Pregnancy-related and pregnancy-unrelated major life events, perceived stress, general psychological distress, anxiety, depression, and amount of sleep were assessed by validated self-report questionnaires. Cortisol was measured using fasting and bedtime saliva samples, and copeptin using fasting plasma. All data were collected before communication of the screening test results. Significant positive associations were found between the number of pregnancy-related major life events and fasting glucose, while there was no association with pregnancy-unrelated major life events. More anxiety and depressive symptoms, a higher general level of distress, and a shorter duration of sleep were related to fasting glucose, although the latter two were no longer significant when age and BMI were controlled for. However, physiological stress responses were not associated with glucose concentrations. When testing for unique associations with fasting glucose, more general distress and shorter duration of sleep independently accounted for higher fasting glucose levels. Finally, when comparing women with and without GDM, we found that women who subsequently received the diagnosis of GDM reported more pregnancy-related life events. Some indicators of stress exposure and psychological stress responses were associated with

  14. How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?

    Kean Wang


    Full Text Available Hydroxyapatite (HA nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20–0.30 (HA mass fraction, beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters—further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is

  15. Stress fields and energy of disclination-type defects in zones of localized elastic distortions

    Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.


    This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.

  16. [Stressful effects of chemical toxins at low concentrations].

    Parfeniuk, S B; Khrenov, M O; Novoselova, T V; Glushkova, O V; Lunin, S M; Fesenko, E E; Novoselova, E G


    Effects of three chemical compounds: ammonia, diethyl ether, and acetic acid, known as common environmental contaminants in technogenic accidents, were investigated in vivo and in vitro in low concentrations. When added in cultivation media, each of the chemicals has affected peritoneal macrophages and spleen lymphocytes isolated from male NMRI mice and led to a rise in the production of several cytokines, particularly the tumor necrosis factor-alpha and interferon-gamma, as well as the expression of the inducible form of heat shock proteins (HSP72 and HSP90-alpha) and in the activation of signal cascades NF-kappaB and SAPK/JNK. The increase of the nitric oxide (NO) production in macrophages has been observed only when ammonia was added in cultivation media. Also, low concentrations of all compounds investigated led to the activation of the expression of receptor protein TLR4. When mice were exposed to airborne toxic contaminants in a hermetically sealed experimental chamber, an increase in the concentrations of cytokines, heat shock proteins, and signal proteins in immune cells was also observed in response to low concentrations of all chemicals investigated. Similarly to in vitro experiments, the NO production was augmented only in the presence of the airborne ammonia. The results indicate the environmental hazard of chemical contaminants even in rather low concentrations, which nevertheless lead to the stress response.

  17. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    Pestrenin, V. M.; Pestrenina, I. V.


    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  18. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars.

    Costa, Akf; Xavier, Ta; Noritomi, Py; Saavedra, G; Borges, Als


    different in all of the groups. EPnc showed a higher concentration of tensile stress on the cervical region of the proximal box. CPc and EPc provided a lower tensile stress and a smaller cuspal displacement. Within the limits of this study, the configuration of the inlay preparation is a significant factor in the fracture resistance of premolars: the smaller the amount of remaining tooth, the lower the fracture resistance. In addition, the teeth restored with ceramic materials showed a higher fracture resistance than those restored with composite resin.

  19. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids.

    Fraggedakis, D; Dimakopoulos, Y; Tsamopoulos, J


    The sedimentation of a single particle in materials that exhibit simultaneously elastic, viscous and plastic behavior is examined in an effort to explain phenomena that contradict the nature of purely yield-stress materials. Such phenomena include the loss of the fore-and-aft symmetry with respect to an isolated settling particle under creeping flow conditions and the appearance of the "negative wake" behind it. Despite the fact that similar observations have been reported in studies involving viscoelastic fluids, researchers conjectured that thixotropy is responsible for these phenomena, as the aging of yield-stress materials is another common feature. By means of transient calculations, we study the effect of elasticity on both the fluidized and the solid phase. The latter is considered to behave as an ideal Hookean solid. The material properties of the model are determined under the isotropic kinematic hardening framework via Large Amplitude Oscillatory Shear (LAOS) measurements. In this way, we are able to predict accurately the unusual phenomena observed in experiments with simple yield-stress materials, irrespective of the appearance of slip on the particle surface. Viscoelasticity favors the formation of intense shear and extensional stresses downstream of the particle, significantly changing the entrapment mechanism in comparison to that observed in viscoplastic fluids. Therefore, the critical conditions under which the entrapment of the particle occurs deviate from the well-known criterion established theoretically by Beris et al. (1985) and verified experimentally by Tabuteau et al. (2007) for similar materials under conditions that elastic effects are negligible. Our predictions are in quantitative agreement with published experimental results by Holenberg et al. (2012) on the loss of the fore-aft symmetry and the formation of the negative wake in Carbopol with well-characterized rheology. Additionally, we propose simple expressions for the Stokes drag

  20. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Li, Dongna; Li, Xudong; Dai, Jianfeng


    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  1. Tectonic Stress Wave,Micro-fracture Wave,and a Modified Elastic-Rebound Model of Earthquakes

    Zhao Fuyuan


    Based on a sample of some real earthquakes,we have suggested in previous papers that there is a density-tectonic stress wave with ultra-low frequency which is emitted from the epicenter region for months before earthquakes,and a micro-fracture wave 1~10 days before earthquakes.The former has been observed by different kinds of measurements and the latter has been observed by a few chance observations which consists of electromagnetic,gravitational and sonic fluctuations.We show real observational results that depict the two waves and they have very different frequencies,which are not difficult to discriminate.The classicaI elastic-rebound model is one of the most influential theories on earthquakes,and the thermodynamic elastic-rebound model has amended the classical framework.Considering the two waves above,we attempt to further modify the elasticrebound model,and the new framework could be called the"micro-fracture elasticrebound model".We infer that tectonic earthquakes could have three special phases:the accumulation of tectonic stress,micro-fracture,and main-fracture.Accordingly,there would be three waves which come from the epicenter of a tectonic earthquake,i.e.,the tectonic stress wave with ultra-low frequency a few months before the earthquake,the micro-fracture wave about 1~10 days before the earthquake and the main-fracture wave(common earthquake wave).

  2. A straightforward approach to Eringen's nonlocal elasticity stress model and applications for nanobeams

    Koutsoumaris, C. Chr.; Eptaimeros, K. G.; Zisis, T.; Tsamasphyros, G. J.


    The nonlocal theory of elasticity is widely employed to the study of nanoscale problems. The differential approach of Eringen's nonlocal beam theory has been widely used to solve problems whose size effect is substantial in structures. However, in the case of Euler-Bernoulli beam theory (EBBT), this approach reveals inconsistencies that do not allow for the energy functional formulation. To avoid these inconsistencies, an alternative route is to use the integral form of nonlocal elasticity. This study revolves around the nonlocal integral beam model for various attenuation functions with the intention to explore the static response of a beam (or a nanobeam) for different types of loadings and boundary conditions (BC).

  3. Effect of geometrical stress concentrators on the current-induced suppression of the serrated deformation in an aluminum-magnesium AlMg5 alloy

    Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.; Kochegarov, S. S.


    The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum-magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin-Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.

  4. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling

    Ju Wei; Sun Weifeng; Ma Xiaojing; Jiang Hui


    Future earthquake potential in the Bohai–Zhangjiakou Seismotectonic Zone (BZSZ) in North Chinadeserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes;therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensionalvisco-elastic numerical modelling. The results reveal that the maximum shear stress in the BZSZ increasesgradually as the depth increases, and the stress range is wider in the lower layer. In the upper layer, themaximum shear stress is high in the Zhangjiakou area, whereas in the lower layer, relatively high valuesoccur in the Penglai–Yantai area, which may be affected by the depth of the Moho surface. Besides,weak fault zones will be easily fractured when the maximum shear stress is not sufficiently high due totheir low strengths, resulting in earthquakes. Therefore, based on the modelling results, the upper layerof the Zhangjiakou area and the lower layer of the Penglai–Yantai area in the BZSZ in North China aremore likely to experience earthquakes.

  5. Tectonic stress accumulation in Bohai-Zhangjiakou Seismotectonic Zone based on 3D visco-elastic modelling

    Wei, Ju; Weifeng, Sun; Xiaojing, Ma; Hui, Jiang


    Future earthquake potential in the Bohai-Zhangjiakou Seismotectonic Zone (BZSZ) in North China deserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes; therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensional visco-elastic numerical modelling. The results reveal that the maximum shear stress in the BZSZ increases gradually as the depth increases, and the stress range is wider in the lower layer. In the upper layer, the maximum shear stress is high in the Zhangjiakou area, whereas in the lower layer, relatively high values occur in the Penglai-Yantai area, which may be affected by the depth of the Moho surface. Besides, weak fault zones will be easily fractured when the maximum shear stress is not sufficiently high due to their low strengths, resulting in earthquakes. Therefore, based on the modelling results, the upper layer of the Zhangjiakou area and the lower layer of the Penglai-Yantai area in the BZSZ in North China are more likely to experience earthquakes.


    Sang Dong Kim; Byeong Chun Shin; Seokchan Kim; Gyungsoo Woo


    This paper studies the discrete minus one norm least-squares methods for the stress formulation of pure displacement linear elasticity in two dimensions. The proposed leastsquares functional is defined as the sum of the L2- and H-1-norms of the residual equations weighted appropriately. The minus one norm in the functional is replaced by the discrete minus one norm and then the discrete minus one norm least-squares methods are analyzed with various numerical results focusing on the finite element accuracy and multigrid convergence performances.

  7. Evaluation of stress concentration for planar tubular joints



    In offshore tubular structures,a typical tubular joint may be subjected to three different types of basic loadings: axial,in-plane bending and out-of-plane bending,through its brace members. Each type will cause a different stress distribution at the joint intersection of structures. Moreover,the actual load condition of a tubular joint can be any combination of the above three basic load cases,for this reason,a combined loading was investigated in addition to these three basic loadings. This load is composed of an axial loading combined with a continuation of rotational bending loading obtained while rotate center of the brace around a circle. Different types of planar joints such as T,Y,X,K,DT,DY,DX,TY,TK,DTX,DTDY,and DTDK,with braces subjected to combined loading,were numerically analyzed to study the effect of those different cases of loading and different types of joints,on the stress concentration zone and values.

  8. Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure

    Woller, K. B.; Whyte, D. G.; Wright, G. M.


    Helium (He) concentration depth profiles of evolving tungsten (W) nanostructures have been measured for the first time using in situ Elastic Recoil Detection (ERD) throughout plasma irradiation. Exposures resulting in fuzzy and non-fuzzy surfaces were analyzed in order to illuminate the role of He during the development of these surface morphologies. ERD was performed on samples with surface temperatures from Ts = 530-1100 K and irradiated by He flux densities of ΓHe ∼ 1020-1022 m-2 s-1. He concentration profiles in samples that developed either non-fuzzy or fuzzy surfaces are uniformly shaped with concentrations of 1.5-7 at.%, which is presumed to be too low for pressure driven growth models. Therefore, surface morphology changes are not perpetuated by continuous bubble bursting deformation. Also, a threshold in He flux density above 1020 m-2 s-1 is suggested by using in situ ERD to monitor the depth profile evolution of the He-rich layer while changing the flux during exposure.

  9. Relation between Coda-Q and stress loaded to an elastic body. -parameters of material conditions derived by stochastic measurement-

    Okamoto, K.; Mikada, H.; Goto, T.; Takekawa, J.


    Seismic coda is formed by superposed signals caused by scatterers. When heterogeneous condition is changed due to crustal deformations, coda-Q should vary reflecting the physical state if the materials. When the spatial scale of scatters in a medium becomes comparable with or smaller then the wavelength of seismic waves traveling through, it becomes very difficult to analyze the coda-wave quantitatively in terms of the location of scatterers, scattering mechanisms, etc. For inhomogeneous medium, it is natural to deal with stochastic methodologies to interpret seismic data. In this regard coda-Q has been frequently used as a stochastic measure of the medium in which seismic waves propagate. Since objectives of recent structural surveys include spatiotemporal or time-lapse variation of physical properties of underground medium, we propose a new geophysical monitoring method using the stochastic parameters if these parameters reflect changes of physical state of the medium. Several observed examples are reported that the relationship between the coda-Q and the number of earthquakes (e.g., Aki,2004). Aki (2004) said that the interrelation between the coda-Q and the number of earthquakes might be a key to understand the change in the state of crustal stress field. Here, we hypothesize that the change of the coda- Q reflects that of the stress magnitude and direction and try to focus on the relationship between the coda-Q and loaded stress which could cause earthquakes. The purpose of this study is to relate this relationship to non-stochastic quantity of the underground physical state, i.e., the stress to test our hypothesis. We employ two methods to achieve our objectives. One is Finite Difference Method (FDM), and the other is Boundary Integral Equation Method (BIEM). FDM is superior in the calculation of large field and saving calculation time. BIEM is superior in the free shape of boundaries. These two methods are applied to a numerical model of elastic body

  10. Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies

    Bulíček, Miroslav


    © 2015, Springer-Verlag Berlin Heidelberg. The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.

  11. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Ghadiri, Majid; Safarpour, Hamed


    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  12. Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)


    The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.

  13. Elastic, viscoelastic and viscoplastic contributions to compliance during deformation under stress in prosthodontic temporization materials.

    Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi; Arghavani, David


    Purpose: The goal of this investigation was to characterize the compliance properties in selected polymers used for temporary (provisional crown and bridge) applications. Method: Polymethyl methacrylate (PMMA)- and polyethyl methacrylate (PEMA)-based JET and TRIM II were investigated along with two bisacryl composite resins (LUXATEMP and PROTEMP 3 GARANT). Rectangular samples of the resins were subjected to creep-recovery tests in a dynamic mechanical analyzer at and near the oral temperature (27 °C, 37 °C and 47 °C). The instantaneous (elastic), and time-dependent viscoelastic, and viscoplastic compliance profiles of the materials were determined and analyzed as a function of materials and temperature. Results: Highly significant (p = 0.0001) differences among means of elastic, viscoelastic and viscoplastic compliance values were found as a function of materials. TRIM II showed an order of magnitude higher viscoplastic deformation than the other three materials (LUXATEMP, PROTEMP 3 GARANT and JET). Conclusions: The results indicate that PEMA is susceptible to significantly greater elastic, viscoelastic, and more importantly to viscoplastic compliant behavior compared with bisacryl composite and PMMA provisional crown and bridge materials. This indicates high-dimensional instability and poor stiffness and resiliency in PEMA appliances vis-à-vis those of PMMA and bisacryl composites.

  14. Three-dimensional analysis of elastic stress distribution of indented ceramic surface by finite element method

    Tatsuyuki NEZU


    The three-dimensional stress distributions in the area surrounding indentation pattern for three different materials,Al2O3,Si3N4 and SiC were analyzed by finite element method(FEM). Those theoretical results were also compared with the experimental ones by Rockwell hardness test. The effect of loading stress on the plastic deformation in specimens,surface was investigated on the assumption of shear strain energy theory by Huber-Mises when the materials were indented. The distributions of nomal stress,shear stress,and Mises stress were analysed with variations of loading conditions. It is clear that the analytical results for the stress distributions,the crack length and its density of probability are in good agreement with the experimental results.


    Ayla TEKİN


    Full Text Available In this study, elasto-plastic stress analysis is carried out in a polymer matrix composite cantilever beam of arbitrary fiber orientation subjected to a single transverse force applied to the free end by using the anisotropic elasticity theory. The residual stress component of ?x and yield points are determined for 0°, 30°, 45°, 60° and 90° fiber orientation angles. The yielding begins for 0° and 90° fiber orientation angles at the upper and lower surfaces of the beam at the same distances from the free end. It is seen that the yielding begins for 30°, 45° and 60° fiber orientation angles at the upper surface of the beam. The intensity of the residual stress component of ?x is maximum at the upper and lower surfaces of the beam. In this study, the residual stress component of ?x obtained for the polymer matrix composite thermoplastic cantilever beam reinforced by reinforced unidirectional fibers is compared with that of the thermoplastic cantilever beam reinforced by woven Cr-Ni steel fibers.

  16. Propagation of Surface Waves in a Homogeneous Layer of Finite Thickness over an Initially Stressed Functionally Graded Magnetic-Electric-Elastic Half-Space

    Li Li


    Full Text Available The propagation behaviour of Love wave in an initially stressed functionally graded magnetic-electric-elastic half-space carrying a homogeneous layer is investigated. The material parameters in the substrate are assumed to vary exponentially along the thickness direction only. The velocity equations of Love wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magnetic-electric-elastic mate- rial with the initial stresses and the free traction boundary conditions of surface and the continuous boundary conditions of interface. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are dis- cussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.

  17. Association between hair cortisol concentration and perceived stress in female methamphetamine addicts.

    Geng, Liuna; Xiang, Peng; Yang, Jin; Shen, Hui; Sang, Zhiqin


    The present study aims to explore whether hair cortisol concentration is associated with explicit stress or implicit stress in female methamphetamine addicts. Hair samples were collected from 51 female methamphetamine addicts from inpatient addiction treatment programs. Perceived stress was assessed by both explicit and implicit measures through the Perceived Stress Scale (PSS) and the Implicit Association Test (IAT), respectively. The positive relationship between hair cortisol concentration with D-scores of the IAT reached statistically significant difference. A marginal correlation between hair cortisol concentration and scores of the PSS was observed. Additionally, linear regression analysis indicated that D-scores of the IAT are strongly predictive of hair cortisol concentration. Hair cortisol concentration is strongly related to implicit stress but only weakly related with explicit stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Disturbance of SH-type waves due to moving stress discontinuity in an anisotropic soil layer overlying an inhomogeneous elastic half-space

    D Mandal; P C Pal; S Kumar


    The disturbance and propagation of SH-type waves in an anisotropic soil layer overlying an inhomogeneous elastic half-space by a moving stress discontinuity is considered. Stress discontinuity moves with non-uniform velocity and is impulsive in nature. The displacements are obtained in exact form by themethod due to Cagniard modified by de Hoop. The numerical result is calculated for special cases and the natures are depicted graphically.


    I. K. Badalakha


    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  20. The Stress-Strain State and Potential Crack Trajectories in 2D Elastic Brittle Materials from Steady-State Flow Experiments

    Küntz, M.; Dyskin, A.; Lavallée, P.


    A steady-state flow method is used to examine micromechanisms of brittle failure in 2D elastic cracked media submitted to uniaxial compressive stress. The steady-state flow experiments were conducted with an incompressible Newtonian fluid in a Hele Shaw cell. Thin linear rubber inclusions were

  1. Shear-stress fluctuations in self-assembled transient elastic networks

    Wittmer, J. P.; Kriuchevskyi, I.; Cavallo, A.; Xu, H.; Baschnagel, J.


    Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled transient networks formed by repulsive beads reversibly bridged by ideal springs. With Δ t being the sampling time and t(f ) ˜1 /f the Maxwell relaxation time (set by the spring recombination frequency f ), the dimensionless parameter Δ x =Δ t /t(f ) is systematically scanned from the liquid limit (Δ x ≫1 ) to the solid limit (Δ x ≪1 ) where the network topology is quenched and an ensemble average over m -independent configurations is required. Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G (t ) may be efficiently determined for all Δ x using the simple-average expression G (t ) =μA-h (t ) with μA=G (0 ) characterizing the canonical-affine shear transformation of the system at t =0 and h (t ) the (rescaled) mean-square displacement of the instantaneous shear stress as a function of time t . This relation is compared to the standard expression G (t ) =c ˜(t ) using the (rescaled) shear-stress autocorrelation function c ˜(t ) . Lower bounds for the m configurations required by both relations are given.

  2. Numerical modelling of elastic behaviour of concrete reinforced with steel short fibres in plane stress conditions

    Fabian Lamus


    Full Text Available This work describes a numerical model of fibre reinforced concrete elastic behaviour implemented using the finite elements method (Hughes, 2000. In structures made of this material, each point is formed by steel fibres embedded into a simple concrete matrix. The reinforced concrete is represented inside a finite element as an orthotropic material having random material direction based on the vanishing diameter fibre model (Dvorak and Bahei-el-Din, 1982 and the mixing theory modified for short length reinforcement (Oller, 2003. Statistical analysis consisted of repeating the problem’s numerical simulation where the direction of fibres was modified by a random function to set up a sampling database from the results and measure their variability. A sensitivity study of finite element size and the number of sampling data was then carried out in terms of total strain energy. Finite element size and sampling data are recommended. The average structural response of a reinforced concrete beam with different quantities of steel fibres where minimum data dispersion was observed is given as an example of applying the above.

  3. Lunisolar tidal and tidal load elastic stress tensor components within the Earth's mantle and their influence on earthquake occurrences

    Varga, Peter; Grafarend, Erik


    The relationship of earthquakes with the tidal phenomenon since long is a subject of scientific debates and it cannot be regarded as clarified even today. For the purpose of theoretical investigation of this problem a set of second order spheroidal Love-Shida numbers (h(r), k(r), l(r)) and their radial derivatives were determined for the case of a symmetric, non-rotating, elastic, isotropic (SNREI) Earth with a liquid core. By these means, the stress tensor components from the surface to the core-mantle boundary (CMB) were calculated for the case of zonal, tesseral and sectorial tides. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions on and within the Earth, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. A correlation between earthquake energy release and the lunisolar effect can exist in some cases where the seismic area is well determined and has either one seismic source or severe similar ones. Particularly in volcanic areas, where the seismic activity is connected to the volcano's activity, or in the case of some aftershock swarms, significant correlation was found by different authors.

  4. Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis

    A. Boulenouar


    Full Text Available When the loading or the geometry of a structure is not symmetrical about the crack axis, rupture occurs in mixed mode loading and the crack does not propagate in a straight line. It is then necessary to use kinking criteria to determine the new direction of crack propagation. The aim of this work is to present a numerical modeling of crack propagation under mixed mode loading conditions. This work is based on the implementation of the displacement extrapolation method in a FE code and the strain energy density theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors. In this paper, we analyzed the mechanical behavior of inclined cracks by evaluating the stress intensity factors. Then, we presented the examples of crack propagation in structures containing inclusions and cavities.

  5. Influence of internal stresses on field-dependent elastic modulus and damping in pure nickel

    Morales, A.L., E-mail: AngelLuis.Morales@uclm.e [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Nieto, A.J.; Chicharro, J.M.; Pintado, P. [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Rodriguez, G.P.; Herranz, G. [Area de Ciencia de los Materiales e Ingenieria Metalurgica, E.T.S. Ingenieros Industriales (Universidad de Castilla - La Mancha), Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)


    Measurements of the {Delta}E-effect and magnetomechanical damping are reported for crystalline pure nickel under several states of internal stresses. The different internal stresses are obtained by means of a wide variety of heat treatments and studied via microscopic examination and measurement. The influence of the heating temperature, the heating time and the cooling method on the magnetoelastic properties is studied. Our results make it possible to select the most suitable heat treatment for each application and to optimize the magnetoelastic response of nickel. Relative variations from 2% to 13% can be obtained in the {Delta}E-effect, whereas relative variations from 40.0% to 99.9% are possible in magnetomechanical damping, in terms of specific damping capacity.

  6. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    孟亮; 田丽


    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  7. Atomistic evaluation of the stress concentration factor of graphene sheets having circular holes

    Jalali, S. K.; Beigrezaee, M. J.; Pugno, N. M.


    Stress concentration factor concept has been developed for single-layered graphene sheets (SLGSs) with circular holes through an atomistic point of view by the application of molecular structural mechanics (MSM) approach. In this approach the response of SLGSs against unidirectional tensile loading is matched to the response of a frame-like macro structure containing beam elements by making an equivalence between strain energies of beam elements in MSM and potential energies of chemical bonds of SLGSs. Both chirality and size effects are considered and the atomistic evaluation of stress concentration factor is performed for different sizes of circular holes. Also, molecular dynamics simulations are implemented to verify the existence and location of the predicted stress concentration. The results reveal that size effects and the diameters of circular holes have a significant influence on the stress concentration factor of SLGSs and armchair SLGSs show a larger value of stress concentration than zigzag ones.

  8. Stress evolution during 3D single-layer visco-elastic buckle folding: Implications for the initiation of fractures

    Liu, Xiaolong; Eckert, Andreas; Connolly, Peter


    Buckle folds of sedimentary strata commonly feature a variety of different fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures at the fold hinge zones are well understood by the extensional and compressional strain/stress pattern. However, other commonly observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional faults at the fold hinge, and other shear fractures of various orientations in the fold limb, fail to be intuitively explained by the strain/stress regimes during the buckling process. To obtain a better understanding of the conditions for the initiation of the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of three model parameters with significant influence on fracture initiation are considered: burial depth, viscosity, and permeability. It is concluded that these parameters are critical for the initiation of major fracture sets at the hinge zone with varying degrees. The numerical simulation results further show that the buckling process fails to explain most of the fracture sets occurring in the limb unless the process of erosional unloading as a post-fold phenomenon is considered. For fracture sets that only develop under unrealistic boundary conditions, the results demonstrate that their development is realistic for a perclinal fold geometry. In summary, a more thorough understanding of fractures sets associated with buckle folds is obtained based on the simulation of in-situ stress conditions during the structural development of buckle folds.


    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  10. Stress concentration in a T-type shell joint

    Kuznetsov, V. V.; Leviakov, S. V.

    A T-joint of thin-walled pipes is considered which is loaded by internal pressure. The stress-strain state of the T-joint is investigated by the finite element method using a geometrically nonlinear formulation. It is shown that calculations based on the linear theory lead to significant errors for pressure levels typical of operating conditions.

  11. Finite element analysis of the stress-concentrating effect of fraenal notches in complete dentures.

    Rees, J S; Huggett, R; Harrison, A


    Based on clinical experience and empiricism, it was postulated that fraenal notches and midline diastemas lead to fracture of complete dentures. This study used finite element stress analysis to investigate the stress-concentrating effect of a fraenal notch with and without a midline diastema. It was found that a large fraenal notch resulted in high stress levels and that these stresses were augmented more by a narrow median diastema than its wider counterpart.

  12. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    Asmussen, Erik; Peutzfeldt, Anne


    was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...... in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel...

  13. Monitoring of elastic stresses with optical system for measuring the substrate curvature in growth of III-N heterostructures by molecular-beam epitaxy

    Zolotukhin, D. S.; Nechaev, D. V.; Ivanov, S. V.; Zhmerik, V. N.


    An original optical system for measuring substrate curvature (OSMSC) is described. The system enables a high-precision analysis of the processes of generation and relaxation of elastic stresses in growth of heterostructures (HSs) based on nitride compounds III-N by plasma-assisted molecular-beam epitaxy (PA-MBE). The application of OSMSC to analyze the growth of GaN/AlN/Si(111) HSs made it possible not only to observe in detail the variation dynamics of elastic stresses in this structure in its metal-enriched growth by low-temperature PA-MBE, but also to develop an HS design eliminating the effect of layer cracking by controlling the compressive stresses.

  14. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (NW Argentina)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.


    The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the

  15. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina)

    Bonali, F. L.; Corazzato, C.; Tibaldi, A.


    We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied

  16. Implicit constitutive models with a thermodynamic basis: a study of stress concentration

    Bridges, C.; Rajagopal, K. R.


    Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.

  17. Microstructural Evolution in Elastically-stressed Solids: A Phase-field Simulation

    R Sankarasubramanian


    Full Text Available Simulation of microstructures under different processing conditions is important for fine- tuning the processing window as well as to understand the mechanisms. Phase field simulation has gained importance for problems with diffuse interfaces. Since in this simulation, thermodynamic driving forces (chemical as well as non-chemical and kinetic constraints have been naturally incorporated, it has the potential to simulate microstructures under different processing and service conditions. In this paper, DMRL's initiatives on using phase field simulations to understand microstructural evolution in both the phase separating and precipitating model systems have been presented. The influence of misfit stresses on the morphology of microstructures has been described. Output from actual thermodynamic calculations can be combined with these simulations to study systems of technological importance.Defence Science Journal, 2011, 61(4, pp.383-393, DOI:

  18. Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage?

    Silver, Frederick H; Bradica, Gino


    Articular cartilage is a multilayered structure that lines the surfaces of all articulating joints. It contains cells, collagen fibrils, and proteoglycans with compositions that vary from the surface layer to the layer in contact with bone. It is composed of several zones that vary in structure, composition, and mechanical properties. In this paper we analyze the structure of the extracellular matrix found in articular cartilage in an effort to relate it to the ability of cartilage to store, transmit, and dissipate mechanical energy during locomotion. Energy storage and dissipation is related to possible mechanisms of mechanochemical transduction and to changes in cartilage structure and function that occur in osteoarthritis. In addition, we analyze how passive and active internal stresses affect mechanochemical transduction in cartilage, and how this may affect cartilage behavior in health and disease.

  19. Parametric Equation of Stress Concentration Factor for Circular X-Joints Under Axial Loads

    QU Shu-ying; ZHANG Guo-dong; ZHANG Bao-feng; WANG Xin-jian


    In engineering practice,tubular X-joints have been widely used in offshore structures.The fatigue failure of tubular X-joints in offshore engineering is mainly caused by axial tensile stress.In this study,the stress concentration factor distribution along the weld toe in the hot spot stress region for tubular X-joints subject to axial loads have been analyzed by use of finite element method.Through numerical analysis,it has been found that the peak stress concentration factor is located at the saddle position.Thereafter,80 models have been analyzed,and the effect of the geometric parameters of a tubular X-joint on the stress concentration factor has been investigated.Based on the experimental values of the numerical stress concentration factor,a parametric equation to calculate the stress concentration factor of tubular X-joints has been proposed.The accuracy of this equation has been verified against the requirement of the Fatigue Guidance Review Panel,and the proposed equation is found capable of producing reasonably accurate stress concentration factor values for tubular X-joints subject to axial loads.

  20. Effect of slow plastic and elastic straining on sulphide stress cracking and hydrogen embrittlement of 3. 5% Ni steel and APL 5L X60 pipeline steel

    Erlings, J.G.; Groot, H.W. de; Nauta, J.


    A procedure is presented with which the roles of elastic and elastic-plastic straining in stress corrosion cracking (SCC) and hydrogen embrittlement (HE) can be determined. Premature failure of 3.5% Ni steels in sour and sweet environments due to SCC was only found when slow plastic straining was applied. With purely elastic slow straining the material remained crack-free, even in a buffered NACE solution. Depending on the sourness of the environment, the API 5L X60 pipeline material did not always need plastic straining to suffer HE cracking. Under none of the test conditions studied was hardened material susceptible to SCC or HE cracking. The non-hardened material tested was not susceptible to SCC in the various CO/sub 2/- and/or H/sub 2/S-containing media used.

  1. Fatigue life prediction using multiaxial energy calculations with the mean stress effect to predict failure of linear and nonlinear elastic solids

    Nagode, Marko; Šeruga, Domen

    An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elastic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the variation of both strain and complementary energies always forms a rectangular shape in stress-strain space, hence integration is no longer required to calculate the energy. Furthermore, the approach considers the mean stress effect so that predictions of fatigue damage are more realistically representative of real-life experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect. This parameter α is based on the well-known Smith-Watson-Topper energy criterion, but allows consideration of other arbitrary mean stress effects, e.g. the Bergmann type criterion. The approach has then been incorporated into a numerical method which can be applied to uniaxial and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method presented in this paper could be applied to a nonlinear elastic material.

  2. Stress State of Elastic Thick-Walled Ring With Self-Balanced Pressures Distributed on Its Internal and External Borders

    Kravchuk Aleksandr Stepanovich


    Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.

  3. Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates

    Junhua Zhao; Wanlin Guo; Chongmin She; Bo Meng


    Through detailed three-dimensional(3D)finite element(FE)calculations,the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied.The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2,0.4,0.5,0.6,0.8 and 1.0.Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radialdistances (r/a) in the normal plane of the crack front line,and increases gradually when the elliptical parameter angle φ changes from 0°to 90°at the sanle r/a.with a/c rising to 1.0,Tz is getting nearly independent of φ and is only related to r/a.Based on the present FE calculations for Tz,empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0.These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field,and a two-parameter K-Tz principle is proposed.

  4. Biomechanics of Ergometric Stress Test: regional and local effects on elastic, transitional and muscular human arteries

    Valls, G.; Torrado, J.; Farro, I.; Bia, D.; Zócalo, Y.; Lluberas, S.; Craiem, D.; Armentano, Rl


    Ergometric exercise stress tests (EST) give important information about the cardiovascular (CV) response to increased demands. The expected EST-related changes in variables like blood pressure and heart rate are known, but those in the arterial biomechanics are controversial and incompletely characterized. In this context, this work aims were to characterize the regional and local arterial biomechanical behaviour in response to EST; to evaluate its temporal profile in the post-EST recovery phase; and to compare the biomechanical response of different to EST. Methods: In 16 non-trained healthy young subjects the carotid-femoral pulse wave velocity and the carotid, femoral and brachial arterial distensibility were non-invasively evaluated before (Rest) and after EST. Main results: The EST resulted in an early increase in the arterial stiffness, evidenced by both, regional and local parameters (pulse wave velocity increase and distensibility reduction). When analyzing conjunctly the different post-EST recovery stages there were quali-quantitative differences among the arterial local stiffness response to EST. The biomechanical changes could not be explained only by blood pressure variations.

  5. The Combined Effects of Stress Concentration and Tensile Stresses from Autofrettage on the Life of Pressure Vessels


    Technical Report ARWSB-TR-17011 THE COMBINED EFFECTS OF STRESS CONCENTRATION AND TENSILE STRESSES FROM AUTOFRETTAGE ON THE LIFE OF...Laboratories Watervliet, NY 12189 The views, opinions, and/or findings contained in this report are those of the author(s) and...should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. The

  6. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper


    In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization analysis to verify its consistency with the room-temperature elastic properties of ductile iron measured at the macro scale. Subsequently, it is used to investigate the formation of local residual stresses around the graphite particles by simulating the manufacturing process of a typical ferritic ductile iron grade, and the results are compared with preliminary measurements using synchrotron x-rays. Finally, the obtained accurate description of the stress & strain field at the micro scale is used to shed light on common failure modes reported for the nodules and on some peculiar properties observed in ductile iron at both micro and macro scale.


    Yi Yang; Jike Liu; Chengwu Cai


    The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods.For the problem with a rectangular hole,only approximate results are derived.This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions.By using the U-transformation technique and the finite element method,the analytical displacement solutions of the finite element equations are derived in the series form.Therefore,the stress concentration can then be discussed easily and conveniently.For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method.The stress concentration factors for various ratios of height to width of the hole are obtained.

  8. Differential effects of mental concentration and acute psychosocial stress on cervical muscle activity and posture.

    Shahidi, Bahar; Haight, Ashley; Maluf, Katrina


    Physical and psychosocial stressors in the workplace have been independently associated with the development of neck pain, yet interactions among these risk factors remain unclear. The purpose of this study was to compare the effects of mentally challenging computer work performed with and without exposure to a psychosocial stressor on cervical muscle activity and posture. Changes in cervical posture and electromyography of upper trapezius, cervical extensor, and sternocleidomastoid muscles were compared between a resting seated posture at baseline, a low stress condition with mental concentration, and a high stress condition with mental concentration and psychosocial stress in sixty healthy office workers. Forward head posture significantly increased with mental concentration compared to baseline, but did not change with further introduction of the stressor. Muscle activity significantly increased from the low stress to high stress condition for both the dominant and non-dominant upper trapezius, with no corresponding change in activity of the cervical extensors or flexors between stress conditions. These findings suggest that upper trapezius muscles are selectively activated by psychosocial stress independent of changes in concentration or posture, which may have implications for the prevention of stress-related trapezius myalgia in the workplace.

  9. The effect of couple-stresses on the stress concentration around a moving crack

    S. Itou


    Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.

  10. Relationship between Concentration Difference of Different Density Lipoproteins and Shear Stress in Atherosclerosis

    Wei Meng


    Full Text Available Previous research has observed concentration polarization in LDL and HDL in the arterial system. However, there is no report that links this concentration polarization to the development of vascular atherosclerosis (AS. Therefore, the purpose of this study is to establish the relationship between concentration difference of LDL and HDL and shear stress using a carotid bifurcation vascular model. PTFE was employed to create the carotid bifurcation model. Endothelial cells were coated on the inner wall of the graft. In a recirculation system, HDL and LDL concentration were measured under two different ICA flow velocities at 5 different locations within our model. We report the following: (1 LDL and HDL concentration difference was observed in both high flow and low flow environments; (2 the degree of LDL and HDL concentration polarization varied depending of high flow and low flow environment; (3 absolute values of concentration difference between LDL and HDL at the inner wall surface decreased with the increase in shear stress when shear stress was more than 1.5 Pa. This variation trend would be more pronounced if shear stress were less than 0.5 Pa. Our study suggests that under the action of shear stress, concentration differences of LDL or HDL create a disturbance in the balance of atherogenic factors and anti-As factors, resulting in the occurrence of AS.

  11. Effects of stress concentration on low-temperature fracture behavior of A356 alloy

    Ma, Guanghui; Li, Runxia; Li, Rongde


    The effect of stress concentration on the dislocation motion, the Si particles and the crack propagation path in A356 alloy at the temperature of 20 °C to −60 °C was analyzed by scanning electron microscope and optical microscope using a series of notched tensile specimens and normal tensile specimens. The results show that the sensitivity of A356 alloy to the stress concentration increases, the tensile strength and yield strength of normal specimens and notched specimens increase, and the elongation shows a decreasing trend with the decrease of test temperature from 20 °C to −60 °C. The yield strength is not affected by the notch, and the tensile strength is sensitive to the stress concentration. Stress concentration leads to a large number of dislocation generation. Local plastic deformation occurred in the stress concentration region during the tensile process firstly. With the stress concentration in the aluminum matrix between the Si phase and the crack further increasing, the distribution of cracks along the Si phase leads to the cracking of aluminum matrix particle.

  12. Equilizing of the Primary Stress State in the Rock Mass, Simulated by a Model of Layer in an Elastic-Viscous Medium

    Kortas, Grzegorz


    This paper is devoted to the analysis of the stress development process in the homogeneous and non-homogeneous rock mass. The rock-mass model consists of an elastic-viscous medium containing a layer (Fig. 1) that displays distinct geomechanical strain properties. When examining the process of stress equilizing in time, the Norton-Bailey power creep law was applied in the numerical analysis. The relationship between effective stresses and time, the modulus of elasticity, Poisson's coefficient, and creep compliance were obtained. It was demonstrated that the relationship between effective stress and time or creep compliance, for the assumed conditions in a homogeneous rock-mass, was approximated by hyperbolic functions (10 and 16). The process parameter included a certain value of creep compliance or of time at which there occurred a half-way equilizing of primary stresses. An analogous function binds effective stresses with creep compliance. Our model studies indicated a number of relationships between bulk and shear strain with time and creep compliance in the homogeneous and non-homogeneous rock mass, presented in Figs. 2-14, expressed by the functions of those specific parameters. The relationships obtained in this work resulted from our model assumptions. However, they demonstrated the influence of the geomechanical strain properties of rocks on the process of shaping the primary stress state in the rock mass and the tendency to reduce the principal stress differences in time. Our research results suggested the necessity to simulate the primary stress state as an initial condition of the geomechanical numerical analysis concerning the rock-mass behaviour showing rheological properties.

  13. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S


    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  14. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    Gorb, Yuliya


    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  15. Detection of stress concentrations around a defect by magnetic Barkhausen noise measurements

    Mandal, K.; Dufour, D.; Sabet-Sharghi, R.; Sijgers, B.; Micke, D.; Krause, T.W.; Clapham, L.; Atherton, D.L. [Applied Magnetics Group, Department of Physics, Queen`s University, Kingston, K7L 3N6, Ontario (Canada)


    The stress distribution around a 50{percent} blind-hole pit in a steel pipe with a 9 mm wall has been studied using high-resolution magnetic Barkhausen noise (MBN) measurements. A magnetic disk read-head is used as the pick up coil in the MBN probe. The study shows a stress concentration factor of {approximately}2 at the defect edge perpendicular to the direction of applied stress and {approximately}{minus}0.6 at the edge parallel to the same. The experimental results are consistent with the analytical solutions obtained by the Airy{close_quote}s stress function approach. {copyright} {ital 1996 American Institute of Physics.}


    A. Galkin


    Full Text Available The article deals with the influence of the initial bitumen penetration grade and different con-centrations of the mineral filler on the elasticity of the polymer-modified bitumen (PMB with 3 and 6 % of SBS type polymer. The dependences of elasticity of the PMB on the test conditions – such as the temperature and the stress state level are shown additionally.

  17. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    Momeni, Kasra; Levitas, Valery I


    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  18. Relationship between depression anxiety stress scale (DASS) and urinary hydroxyproline and proline concentrations in hospital workers.

    Lee, Keou Won; Kim, Soo Jeong; Park, Jae Beom; Lee, Kyung Jong


    Although increased reactive oxygen species (ROS) is caused by stress accelerates collagen degradation, there was no data on the relationship between stress and urinary hydroxyproline (Hyp) and proline (Pro), a good marker of collagen degradation. The purpose of this study was to evaluate the relationship between depression, anxiety, and stress (DAS) and concentrations of urinary Hyp and Pro. 97 hospital employees aged 20 to 58 were asked to fill out comprehensive self-administrated questionnaires containing information about their medical history, lifestyle, length of the work year, shift-work and DAS. depression anxiety stress scale (DASS) was applied to evaluate chronic mental disorders. Urine samples were analyzed using high performance liquid chromatography (HPLC) with double derivatization for the assay of hydroxyproline and proline. The mean value of Hyp and Pro concentration in all subjects was 194.1 ± 113.4 μmol/g and 568.2 ± 310.7 μmol/g. DASS values and urinary Pro concentrations were differentiated by sex (female > male, p others, p stress (Adjusted r2 = 0.051) and anxiety and job (Adjusted r2 = 0.199), respectively. We found that stress and anxiety were correlated with urinary Hyp and Pro concentrations. To identifying a definite correlation, further study in large populations will be needed.

  19. Three Dimensional Parametric Analyses on Effect of Fibre Orientation for Stress Concentration Factor in Fibrous Composite Cantilever Plate with Central Circular Hole under Transverse Loading

    Nitin Jain


    Full Text Available Normal 0 false false false EN-IN X-NONE X-NONE ABSTRACT: A number of analytical and numerical techniques are available for the two dimensional study of stress concentration around the hole(s in isotropic and composite plates subjected to in-plane or transverse loading conditions. The information on the techniques for three dimensional analyses of stress concentration factor (SCF around the hole in isotropic and composite plates subjected to transverse loading conditions is, however, limited. The present work emphasizes on the effect of fibre orientation (q on the stress concentration factor in fibrous composite plates with central circular hole under transverse static loading condition. The work is carried out for cantilever fibrous composite plates. The effects of thickness -to- width (T/A and diameter-to-width (D/A ratios upon SCF at different fibre orientation are studied. Plates of four different composite materials were considered for hole analysis in order to determine the sensitivity of SCF with elastic constants. Deflections in transverse direction were calculated and analysed. All results are presented in graphical form and discussed. The finite element formulation and its analysis were carried out using ANSYS package.ABSTRAK: Terdapat pelbagai teknik analitikal dan numerical untuk kajian tumpuan tegasan dua dimensi di sekeliling lubang-lubang dalam komposit isotropik dan plat pada satah atau keadaan bebanan melintang. Bagaimanapun, maklumat mengenai kaedah analisis tiga dimensi untuk faktor ketumpatan tegasan (SCF sekitar lubang dalam komposit isotropik dan plat pada keadaan bebanan melintang adalah terhad. Kertas ini menekankan kesan orientasi gentian (q pada faktor tumpuan tegasan dalam komposit plat bergentian dengan lubang berpusat di bawah keadaan bebanan melintang. Kajian ini dilkukan untuk cantilever plat komposit bergentian. Kesan ketebalan terhadap kelebaran plat (T/A dan diameter terhadap kelebaran komposit (D/A dengan SCF

  20. Stress Concentrations.


    rAZ 8 - E 2. Z.C *C r -c? Cu = g 00C *U0~ * .2 .2- , ., 6 m C ., Cu ,o .2 00 z.. 0 05 !=~ G -V -j c .0 -0 0 :6 Crr - c CL - -C.~ ~~~ C. -. ~ - -C E 7...TechnologylMaCliona 21 Buffalo, VN Tork 14214 School Of ngianen Dr.- N. F. Kauiina Mechanics Battelle Colmus Laboratories profesor Joseph L. goe Atlanta...Corporation Professor Joseph A. Clark Applied Machernas P.O. Son 5415 Catholic University of America Urbana, Illinois 41601 ua.ington Beach

  1. Prediction of Stress Concentration effect under Thermal and Dynamic loads on a High Pressure Turbine Rotor

    R.Nagendra Babu


    Full Text Available Geometric discontinuities cause a large variation of stress and produce a significant increase in stress. The high stress due to the variation of geometry is called as ‘stress concentration’. This will increase when the loads are further applied. There are many investigators who have studied the stress distribution around the notches, grooves, and other irregularities of various machine components. This paper analyses the effects of thermal and fatigue load on a steam turbine rotor under the operating conditions. Stresses due to thermal and dynamic loads of High Pressure Steam Turbine Rotor of 210MW power station are found in two stages. A source code is developed for calculating the nominal stress at each section of HPT rotor. Maximum stress is obtained using FEA at the corresponding section. Thermal and Fatigue Stress Concentration Factors at each section are calculated. It is observed that the SCFdue to the combined effect of thermal and dynamic loads at the temperatures beyond 5400C is exceeding the safe limits.

  2. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    W.R. Solonick


    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.


    Zeng Qingdun; Lin Xuehui


    In the axial tensile failure process of intraply hybrid composites, the breakage of some fibers may lead to interfacial damage, thus directly influencing the local stress concentrations near the sites of breakage. A modified shear-lag model, in which the interfacial damage is considered, is proposed. Based on the model, the influence of interfacial shear strength on the stress concentrations and the lengths of interfacial damage zone is first studied. The present results also provide an important theoretical basis for investigating the failure mechanism and hybrid effects for such kind of composites.

  4. Oxidative stress responses of submerged macrophyte Vallisneria asiatica to different concentrations of cyanobacteria

    Kang, Caixia; Kuba, Takahiro; Hao, Aimin; Iseri, Yasushi; Li, Chunjie; Zhang, Zhenjia


    In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was >109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of V. asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.

  5. Analytical modeling of the lattice and thermo-elastic coefficient mismatch-induced stress into silicon nanowires horizontally embedded on insulator-on-silicon substrates

    Chatterjee, Sulagna; Chattopadhyay, Sanatan


    In the current work, an analytical model has been developed to estimate the amount of induced stress in nanowires which are horizontally embedded with different fractions within an Insulator-on-Silicon substrate. For estimating such stress, different crystallographic orientations of substrates and embedded nanowires have been considered. The induced stress for both the difference in thermo-elastic constants and lattice-mismatch is included and accuracy of the analytical model has been verified with the similar results obtained from ANSYS Multiphysics. Induced stress is observed to be insensitive of the nanowire size, however, depends significantly on the fractional insertion of the nanowires. A tensile stress of 1.95 GPa and a compressive stress of -1.0719 GPa have been obtained for the oriented Si-nanowires. Hole mobility of 850 cm2/Vs can be achieved for the 3/4th insertion of the nanowires which is comparable to electron mobility and therefore can be utilized for the design of symmetric nano-electronic devices.

  6. Cutaneous interstitial nitric oxide concentration does not increase during heat stress in humans

    Crandall, C. G.; MacLean, D. A.


    Inhibition of cutaneous nitric oxide (NO) synthase reduces the magnitude of cutaneous vasodilation during whole body heating in humans. However, this observation is insufficient to conclude that NO concentration increases in the skin during a heat stress. This study was designed to test the hypothesis that whole body heating increases cutaneous interstitial NO concentration. This was accomplished by placing 2 microdialysis membranes in the forearm dermal space of 12 subjects. Both membranes were perfused with lactated Ringer solutions at a rate of 2 microl/min. In both normothermia and during whole body heating via a water perfused suit, dialysate from these membranes were obtained and analyzed for NO using the chemiluminescence technique. In six of these subjects, after the heat stress, the membranes were perfused with a 1 M solution of acetylcholine to stimulate NO release. Dialysate from these trials was also assayed to quantify cutaneous interstitial NO concentration. Whole body heating increased skin temperature from 34.6 +/- 0.2 to 38.8 +/- 0.2 degrees C (P heat stress (7.6 +/- 0.7 to 8.6 +/- 0.8 microM; P > 0.05). After the heat stress, administration of acetylcholine in the perfusate significantly increased skin blood flow (128 +/- 6 perfusion units) relative to both normothermic and heat stress values and significantly increased NO concentration in the dialysate (15.8 +/- 2.4 microM). These data suggest that whole body heating does not increase cutaneous interstitial NO concentration in forearm skin. Rather, NO may serve in a permissive role in facilitating the effects of an unknown neurotransmitter, leading to cutaneous vasodilation during a heat stress.

  7. Blood Biochemistry and Plasma Corticosterone Concentration in Broiler Chickens Under Heat Stress

    Elvis Alexander Díaz López


    Full Text Available High ambient temperatures cause susceptibility to heat stress in broiler chickens, generating metabolic changes. This paper seeks to determine the changes in blood biochemistry and plasma corticosterone concentration, as well as in glucose, total protein, albumin, globulin, sodium, chlorine, potassium, magnesium, phosphorus, and calcium in broiler chickens under chronic heat stress and at ambient temperature conditions at the Colombian Amazonian piedmont. 21-days-old male chickens of two lines were studied, distributed in an unrestricted random design, in a two-factor scheme, with four treatments. Five repetitions per treatment were performed, and 25 animals per experimental unit examined. Broilers were fed a basic diet of corn and soybean meal with 3,100 kcal ME and 19.5% protein until they reached 42 days of age. The line factor had no effect on the evaluated variables (p ≥ 0.05. However, there was statistically significant difference (p ≤ 0.05 in all variables when concentrations of metabolites in broilers under chronic heat stress were compared to those of chickens exposed to ambient temperatures at the Colombian Amazon piedmont. In conclusion, blood biochemistry suffered significant changes under both experimental temperatures, with more physiological detriment in broilers under chronic heat stress. Concentration of corticosterone became the most sensitive and consistent indicator of the physiological condition of chronic heat stress.

  8. A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks

    Orlic, B.; Wassing, B.B.T.


    Geomechanical simulations were conducted to study the effects of reservoir depletion on the stability of internal and boundary faults in gas reservoirs overlain by elastic and viscoelastic salt caprocks. The numerical models were of a disk-shaped gas reservoir with idealized geometry; they mimic the

  9. Determination of elemental concentrations in atmospheric aerosols in Mexico City using proton induced X-ray emission, proton elastic scattering, and laser absorption

    Miranda, Javier; Cahill, T.A.; Morales, J.R. (California Univ., Davis, CA (United States). Crocker Nuclear Lab.); Aldape, F.; Flores M, J.; Diaz, R.V. (Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico))


    A study of the concentrations of elements present in atmospheric aerosols at two different sites in Mexico City was done with samples taken during September 1990 and February 1991. The samples were taken daily during 6 h periods (from 6:00 to 12:00 hr), using a Stacking Filter Unit (SFU) of the Davis design. This allowed the separation of particles with sizes ranging from 2.5 to 15 [mu]m (coarse mass), and smaller than 2.5 [mu]m (fine mass). Analyses of the samples with Proton Induced X-ray Emission (PIXE) gave information on elements heavier than Ne, Proton Elastic Scattering Analysis (PESA) on hydrogen contents, and the Laser Integrating Plate Method (LIPM) was used on the fine fraction to determine soot contents. Cluster Analysis is applied to the sample set in order to identify the emission sources of the elements. Additionally, the relationship to several meteorological variables is presented. (author).

  10. Fatty acid concentrations in patients with posttraumatic stress disorder compared to healthy controls

    de Vries, G.J.; Mocking, R.; Lok, A.; Assies, J.; Schene, A.H.; Olff, M.


    BACKGROUND: Although fatty acid (FA)-supplementation studies are currently being implemented, in fact little is known about FA-profiles in posttraumatic stress disorder (PTSD). Therefore, the present study aimed at comparing FA-concentrations between PTSD-patients and healthy controls. METHODS: A cr


    姚伟岸; 张兵茹


    According to the Hellinger-Reissner variational principle and introducing proper transformation of variables, the problem on elastic wedge dissimilar materials can be led to Hamiltonian system, so the solution of the problem can be got by employing the separation of variables method and symplectic eigenfunction expansion under symplectic space, which consists of original variables and their dual variables. The eigenvalue - 1 is a special one of all symplectic eigenvalue for Hamiltonian system in polar coordinate. In general, the eigenvalue - is a single eigenvalue, and the classical solution of an elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is got directly by solving the eigenfunction vector for eigenvalue - 1 . But the eigenvalue - 1 becomes a double eigenvalue when the vertex angles and modulus of the materials satisfy certain definite relationships and the classical solution for the stress distribution becomes infinite at this moment, that is, the paradox should occur. Here the Jordan form eigenfunction vector for eigenvalue - 1 exists, and solution of the paradox on elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is obtained directly by solving this special Jordan form eigenfunction. The result shows again that the solutions of the special paradox on elastic wedge in the classical theory of elasticity are just Jordan form solutions in symplectic space under Hamiltonian system.


    Environmental contaminants can act as stressors, inducing elevated circulating concentrations of stress hormones such as corticosterone and cortisol. Development in contaminated eggs has been reported to modify circulating sex steroid hormone concentrations in alligators (Alligat...

  13. Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress.

    Kannan, P Ramesh; Deepa, S; Kanth, Swarna V; Rengasamy, R


    In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes [polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)] were investigated. The 30-day old S. portulacastrum plants were subjected to 100, 200, 300, 400, 500 and 600 mM NaCl for 28 days. The plant growth was steadily increased up to 500 mM NaCl stress at 28 days. TWC was higher in 300 mM NaCl treated leaves than that of 600 mM NaCl. Salinity stress induced the accumulation of osmolyte concentration when compared to control during the study period. The antioxidant enzymes PPO, CAT and SOD were increased under salinity.

  14. Inverse problemfor an inhomogeneous elastic beam at a combined strength

    Andreev Vladimir Igorevich


    Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.

  15. Assessment of fructosamine concentrations in cats with acute and chronic stress

    Lívia Fagundes Moraes


    Full Text Available Fructosamine are glycated serum proteins that are formed continuously due to the reaction between glucose and circulating proteins, and corresponding to the blood glucose control assessment over the last one to two weeks in cats. The fructosamine concentration has been used for differentiation between persistent and transient hyperglycemia. Therefore, the determination of fructosamine is considered the gold standard for monitoring glycemia into control in diabetic cats. The objective of this study was to evaluate the influence of acute and chronic stress of cats on serum fructosamine. 62 cats were selected from the Veterinary Hospital of FMVZ - UNESP, Botucatu campus. They were distributed into three groups: cats with a history of any illness or stress condition, excluding Diabetes Mellitus (DM, for a maximum of 48 hours (Group A, n = 21 or for a period exceeding 120 hours (Group B n = 27. The third group (Group C = control was formed by 14 health cats. The groups were evaluated for serum fructosamine, glucose, protein and albumin. In this study, there was a significant increase in the values of fructosamine in animals subjected to acute and chronic stress, but these values remained within the reference range. The animals were, on average, normoglycemic, despite the positive correlation between fructosamine and glucose concentrations. We conclude that the fructosamine concentration is influenced by acute and chronic stress in cats, remaining, however, within the reference range, and therefore, still useful in the diagnosis of DM.


    Dewi Wiryanthini IA


    Full Text Available Increased production of reactive oxygen species (ROS causing accumulation of oxidative damage caused by exceeding anti oxidant capacity in the body. Psychological stress as psychosocial stress can induce oxidative stress which subsequently cause increase blood malondialdehyde (MDA and decrease blood nitrate and nitrite (NOx concentration as intermediate product of nitric oxide (NO. Cacao beans extracts contained anti oxidant flavanols consist of catechin, epicatechin and procyanidin. The aims of this study is to investigate the effect of cacao beans (Theobroma cacao L. extracts for decreasing MDA and increasing NOx concentration in white rat (Ra$us norvegicus blood in stress oxidative state induced by psychosocial stress. It is an experimental study with Pretest-Postest Control Group Design. This study revealed decrease MDA concentration in group P1 (11.47 vs 8.04, P2 (11.92 vs 5.44 and P3 (11.69 vs 2.87 with P = 0.000 and increase NOx concentration in oxidative stress white rat induced by psychosocial stress a[er administration of cacao beans extract in group P1 (1909.83 vs 2085.16, P2 (1912.5 vs 2231.83 and P3 (1871.5 vs 2339.83 with P = 0.005. This study showed that cacao beans extract can inhibit oxidative stress caused by psychosocial stress.

  17. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco


    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  18. Shear stresses around circular cylindrical openings

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.


    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the open

  19. EDXS and XRD Analyses of Coleus with Different Concentration Selenium Supplements Under Lead Stress

    QIN Hui-yuan


    Full Text Available In order to study the changes of the morphologies and element composition in Coleus hlumei Benth(Coleusroots and leaves under1.0 mmol·L-1 Pb2+ stress with selenium ( Setreatments, and to preliminarily investigate the relief mechanism of Se level on lead toxicity from the perspective of spectroscopy, Coleus was cultivated in nutrient solutions with different concentrations of Se. The results showed that the content of C, K and Ca elements in roots decreased, while 0, Mg, Al, Si, Fe and Pb elements increased under Pb stress with Se treatments. In addi-tion, the content of C, Mg, Al, Si, K, Ca and Fe elements in leaves decreased, while 0 and Cl elements increased. The element species and its contents in roots were changed obviously under Pb stress with Se treatments, and crystalline solid and crystal phase in roots were correspond-ingly changed.

  20. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire.

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai


    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V(2)/Pa(1/3) with nonlinearity lower than 1%, revealing high performance characteristic of the sensors.

  1. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan


    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  2. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.

    Lu, N; Du, K; Lu, L; Ye, H Q


    Metals with a high density of nanometre-scale twins have demonstrated simultaneous high strength and good ductility, attributed to the interaction between lattice dislocations and twin boundaries. Maximum strength was observed at a critical twin lamella spacing (∼15 nm) by mechanical testing; hence, an explanation of how twin lamella spacing influences dislocation behaviours is desired. Here, we report a transition of dislocation nucleation from steps on the twin boundaries to twin boundary/grain boundary junctions at a critical twin lamella spacing (12-37 nm), observed with in situ transmission electron microscopy. The local stress concentrations vary significantly with twin lamella spacing, thus resulting in a critical twin lamella spacing (∼18 nm) for the transition of dislocation nucleation. This agrees quantitatively with the mechanical test. These results demonstrate that by quantitatively analysing local stress concentrations, a direct relationship can be resolved between the microscopic dislocation activities and macroscopic mechanical properties of nanotwinned metals.

  3. Prenatal transportation stress alters temperament and serum cortisol concentrations in suckling Brahman calves.

    Littlejohn, B P; Price, D M; Banta, J P; Lewis, A W; Neuendorff, D A; Carroll, J A; Vann, R C; Welsh, T H; Randel, R D


    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor used was repeated transportation of pregnant Brahman cows for 2 h at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation. Prenatally stressed calves ( = 41) were compared with controls ( = 44; dams did not undergo transportation during pregnancy) from 2 wk of age until weaning (average age at weaning = 174.8 ± 1.3 d). Temperament was defined by pen score (PS; 1 = calm and 5 = excitable), exit velocity (EV; m/sec), and temperament score (TS; (PS + EV)/2) and was recorded for each calf on d -168, -140, -112, -84, -56, -28, and 0 relative to weaning (d 0 = weaning). Cortisol concentrations were determined in serum samples obtained on d -168, -140, -28, and 0 relative to weaning. Birth weight and weaning weight were not different between treatment groups ( > 0.1). Pen score was greater ( = 0.03) in prenatally stressed calves (2.84 ± 0.21) relative to controls (2.31 ± 0.21). Exit velocity was greater ( Brahman calves that were prenatally stressed were more temperamental and had greater circulating serum concentrations of cortisol than control calves.

  4. Apoplastic and symplastic solute concentrations contribute to osmotic adjustment in bean genotypes during drought stress



    The present study investigates changes in the inorganic ions, proline, and endogenous abscisic acid (ABA) contents of the apoplastic and symplastic compartments of leaves from drought-tolerant (Yakutiye) and drought-sensitive (Zulbiye) cultivars of the common bean (Phaseolus vulgaris L.). Drought stress caused a decrease in leaf water potential and stomatal conductance in both cultivars. Concentrations of proline in the drought-tolerant and drought-sensitive cultivars increased in response to...

  5. Evaluation of Scattered Wave and Stress Concentration Field in a Damaged Solder Joint

    Dineva, P.; Gross, D.; Rangelov, T.


    Two different, but equally important problems for solder joint reliability are solved. The evaluation of the dynamic stress concentration field in the thin base layer of a damaged solder joint is the first one. It is considered as a rectangular plate with a central macro-crack surrounded with randomly distributed micro-cracks, subjected to uniform time-harmonic tension. The damaged solder joint state is described by the model of Gross and Zhang [1] (International Journal of Solids and Structures29, 1763-1779). The information of the stress concentration field in a damaged solder joint is important to understand the mechanisms in the base components of all electronic packages.The second problem is ultrasonic wave scattering in a solder joint damaged by micro-cracks, considered as a two-dimensional finite multi-layered system. The solution of this problem may aid the creation of the modern non-destructive evaluation method (NDEM) for a high quality control of products in electronic industry.The method of the solution of both boundary-value problems is a direct BIEM (boundary integral equation method). The numerical results obtained for a solder joint with real geometry and physical properties show how the acoustic and stress concentration fields depend on the solder joint damage state. The character of this dependence is discussed.

  6. The First Law of Elasticity

    Girill, T. R.


    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  7. Interactive Effects of Drought Stresses and Elevated CO2 Concentration on Photochemistry Efficiency of Cucumber Seedlings

    Qing-Ming Li; Bin-Bin Liu; Yang Wu; Zhi-Rong Zou


    To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSll (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (Qp) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, Qp and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.

  8. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina


    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  9. Elastic plate spallation

    Oline, L.; Medaglia, J.


    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  10. Resting and dobutamine stress test induced serum concentrations of brain natriuretic peptide in German Shepherd dogs.

    Spasojević Kosić, Ljubica; Trailović, Dragiša R; Matunović, Radomir


    Studies of clinical uses of brain natriuretic peptide (BNP) represent one of the most important advances in cardiology since the introduction of echocardiography as a clinical diagnostic procedure. Defining the clinical potential of BNP in canine cardiology has not been completed yet. The aim of this study is to measure BNP concentrations in healthy German Shepherd dogs of different ages as a baseline in resting and when conventional protocol of the dobutamine stress test (DST) is applied to dogs. Concentrations of BNP were measured in blood serum by the radioimmunoassay method. The values of BNP concentrations were compared to cardiac parameters obtained by standard cardiac diagnostic procedures (radiology, electrocardiography and echocardiography). No significant differences in serum BNP concentrations existed in dogs of different ages. A statistically significant increase in BNP concentrations was registered after DST. These changes in BNP concentrations were related to ST/T electrocardiographic changes, and correlated to changes in the left ventricular internal diameter in systole (LVESD). These data suggest that BNP is not increased in aged dogs with normal cardiac systolic function and renal function, and that myocardial ischemia leads to a significant increase in BNP concentrations even in dogs with normal left ventricular function.

  11. Effective elasticity tensor of a periodic composite

    Nunan, Kevin C.; Keller, Joseph B.

    THE EFFECTIVE elasticity tensor of a composite is defined to be the four-tensor C which relates the average stress to the average strain. We determine it for an array of rigid spheres centered on the points of a periodic lattice in a homogeneous isotropic elastic medium. We first express C in terms of the traction exerted on a single sphere by the medium, and then derive an integral equation for this traction. We solve this equation numerically for simple, body-centered and face-centered cubic lattices with inclusion concentrations up to 90% of the close-packing concentration. For lattices with cubic symmetry the effective elasticity tensor involves just three parameters, which we compute from the solution for the traction. We obtain approximate asymptotic formulas for low concentrations which agree well with the numerical results. We also derive asymptotic results for C at high inclusion concentrations for arbitrary lattice geometries. We find them to be in good agreement with the numerical results for cubic lattices. For low and moderate concentrations the approximate results of NEMAT- NASSERet al., also agree well with the numerical results for cubic lattices.

  12. Precision Controlling of Frequency Difference for Elastic-Stress Birefringence He-Ne Dual-Frequency Lasers

    ZHOU Lu-Fei; ZHANG Shu-Lian; GUO Hong; REN Zhou


    Birefringence-Zeeman dual frequency lasers are capable of producing frequency difference from several kilohertz to hundreds of megahertz, but the precision of giving and stabilizing of the beat frequency still needs improvement to the range of ±200 kHz. We design a new elastic force-exerting device comprised of the bottom part, two arms and two pieces of force-exerting sheets. The frequency difference smoothly tuning is realized with this device in a large range of 2 MHz to 20 MHz. Power-balance frequency stabilization system is used to investigate characters of the temperature, frequency difference and laser power. The precision of the frequency difference has reach up to JrlOO kHz after system temperature balance. Analyses of the laser frequency difference and power character are carried out.

  13. Integrodifferential relations in linear elasticity

    Kostin, Georgy V


    This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.

  14. Experimental examination of fatigue life of welded joint with stress concentration

    Miodrag Arsic


    Full Text Available This paper presents results of experimental examinations of stress concentration influence to fatigue life of butt welded joints with K-groove, produced from the most frequently used structural steel S355J2+N. One group of experiments comprised examinations carried out on the K-groove specimens with stress concentrators of edged notch type. Specimens with short cracks (limited length of initial crack, defined on the basis of the experience from fracture mechanics by the three points bending examinations, have been examined according to standard for the determination of S-N curve, and aimed to determine fatigue strengths for different lengths of initial crack and Relationship between fatigue strength and crack length. Other group of experiments comprised examinations of specimens with edge notch, prepared in accordance with ASTM E 399 for three points bending, in order to establish regularity between crack growth and range of exerted stress intensity factor aimed to determine resistance of welded joint to initial crack growth, namely fatigue threshold (ΔKth.

  15. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.


    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  16. Case history of the response of a longwall entry subjected to concentrated horizontal stress

    Mark, C.; Gale, W.; Oyler, D.; Chen, J. [NIOSH, Pittsburgh, PA (United States). Rock Safety Engineering Branch, Pittsburgh Research Laboratory


    The National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Research Laboratory (PRL), RAG Pennsylvania and Strata Control Technologies of Australia collaborated in an intensive study of ground behavior, reinforcement performance, and stress redistribution at the Emerald Mine in Southwestern Pennsylvania. The study site was a longwall tailgate subjected to a severe horizontal stress concentration. Field measurements indicated that the stresses applied to the study site nearly doubled during longwall mining, resulting in roof deformations extending to a height of 4.8 m (16 ft) above the entry. A computer simulation of the field site was conducted using FLAC-2D, incorporating a broad range of rock behaviors and failure mechanisms. Comparison between the measurements and the simulation showed that the model was able to capture the most significant aspects of the roof and support system behavior, particularly, the extensive slip along bedding that created a partially destressed 'softened' zone in the immediate roof. The model also showed that supplementing the normal roof bolt support pattern with cable bolts would allow the entry to survive a further 20-25% increase in the applied horizontal stress. Such information could have very practical application to the design of roof support systems for coal mines.

  17. Circumferential gap propagation in an anisotropic elastic bacterial sacculus

    Taneja, Swadhin; Rutenberg, Andrew D


    We have modelled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart-autolysins, as hypothesised by Arthur L Koch [Advances in Microbial Physiology 24, 301 (1983); Research in Microbiology 141, 529 (1990)]. We show that the measured anisotropic elasticity of the PG sacculus can lead to stable circumferential propagation of small gaps in the sacculus. This is consistent with the recent observation of circumferential propagation of PG-associated MreB patches in rod-shaped bacteria. We also find a bistable regime of both circumferential and axial gap propagation, which agrees with behavior reported in cytoskeletal mutants of B. subtilis. We con...

  18. Experimental investigation of the stress wave propagation along a single straight chain of photo-elastic discs

    Britan, Alexander M.; Glam, Beni; Igra, Ozer; Ben-Dor, Gabi


    The propagation of stress waves through a chain of discs has been studied experimentally using a high-speed photoelastic diagnostic technique and strain gauge measurements. An optically transparent single straight chain of 20-mm diameter discs, made of epoxy, was impacted in a vertical shock tube by an air shock wave. The fringe patterns of the stress field were recorded using a Q-switched YAG laser, a transmission polariscope and a CCD cameras. The incident shock wave reflected head-on from a puncher plate that was placed on top of the discs chain inducing behind it a fairly uniform step-wise pressure pulse. The duration of this pressure pulse acting over the puncher surface lasted for about 6 ms. Experiments indicated that inside the discs-chain the step-wise pressure pulse was broken into several oscillating cycles composed of transmitted and reflected stress waves that were followed by transmitted and reflected rarefaction waves. The back and forth bouncing of these waves continued until the overall stress within the discs-chain reached equilibrium with the compression force acting on the puncher plate. The stress wave propagation velocity along the discs chain was significantly lower than the appropriate speed of sound of the material from which the discs were made.

  19. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng


    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  20. Micro-buckling of periodically layered composites in regions of stress concentration

    Poulios, Konstantinos; Niordson, Christian Frithiof


    -buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....

  1. Analytical and experimental analysis of stress concentration in notched multilayered composites with finite outer boundaries

    Hufenbach, W.; Grüber, B.; Gottwald, R.; Lepper, M.; Zhou, B.


    A solution method for stress concentration problems of fibre- and textile-reinforced multilayered composites with account of the influence of a circular or elliptical cut-out and of the finite outer boundary of a composite plate is presented. The method is based on complex-valued displacement functions and conformal mappings in combination with the boundary collocation and least squares methods. This allows a layer-by-layer calculation of full stress, strain, and displacement fields in a generally multilayered anisotropic plate. To verify the calculation model, extensive experimental studies have been carried out. For all the combinations of multilayered GF/PP plates, laminate lay-ups, and notch and specimen dimensions investigated so far, a very good agreement between the analytical calculations and experimental results is found to exist.

  2. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. I - Stress and displacement

    Librescu, L.; Khdeir, A. A.


    A simple theory for bending of composite anisotropic plates that are laminated symmetrically about their mid-plane is presented. This theory incorporates transverse shear deformation and transverse normal stress as well as the higher-order effects and fulfills the static conditions on the external boundary planes. Further on, by using Levy-type solutions considered in conjunction with the state space concept, the state of stress and displacement of rectangular plates for a variety of edge conditions is determined and the results are compared to their first-order shear deformation and classical counterparts, obtained by using the same state-space technique.

  3. Biopolymer Elasticity

    Sinha, S


    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  4. Rennet-induced gelation of concentrated milk in the presence of sodium caseinate: differences between milk concentration using ultrafiltration and osmotic stressing.

    Krishnankutty Nair, P; Corredig, M


    Concentrating milk is a common unit operation in the dairy industry. With the reduction of water, the particles interact more frequently with each other and the functionality of the casein micelles may depend on the interactions occurring during concentration. The objective of this research was to investigate the effect of concentration on the renneting properties of the casein micelles by comparing 2 concentration methods: ultrafiltration and osmotic stressing. Both methods selectively concentrate the protein fraction of milk, while the composition of the soluble phase is unaltered. To evaluate possible differences in the rearrangements of the casein micelles during concentration, renneting properties were evaluated with or without the addition of soluble caseins, added either before or after concentration. The results indicate that casein micelles undergo rearrangements during concentration and that shear during membrane filtration may play a role in affecting the final properties of the milk.

  5. Platelet serotonin concentration and suicidal behavior in combat related posttraumatic stress disorder.

    Kovacic, Zrnka; Henigsberg, Neven; Pivac, Nela; Nedic, Gordana; Borovecki, Andrea


    Posttraumatic stress disorder (PTSD) is a serious and global problem, a psychiatric disorder that frequently occurs with different comorbidities, and is associated with a high suicide rate. Pathophysiologically, both PTSD and suicidal behavior are related to disturbances in the central serotonergic system. Serotonin (5-hydroxytryptamine, 5-HT) controls emotional behavior, anxiety, impulsivity and aggression, and nearly all known antidepressants and antianxiety drugs affect 5-HT transmission. Platelet 5-HT can be used as a limited peripheral marker of the central serotonergic synaptosomes, since it is related to particular basic psychopathological characteristics of several psychiatric disorders. Platelet 5-HT concentration has been reported to be similar in PTSD subjects and healthy controls, but suicidal patients across different psychiatric diagnoses have reduced platelet 5-HT concentration. This study examined platelet 5-HT concentration by the spectrofluorimetric method in male subjects: 73 suicidal and 47 non-suicidal veterans with current and chronic combat related PTSD, 45 suicidal and 30 non-suicidal comparative non-PTSD subjects and 147 healthy men. The presence of suicidal behavior (score=0, non-suicidal; scores > or =1, suicidal) was assessed with the Hamilton Depression Rating Scale-17 (HDRS). Platelet 5-HT concentration was significantly lower in suicidal PTSD and non-PTSD patients compared to non-suicidal patients or healthy controls. Since the majority of patients scored very low on item 3 of HDRS, no significant correlation between suicidal scores and platelet 5-HT concentration was found. These results show that reduced platelet 5-HT concentration is related to suicidal behavior in PTSD, and suggest that platelet 5-HT concentration might be used as a peripheral marker to predict suicidal behavior across psychiatric diagnoses.

  6. Finite element analysis of stress concentration in three popular brands of fiber posts systems used for maxillary central incisor teeth

    Shalini Aggarwal


    Full Text Available Aims and Objectives: To study the stress concentrations in endodontically treated maxillary central incisor teeth restored with 3 different fiber post systems subjected to various oblique occlusal loads. Materials and Methods: FEM analysis was used to analyze stress concentrations generated in maxillary anterior teeth. Computer aided designing was used to create a 2-D model of an upper central incisor. Post systems analyzed were the DT Light Post (RDT, Bisco, Luscent Anchor (Dentatus & RelyX (3M-ESPE. The entire design assembly was subjected to analysis by ANSYS for oblique loading forces of 25N, 80N & 125 N Results: The resultant data showed that the RelyX generated the least amount of stress concentration. Conclusions: Minimal stress buildups contribute to the longevity of the restorations. Thus RelyX by virtue of judicious stress distribution is the better option for restoration of grossly decayed teeth.

  7. Effect of heat stress and drinking water salt supplements on plasma electrolytes and aldosterone concentration in broiler chickens

    Deyhim, F.; Teeter, R. G.


    An experiment was conducted to evaluate the effects of supplementing drinking water with isomolar (0.067 mol/l) KCl or NaCl on mass gain, food and water consumption, rectal temperature, and plasma concentrations of aldosterone, Na+, and K+ in broiler chickens reared in thermoneutral and cycling heat stressing environments. Heat stress decreased ( P≤0.05) mass gain, food consumption, and plasma concentrations of Na+ and K+, while increases ( P≤0.05) in plasma concentrations of aldosterone, rectal temperature, and water consumption were observed. Drinking water supplemented with either KCl or NaCl increased ( P≤0.05) broiler mass gain and water consumption, but had no effect ( P>0.1) on the other variables evaluated. The results of this study indicate that broiler chickens in a heat stress environment are under osmotic stress and supplementing drinking water with 0.067 mol/1 KCl or NaCl does not lessen this stress.

  8. Straightened cervical lordosis causes stress concentration: a finite element model study.

    Wei, Wei; Liao, Shenhui; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue


    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24-33 %, but the stress increased by 5-95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  9. Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes.

    Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio; Gratão, Priscila Lupino; Borgo, Lucélia; Azevedo, Ricardo Antunes


    Tropical and subtropical soils are usually acidic and have high concentrations of aluminum (Al). Aluminum toxicity in plants is caused by the high affinity of the Al cation for cell walls, membranes, and metabolites. In this study, the response of the antioxidant-enzymatic system to Al was examined in two tomato genotypes: Solanum lycopersicum var. esculentum (Calabash Rouge) and Solanum lycopersicum var. cerasiforme (CNPH 0082) grown in tropical soils with varying levels of Al. Plant growth; activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase (GR) enzymes; stress-indicating compounds (malondialdehyde (MDA) and hydrogen peroxide); and morphology (root length and surface area) were analyzed. Increased levels of Al in soils were correlated with reduced shoot and root biomass and with reduced root length and surface area. Calabash Rouge exhibited low Al concentrations and increased growth in soils with the highest levels of Al. Plants grown in soils with high availability of Al exhibited higher levels of stress indicators (MDA and hydrogen peroxide) and higher enzyme activity (CAT, APX, GPOX, and GR). Calabash Rouge absorbed less Al from soils than CNPH 0082, which suggests that the genotype may possess mechanisms for Al tolerance.

  10. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank


    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  11. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua


    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  12. Optimization of geometry of elastic bodies in the vicinity of singular points on the example of an adhesive lap joint

    Matveenko, V. P.; Sevodina, N. V.; Fedorov, A. Yu.


    The stress state in adhesive lap joints with various geometric shapes of spew fillet is studied. It is noted that the applied design models of the considered problem include singular points at which infinite stress values are possible if one uses the linear elasticity theory to calculate the stress state. Based on the conclusions of the solution of the geometry optimization problem in the vicinity of the singular points of elastic bodies, variants of the geometry of spew fillet, which provide the most significant decrease in the concentration of stresses in adhesive lap joints, are proposed.

  13. High geo-stress distribution and high geo-stress concentration area models for eastern margin of Qinghai-Tibet plateau


    High geo-stress and its engineering problems have severely affected the development of civil infrastructures in western China. The problems include high rock slope instabilities,rock burst,gas explosion and large-scale soft rock deformation in deep tunnels.This paper investigates the distribution of the high geo-stresses and the models of the stress concentration areas in the eastern margin of Qinghai-Tibet plateau so that a solid foundation can be formed to address the problems.The investigation is based on a comprehensive analysis of the previous research data of the eastern margin and uses remote sensing techniques,geophysics,geochemistry,and large scale geological surveying methods.The investigation has found that some special tectonic zones have high geo-stresses.The high geo-stresses are located at(1) the convergent boundary areas between two fault blocks with large strength differences,(2) the tectonic necks in front of active fault blocks,and(3) the intersection and/or termination areas of faults within the fault blocks.An example for(1) is the north Qilian high geo-stress area.Another example for(2) is the Minshan high geo-stress area in the northwest Sichuan.Furthermore,the investigation has summarized six basic models to characterize the high geo-stress concentration areas.The first one is the convergent stress concentration model at the boundary of two fault blocks.The other five stress concentration modes are oblique fissures or intersecting areas,areas without lower velocity layer in the crust,areas of compression induced tensile cracking,tectonic wedge areas,and tectonic neck areas,respectively.

  14. Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration

    Briñez de León, Juan C.; Restrepo M., Alejandro; Branch, John W.


    Digital photoelasticity is based on image analysis techniques to describe the stress distribution in birefringent materials subjected to mechanical loads. However, optical assemblies for capturing the images, the steps to extract the information, and the ambiguities of the results limit the analysis in zones with stress concentrations. These zones contain stress values that could produce a failure, making important their identification. This paper identifies zones with stress concentration in a sequence of photoelasticity images, which was captured from a circular disc under diametral compression. The capturing process was developed assembling a plane polariscope around the disc, and a digital camera stored the temporal fringe colors generated during the load application. Stress concentration zones were identified modeling the temporal intensities captured by every pixel contained into the sequence. In this case, an Elman artificial recurrent neural network was trained to model the temporal intensities. Pixel positions near to the stress concentration zones trained different network parameters in comparison with pixel positions belonging to zones of lower stress concentration.

  15. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats.

    Dagnino-Subiabre, Alexies; Orellana, Juan A; Carmona-Fontaine, Carlos; Montiel, Juan; Díaz-Velíz, Gabriela; Serón-Ferré, María; Wyneken, Ursula; Concha, Miguel L; Aboitiz, Francisco


    Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.

  16. Theories for Elastic Plates via Orthogonal Polynomials

    Krenk, Steen


    A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori...

  17. Effect of surface stress and irregularity of the interface on the propagation of SH-waves in the magneto-elastic crustal layer based on a solid semi space

    D P Acharya; Indrajit Roy


    The object of the present paper is to investigate plane SH waves through a magneto-elastic crustal layer based over an elastic, solid semi space under the influence of surface stress on the free surface of the crustal layer and irregularity of the interface. Two types of irregularities of the interface namely, rectangular and parabolic have been considered. Modulations of wave velocity due to the presence of surface stress, irregularity and the magnetic field have been studied separately. Their combined effect has also been investigated. Graphs are drawn to highlight some important peculiarities. It is observed that surface stress, irregularity and magnetic field have their respective role to play in the propagation of SH waves in the crustal layer. Further modulation of wave velocity occurs due to their combined effect.

  18. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    G. Faucher


    Full Text Available The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae, intermediate- (E. huxleyi and G. oceanica and least-tolerant (C. pelagicus taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  19. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf


    The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  20. Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats.

    Lorena Fernandes Arruda

    Full Text Available Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2 and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2 relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging.

  1. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Saba Naqvi


    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  2. Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints


    This paper studies the effects of fiber orientaion and holes position on stress concentration and the determination of weakened areas in the composite of glass fiber reinforced epoxy resin around the hole for joints by using the finite element method.In this study,for the observation of areas affected by stress concentration Tsai-Wu failure criterion is used to determine the failed elements and ANSYS Software is implemented for modeling.In order to compare the effect of geometric parameters on stress concen...

  3. Elastic Beanstalk

    Vliet, Jurg; Wel, Steven; Dowd, Dara


    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  4. Hair cortisol concentrations and cortisol stress reactivity in generalized anxiety disorder, major depression and their comorbidity.

    Steudte-Schmiedgen, Susann; Wichmann, Susann; Stalder, Tobias; Hilbert, Kevin; Muehlhan, Markus; Lueken, Ulrike; Beesdo-Baum, Katja


    Studies investigating cortisol secretion in patients with generalized anxiety disorder (GAD) have reported heterogeneous findings. Further, current knowledge on the specificity of endocrine changes for GAD and/or comorbid major depression (MD) is limited. Hence, the current study investigated long-term integrated cortisol secretion, as indexed by hair cortisol concentrations (HCC), and experimentally-induced cortisol stress reactivity in relation to GAD, MD and their comorbidity. Carefully characterized groups of 17 GAD patients including 8 with comorbid MD (GAD-MD), 12 MD patients and 21 healthy controls were recruited. Alongside psychometric data, HCC (N = 43) and salivary cortisol stress reactivity in response to the Trier Social Stress Test (N = 45) were determined. Findings revealed that MD patients exhibited lower HCC compared to controls and GAD patients, with no differences between the latter two groups. Interestingly, when the GAD group was separated into two groups based on MD comorbidity, lower HCC in MD patients were found compared to controls and GAD-noMD patients, but did not show differences when compared to GAD-MD patients. No HCC differences were seen between GAD-MD or GAD-noMD patients and healthy controls. No TSST group differences emerged. Our findings suggest MD to be related to long-term attenuation in cortisol secretion. While no group differences emerged between patients with GAD, neither with nor without MD, and controls, the current results provide tentative evidence that MD determines long-term endocrine changes, with pure GAD showing a distinct pattern. Future studies are needed to confirm our findings in larger samples of pure and comorbid groups.

  5. Stress concentration analysis in functionally graded plates with elliptic holes under biaxial

    Tawakol A. Enab


    Full Text Available Stress concentration factors (SCFs at the root of an elliptic hole in unidirectional functionally graded material (UDFGM plates under uniaxial and biaxial loads are predicted. ANSYS Parametric Design Language (APDL was used to build the finite element models for the plates and to run the analysis. A parametric study is performed for several geometric and material parameters such as the elliptic hole major axis to plate width ratio, the elliptical shape factor, the gradation direction of UDFGM. It is shown that, SCF in the finite plate can be significantly reduced by choosing the proper distribution of the functionally graded materials. The present study may provide designers an efficient way to estimate the hole effect on plate structures made of functionally graded materials.

  6. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)


    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  7. Vibration of an Elastic Circular Plate on an Elastic Half Space

    Krenk, Steen; Schmidt, H.


    The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved by a direct method, in which the contact stresses and the normal displacements of the plate are taken as the unknown functions. First, the influence functions that give the displacements in terms...... influence from the elastic properties of the plate....

  8. The stress field in a pulled cork and some subtle points in the semi-inverse method of nonlinear elasticity

    De Pascalis, Riccardo; Saccomandi, Giuseppe


    In an attempt to describe cork-pulling, we model a cork as an incompressible rubber-like material and consider that it is subject to a helical shear deformation superimposed onto a shrink fit and a simple torsion. It turns out that this deformation field provides an insight into the possible appearance of secondary deformation fields for special classes of materials. We also find that these latent deformation fields are woken up by normal stress differences. We present some explicit examples based on the neo-Hookean, the generalized neo-Hookean and the Mooney-Rivlin forms of the strain-energy density. Using the simple exact solution found in the neo-Hookean case, we conjecture that it is advantageous to accompany the usual vertical axial force by a twisting moment, in order to extrude a cork from the neck of a bottle efficiently. Then we analyse departures from the neo-Hookean behaviour by exact and asymptotic analyses. In that process, we are able to give an elegant and analytic example of secondary (or late...

  9. Some Measurements of Elasticities of Substitution

    J. Tinbergen (Jan)


    textabstractSo far, when measuring elasticities of demand, most econometricians have concentrated upon the plain elasticity of total demand for a given commodity. For many important problems we should, in addition, like to know something of "partial elasticities," as I might provisionally call them.

  10. Rotational elasticity

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  11. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress

    Tingqiang Li; Qi Tao; Zhenzhen Di; Fan Lu; Xiaoe Yang


    The combined effects of elevated CO2 and cadmi-um (Cd) on photosynthetic rate, chlorophyl fluorescence and Cd accumulation in hyperaccumulator Sedum alfredi Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 mL L?1) or elevated (800 mL L?1) CO2. Elevated CO2 significantly (P<0.05) increased Pn (105%–149%), Pnmax (38.8%–63.0%) and AQY (20.0%–34.8%) of S. alfredii in al the Cd treatments, but reduced chlorophyl concentra-tion, dark respiration and photorespiration. After 10 days growth in medium with 50 mM Cd under elevated CO2, PSII activities were significantly enhanced (P<0.05) with Pm, Fv/Fm, F(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredi grown under elevated CO2 was increased by 44.1%–48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredi due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredi .

  12. Low-concentration uranium enters the HepG2 cell nucleus rapidly and induces cell stress response.

    Guéguen, Yann; Suhard, David; Poisson, Clémentine; Manens, Line; Elie, Christelle; Landon, Géraldine; Bouvier-Capely, Céline; Rouas, Caroline; Benderitter, Marc; Tessier, Christine


    This study aimed to compare the cell stress effects of low and high uranium concentrations and relate them to its localization, precipitate formation, and exposure time. The time-course analysis shows that uranium appears in cell nuclei as a soluble form within 5 min of exposure, and quickly induces expression of antioxidant and DNA repair genes. On the other hand, precipitate formations began at the very beginning of exposure at the 300-μM concentration, but took longer to appear at lower concentrations. Adaptive response might occur at low concentrations but are overwhelmed at high concentrations, especially when uranium precipitates are abundant.

  13. The effects of oxygen concentration, stress, temperature, and cold work on the constant-load stress-rupture behavior of INCOLOY alloy 908

    Morra, M.M.; Steeves, M.M.; Ballinger, R.G. [Massachusetts Institute of Technology, Cambridge, MA (United States)


    Constant load stress rupture tests were performed on INCOLOY{reg_sign} alloy 908*. The test matrix varied O{sub 2} concentration, applied load, temperature, and percent cold work. The mechanism for high temperature intergranular fracture in alloy 908 is stress assisted intergranular oxidation cracking. A direct correlation between percent intergranular fracture and O{sub 2} concentration exists. This result is comparable to the oxidation assisted, intergranular fracture behavior of alloy 718. The depth of intergranular oxidation is controlled by both the O{sub 2} concentration and the Cr concentration in the alloy. A transition from intergranular to external oxidation in alloy 908 occurs when the concentration of O{sub 2} is below 0.1 ppm. An oxygen concentration threshold based on zero percent intergranular fracture is a better indicator of the potential for intergranular fracture during heat treatment than one based on time to rupture. An O{sub 2} concentration below 0.1 ppm is recommended for heat treatment of alloy 908 in the presence of residual or applied tensile stresses.

  14. Influence of Stress History on Elastic and Frictional Properties of Core Material from IODP Expeditions 315 and 316, NanTroSEIZE Transect: Implications for the Nankai Trough Accretionary Prism

    Knuth, M. W.; Tobin, H. J.; Marone, C.; Saffer, D. M.; Hashimoto, Y.


    We present results of ultrasonic P and S-wave velocity measurements on core material recovered during NanTroSEIZE Stage 1 Expeditions 315 and 316 to the Nankai Trough Accretionary Margin, focusing on how different stress paths during subduction and exhumation along regional thrust faults influence the elastic moduli and anisotropy of various components of the accretionary prism. The influence of changes in pore pressure and confining pressure on the elastic properties of prism material has important implications for its mechanical strength, and understanding how elastic properties change along various stress paths will help us use 3D seismic tomography to draw inferences about overpressurization and fluid flow within the accretionary prism. We compare the velocities measured during shipboard physical properties characterization and logging-while-drilling data from Expedition 314 with 3D seismic velocity data and the results of previous shore-based studies to establish in situ conditions for material at various locations within the prism. We test both intact core material and disaggregated gouge and unlithified sediments from the upper prism, subjecting both samples types to a progression of confining pressure, pore pressure, and axial loading conditions representing normal consolidation and overconsolidation stress paths due to compaction and dewatering during burial and subsequent uplift by thrust faulting. While making continuous ultrasonic velocity measurements to determine changes in dynamic and quasistatic elastic moduli during axial and isotropic loading, we also subject granular material to frictional shear in a biaxial double-direct shearing configuration to measure how its frictional properties vary as a function of stress history.

  15. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)


    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  16. Cortisol and ghrelin concentrations following a cold pressor stress test in overweight individuals with and without Night Eating

    Geliebter, Allan; Carnell, Susan; Gluck, Marci E.


    Objective To explore appetite-related hormones following stress in overweight individuals, and their interaction with Night Eating (NE) status. Method We measured plasma cortisol and ghrelin concentrations, and recorded ratings of stress and hunger in response to a physiological laboratory stressor (Cold Pressor Test, CPT) in overweight women with (n=11; NE) and without (n=17; non-NE) night eating. Results Following the CPT, cortisol (p < .001) and ghrelin (p < .05) levels increased, as did s...

  17. Stress in telephone helpline nurses is associated with failures of concentration, attention and memory, and with more conservative referral decisions.

    Allan, Julia L; Farquharson, Barbara; Johnston, Derek W; Jones, Martyn C; Choudhary, Carolyn J; Johnston, Marie


    Nurses working for telephone-based medical helplines must maintain attentional focus while quickly and accurately processing information given by callers to make safe and appropriate treatment decisions. In this study, both higher levels of general occupational stress and elevated stress levels on particular shifts were associated with more frequent failures of attention, memory, and concentration in telephone nurses. Exposure to a stressful shift was also associated with a measurable increase in objectively assessed information-processing errors. Nurses who experienced more frequent cognitive failures at work made more conservative decisions, tending to refer patients on to other health professionals more often than other nurses. As stress is associated with cognitive performance decrements in telephone nursing, stress-reduction interventions could improve the quality and safety of care that callers to medical helplines receive. © 2013 The British Psychological Society.

  18. Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots

    Assumpção, Marcelo; Schimmel, Martin; Escalante, Christian; Roberto Barbosa, José; Rocha, Marcelo; Barros, Lucas V.


    Intraplate seismicity has generally poor correlation with surface geological patterns. Except for major extensional features, such as aborted continental rifts, which may act as weak zones, it is usually difficult to find simple geology based models to explain differences in seismic activity in stable continental regions. Seismicity in Brazil is clearly not uniform and a few areas of higher activity have been identified. However, the seismic areas show almost no correlation with the main geological provinces, which is typical of other intraplate settings. A recent upper-mantle tomography study in SE and central Brazil, using approximately 8500 P-wave and 2000 PKP-wave arrivals recorded in 59 sites since 1992, has mapped P-wave velocity anomalies from lithospheric depths down to 1300 km. In this region, higher seismic activity occurs preferentially in areas with low P-wave velocities at 150-250 km depth. The low P-wave velocities are interpreted as shallower asthenosphere. In such areas, a hotter geotherm will reduce the strength of the lithospheric upper mantle causing most of the intraplate forces to be concentrated in the brittle upper crust. The low-velocity anomalies coincide with Late Cretaceous provinces of alkaline intrusions. The proposed ponding of the Trindade plume head beneath lithospheric thin spots is consistent with our tomography results, suggesting that plume effects may have helped to preserve lithosphere/asthenosphere topography. Although other factors are also important, the present data show that stress concentrations resulting from lithosphere/asthenosphere topography should play an important role in explaining the intraplate seismicity in the Brazilian platform.

  19. The Approximate Solution of Some Plane Boundary Value Problems of the Moment Theory of Elasticity

    Roman Janjgava


    Full Text Available We consider a two-dimensional system of differential equations of the moment theory of elasticity. The general solution of this system is represented by two arbitrary harmonic functions and solution of the Helmholtz equation. Based on the general solution, an algorithm of constructing approximate solutions of boundary value problems is developed. Using the proposed method, the approximate solutions of some problems on stress concentration on the contours of holes are constructed. The values of stress concentration coefficients obtained in the case of moment elasticity and for the classical elastic medium are compared. In the final part of the paper, we construct the approximate solution of a nonlocal problem whose exact solution is already known and compare our approximate solution with the exact one. Supposedly, the proposed method makes it possible to construct approximate solutions of quite a wide class of boundary value problems.

  20. Introduction to linear elasticity

    Gould, Phillip L


    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  1. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Jiří Witzany


    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  2. Performance Improvisation of Cantilever-type Silicon Micro AccelerationSensors Using Stress Concentration Regions Technique

    B.P. Joshi


    Full Text Available Acceleration sensors find applications in missile and competent munitions subsystems.Cantilever-type sensor's sensitivity and bandwidth are dependant on material properties of  thecantilever and structure of proof mass. It is always desired to design a sensor as sensitive aspossible but also maintaining higher bandwidth. In piezoresistive (cantilever-type accelerometers,various techniques were employed by designers to enhance their sensitivity and bandwidth.Most of these techniques are usually focused on shape and size of either cantilever or proofmass. This paper presents a concept of creating stress concentration regions (SCRs on thecantilever for enhancing its sensitivity. Five types of structures were simulated to study thebehaviour of piezoresistive sensors with SCRs implementation. Use of SCRs results in substantialincrease in the sensitivity, which is of the order of 1.85 times the nominal sensitivity. It was aimedat maximising sensor's performance factor, which is the product of sensor bandwidth andsensitivity. This study gives new dimension to the ways of improving performance of cantilever-type inertial piezoresistive sensor.

  3. Stress Concentration and Fracture at Inter-variant Boundaries in an Al-Li Alloy

    Crooks, Roy; Tayon, Wes; Domack, Marcia; Wagner, John; Beaudoin, Armand


    Delamination fracture has limited the use of lightweight Al-Li alloys. Studies of secondary, delamination cracks in alloy 2090, L-T fracture toughness samples showed grain boundary failure between variants of the brass texture component. Although the adjacent texture variants, designated B(sub s1) and B(sub s2), behave similarly during rolling, their plastic responses to mechanical tests can be quite different. EBSD data from through-thickness scans were used to generate Taylor factor maps. When a combined boundary normal and shear tensor was used in the calculation, the delaminating grains showed the greatest Taylor Factor differences of any grain pairs. Kernel Average Misorientation (KAM) maps also showed damage accumulation on one side of the interface. Both of these are consistent with poor slip accommodation from a crystallographically softer grain to a harder one. Transmission electron microscopy was used to confirm the EBSD observations and to show the role of slip bands in the development of large, interfacial stress concentrations. A viewgraph presentation accompanies the provided abstract.

  4. Experimental determination of third-order elastic constants of diamond.

    Lang, J M; Gupta, Y M


    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  5. Approaching the ideal elastic limit of metallic glasses

    Tian, Lin; Cheng, Yong-Qiang; Shan, Zhi-Wei; Li, Ju; Cheng-cai WANG; Han, Xiao-dong; Sun, Jun; Ma, Evan


    The ideal elastic limit is the upper bound to the stress and elastic strain a material can withstand. This intrinsic property has been widely studied for crystalline metals, both theoretically and experimentally. For metallic glasses, however, the ideal elastic limit remains poorly characterized and understood. Here we show that the elastic strain limit and the corresponding strength of submicron-sized metallic glass specimens are about twice as high as the already impressive elastic limit ob...

  6. Residual stress in copper containing a high concentration of krypton precipitates

    Haerting, M.; Yaman, M.; Bucher, R.; Britton, D.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)


    A study of the residual stress and bubble pressure in bulk samples of copper, containing 3 at.-% krypton, using X-ray diffraction techniques is presented here. The authors have confirmed that the Kr forms solid precipitates with an fcc structure, which is consistent with an estimated pressure of 2.4 GPa. Stress measurements in the surrounding Cu matrix indicate a zero normal stress, confirming that the matrix experiences only a shear strain. The magnitude of the shear stress is estimated from the bubble pressure to be below the yield stress of the matrix, thus explaining the long term stability of the bubbles. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  7. Leptin concentrations in response to acute stress predict subsequent intake of comfort foods.

    Tomiyama, A Janet; Schamarek, Imke; Lustig, Robert H; Kirschbaum, Clemens; Puterman, Eli; Havel, Peter J; Epel, Elissa S


    Both animals and humans show a tendency toward eating more "comfort food" (high fat, sweet food) after acute stress. Such stress eating may be contributing to the obesity epidemic, and it is important to understand the underlying psychobiological mechanisms. Prior investigations have studied what makes individuals eat more after stress; this study investigates what might make individuals eat less. Leptin has been shown to increase following a laboratory stressor, and is known to regulate satiety. This study examined whether leptin reactivity accounts for individual differences in stress eating. To test this, we exposed forty women to standardized acute psychological laboratory stress (Trier Social Stress Test) while blood was sampled repeatedly for measurements of plasma leptin. We then measured food intake after the stressor. Increasing leptin during the stressor predicted lower intake of comfort food. These initial findings suggest that acute changes in leptin may be one of the factors modulating down the consumption of comfort food following stress.

  8. Response of orthotropic micropolar elastic medium due to time harmonic source

    Rajneesh Kumar; Suman Choudhary


    The present paper is concerned with the plane strain problem in homogeneous micropolar orthotropic elastic solids. The disturbance due to time harmonic concentrated source is investigated by employing eigen-value approach. The integral transforms have been inverted by using a numerical technique to obtain the component of displacement, force stress and couple stress in the physical domain. The results of these quantities are given and illustrated graphically.


    任九生; 程昌钧; 朱正佑


    The cavitated bifurcation problem in a solid sphere composed of two compressible hyper-elastic materials under a uniform boundary radial stretch was examined.The solutions, including the trivial solution and the cavitated solutions, were obtained.The bifurcation curves and the stress contributions subsequent to cavitation were discussed.The phenomena of the right and the left bifurcations as well as the catastrophe and concentration of stresses are observed. The stability of solutions is discussed through the energy comparison.

  10. Cavitation for Incompressible Anisotropic Hyper-Elastic Materials%不可压各向异性超弹性材料中的空穴生成

    任九生; 程昌钧


    The cavitation problem in a solid sphere composed of an incompressible anisotropic hyper-elastic material under a uniform radial tensile dead load was examined. A new analytical solution was obtained. The stress contributions were given and the jumping and concentration of stresses were discussed. The stability of solutions and the effect of the degree of anisotropy of the material were analyzed.

  11. Hilbert complexes of nonlinear elasticity

    Angoshtari, Arzhang; Yavari, Arash


    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  12. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties.

    Kandianis, Catherine B; Michenfelder, Abigail S; Simmons, Susan J; Grusak, Michael A; Stapleton, Ann E


    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks.

  13. 地应力与岩石弹性模量关系试验研究%Experimental study of relation between in-situ crustal stress and rock elastic modulus

    秦向辉; 谭成轩; 孙进忠; 陈群策; 安美建


    在北京某深孔原岩应力测量和原岩应力测量段同等深度单轴及不同围压下的三轴岩石力学试验的基础上,结合统计的钻孔岩体结构参数,分析了原岩应力测量段深度处修正前、后的岩石弹性模量,进而探讨了地应力与岩石弹性模量间关系.结果表明,在花岗岩中,主应力大小与修正前、后的岩石弹性模量间均呈正相关关系,而在灰岩中,主应力大小与修正前、后岩石弹性模量间的关系不明确,需要进一步研究;在花岗岩中,主应力大小与修正后的岩石弹性模量间的相关性系数高于主应力大小与修正前的岩石弹性模量间的相关性系数:各向同性高的岩体(如花岗岩),实测地应力大小与岩石力学试验结果相关性好,而各向异性大的岩体(如沉积岩),实测地应力大小与岩石力学试验结果相关性较差.%An in-situ stress measurement and a rock mechanical test under different confining pressures and statistics of structure properties of rock mass in a deep borehole in Beijing have been carried out to research the relation between in-situ stress and rock elastic modulus thoroughly. The results are as follows: the relation between principal stress magnitude and rock elastic modulus shows a positive correlation in granite, but not clear in limestone. In granite, the relative coefficient between principal stress magnitude and revised rock elastic modulus exceeds the relative coefficient between principal stress magnitude and rock elastic modulus. The correlation between in-situ crustal stress magnitude and results of rock mechanical test in high-isotropic rock (e.g. granite) is high, but the correlation in low-isotropic rock (e.g. sedimentary rock) is low.

  14. Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self-stress and hydrogen concentration on diffusion

    Li, J.; Oudriss, A.; Metsue, A.; Bouhattate, J.; Feaugas, X.


    Hydrogen diffusion has an important role in solute-dependent hydrogen embrittlement in metals and metallic alloys. In spite of extensive studies, the complexity of hydrogen diffusion in solids remains a phenomenon that needs to be clarified. In this paper, we investigate the anisotropy of hydrogen diffusion in pure nickel single crystals using both an experimental approach and a thermodynamic development. As a first approximation, experimental data from electrochemical permeation and thermal desorption spectroscopy are described using the classical Fick’s laws and an apparent diffusion tensor. Within a thermodynamic framework, the diffusion equation can be derived from Fick’s laws with an apparent diffusion coefficient which contains an added solute content dependent term β. This term is due to the elastic strain field associated with the insertion of solute atoms. For nickel crystals, the dependence of β on the crystallographic orientation arises from the elastic anisotropy. Additionally, our results elucidate the discrepancies between the thermodynamic model and experimental observations of the effect of the solute concentration on the diffusion process. Moreover, this highlights the importance of the impact of hydrogen on vacancy formation and the subsequent consequences on the anisotropy of the apparent diffusion coefficient.

  15. Anisotropy of hydrogen diffusion in nickel single crystals: the effects of self-stress and hydrogen concentration on diffusion

    Li, J.; Oudriss, A.; Metsue, A.; Bouhattate, J.; Feaugas, X.


    Hydrogen diffusion has an important role in solute-dependent hydrogen embrittlement in metals and metallic alloys. In spite of extensive studies, the complexity of hydrogen diffusion in solids remains a phenomenon that needs to be clarified. In this paper, we investigate the anisotropy of hydrogen diffusion in pure nickel single crystals using both an experimental approach and a thermodynamic development. As a first approximation, experimental data from electrochemical permeation and thermal desorption spectroscopy are described using the classical Fick’s laws and an apparent diffusion tensor. Within a thermodynamic framework, the diffusion equation can be derived from Fick’s laws with an apparent diffusion coefficient which contains an added solute content dependent term β. This term is due to the elastic strain field associated with the insertion of solute atoms. For nickel crystals, the dependence of β on the crystallographic orientation arises from the elastic anisotropy. Additionally, our results elucidate the discrepancies between the thermodynamic model and experimental observations of the effect of the solute concentration on the diffusion process. Moreover, this highlights the importance of the impact of hydrogen on vacancy formation and the subsequent consequences on the anisotropy of the apparent diffusion coefficient. PMID:28327592

  16. Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage.

    Yen, Ching-Yu; Hou, Ming-Feng; Yang, Zhi-Wen; Tang, Jen-Yang; Li, Kun-Tzu; Huang, Hurng-Wern; Huang, Yu-Hsuan; Lee, Sheng-Yang; Fu, Tzu-Fun; Hsieh, Che-Yu; Chen, Bing-Hung; Chang, Hsueh-Wei


    Grape seeds extract (GSE) is a famous health food supplement for its antioxidant property. Different concentrations of GSE may have different impacts on cellular oxidative/reduction homeostasis. Antiproliferative effect of GSE has been reported in many cancers but rarely in oral cancer. The aim of this study is to examine the antioral cancer effects of different concentrations of GSE in terms of cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial function, and DNA damage. High concentrations (50-400 μg/ml) of GSE dose-responsively inhibited proliferation of oral cancer Ca9-22 cells but low concentrations (1-10 μg/ml) of GSE showed a mild effect in a MTS assay. For apoptosis analyses, subG1 population and annexin V intensity in high concentrations of GSE-treated Ca9-22 cells was increased but less so at low concentrations. ROS generation and mitochondrial depolarization increased dose-responsively at high concentrations but showed minor changes at low concentrations of GSE in Ca9-22 cells. Additionally, high concentrations of GSE dose-responsively induced more γH2AX-based DNA damage than low concentrations. Differential concentrations of GSE may have a differentially antiproliferative function against oral cancer cells via differential apoptosis, oxidative stress and DNA damage.

  17. Equivalence of Stress and Energy Calculations of Mean Stress

    Pedersen, Ole Bøcker; Brown, L. M.


    Calculations of the mean stress in a plastically deformed matrix containing randomly distributed elastic inclusions are considered. The mean stress for an elastically homogeneous material is calculated on the basis of an energy consideration which completely accounts for elastic interactions....... The result is shown to be identical to that obtained from a stress calculation. The possibility of including elastic interactions in the case of elastic inhomogeneity is discussed....

  18. Nonlinear elastic behavior of phantom materials for elastography

    Pavan, Theo Z; Madsen, Ernest L; Frank, Gary R; Hall, Timothy J [Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Adilton O Carneiro, Antonio, E-mail: tjhall@wisc.ed [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, Sao Paulo (Brazil)


    The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 {+-} 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 {+-} 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.

  19. Elastic modulus of posts and the risk of root fracture.

    Meira, Josete B C; Espósito, Camila O M; Quitero, Mayra F Z; Poiate, Isis A V P; Pfeifer, Carmem Silvia C; Tanaka, Carina B; Ballester, Rafael Y


    The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts' elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post's long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.

  20. Prenatal Transportation Stress Alters Temperament and Serum Cortisol Concentrations in Suckling Brahman Calves

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor utilized was repeated transportation of pregnant Brahman cows for 2 hours at 60, 80, 100, 120, and 140 days of gestation. Prenatally stressed calves (n = 41) were ...

  1. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume


    International audience; The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10−7 to 10−5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi...

  2. Response of Populus x canescens (Populus tremula x alba) to high concentration of NaCl stress

    GAO Jian; PENG Zhen-hua


    Populus x canescens was cultivated on solid substrate and treated by salt (150 mM NaCl). The growth parametersincluding new leaf formation, height increment, diameter at the base increment, fresh and dry mass of leaf, stem, coarse root, and fine root were determined. The nutrient elements in leaves of samples under salt stress and the control, and the chlorophyll fluorescence of plants separated dark and light, initial fluorescence (Fo), and maximum fluorescence (Fm) were measured. Results showed that 150 mM NaCl treatment resulted in growth reduction of Populus x canescens. Nutrient element contents in the foliage of plants under salt stress were different from that of control. The foliar N-concentrations of plants under salt stress were not affected. Contents of Na under salt stress were 120 times as much as that under control. However, contents of S, K, P, Ca, Mg, Fe, Mn under salt stress were less than that under control. Salt stress caused damage in the PSII reaction centers, i.e. photo-inhibition couldn't be repaired under dark situation. The yield of chlorophyll fluorescence showed that several parameters associated with PSII functions, e.g. Fv/Fo, Fv/Fm were not influenced at the first stage of salt stress treatment. However, after a period of time, PSII functions were significantly inhibited, which led to the decrease of carbon assimilation. These results suggest that salt stress (150 mM NaCl) did not affect photosynthetic chlorophyll fluorescence of Populus x canescens immediately. After four day of salt stress, PSII reaction centres were seriously damaged during photo-inhibition.

  3. Chronic stress alters concentrations of corticosterone receptors in a tissue-specific manner in wild house sparrows (Passer domesticus).

    Lattin, Christine R; Romero, L Michael


    The physiological stress response results in release of glucocorticoid hormones such as corticosterone (CORT). Whereas short-term activation of this response helps animals cope with environmental stressors, chronic activation can result in negative effects including metabolic dysregulation and reproductive failure. However, there is no consensus hormonal profile of a chronically stressed animal, suggesting that researchers may need to look beyond hormone titers to interpret the impacts of chronic stress. In this study, we brought wild house sparrows (Passer domesticus) into captivity. We then compared glucocorticoid and mineralocorticoid receptor concentrations in sparrows exposed either to a standardized chronic stress protocol (n=26) or to standard husbandry conditions (controls; n=20). We used radioligand binding assays to quantify receptors in whole brain, liver, kidneys, spleen, gonads, gastrocnemius and pectoralis muscle, omental and subcutaneous fat, and bib and back skin. In most tissues, CORT receptors did not differ between controls and stressed animals, although we found marginal increases in receptor density in kidney and testes in stressed birds at some time points. Only in pectoralis muscle was there a robust effect of chronic stress, with both receptor types higher in stressed animals. Increased pectoralis sensitivity to CORT with chronic stress may be part of the underlying mechanism for muscle wasting in animals administered exogenous CORT. Furthermore, the change in pectoralis was not paralleled by gastrocnemius receptors. This difference may help explain previous reports of a greater effect of CORT on pectoralis than on other muscle types, and indicate that birds use this muscle as a protein reserve. © 2014. Published by The Company of Biologists Ltd.

  4. Moderate Drought Stress Induces Increased Foliar Dimethylsulphoniopropionate (DMSP Concentration and Isoprene Emission in Two Contrasting Ecotypes of Arundo donax

    Matthew Haworth


    Full Text Available The function of dimethylsulphoniopropionate (DMSP in plants is unclear. It has been proposed as an antioxidant, osmolyte and overflow for excess energy under stress conditions. The formation of DMSP is part of the methionine (MET pathway that is involved in plant stress responses. We used a new analytical approach to accurately quantify the changes in DMSP concentration that occurred in two ecotypes of the biomass crop Arundo donax subject to moderate drought stress under field conditions. The ecotypes of A. donax were from a hot semi-arid habitat in Morocco and a warm-humid environment in Central Italy. The Moroccan ecotype showed more pronounced reductions in photosynthesis, stomatal conductance and photochemical electron transport than the Italian ecotype. An increase in isoprene emission occurred in both ecotypes alongside enhanced foliar concentrations of DMSP, indicative of a protective function of these two metabolites in the amelioration of the deleterious effects of excess energy and oxidative stress. This is consistent with the modification of carbon within the methyl-erythritol and MET pathways responsible for increased synthesis of isoprene and DMSP under moderate drought. The results of this study indicate that DMSP is an important adaptive component of the stress response regulated via the MET pathway in A. donax. DMSP is likely a multifunctional molecule playing a number of roles in the response of A. donax to reduced water availability.

  5. The Boussinesq-Mindlin problem for a non-homogeneous elastic halfspace

    Selvadurai, A. P. S.; Katebi, A.


    Boussinesq's problem for the indentation of an isotropic, homogeneous elastic halfspace by a rigid circular punch constitutes a seminal problem in the theory of contact mechanics as does Mindlin's problem for the action of a concentrated force at the interior of an isotropic, homogeneous elastic halfspace. The combined action of the surface indentation in the presence of the interior loading is referred to as the Boussinesq-Mindlin problem, which has important applications in the area of geomechanics. The Boussinesq-Mindlin problem, which represents a self-stressing loading configuration, serves as a useful model for interpreting the mechanics of indentation of geologic media for purposes of estimating their bulk elasticity properties. In this paper, the analysis of the problem is extended to include an exponential variation in the linear elastic shear modulus of the halfspace region.

  6. Extremal Overall Elastic Response of Polycrystalline Materials

    Bendsøe, Martin P; Lipton, Robert


    Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...

  7. Stress State Of Plate With Incisions Under The Action Of Oscillating Concentrated Forces

    Shvabyuk Vasyl’


    Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithmis based on the method of mechanical quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations of plates.

  8. Elastic properties of solids at high pressure

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.


    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  9. Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions

    Chekhov, V. N.; Zakora, S. V.


    The refined Timoshenko-type theory that takes into account the transverse shear strains is used to find an analytic solution for the stress state of transversely isotropic shallow spherical shell with two circular rigid inclusions. The case of a shell with closely spaced rigid inclusions of unequal radii under internal pressure is analyzed numerically. The stresses in the shell increase considerably with decrease in the distance between the inclusions and increase in the transverse shear parameter

  10. Reduction of spinal PGE2 concentrations prevents swim stress-induced thermal hyperalgesia.

    Guevara, Coram; Fernandez, Ana Cristina; Cardenas, Ricardo; Suarez-Roca, Heberto


    We evaluated the association between spinal PGE2 and thermal hyperalgesia following repeated stress. Thermal nociception was determined in male Sprague-Dawley rats using the hot-plate test, before and after forced-swimming; non-conditioned rats served as controls. Animals were pretreated with ketoprofen or meloxicam, preferential COX-1 and COX-2 inhibitors, respectively. After the second hot-plate test, we measured serum corticosterone (stress marker), and lumbar spinal PGE2 (neuroinflammation marker) under peripheral inflammation (1% formalin plantar injection). Stressed rats displayed response latencies 40% shorter and inflammatory spinal PGE2 levels 95% higher than controls. Pretreatment with ketoprofen or meloxicam prevented hyperalgesia and elevation of spinal PGE2, increasing the escape behavior time during forced swimming 95% respect to saline-treated rats. Corticosterone levels in stressed rats were 97% higher than controls; COX inhibitors reduced them by 84%. PGE2 could participate in stress-induced hyperalgesia, learned helplessness, and corticosterone production, supporting the use of non-steroidal anti-inflammatory drugs (NSAIDs) for persistent pain associated with chronic stress and depression.

  11. Effect of elastic stress on the resistivity and Tc of (Bi,Pb) sub 2 Sr sub 2 Ca sub n-1 Cu sub n O sub x for n = 2 or 3

    Tessema, G.X.; Chen Xinfen; Skove, M.J. (Dept. of Physics and Astronomy, Clemson Univ. (United States))


    We have measured the effect of elastic uniaxial stress {sigma} in the a direction on the superconducting transition temperature Tc of (Bi, Pb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} (n= 2 or 3, 2212 and 2223). We find dT/d{sigma}{sub 11}=-10{+-}2 K/GPa for 2212 and -6{+-}2 for the 2223 compounds. Our estimate of the change in Tc with a fractional change in the c axis spacing leads to two possible results, 7.3 K/% and -0.6 K/%. (orig.).

  12. Effect of stiffness and thickness ratio of host plate and piezoelectric patches on reduction of the stress concentration factor

    Fesharaki, Javad Jafari; Madani, Seyed Ghasem; Golabi, Sa'id


    This paper focuses on the effects of stiffness ratio and thickness ratio on reducing stress concentration factor using piezoelectric patches in a rectangular plate with a hole, as a classical shape. Various locations of actuators and induction of positive/negative strains into the host plate are investigated and the best location of patches is presented. The study investigated the ratio effects and piezoelectric patches bounded on a rectangular host plate having various thicknesses and materials. Results show that the best position of actuators varies based on values of thickness and stiffness ratios of the host plate and piezoelectric patches. Also, the location of maximum stress concentration is transmitted from top and bottom of the hole to another point around the edge by changing the location of the piezoelectric actuators. To verify the results, some experimental tests are applied. The results show good agreement between the finite element analysis and experimental tests.

  13. Add-on unidirectional elastic metamaterial plate cloak.

    Lee, Min Kyung; Kim, Yoon Young


    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called "stress bandage", the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.

  14. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    Saranath, K. M.; Ramji, M.


    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  15. Breakdown of elasticity in amorphous solids

    Biroli, Giulio; Urbani, Pierfrancesco


    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  16. Complex variable methods in elasticity

    England, A H


    The plane strain and generalized plane stress boundary value problems of linear elasticity are the focus of this graduate-level text, which formulates and solves these problems by employing complex variable theory. The text presents detailed descriptions of the three basic methods that rely on series representation, Cauchy integral representation, and the solution via continuation. Its five-part treatment covers functions of a complex variable, the basic equations of two-dimensional elasticity, plane and half-plane problems, regions with circular boundaries, and regions with curvilinear bounda

  17. Effect of elastic stress on the resistivity and Tc of (Bi,Pb) sub 2 Sr sub 2 Ca sub n-1 Cu sub n O sub x. [BiPbSrCaCuO

    Chen Xinfen; Tessema, G.X.; Skove, M.J. (Dept. of Physics and Astronomy, Clemson Univ., SC (United States))


    We have measured the effect of elastic uniaxial stress {sigma} in the a direction on the superconducting transition temperature Tc of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Ca{sub 2}O{sub x} (2212) and (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (2223). We find dT/d{sigma}{sub 11}=-10{+-}2 K/GPa for 2212 and -6{+-}2K/GPa for the 2223 compound. Combining these results with those of others on dTc/dP we find that dTc/d{sigma}{sub 33}=+18K/GPa. An estimate of the elastic constants of these compounds from the work of others together with these results implies that the change in Tc with a fractional change in the c-axis spacing is probably positive, although the uncertainties in the elastic constants make this estimate subject to a large uncertainty. The resistance changes by less than 1 part in 12000 for strains up to 0.5%, implying that dln {rho}/d{sigma}{sub 11}=-76x10{sup -3} GPa{sup -1}. (orig.).

  18. Concentric and eccentric time-under-tension during strengthening exercises: Validity and reliability of stretch-sensor recordings from an elastic exercise-band

    Rathleff, Michael Skovdal; Thorborg, Kristian; Bandholm, Thomas Quaade


    Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation.......Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation....

  19. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;


    In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization...

  20. Finite Thin Cover on an Orthotropic Elastic Half Plane

    Federico Oyedeji Falope


    Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

  1. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations.

    Jennifer eKintner


    Full Text Available Chlamydia trachomatis, the most common bacterial sexually transmitted disease agent worldwide, enters a viable, non-dividing and non-infectious state (historically termed persistence and more recently referred to as the chlamydial stress response when exposed to penicillin G in culture. Notably, penicillin G-exposed chlamydiae can reenter the normal developmental cycle upon drug removal and are resistant to azithromycin-mediated killing. Because penicillin G is less frequently prescribed than other β-lactams, the clinical relevance of penicillin G-induced chlamydial persistence/stress has been questioned. The goal of this study was to determine whether more commonly used penicillins also induce C. trachomatis serovar E persistence/stress. All penicillins tested, as well as clavulanic acid, induced formation of aberrant, enlarged reticulate bodies (called aberrant bodies or AB characteristic of persistent/stressed chlamydiae. Exposure to the penicillins and clavulanic acid also reduced chlamydial infectivity by >95%. None of the drugs tested significantly reduced chlamydial unprocessed 16S rRNA or genomic DNA accumulation, indicating that the organisms were viable, though non-infectious. Finally, recovery assays demonstrated that chlamydiae rendered essentially non-infectious by exposure to ampicillin, amoxicillin, carbenicillin, piperacillin, penicillin V and clavulanic acid recovered infectivity after antibiotic removal. These data definitively demonstrate that several commonly used penicillins induce C. trachomatis persistence/stress at clinically relevant concentrations.

  2. Study on Import Market Concentration and Price Elasticity of China’s Cotton Import Trade%我国棉花进口市场集中度与价格弹性的研究

    朱再清; 刘敏志


    China is one of the most important trade partners in the interna-tional cotton market,and China needs to import large quantities of cotton which belongs to the bulk stock.In this paper,the import market concentration index analysis shows that the sources of China’ s cotton import concentrated highly.Regression analysis method is used to analyze the import price elasticity,and the marginal analysis method is used to study the role that the price elasticity of Chi-na’s cotton import plays in the changes of sources of China’s cotton import.The result shows that the sources of China’s cotton import are gradually concen-trated on the nations from which import-price elasticity have advantages,which helps us to save the total expenditure,the average expenditure on cotton imports,and respond to price risks.%我国是国际棉花市场上最重要的贸易主体之一,棉花也是我国需要大量进口的大宗商品。本文采用进口市场集中度指标分析表明我国棉花进口来源市场高度集中;运用回归分析法测算我国棉花自不同来源国家进口的价格弹性,并用边际分析方法研究进口价格弹性在我国棉花进口来源变化中所起的作用。结果表明我国棉花进口来源逐渐集中于具有进口价格弹性优势的国家,这样有利于节约我国棉花进口总支出、平均支出和应对价格高涨风险。

  3. The effect of severe starvation and captivity stress on plasma thyroxine and triiodothyronine concentrations in an antarctic bird (emperor penguin).

    Groscolas, R; Leloup, J


    The effect of confinement and severe starvation on the plasma thyroxine (T4) and triiodothyronine (T3) concentrations was determined in emperor penguins (Aptenodytes forsteri). During their annual cycle, emperor penguins fast freely for periods of up to 4 months and may thus represent a unique subject to study endocrine adaptations to fasting. Plasma T4 concentrations progressively decreased following capture and confinement of naturally fasting penguins, and within 15-20 days stabilized at levels three times lower than in free-living penguins. A transient fourfold increase in plasma T3 concentration developed within the day following confinement in parallel with a rise in daily body mass loss. Both plasma T3 concentration and mass loss subsided to normal levels within 15 days. The decrease in plasma T4 concentration is in accordance with the well-known inhibitory effect of stress on thyroid function in birds and mammals, whereas the transient increase in plasma T3 concentration seems related to enhancement of energy expenditure as a consequence of restlessness. Starvation severe enough to exhaust fat stores and to activate protein catabolism induced a 6- and 5 to 10-fold fall in plasma T4 and T3, respectively. This is in marked contrast with maintenance of plasma thyroid levels during long-term natural fasting associated with protein sparing (R. Groscolas and J. Leloup (1986) Gen. Comp. Endocrinol. 63, 264-274). Surprisingly, there was a final reincrease in plasma T4 concentration in very lean penguins. These results suggest that the effect of starvation on plasma thyroid hormones seems to depend on how much protein catabolism is activated and demonstrate the acute sensitivity of thyroid hormone balance to stress in penguins.

  4. Comparative Salt Stress Study on Intracellular Ion Concentration in Marine and Salt-adapted Freshwater Strains of Microalgae

    Ahmad Farhad TALEBI


    Full Text Available Salinity imposes significant stresses in various living organisms including microalgae. High extracellular concentration of Na+ directly influences ionic balance inside the cell and subsequently the cellular activities. In the present study, the effect of such stress on growth and intracellular ions concentration (IIC of Dunaliella salina and Chlorella Spp. was investigated. IIC was analyzed using Ion chromatography technique. D. salina showed the highest degree of resistance to increase in salinity as little changes occurred both in IIC and in growth parameters. D. salina could maintain the balance of K+ inside the cell and eject the excess Na+ even at NaCl concentrations above 1M. Moreover, D. salina accumulated β-carotene in order to protect its photosynthetic apparatus. Among Chlorella species, C. vulgaris showed signs of adaptation to high content of salinity, though it is a fresh water species by nature. Moreover, the response shown by C. vulgaris to rise in salinity was even stronger than that of C. salina, which is presumably a salt-water resistant species. In fact, C. vulgaris could maintain intracellular K+ better than C. salina in response to increasing salinity, and as a result, it could survive at NaCl concentrations as high as 0.75 M. Marine strains such as D. salina well cope with the fluctuations in salinity through the existing adaptation mechanisms i.e. maintaining the K+/N+ balance inside the cell, K+ accumulation and Na+ ejection, accumulation of photosynthetic pigments like β-carotene.

  5. Effects of a concentrated lidocaine solution on the acute phase stress response to dehorning in dairy calves.

    Doherty, T J; Kattesh, H G; Adcock, R J; Welborn, M G; Saxton, A M; Morrow, J L; Dailey, J W


    The objective of this study was to more fully define the surgical stress response to dehorning by heat cauterization in dairy calves by measuring behavioral, hormonal, inflammatory, and immunological markers of stress and to determine whether a nerve block of the surgical site with a concentrated solution of lidocaine (5%) reduces the degree of stress. Thirty-two 10- to 12-wk-old female Holstein calves were randomly allotted to 1 of 4 treatments: 5% lidocaine followed by dehorning, 2% lidocaine followed by dehorning, saline followed by dehorning, or 5% lidocaine followed by sham dehorning. Plasma cortisol concentration was measured in blood samples collected via a jugular catheter at -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 9, 12, 24, 48, and 72 h. Various other blood constituents were measured in samples collected at -0.5, 12, 24, 48, and 72 h. Feeding, drinking, scratching, grooming, rubbing, licking, and inactivity behaviors were observed in the standing and recumbent positions using a 10-min scan sampling method analyzed on a time period and daily basis for 72 h following the dehorning procedure. The frequency of vocalization, kicking, and lying in the chute during the dehorning procedure were also assessed. The overall plasma cortisol concentrations were higher in calves subjected to dehorning than in control calves. Compared with the control group, the saline-treated calves had a higher cortisol concentration at 30 and 60 min postdehorning. Plasma cortisol concentrations were higher in all groups at 30 min postdehorning than at other sampling times. The percentage of circulating neutrophils and the neutrophil:lymphocyte ratio were increased in the saline and 2% lidocaine group. Total plasma protein, fibrinogen, and alpha1-acid glycoprotein concentrations were similar among treatments. The behavioral response to dehorning, as manifested by kicking while in the chute, was greater in the saline and 2% lidocaine group than in the control or 5% lidocaine

  6. Transport solutions of the Lamé equations and shock elastic waves

    Alexeyeva, L. A.; Kaishybaeva, G. K.


    The Lamé system describing the dynamics of an isotropic elastic medium affected by a steady transport load moving at subsonic, transonic, or supersonic speed is considered. Its fundamental and generalized solutions in a moving frame of reference tied to the transport load are analyzed. Shock waves arising in the medium at supersonic speeds are studied. Conditions on the jump in the stress, displacement rate, and energy across the shock front are obtained using distribution theory. Numerical results concerning the dynamics of an elastic medium influenced by concentrated transport loads moving at sub-, tran- and supersonic speeds are presented.

  7. Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment.

    Steudte-Schmiedgen, Susann; Stalder, Tobias; Schönfeld, Sabine; Wittchen, Hans-Ulrich; Trautmann, Sebastian; Alexander, Nina; Miller, Robert; Kirschbaum, Clemens


    Previous evidence on endocrine risk markers for posttraumatic stress disorder (PTSD) has been inconclusive. Here, we report results of the first prospective study to investigate whether long-term hair cortisol levels and experimentally-induced cortisol stress reactivity are predictive of the development of PTSD symptomatology in response to trauma during military deployment. Male soldiers were examined before deployment to Afghanistan and at a 12-month post-deployment follow-up using dimensional measures for psychopathological symptoms. The predictive value of baseline (i) hair cortisol concentrations (HCC, N=90) and (ii) salivary cortisol stress reactivity (measured by the Trier Social Stress Test, N=80) for the development of PTSD symptomatology after being exposed to new-onset traumatic events was analyzed. Baseline cortisol activity significantly predicted PTSD symptom change from baseline to follow-up upon trauma exposure. Specifically, our results consistently revealed that lower HCC and lower cortisol stress reactivity were predictive of a greater increase in PTSD symptomatology in soldiers who had experienced new-onset traumatic events (explaining 5% and 10.3% of variance, respectively). Longitudinal analyses revealed an increase in HCC from baseline to follow-up and a trend for a negative relationship between HCC changes and the number of new-onset traumatic events. Additional pre-deployment analyses revealed that trauma history was reflected in lower HCC (at trend level) and that HCC were negatively related to stressful load. Our data indicate that attenuated cortisol secretion is a risk marker for subsequent development of PTSD symptomatology upon trauma exposure. Future studies are needed to confirm our findings in other samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nonlocal elasticity tensors in dislocation and disclination cores

    Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.


    Nonlocal elastic constitutive laws are introduced for crystals containing defects such as dislocations and disclinations. In addition to pointwise elastic moduli tensors adequately reflecting the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. The convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.

  9. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin


    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids.

  10. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state.

    Huang, Siyao; Huang, Hsiao-Ying Shadow


    Heart valve leaflet collagen turnover and remodeling are innate to physiological homeostasis; valvular interstitial cells routinely catabolize damaged collagen and affect repair. Moreover, evidence indicates that leaflets can adapt to altered physiological (e.g. pregnancy) and pathological (e.g. hypertension) mechanical load states, tuning collagen structure and composition to changes in pressure and flow. However, while valvular interstitial cell-secreted matrix metalloproteinases are considered the primary effectors of collagen catabolism, the mechanisms by which damaged collagen fibers are selectively degraded remain unclear. Growing evidence suggests that the collagen fiber strain state plays a key role, with the strain-dependent configuration of the collagen molecules either masking or presenting proteolytic sites, thereby protecting or accelerating collagen proteolysis. In this study, the effects of equibiaxial strain state on collagen catabolism were investigated in porcine aortic valve and pulmonary valve tissues. Bacterial collagenase (0.2 and 0.5 mg/mL) was utilized to simulate endogenous matrix metalloproteinases, and biaxial stress relaxation and biochemical collagen concentration served as functional and compositional measures of collagen catabolism, respectively. At a collagenase concentration of 0.5 mg/mL, increasing the equibiaxial strain imposed during stress relaxation (0%, 37.5%, and 50%) yielded significantly lower median collagen concentrations in the aortic valve (p = 0.0231) and pulmonary valve (p = 0.0183), suggesting that relatively large strain magnitudes may enhance collagen catabolism. Collagen concentration decreases were paralleled by trends of accelerated normalized stress relaxation rate with equibiaxial strain in aortic valve tissues. Collectively, these in vitro results indicate that biaxial strain state is capable of affecting the susceptibility of valvular collagens to catabolism, providing a basis for further investigation of

  11. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery.

    Núbia Belem Lemos

    Full Text Available Mercury is an environmental pollutant that reduces nitric oxide (NO bioavailability and increases oxidative stress, having a close link with cardiovascular diseases, as carotid atherosclerosis, myocardial infarction, coronary heart disease and hypertension. One of the main sites affected by oxidative stress, which develops atherosclerosis, is the aorta. Under acute exposure to low mercury concentrations reactive oxygen species (ROS production were only reported for resistance vessels but if low concentrations of mercury also affect conductance arteries it is still unclear. We investigated the acute effects of 6 nM HgCl(2 on endothelial function of aortic rings measuring the reactivity to phenylephrine in rings incubated, or not, with HgCl(2 for 45 min, the protein expression for cyclooxygenase 2 (COX-2 and the AT1 receptor. HgCl(2 increased Rmax and pD2 to phenylephrine without changing the vasorelaxation induced by acetylcholine and sodium nitroprusside. Endothelial damage abolished the increased reactivity to phenylephrine. The increase of Rmax and pD2 produced by L-NAME was smaller in the presence of HgCl(2. Enalapril, losartan, indomethacin, furegrelate, the selective COX-2 inhibitor NS 398, superoxide dismutase and the NADPH oxidase inhibitor apocynin reverted HgCl(2 effects on the reactivity to phenylephrine, COX-2 protein expression was increased, and AT1 expression reduced. At low concentration, below the reference values, HgCl(2 increased vasoconstrictor activity by reducing NO bioavailability due to increased ROS production by NADPH oxidase activity. Results suggest that this is due to local release of angiotensin II and prostanoid vasoconstrictors. Results also suggest that acute low concentration mercury exposure, occurring time to time could induce vascular injury due to endothelial oxidative stress and contributing to increase peripheral resistance, being a high risk factor for public health.

  12. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania


    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.

  13. Stress Concentration Study of Laminated Composite with Multiple Holes by Finite Element Analysis



    Full Text Available A “Composite” is considered as one material when two or more different materials combined together to create superior material. A composite laminate is a composite with combination of layers. They have great applications in many engineering domains like civil, marine, aerospace, biomedical etc. because of their excellent properties like low weight, better mechanical properties and ease of handling and low cost of production. The practical applications of composites enables that the composite structures usually consist cutouts in it in order to get the required design. Thus it is essential to study the behaviour of composites with multiple holes with respect to different applications in order to provide structural stability and to attain better design and mechanical Properties. This work presents Analytical and Finite Element Analysis of rectangular plate with and without multiple circular cut-outs of various sizes. The work is checked for deformation and stress obtained for various loads .The material considered was Glass/Epoxy laminate. The deformation and stress distribution for various loads is analysed by Ansys software. The specimens used are plate without hole, plate with 3 holes of 5mm each, plate with 6mm holes, plate with 8mm holes and plate with 10mm holes. The analytical and numerical results are compared in Stress - Strain curves and Load - Deformation curves and found that both are in good agreement

  14. Computational Elastic Knots

    Zhao, Xin


    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  15. Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations.

    Shukla, Kamla Kant; Mahdi, Abbas Ali; Mishra, Vivek; Rajender, Singh; Sankhwar, Satya Narain; Patel, Devender; Das, Mukul


    This study investigated the effect of a 3-month treatment with Withania somnifera on apoptosis and intracellular reactive oxygen species (ROS) concentration of spermatozoa and the metal ions copper, zinc, iron and gold in seminal plasma from infertile men (normozoospermic, n=25; oligozoospermic, n=25; and asthenozoospermic, n=25). The apoptotic and necrotic cell distribution were analysed by annexin-V binding and propidium iodide uptake using flow cytometry. ROS generation was measured by fluorescence intensity and metal ions were analysed by atomic absorption spectrophotometry. The results demonstrated that, prior to treatment, sperm apoptosis and intracellular ROS concentrations were significantly higher in all groups of infertile men compared with controls (PZn(2+), Fe(2+) and Au(2+) in seminal plasma were lower. Treatment with W. somnifera significantly reduced apoptosis in normozoospermic and oligozoospermic men and ROS concentrations in oligozoospermic and asthenozoospermic men (all Pspermatozoa from infertile men. Before and following treatment, sperm apoptosis and concentrations of intracellular ROS and the metal ions copper, zinc, iron, and gold in seminal plasma were measured. The apoptotic and necrotic cell distribution were analysed by annexin-V binding and propidium iodide uptake using flow cytometry. ROS generation was measured by fluorescence intensity and metal ions were analysed by atomic absorption spectrophotometry. The results demonstrated that prior, to treatment, apoptosis and intracellular ROS concentrations were significantly higher in all groups of infertile men compared with controls. Similarly, the concentrations of the essential metal ions Cu(2+), Zn(2+), Fe(2+) and Au(2+) in seminal plasma were lower. Treatment with W. somnifera significantly reduced apoptosis and ROS concentrations and improved metal ion concentrations in infertile subjects. It is concluded that W. somnifera improves semen quality by reducing oxidative stress and cell

  16. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film

    Carter, Austin D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rather than of the film itself.

  17. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume


    The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10-7 to 10-5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10-4 and can reach 10-2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elastic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak amplitude of the dynamic applied strain is 8 × 10-6. The method is shown to be particularly suitable for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static acousto-elastic experiments in such materials are often performed outside the domain of validity of the third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapolated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty of the evaluation of the third-order elastic constants is assessed by repeating multiple times the measurements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic constants are l = -73 GPa ± 9%, m = -34 GPa ± 9%, and n = -61 GPa ± 10% for polymethyl methacrylate, and l = -17 000 GPa ± 20%, m = -11 000 GPa ± 10%, and n = -30 000 GPa ± 20% for dry Berea sandstone.

  18. Disturbance due to mechanical and thermal sources in a generalized thermo-microstretch elastic half space

    Rajneesh Kumar; Sunita Deswal


    Disturbances caused by impulsive concentrated mechanical and thermal sources in a homogeneous, isotropic generalized thermo-microstretch elastic medium are studied by the use of Laplace-Hankel transform techniques. The integral transforms are inverted using a numerical technique. Analytical expressions for displacement components, stress, couple stress, microstress and temperature field are derived for different models of generalized thermoelasticity and illustrated graphically. These results for stresses and displacements can be used in estimating the effects of a surface pressure wave. Stretch and micropolar effects on various expressions obtained analytically are also depicted graphically.

  19. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Surano, K.A.; Kercher, J.R. [eds.


    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Effectiveness of different EDU concentrations in ameliorating ozone stress in carrot plants.

    Tiwari, Supriya; Agrawal, Madhoolika


    Ethylenediurea (EDU) is suggested for use to evaluate plant response under ambient ozone (O(3)) concentrations. Four EDU treatments, viz. 0 (non-EDU), 150, 300 and 450 mg L(-1), applied as soil drench at 10 days interval to carrot (Daucus carota L. var. Pusa Kesar), grown at a tropical suburban site of Varanasi experiencing mean O(3) concentration of 36.1 ppb during the experimental period. EDU treated plants showed significantly higher antioxidative defense, assimilation capability and reduced membrane lipid peroxidation, which led to better growth and significant yield increments compared to non-EDU treated ones. The magnitude of positive responses was highest at 150 mg L(-1) EDU treatment at 60 DAG, representing the metabolically most active phase of root filling in carrot. This study suggests that the lowest EDU concentration was sufficient to provide protection against negative effects of O(3).

  1. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma


    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  2. Thermal stresses and deformations in a plate subject to the action of concentrated energy flows

    Rudin, G.I.


    A two-dimensional problem concerned with the determination of thermal deformation and the temperature and stress fields in a plate subject to nonhomogeneous heating by a radiative flow of Gaussian type is solved. Cases in which one plate surface is either free or clamped onto a rigid base as well as cases in which the energy source is a laser beam are also considered. Factors such as the thermal diffusivity, specific heat, plate density, linear expansion, shear modulus, optical and energy absorption behavior, and refractivity are incorporated into the solution.

  3. Stress Analysis of Ellipsoidal Shell with Inner Guide Structure

    Wei-Wei Zhang; Xiao-Song Wang; Meng Chen; Shi-Jian Yuan


    In order to overcome stress concentration and increase fatigue life of ellipsoidal shells with inner guide structure, the stress analysis for strength check is very important. Owing to the main sectional profile with ellipsoidal shape, the stress distribution for perfect ellipsoidal shell is firstly conducted based on the theoretical calculation and strain gauges measurement. The experiment results show that the stresses increase gradually from pole region to equatorial plane, but still within elastic range. Secondly, strain gauge measurement for ellipsoidal shells with inner guide structure is conducted. The results show that stresses are concentrated at the vicinity of bottom plate and beyond elastic range, so the structural redesign is needed. Finally based on the analysis mentioned above, a redesigned structure with local thickening is proposed. Experimental research shows that the stress varies more even after structural redesign and within allowable range. Numerical simulation shows that both the deformation and fatigue life after redesign are acceptable.

  4. 儿童创伤后应激障碍与自我心理弹性的关系%The relationship between post-traumatic stress disorder and self psychology elastic in children

    朱菊红; 蒋霞; 王成; 李铿; 王小龙; 刘边儿; 闫金栋; 张兰; 朱秀杰


    Objective To discuss the relationship between post-traumatic stress disorder(PTSD) and self psychologieal elastic for and to provide the scientific basis early for PTSD and psychological intervention.Methods 592 students were selected with the method of random cluster sampling to be investigated with children self psychological elastic scale and post-traumatic stress disorder and screening of questionnaire.Results There were 45 students were PTSD screening positive group,accounting for 7.60% of the total number,and 15 male students,accounting for 2.53% of the total number,there were 30 female students,accounting for 5.07% of the total number.Male and female in psychological elastic scale score were no significant differences (P> 0.05 ),PTSD positive group psychological screening elastic total cent and factors points were significantly lower than negative group(P< 0.05),PTSD total score was a significantly negative correlation( r =- 0.454,P =0.000).Conclusion Psychology resilience can be used as predictors of incidence of PTSD.%目的 探讨创伤后应激障碍(PTSD)与自我心理弹性的关系,为早期预测创伤后应激障碍和心理干预提供科学依据.方法 采用分层整群抽样的方法对舟曲县的592名学生进行儿童自我心理弹性量表和创伤后应激障碍17项筛查问卷调查.结果 PTSD筛查阳性组共有45人,占总人数的7.60%,其中男生15人(占2.53%),女生30人(占5.07%);男女生在心理弹性量表上的得分差异无统计学意义(P >0.05),PTSD筛查阳性组的心理弹性总分及各因子分均显著低于阴性组(P<0.05),PTSD总分与心理弹性总分呈显著负相关(r=-0.454,P=0.000).结论 心理弹性可作为PTSD发生率的预测因素.

  5. Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers.

    Kang, Sungeun; Kim, Sunmi; Park, Jeongim; Kim, Hae-Joong; Lee, Jeongjae; Choi, Gyuyeon; Choi, Sooran; Kim, Sungjoo; Kim, Su Young; Moon, Hyo-Bang; Kim, Sungkyoon; Kho, Young Lim; Choi, Kyungho


    Parabens have been used in multiple products including personal care products, pharmaceuticals, and foods for more than 50 years but increasing numbers of studies have raised concerns on their safety. The present study was designed to determine urinary paraben levels among pregnant women and their matching newborn infants (paraben levels and stress markers. Pregnant women (n=46) and their matching newborn infants were recruited from four university hospitals located in Seoul, Ansan and Jeju of Korea, 2011. Parabens including methyl paraben (MP), ethyl paraben (EP), n-propyl paraben (PP), and n-butyl paraben (BP) were measured in the urine using an automatic, high throughput online SPE-LC-MS/MS method. Urinary concentrations were normalized with specific gravity (SG). Free cortisol, malondealdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) were measured in the urine as stress marker. Urinary MP was detected as the highest, and BP was detected as the lowest paraben in the urine samples of both pregnant women and their infants. Significant correlations between paraben concentrations of maternal and their newborn infant's urine were observed. The levels of urinary parabens among Korean pregnant women are comparable to those reported elsewhere, except for EP which were 4-9 folds higher than pregnant women of other countries. The ratios of infant to maternal urinary paraben concentrations varied between 0.5 and 0.6 for MP and PP, but approximately 10 fold lower for EP. Urinary MP or EP levels were associated with several oxidative stress related biomarkers such as urinary 8-OHdG and MDA, even after the adjustment of relevant covariates such as maternal age, mode of delivery, pre-pregnancy BMI, gestational age and parity. This is the first study that reported the levels of major parabens in the first urine of newborn infants. Further studies are warranted to understand the implications of paraben exposure among biologically susceptible human populations.

  6. Single Prolonged Stress Decreases Glutamate, Glutamine, and Creatine Concentrations In The Rat Medial Prefrontal Cortex

    Knox, Dayan; Perrine, Shane A.; George, Sophie A.; Galloway, Matthew P.; Liberzon, Israel


    Application of Single Prolonged Stress (SPS) in rats induces changes in neuroendocrine function and arousal that are characteristic of Post Traumatic Stress Disorder (PTSD). PTSD, in humans, is associated with decreased neural activity in the prefrontal cortex, increased neural activity in the amygdala complex, and reduced neuronal integrity in the hippocampus. However, the extent to which SPS models these aspects of PTSD has not been established. In order to address this, we used high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H MRS) ex vivo to assay levels of neurochemicals critical for energy metabolism (creatine and lactate), excitatory (glutamate and glutamine) and inhibitory (gamma amino butyric acid (GABA)) neurotransmission, and neuronal integrity (N-acetyl aspartate (NAA)) in the medial prefrontal cortex (mPFC), amygdala complex, and hippocampus of SPS and control rats. Glutamate, glutamine, and creatine levels were decreased in the mPFC of SPS rats when compared to controls, which suggests decreased excitatory tone in this region. SPS did not alter the neurochemical profiles of either the hippocampus or amygdala. These data suggest that SPS selectively attenuates excitatory tone, without a disruption of neuronal integrity, in the mPFC. PMID:20546834

  7. Stress Concentration in the Bulk Cr2O3: Effects of Temperature and Point Defects

    Mazharul M. Islam


    Full Text Available Modeling the growth and failure of passive oxide films formed on stainless steels is of general interest for the use of stainless steel as structural material and of special interest in the context of life time extension of light water reactors in nuclear power plants. Using the DFT+U approach, a theoretical investigation on the resistance to failure of the chromium-rich inner oxide layer formed at the surface of chromium-containing austenitic alloys (stainless steel and nickel based alloys has been performed. The investigations were done for periodic bulk models. The data at the atomic scale were extrapolated by using the Universal Binding Energy Relationships (UBERs model in order to estimate the mechanical behavior of a 10 μm thick oxide scale. The calculated stress values are in good agreement with experiments. Tensile stress for the bulk chromia was observed. The effects of temperature and structural defects on cracking were investigated. The possibility of cracking intensifies at high temperature compared to 0 K investigations. Higher susceptibility to cracking was observed in presence of defects compared to nondefective oxide, in agreement with experimental observation.

  8. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico

    Watkins, Deborah J.; Ferguson, Kelly K.; Toro, Liza V. Anzalota Del; Alshawabkeh, Akram N.; Cordero, José F.; Meeker, John D.


    Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all pparabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed. PMID:25435060

  9. P波作用下深埋隧道动应力集中问题参数敏感性分析%Parameters sensitivity analysis of dynamic stress concentration for deep buried tunnel under incident plane waves

    王长柏; 李海波; 周青春; 夏祥


    Based on wave function expansion analytical solution for dynamic stress concentration of circular tunnel with double-layer-liner in infinite media under incident plane P waves is deduced According to the solution, parameters sensitivity analysis of dynamic stress concentration is canied out in combination with the tunnel #3of the first phase project along the Westem Route Project of South-to-North Water Transfer Projea.The calculation results show that the elasticity modulus of surrounding rock and inner concrete liner have a greater effect on dynamic stress concentration factor; and the effect of rock Poisson's ratio on the factor almost can be neglected.The layer between surrounding rock and inner concrete liner exhibited role in seismic isolation under the prerequisite conditions of its elasticity modulus is less than 1/20 of one of the surrounding rock; otherwise, the effect on seismic isolation is not obvious.%采用波函数展开法,推导了无限介质中双层衬砌圆形洞室在P波作用下衍射问题的解析解,并结合南水北调西线1期工程3#引水隧道开展了动应力集中系数参数敏感性分析.计算结果表明,围岩和内层衬砌的弹性模量对结构的动应力集中系数影响较大,而围岩泊松比对计算结果的影响几乎可以忽略不计:围岩和衬砌之间的介质层在一定程度上具有减震作用,前提条件是其弹性模量低于围岩弹性模量的1/20,否则减震效果不明显.

  10. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle.

    Gaughan, J B; Bonner, S L; Loxton, I; Mader, T L


    Sixty Angus steers (449.2±11.0 kg) with implanted body temperature (BT) transmitters were used in a 110-d study to determine the effect of chronic stress (housing, diet, and climate) on extracellular heat shock protein 70 (eHsp70) concentration in plasma. The steers were a subset of a larger study involving 164 steers. Before the start of the study (d -31), 63 steers were implanted with a BT transmitter between the internal abdominal muscle and the peritoneum at the right side flank. Steers were housed in 20 pens (10 with shade and 10 without). Within each pen, 3 steers had a transmitter, and BT was recorded at 30-min intervals throughout the study. On d 0, 30, 60, 90, and 110, steers were weighed, BCS assessed (1 to 9 scale in which 1=emaciated and 9=obese), and 10 mL of blood from the coccygeal vein was collected for determination of inducible heat shock protein 70 (Hsp70) concentration by ELISA. Climatic variables (ambient temperature, relative humidity, solar radiation, black globe temperature, and wind speed) were obtained every 30 min from an on-site weather station. The relationship between the climatic variables and Hsp70 concentration were examined. As we failed to detect an effect of shade, all data were pooled. Mean BT over the duration of the study was 39.6±0.10°C. Mean BT was lowest (38.7±0.10°C) on d 0 and highest on d 110 (40.2°C±0.10). The Hsp70 concentration was least on d 0 (2.33±0.47 ng/mL) and greatest on d 30 (8.08±0.78 ng/mL). The Hsp70 concentration decreased from d 30 but remained above the d-0 concentrations on d 60, 90, and 110. There was a strong relationship between Hsp70 concentration and ambient temperature (r2=0.86; P38.6°C. The Hsp70 concentration is a reliable indicator of chronic stress but is not a reliable indicator of a single stressor when animals are exposed to multiple chronic stressors.

  11. Folding and faulting of an elastic continuum

    Gourgiotis, Panos A.


    Folding is a process in which bending is localized at sharp edges separated by almost undeformed elements. This process is rarely encountered in Nature, although some exceptions can be found in unusual layered rock formations (called ‘chevrons’) and seashell patterns (for instance Lopha cristagalli). In mechanics, the bending of a three-dimensional elastic solid is common (for example, in bulk wave propagation), but folding is usually not achieved. In this article, the route leading to folding is shown for an elastic solid obeying the couple-stress theory with an extreme anisotropy. This result is obtained with a perturbation technique, which involves the derivation of new two-dimensional Green's functions for applied concentrated force and moment. While the former perturbation reveals folding, the latter shows that a material in an extreme anisotropic state is also prone to a faulting instability, in which a displacement step of finite size emerges. Another failure mechanism, namely the formation of dilation/compaction bands, is also highlighted. Finally, a geophysical application to the mechanics of chevron formation shows how the proposed approach may explain the formation of natural structures. PMID:27118925

  12. Oxidative stress indicators and trace element concentrations in tissues of mako shark (Isurus oxyrinchus).

    Vélez-Alavez, Marcela; Labrada-Martagón, Vanessa; Méndez-Rodriguez, Lía C; Galván-Magaña, Felipe; Zenteno-Savín, Tania


    Liver, kidney and muscle from juvenile mako sharks (Isurus oxyrinchus) were collected in Baja California Sur. Lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) concentrations were determined by atomic absorption spectrophotometry. The production of superoxide radical (O2(•-)) was measured as an indicator of reactive oxygen species production; lipid peroxidation (TBARS) and protein carbonyl levels were quantified as indicators of oxidative damage, and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) was assessed as indicator of antioxidant defenses. Two discriminant functions separated muscle from liver and kidney samples. Cd concentration was lower in muscle than in kidney (pshark.

  13. Accelerated Stress Testing of Hydrocarbon-Based Encapsulants for Medium-Concentration CPV Applications

    Kempe, M. D.; Moricone, T. J.; Kilkenny, M.; Zhang, J. Z.


    Concentrating photovoltaic (CPV) systems have great potential to reduce photovoltaic (PV) electricity costs because of the relatively low cost of optical components as compared to PV cells. A transparent polymeric material is used to optically couple the PV cell to optical components and is thus exposed to the concentrated light source at elevated temperatures. In this work polymeric encapsulant materials are positioned close to a Xenon arc lamp to expose them to ultraviolet radiation (UV) that is about 42 times as intense as sunlight. Furthermore, different glass types are used as filters to modify the spectral distribution of light in the UV range. A strong sensitivity of non-silicone-based encapsulants to light below ~350 nm is demonstrated. Of all the materials examined in this study, the polydimethyl silicone samples performed the best. The next best material was an ionomer which maintained optical transmission but became photo-oxidized where exposed to the atmosphere.

  14. Baseline and stress-induced glucocorticoid concentrations are not repeatable but covary within individual great tits (Parus major).

    Baugh, Alexander T; van Oers, Kees; Dingemanse, Niels J; Hau, Michaela


    In evolutionary endocrinology, there is a growing interest in the extent and basis of individual variation in endocrine traits, especially circulating concentrations of hormones. This is important because if targeted by selection, such individual differences present the opportunity for an evolutionary response to selection. It is therefore necessary to examine whether hormone traits are repeatable in natural populations. However, research in this area is complicated by the fact that different hormone traits can be correlated. The nature of these trait correlations (i.e., phenotypic, within-, or among-individual) is critically relevant in terms of the evolutionary implications, and these in turn, depend on the repeatability of each hormone trait. By decomposing phenotypic correlations between hormone traits into their within- and among-individual components it is possible to describe the multivariate nature of endocrine traits and generate inferences about their evolution. In the present study, we repeatedly captured individual great tits (Parus major) from a wild population and measured plasma concentrations of corticosterone. Using a mixed-modeling approach, we estimated repeatabilities in both initial (cf. baseline; CORT0) and stress-induced concentrations (CORT30) and the correlations between those traits among- and within-individuals. We found a lack of repeatability in both CORT0 and CORT30. Moreover, we found a strong phenotypic correlation between CORT0 and CORT30, and due to the lack of repeatability for both traits, there was no among-individual correlation between these two traits-i.e., an individual's average concentration of CORT0 was not correlated with its average concentration of CORT30. Instead, the phenotypic correlation was the result of a strong within-individual correlation, which implies that an underlying environmental factor co-modulates changes in initial and stress-induced concentrations within the same individual over time. These results

  15. Rapid effect of stress concentration corticosterone on glutamate receptor and its subtype NMDA receptor activity in cultured hippocampal neurons

    刘玲; 孙继虎; 王春安


    Objective:To study the rapid effect of glucocorticoids(GCs)on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms.Methods:Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone(B)on the responses of cultured hippocampal neurons to glutamate and NMDA(N-methy-D-asparatic acid).To make clear the target of B,intracellular dialysis of B(10 μ mol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA,10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current.Results:B had a rapid,reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons.Furthermore,B-BSA had the inhibitory effect on INMDA as that of B,but intracellularly dialyzed B had no significant effect on INMDA.Conclusion:These results suggest that under the condition of stress,GCs may rapidly,negatively regulate excitatory synaptic receptors-glutamate receptors(GluRs),especially NMDA receptor(NMDAR)in central nervous system,which is mediated by rapid membrane mechanisms,but not by classical,genomic mechanisms.

  16. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico.

    Watkins, Deborah J; Ferguson, Kelly K; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D


    Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our

  17. Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers

    Kang, Sungeun; Kim, Sunmi [School of Public Health, Seoul National University (Korea, Republic of); Park, Jeongim [College of Natural Sciences, Soonchunhyang University (Korea, Republic of); Kim, Hae-Joong [College of Medicine, Korea University (Korea, Republic of); Lee, Jeongjae; Choi, Gyuyeon [College of Medicine, Soonchunhyang University (Korea, Republic of); Choi, Sooran; Kim, Sungjoo [College of Medicine, Hallym University (Korea, Republic of); Kim, Su Young [College of Medicine, Jeju National University (Korea, Republic of); Moon, Hyo-Bang [College of Science and Technology, Hanyang University (Korea, Republic of); Kim, Sungkyoon [School of Public Health, Seoul National University (Korea, Republic of); Kho, Young Lim [Department of Health, Environment and Safety, Eulji University (Korea, Republic of); Choi, Kyungho, E-mail: [School of Public Health, Seoul National University (Korea, Republic of)


    Parabens have been used in multiple products including personal care products, pharmaceuticals, and foods for more than 50 years but increasing numbers of studies have raised concerns on their safety. The present study was designed to determine urinary paraben levels among pregnant women and their matching newborn infants (< 48 h after delivery), and the association between paraben levels and stress markers. Pregnant women (n = 46) and their matching newborn infants were recruited from four university hospitals located in Seoul, Ansan and Jeju of Korea, 2011. Parabens including methyl paraben (MP), ethyl paraben (EP), n-propyl paraben (PP), and n-butyl paraben (BP) were measured in the urine using an automatic, high throughput online SPE–LC–MS/MS method. Urinary concentrations were normalized with specific gravity (SG). Free cortisol, malondealdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) were measured in the urine as stress marker. Urinary MP was detected as the highest, and BP was detected as the lowest paraben in the urine samples of both pregnant women and their infants. Significant correlations between paraben concentrations of maternal and their newborn infant's urine were observed. The levels of urinary parabens among Korean pregnant women are comparable to those reported elsewhere, except for EP which were 4–9 folds higher than pregnant women of other countries. The ratios of infant to maternal urinary paraben concentrations varied between 0.5 and 0.6 for MP and PP, but approximately 10 fold lower for EP. Urinary MP or EP levels were associated with several oxidative stress related biomarkers such as urinary 8-OHdG and MDA, even after the adjustment of relevant covariates such as maternal age, mode of delivery, pre-pregnancy BMI, gestational age and parity. This is the first study that reported the levels of major parabens in the first urine of newborn infants. Further studies are warranted to understand the implications of paraben exposure


    王武; 许宏发; 江淼; 方秦


    假定地下储气库为球形腔体,利用在弹性阶段应力可叠加的基本原理,将球形储气库的受力方式简化分解为静水压力和垂直方向受力.对这2种受力方式下围岩应力分布解析结果进行叠加,获得在远场三轴压应力和储库内部压力共同作用下球腔储气库围岩弹性应力分布的完整解析解.在相同条件下,对盐岩球腔储气库进行数值分析,并将解析解与数值分析结果进行比较,结果表明,应力分布解析解与数值解吻合较好,验证所提出的分析方法是合理可行的.结合Hoek-Brown破坏准则,计算得出储气库不出现塑性破坏时的极限内压值范围.%Based on the assumption that the storage cavern is sphere, and using a basic principle that the stress could be superimposed in the elastic stage, the force modes of spherical gas storage cavern is disintegrated into hydrostatic pressure and vertical stress. Through the superposition of analytic results of surrounding rock stress distribution under the two kinds of force modes, the elastic stress distribution functions in surrounding rock of the spherical gas storage cavern in salt rock under remote field triaxial compressive stresses and internal pressure are derived. The numerical analysis of spherical gas storage cavern of salt rock is conducted under the same condition. Comparison shows that numerical simulation results are in good agreements with theoretical calculation results; and the presented analysis method is verified to be feasible. Then Hoek-Brown criterion is used to estimate the stability of spherical cavity storage cavern, and the limit of internal pressure is obtained when the plastic failure of gas storage cavern doesn't appear.

  19. Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder.

    Daniela Hauer

    Full Text Available BACKGROUND: Endocannabinoids (ECs and related N-acyl-ethanolamides (NAEs play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD, an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. METHODS: We determined plasma concentrations of the ECs anandamide (ANA and 2-arachidonoylglycerol (2-AG and the NAEs palmitoylethanolamide (PEA, oleoylethanolamide (OEA, stearoylethanolamine (SEA, and N-oleoyldopamine (OLDA by HPLC-MS-MS in patients with PTSD (n = 10, trauma-exposed individuals without evidence of PTSD (n = 9 and in healthy control subjects (n = 29. PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS, which also assesses traumatic events. RESULTS: Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48 ± 0.11 vs. 0.36 ± 0.14 ng/ml, p = 0.01, 2-AG (8.93 ± 3.20 vs. 6.26±2.10 ng/ml, p<0.01, OEA (5.90 ± 2.10 vs. 3.88 ± 1.85 ng/ml, p<0.01, SEA (2.70 ± 3.37 vs. 0.83 ± 0.47, ng/ml, p<0.05 and significantly lower plasma levels of OLDA (0.12 ± 0.05 vs. 0.45 ± 0.59 ng/ml, p<0.05 than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93 ± 3.20 vs. 6.01 ± 1.32 ng/ml, p = 0.03 and also higher plasma concentrations of PEA (4.06 ± 1.87 vs. 2.63±1.34 ng/ml, p<0.05 than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19 correlated positively with PEA (r = 0.55, p = 0.02 and negatively with OLDA plasma levels (r = -0.68, p<0.01. CAPS subscores for intrusions (r

  20. Abutment-to-fixture load transfer and peri-implant bone stress

    van Oers, R.F.; Feilzer, A.J.


    Purpose: To uncover design principles for the abutment-fixture complex that reduce the stress concentration on the bone. Methods: A 3-dimensional finite element model was used to vary shape, elasticity, and connectivity of the abutment-fixture complex. We compared peri-implant bone stress of these d

  1. Investigation of the Influence of Glucose Concentration on Cancer Cells by Using a Microfluidic Gradient Generator without the Induction of Large Shear Stress

    Tadashi Ishida


    Full Text Available A microfluidic device capable of precise chemical control is helpful to mimic tumor microenvironments in vitro, which are closely associated with malignant progression, including metastasis. Cancer cells under a concentration gradient of oxygen and other sustenance materials inside a tumor in vivo have recently been reported to increase the probability of metastasis. The influence of glucose concentration on cancer cells has not been measured well, whereas that of oxygen concentration has been thoroughly examined using microfluidic devices. This is because glucose concentrations can be controlled using microfluidic concentration gradient generators, which trade off temporal stability of the glucose concentration and shear stress on the cells; by contrast, oxygen concentration can be easily controlled without microfluidic device-induced shear stresses. To study cell division and migration responses as a function of glucose concentration, we developed a microfluidic device to observe cell behaviors under various chemical conditions. The device has small-cross-section microchannels for generating a concentration gradient and a large-cross-section chamber for cell culture. With this design, the device can achieve both a cell culture with sufficiently low shear stress on cell activity and a stable glucose concentration gradient. Experiments revealed that a low glucose concentration increased the total migration length of HeLa cells and that HeLa cells under a glucose concentration gradient exhibit random motion rather than chemotaxis.

  2. Stress

    ... diabetes. Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  3. Stress

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  4. Effects of dietary selenium on tissue concentrations,pathology, oxidative stress, and immune function in common eiders (Somateria mollissima)

    Franson, J. Christian; Hoffman, David; Wells-Berlin, Alicia M.; Perry, Matthew C.; Shearn-Bochsler, Valerie I.; Finley, Daniel L.; Flint, Paul L.; Hollmén, Tuula E.


    Common eiders (Somateria mollissima) were fed added Se (as L-selenomethionine) in concentrations increasing from 10 to 80 ppm in a pilot study (Study 1) or 20 (low exposure) and up to 60 (high exposure) ppm Se in Study 2. Body weights of Study 1 ducks and high-exposure ducks in Study 2 declined rapidly. Mean concentrations of Se in blood reached 32.4 ppm wet weight in Study 1 and 17.5 ppm wet weight in high-exposure birds in Study 2. Mean Se concentrations in liver ranged from 351 (low exposure, Study 2) to 1252 ppm dry weight (Study 1). Oxidative stress was evidenced by Se-associated effects on glutathione metabolism. As Se concentrations in liver increased, Se-dependent glutathione peroxidase activity, glutathione reductase activity, oxidized glutathione levels, and the ratio of hepatic oxidized to reduced glutathione increased. In Study 2, the T-cell-mediated immune response was adversely affected in high-exposure eiders, but ducks in the low-exposure group exhibited evidence of an enhanced antibody-mediated immune response. Gross lesions in high-exposure ducks included emaciation, absence of thymus, and loss of nails from digits. Histologic lesions included severe depletion of lymphoid organs, hepatopathy, and necrosis of feather pulp and feather epithelium. Field studies showed that apparently healthy sea ducks generally have higher levels of Se in liver than healthy fresh-water birds, but lower than concentrations found in our study. Data indicate that common eiders and probably other sea ducks possess a higher threshold, or adverse effect level, for Se in tissues than fresh-water species. However, common eiders developed signs of Se toxicity similar to those seen in fresh-water birds.

  5. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH.

    De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Soni, Kamlesh A; Sharma, Chander S; Mahmoud, Barakat


    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug600) (serotype 1/2a) and F1057 (serotype 4b) at different concentrations and times of sublethal oxidative stress induced by H2O2 or sublethal alkali stress induced by NaOH at 37°C. Both L. monocytogenes Bug600 and F1057 strains showed significantly higher survival in lethal oxidative stress (1000ppm H2O2) after pre-exposure to 50ppm H2O2 for 30min compared to control cells (no pre-exposure to H2O2). When the cells were pre-exposed to sublethal alkali stress by NaOH, the oxidative stress adaptation was induced within 5min in L. monocytogenes. The survival of both L. monocytogenes strains was increased by 2 to 4.5 logs in lethal oxidative stress when the cells were pre-exposed to sublethal alkali stress at pH9 from 5 to 120min by NaOH compared to control cells (no pre-exposure to sublethal alkali pH). Two other alkali reagents tested (KOH and NH4OH) also induced oxidative stress adaptation in L. monocytogenes. For both L. monocytogenes strains, the oxidative stress adaptation induced by sublethal H2O2 was reversible in 30min and that induced by sublethal alkali stress was reversible within 60min at 37°C in the absence of such sublethal stress. These findings show that sublethal oxidative or alkali stress conditions can induce oxidative stress adaptation that may increase the risk of survival of L. monocytogenes cells in lethal oxidative stress.

  6. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Vujanac Ivan


    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  7. Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations.

    Kochhann, Daiani; Pavanato, Maria A; Llesuy, Susana F; Correa, Lizelia M; Konzen Riffel, Ana P; Loro, Vania L; Mesko, Márcia F; Flores, Erico M M; Dressler, Valderi L; Baldisserotto, Bernardo


    The objective of this study was to evaluate the effect of chronic thorium (Th) exposure on bioaccumulation, metabolism (through biochemical parameters of the muscle) and oxidative parameters (lipidic peroxidation levels and antioxidant enzymes in the gills and in the hepatic and muscular tissues) of silver catfish (Rhamdia quelen). Silver catfish juveniles were exposed to different waterborne Th levels (in microg L(-1)): 0 (control), 25.3+/-3.2, 80.6+/-12.0, 242.4+/-35.6, and 747.2+/-59.1 for 30 d. The gills and skin were the organs that accumulated the highest Th levels. The increase in the waterborne Th concentration corresponded to a progressive increase in the Th levels in the gills and kidney. Chronic Th exposure causes alterations in the oxidative parameters of silver catfish gills, which are correlated with the Th accumulation in this organ. The levels of GST decreased in the gills of fish exposed to 747.2 microg L(-1) Th and SOD activity decreased in silver catfish exposed to 242.4 and 747.2 microg L(-1) Th. In addition, the increase in the LPO in the gills exposed to 242.4 and 747.2 microg L(-1) Th suggests that higher oxidative damage occurred in the gills. However, in the liver and muscle, these alterations occurred mainly in the lowest waterborne Th level. Metabolic intermediates in the muscle were altered by Th exposure, but no clear relationship was found.

  8. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    Dinic, Jelena; Jimenez, Leidy; Sharma, Vivek

    Many advanced manufacturing technologies like inkjet and 3D printing, nano-fiber spinning involve complex free-surface flows, and the formation of columnar necks that undergo spontaneous capillary-driven thinning and pinch-off. The progressive self-thinning of neck is often characterized by self-similar profiles and scaling laws that depend on the relative magnitude of capillary, inertial and viscous stresses for simple (Newtonian and inelastic) fluids. Stream-wise velocity gradients that arise within the thinning columnar neck create an extensional flow field that can orient and stretch macromolecules, contributing extra elastic stresses and extensional viscosity that change thinning and pinch-off dynamics for polymeric complex fluids. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. We elucidate how polymer composition, flexibility and molecular weight determine the thinning and pinch-off kinetics in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions.

  9. Probing the Elastic-Plastic, Time-Dependant Response of Test Fasteners using Finite Element Analysis (FEA)

    ML Renauld; H Lien


    The evolution of global and local stress/strain conditions in test fasteners under test conditions is investigated using elastic-plastic, time-dependent finite element analyses (FEA). For elastic-plastic response, tensile data from multiple specimens, material heats and test temperatures are integrated into a single, normalized flow curve from which temperature dependency is extracted. A primary creep model is calibrated with specimen- and fastener-based thermal relaxation data generated under a range of times, temperatures, stress levels and environments. These material inputs are used in analytical simulations of experimental test conditions for several types of fasteners. These fastener models are constructed with automated routines and contact conditions prescribed at all potentially mating surfaces. Thermal or mechanical room temperature pre-loading, as appropriate for a given fastener, is followed by a temperature ramp and a dwell time at constant temperature. While the amount of thermal stress relaxation is limited for the conditions modeled, local stress states are highly dependent upon geometry (thread root radius, for example), pre-loading history and thermal expansion differences between the test fastener and test fixture. Benefits of this FE approach over an elastic methodology for stress calculation will be illustrated with correlations of Stress Corrosion Cracking (SCC) initiation time and crack orientations in stress concentrations.

  10. Effect of transformation on stress releasement of stress concentration area in welding. Part 6. ; Stress releasement by transformation superplasticity. Sohentai ga oryoku shuchubu no oryoku kanwa tokusei ni oyobosu eikyo. 6. ; Hentai chososei ni yoru oryoku kanwa

    Murata, H. (Yokogawa Medical System Ltd., Tokyo (Japan)); Kato, N.; Iiyama, T. (Tokyo Inst. of Technology, Tokyo (Japan)); Tamura, H. (Nihon Univ., Tokyo (Japan))


    As the various contrivances are being done for raising the strength and reliability of the joints in the usual welding execution, the welding defects out of them are thought that they impair the reliability of the joints, and therefore the efforts not so as to let them occur, and in addition, to secure the safety by screening them through the nondestructive inspection, are being performed. In this report, through the double end constraint thermal cycle tests by using the smooth and notched round bar specimen prepared by the friction pressure welding of 9%Ni steel, which could transform at a low temperature, with SUS 304, and moreover through welding by using the welding rod prepared experimentally of the Fe-Ni-Cr system, which could transform at a low temperature, and furthermore through measuring the thermal contraction stress when the extreme strains have been concentrated in the weld metal parts on the way of cooling off, the fracture character of the weld metal has been investigated. In case of actual welding, even when the extreme stress concentration has been created so excessively as D4316 has started to be fractured on its way of cooling off, no crack has occurred in the welding rod of the low temperature transformation. This is thought because of that the superplasticity phenomena due to the martensite transfomation act effectively on the stress releasement. 12 refs., 14 figs., 2 tabs.

  11. Fast solvers for concentrated elastic contact problems

    Zhao, J.


    Rail transportation plays an important role in our everyday life, and there is fast development and modernization in the railway industry to meet the growing demand for swifter, safer and more comfortable trains. At the same time, the security of train operation and the maintenance of rails have to


    黄孟才; 顾忠; 沈俊; 唐复勇


    The paper deals with nonlinear elasticity of blood arterial duct, in which the artery is modeled to bea locally triclinic, transverse isotropic, incorapressible, axisymmetric and thickwalled tube with large deformations, The nonlinear coustitutive relationship of arterial tissues is based on the theorv of Green and Adkins. A nonlinear strain energy density function is introduced for nonlinear stress-strain relationship of second order, in which the coefficient of each term is expressed by means of a Lame’s constant, The elasticity constants are nqcessary to describe such a uonlinear finite strain etastieity of the second order, These constants are determined by means of the stress-strain increment theory.

  13. Elasticity limits structural superlubricity in large contacts

    Sharp, Tristan A.; Pastewka, Lars; Robbins, Mark O.


    Geometrically imposed force cancellations lead to ultralow friction between rigid incommensurate crystalline asperities. Elastic deformations may avert this cancellation but are difficult to treat analytically in finite and three-dimensional systems. We use atomic-scale simulations to show that elasticity affects the friction only after the contact radius a exceeds a characteristic length set by the core width of interfacial dislocations bcore. As a increases past bcore, the frictional stress for both incommensurate and commensurate surfaces decreases to a constant value. This plateau corresponds to a Peierls stress that drops exponentially with increasing bcore but remains finite.

  14. Stress controls the mechanics of collagen networks.

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C


    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  15. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Supakorn Tirapat


    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  16. Elastic deformations of compact stars

    Andersson, Lars; Schmidt, Bernd G


    We prove existence of solutions for an elastic body interacting with itself through its Newtonian gravitational field. Our construction works for configurations near one given by a self-gravitating ball of perfect fluid. We use an implicit function argument. In so doing we have to revisit some classical work in the astrophysical literature concerning linear stability of perfect fluid stars. The results presented here extend previous work by the authors, which was restricted to the astrophysically insignificant situation of configurations near one of vanishing stress. In particular, "mountains on neutron stars", which are made possible by the presence of an elastic crust in neutron stars, can be treated using the techniques developed here.

  17. Use of structural components of specific work of internal forces for estimating the strength of viscoelastic structures in local stress concentration regions

    Bykov, D. L.; Konovalov, D. N.


    Material fracture experiments on specimens and structures testify that materials can resist greater stresses in local stress concentration regions than in regions with a nearly homogeneous stress state. Taking this fact into account in design stress analysis permits one to reveal additional structure loading and/or service life margins. One approach aimed at taking into account the increased strength in local stress concentration regions is to use averaged limit characteristics parametrically depending on the characteristic size L of the averaging region. One version of this approach is the concept of "elementary block" of a material [1, 2]. The averaged limit characteristics are determined by an experiment-calculation method involving the analysis of the stress-strain state of a material specimen with a stress concentrator at the time when the specimen attains the limit state preceding macrofracture. In [3], the dependence of the averaged limit separation stresses on the size of the averaging region was determined on the basis of numerical analysis of the singular stress state of the specimen used to determine the standard characteristics of the adhesion strength of a filled polymer material. In the present paper, we generalize the above approach to the case of a viscoelastic material. For the limit characteristics of the material in the local stress concentration region we take the volume-averaged components of the specific work of internal forces [4, 5] (the averaged specific absorbed energy and the averaged specific instantaneously reversible energy). The introduction of two limit energies originates from the fact that, to initiate the process of macrofracture, it is necessary to satisfy the following two conditions simultaneously: the material must be "damaged" sufficiently strongly by the preceding loading, and the "damaged" material must be loaded sufficiently strongly. As an example of determining the material averaged limit energy characteristics in a


    Rita Choudhury


    Full Text Available The two-dimensional free convection flow of visco-elastic and electrically conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations are reduced to ordinary differential equation by introducing appropriate co-ordinate transformation. The analytical expressions for the velocity, temperature and species concentration fields have been obtained. The corresponding expressions for the non-dimensional rates of heat transfer and mass transfer have beenobtained. The velocity profile and the shearing stress have been illustrated graphically, for various values of flow parameters involved in the solution to observe the effect of visco-elastic parameter.

  19. A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans

    Ávila, Felipe; Echeverria, Guadalupe; Perez, Druso; Trejo, Sebastian; Leighton, Federico


    This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat. PMID:28243359

  20. A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans

    Ines Urquiaga


    Full Text Available This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350 produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N=11 were randomly assigned to three experimental meals: (1 250 g of ground turkey burger (GTB + 500 mL of water; (2 250 g of GTB + 500 mL of 5% BPC-350; (3 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA, carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p<0.05. Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p<0.05. The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.

  1. On the algebraic structure of isotropic generalized elasticity theories

    Auffray, Nicolas


    In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order strain and stress tensors. Therefore, and in certain way, nth-order isotropic elasticity have the same kind of algebraic structure as anisotropic classical elasticity. This structure is investigated in the case of 2nd-order isotropic elasticity, and moduli characterizing the behavior are provided.

  2. Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

    vahid mozafari


    /63, Tissue (Sandy loam, electrical conductivity (ECe (1 dS m-1, Silt (23.1%, Clay (5.5%, Organic matter (0.5%, Olsen phosphorus (P (5.35 mg kg-1, Ammonium acetate-extractable K (100 mg kg-1 were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting, divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week. Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations

  3. The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress.

    Kleiber, Tomasz; Calomme, Mario; Borowiak, Klaudia


    The aim of experiments was to assess the efficiency of choline-stabilized orthosilicic acid (ch-OSA; complex of orthosilicic acid with choline and a bioavailable source of silicon) application under increasing manganese (Mn) stress on the micronutritional composition and yielding of tomato (Solanum lycopersicum L. cvs. 'Alboney F1' and 'Emotion F1'). Plants were grown in rockwool with the application of a nutrient solution varied the Mn concentrations (in mg dm(-3)): 9.6 and 19.2 which cause strong oxidative stress of plants comparing with optimal concentration of that microelement in nutrient solution. The effect of ch-OSA application (at Si concentration of 0.3 mg dm(-3) nutrient solution) was investigated at both Mn-levels. Increasing Mn stress modified the concentration of microelements and silicon (Si) in tomato leaves. Application of ch-OSA also influenced the concentration of nutrients, but the determined changes were generally multidirectional and varied depending on Mn-level and cultivar. Under the increasing Mn stress a significant downward trend was observed for the mean concentration of Fe (in both cultivars) in fruits--but changes of Mn, Zn and Cu were varied depend on cultivar. In the case of cv. 'Alboney F1' ch-OSA application caused an increase the mean concentrations of Fe, Zn and Cu, while in the case of cv. 'Emotion F1' the reduction of mean concentrations of Zn and Cu was recorded. Ch-OSA treatment did not influence on the Mn concentrations in fruits. A beneficial role of ch-OSA was also found in photosynthesis activity. This was especially valid for lower levels of Mn. Application of ch-OSA improved significantly the marketable yield of tomato under stress by a low Mn level.

  4. Scattering of SH-wave from interface cylindrical elastic inclusion with a semicircular disconnected curve

    ZHAO Jia-xi; QI Hui; SU Sheng-wei


    Scattering of SH wave from an interface cylindrical elastic inclusion with a semicircular disconnected curve is investigated.The solution of dynamic stress concentration factor is given using the Gteen's function and the method of complex variable functions.First,the space is divided into upper and lower parts along the interface.In the lower half space,a suitable Green's function for the problem is constructed.It is an essential solution of the displacement field for an elastic half space with a semi-cylindrical hill of cylindrical elastic inclusion while bearing out-plane harmonic line source load at the horizontal surface.Thus,the semicircular disconnected curve can be constructed when the two parts are bonded and continuous on the interface loading the undetermined anti-plane forces on the horizontal surfaces.Also,the expressions of displacement and stress fields are obtained in this situation.Finally,examples and results of dynamic stress concentration factor are given.Influences of the cylindrical inclusion and the difierence parameters of the two mediators are discussed.

  5. Characterizing the elasticity of hollow metal nanowires

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)


    We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.

  6. Marangoni elasticity of flowing soap films

    Kim, Ildoo


    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm is likely applicable to other similarly constructed flowing soap films.

  7. Marangoni elasticity of flowing soap films

    Kim, Ildoo; Mandre, Shreyas


    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  8. 2D crack problems in functionally graded magnet-electro-elastic materials

    Stoynov, Yonko


    Magneto-electro-elastic composite materials have extensive application in modern smart structures, because they possess good coupling between mechanical, electrical and magnetic fields. This new effect was reported for the first time by Van Suchtelen [1] in 1972. Due to their ceramic structure cracks inevitably exists in these materials. In this study we consider functionally graded magneto-electro-elastic materials subjected to anti-plane time harmonic load. We use Boundary integral equation method (BIEM) to evaluate the dependence of stress concentration near the crack tip on the frequency of the applied external load. For complex crack configurations numerical calculations are tedious and need too much time. Here we present a new analytical approach that will significantly improve the numerical procedure for calculation of stress intensity factors (SIF).

  9. Elastically Decoupling Dark Matter

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai


    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  10. Elastically Decoupling Dark Matter.

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai


    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  11. ElasticSearch cookbook

    Paro, Alberto


    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  12. The Use of Instrumental Hardness Measurements in Determining Stresses in the Elastic Elements of a Manipulator for Servicing Water and Sewage Networks

    Kaczyński R.


    Full Text Available The paper presents the design of a manipulator for servicing the elements of water and sewage infrastructure, in particular for installation and dismantling of pressure transducers without the need for earthmoving. To build this device the resilient elements, cold shaped, responsible for centering the manipulator in the technical tube were used. In their construction a method was applied of estimating the value of residual stresses in the cold shaped material, based on measurements of instrumental hardness. The experimental verification of numerical simulation of instrumental hardness measurements of flat springs made of 1.1274 steel is described.

  13. On Torsion of Functionally Graded Elastic Beams

    Marina Diaco


    Full Text Available The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively. A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.

  14. Effect of residual stress on peak cap stress in arteries.

    Vandiver, Rebecca


    Vulnerable plaques are a subset of atherosclerotic plaques that are prone to rupture when high stresses occur in the cap. The roles of residual stress, plaque morphology, and cap stiffness on the cap stress are not completely understood. Here, arteries are modeled within the framework of nonlinear elasticity as incompressible cylindrical structures that are residually stressed through differential growth. These structures are assumed to have a nonlinear, anisotropic, hyperelastic response to stresses in the media and adventitia layers and an isotropic response in the intima and necrotic layers. The effect of differential growth on the peak stress is explored in a simple, concentric geometry and it is shown that axial differential growth decreases the peak stress in the inner layer. Furthermore, morphological risk factors are explored. The peak stress in residually stressed cylinders is not greatly affected by changing the thickness of the intima. The thickness of the necrotic layer is shown to be the most important morphological feature that affects the peak stress in a residually stressed vessel.

  15. Surface effects on static bending of nanowires based on non-local elasticity theory

    Quan Wu


    Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.

  16. Stress

    Keller, Hanne Dauer


    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  17. Stress

    Keller, Hanne Dauer


    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  18. Extremal Overall Elastic Response of Polycrystalline Materials

    Bendsøe, Martin P; Lipton, Robert


    Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...

  19. Local Tensor Radiation Conditions For Elastic Waves

    Krenk, S.; Kirkegaard, Poul Henning


    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point. The...

  20. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs

    Koopmans, S.J.; Ruis, M.A.W.; Dekker, R.A.; Diepen, van J.T.M.; Korte, S.M.; Mroz, Z.


    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress h

  1. Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: Variability of concentrations and possible constituents and sources of particles in various spectral clusters

    Pinnick, R. G.; Fernandez, E.; Rosen, J. M.; Hill, S. C.; Wang, Y.; Pan, Y. L.


    The UV-excited laser-induced-fluorescence (UV-LIF) spectra of single atmospheric particles and the three-band integrating-nephelometer elastic scattering of atmospheric aerosol were measured during four approximately 24-h periods on May 2007 in Las Cruces, New Mexico, USA. Aerosol scattering measurements in the nephelometer red channel (50-nm band centered at 700-nm) ranged from around 3-10 times the molecular (Rayleigh) scattering background. On average 22.8% of particles with size greater than about 1 μm diameter have fluorescence above a preset fluorescence threshold. A hierarchical cluster analysis indicates that most of the single-particle UV-LIF spectra fall into about 10 categories (spectral clusters) as found previously at other geographic sites (Pinnick et al., 2004; Pan et al., 2007). The clusters include spectra characteristic of various humic/fulvic acids, humic-like-substances (HULIS), chemically aged terpenes, fungal spores, polycyclic aromatic hydrocarbons, bacteria, cellulose/pollens, and mixtures of various organic carbon compounds. By far the most populated cluster category is similar to those of chemically aged terpenes/humic-materials; on average this population comprises about 62% of fluorescent particles. Clusters with spectra similar to that of some HULIS aerosol contain on average 10.0% of particles; those characteristic of some fungal spores (or perhaps mixtures of aromatic organic compounds) 8.4% of particles; bacteria-like spectra 1.6% of particles; and cellulose/pollen-like spectra 0.8% of particles. Measurements of fluorescent particles over relatively short (24 min) periods reveal that the concentrations of particles in the most populated clusters are highly correlated, suggesting that the particles populating them derive from the same region; these particles might be composed of crustal material coated with secondary organic carbon. On the other hand, concentrations of particles having cellulose-like spectra are generally

  2. Hyperhomocysteinemia in healthy young men and elderly men with normal serum folate concentration is not associated with poor vascular reactivity or oxidative stress.

    Hirsch, Sandra; Ronco, Ana María; Vasquez, Marcela; de la Maza, María Pía; Garrido, Argelia; Barrera, Gladys; Gattas, Vivien; Glasinovic, Andrea; Leiva, Laura; Bunout, Daniel


    The mechanism by which homocysteine (Hcy) causes endothelial dysfunction is probably mediated by oxidative stress. The aim of this study was to evaluate the effect of oxidative stress on endothelial function in young and elderly hyperhomocysteinemic (HHcy) men. A total of 35 HHcy (Hcy > 15 micro mol/L), young (n = 15; 20-40 y) and elderly men (n = 20; > 65 y) and 33 normohomocysteinemic (NHcy; controls) young (n = 14) and elderly (n = 19) men (Hcy < 13 micro mol/L), without classic cardiovascular risk factors were recruited. Serum Hcy, folate, and vitamin B-12, whole-blood glutathione, plasma total antioxidants status, TBARS, and 8-F(2alpha) isoprostanes were determined. Noninvasive ultrasound measurements of endothelium-dependent (EDVR) and -independent dilatation (EIVR) were performed. EDVR, EIVR, and markers of oxidative stress did not differ among the groups. Folate concentrations were higher in elderly than in young men (P < 0.001), independent of Hcy concentrations. Vitamin B-12 concentrations were lower in HHcy than in NHcy elderly men (P < 0.045). EDVR was correlated with folate concentrations in young men (r = 0.40, P = 0.04) and negatively with BMI in elderly men (r = -0.52, P = 0.002). In the present study, HHcy with normal serum folate concentrations was not associated with poor EDVR or oxidative stress in healthy young and elderly men.

  3. Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress.

    Romero, Rosita Denny; Montero Pardo, Arnulfo; Montaldo, Hugo Horacio; Rodríguez, Ana Delia; Hernández Cerón, Joel


    Pelibuey and Suffolk sheep were compared as to their capacity to regulate body temperature under environmental hyperthermia by measuring their differences in cellular response to heat stress (HS). In a first experiment, seven Pelibuey and seven Suffolk ewes were kept in a climatic chamber for 6 h daily during 10 days (temperatures within the 18 to 39.5 °C range). As chamber temperature rose, sheep rectal temperature increased in both groups, but to a lesser extent in Pelibuey (0.3 °C) than in Suffolk sheep (0.7 °C) (P  0.05]. HS significantly increased HSP-70 average concentrations for both breeds at 43 °C. A significant effect was observed for the breed by temperature interaction (P  0.05). In conclusion, Pelibuey sheep show more effective body temperature regulation under conditions of environmental hyperthermia. Also, cell viability after HS was higher in Pelibuey than in Suffolk, an effect that could be mediated by an HSP-70-related mechanism.

  4. Physical chemistry of highly concentrated emulsions.

    Foudazi, Reza; Qavi, Sahar; Masalova, Irina; Malkin, Alexander Ya


    This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 基于弹性地基梁法的沉陷区埋地管道应力变形分析%Stress and Deformation Analysis of Buried Pipelines on Subsidence Area by Base Beam Method of Elastic Foundation

    朱彦鹏; 赵忠忠


    The differential settlement of ground is one of the main reasons which causes pipeline damages. The research and analysis on buried pipelines under effect of settlement usually divide the pipeline crossing area into subsidence area and non-subsidence area.Deflection curve equation of deformation of pipelines in non-subsidence area can be simulated and deduced by using base beam model of elastic foundation.Pipeline deformation on subsidence area can be stimulated into cubic curve equation,and then concluded internal force and displacement equation of pipeline on subsidence area by using boundary conditions.The conclu-sions after combining living examples and analysis indicate that maximum stress of pipelines locates on the interface between subsidence area and non-subsidence area.Maximum stress of pipeline on subsidence area is jointly constituted by axial stress caused by pipeline internal pressure,bending stress and axial stress caused by effect of settlement.As pipeline of non-subsidence area mainly suffers axial stress caused by in-ternal pressure,the effect of internal pressure shall be taken into consideration.The principle influence fac-tors that affect pipeline deformation on subsidence area are settlement volume,width of subsidence area, pipeline diameter and burial depth,among which settlement volume and width of subsidence area have the biggest influence,and burial depth mainly affects axial stress of pipeline,which nearly has no influence on blending stress.%场地的不均匀沉降是导致管道破坏的主要原因之一.对沉陷作用下埋地管道进行研究分析,将管道跨越区分为沉陷区和非沉陷区,非沉陷区管道的变形可利用弹性地基梁模型模拟推导出其挠曲线方程,沉陷区管道变形可模拟成三次曲线方程,然后利用边界条件,求得沉陷区管道的内力和位移方程.最后通过实例分析表明:管道的最大应力位于沉陷区与非沉陷区交界面处,且沉陷区管道的最大应

  6. Elastic limit of silicane.

    Peng, Qing; De, Suvranu


    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers.

  7. ElasticSearch cookbook

    Paro, Alberto


    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  8. 考虑摩擦热的弹塑性平面接触应力及塑性应变分析%Analysis of Elastic-Plastic Plane Contact Stress and Plastic Strain Considering Frictional Heat

    李鹏阳; 陈欢; 王世军; 王权岱; 傅卫平


    The influence of surface contact friction heat on the failure and the life of the parts was studied .The thermal stress of elastic-plastic surface contact was calculated using Fortran language ,the contact surface temperature distribution and the influence of friction heat on the surface pressure distribution were analyzed ,and the subsurface of the Mises stress field and the influence of plastic strain of the contact surface were discussed .The results show :With the increase of surface friction heat flux , the surface maximum pressure is increased .The maximum stress under the surface is decreased and the maximum stress zone of subsurface is always moving gradually to the contact surface .The contact surface temperature increases with the increase of sliding speed .The location of highest temperature point slowly shifts ,with increase of sliding speed ,to the sliding velocity direction .%研究了降低表面接触摩擦热对材料失效和零件寿命的影响。应用Fortran编程语言对弹塑性表面接触中产生的热应力进行了计算,分析了接触表面温度分布及摩擦热对接触表面压力分布、表面下米塞斯应力场及塑性应变的影响。分析结果表明:随着表面摩擦热流的增加,表面上最大接触压力逐渐变大,而表面下最大应力值逐渐减小,最大应力区域逐渐向接触表面上移动。接触表面温度的大小随滑动速度的提高而升高,且最高温度点的位置随滑动速度的提高缓慢向滑动速度方向偏移。

  9. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    Solano-Altamirano, J M; Goldman, Saul


    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  10. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki


    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  11. Distribution of Stress on Bonded Length of Tension-type Rock Bolt Based on Theory of Elasticity%基于弹性理论的拉力型锚杆锚固段应力分布规律研究

    彭辉; 袁超; 向德强


    视锚杆和周围介质为弹性材料,在弹性半空间里,利用Mindlin位移解,根据拉力型锚杆实际工作状态,推导出拉力型锚杆锚固段轴向应力和弹性粘结应力分布的方程。并分析相关岩土参数对锚固段轴向应力和剪应力的分布的影响,得出影响较大的几个因素,为拉力杆的力学分析和工程设计提供理论依据。%This research provides a theoretical basis for the pull rod mechanics analysis and en-gineering design. In accordance with the above,we can analyse related geotechnical parameters on the axial stress and shear stress distribution of the anchorage segment,and influence of sev-eral factors can be concluded. According to tensile type anchor rod under the actual working condition,we can deduce the equation about the distribution of axial stress and elastic bond stress of tensile type anchor's anchoring section when the anchor bolt and the surrounding me-dium are elastic materials by Mindlin's displacement solution in elastic half-space.

  12. Non-linear theory of elasticity and optimal design

    Ratner, LW


    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  13. An experimental study of the elastic theory for granular flows

    Guo, Tongtong; Campbell, Charles S.


    This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.

  14. Research on deicing effect of self-stress elastic asphalt mixture pavement%自应力弹性沥青混合料路面除冰效果研究



    The rutting specimens were poured water and were placed in low temperature to make them freeze into ice. The rut meter was used to roll of the test pieces in different temperature,dosage of rubber particles and ice thickness,and the broken rate was calculated to evaluate the deicing effect of self-stress elastic asphalt mixture pavement. The results show that the deicing effect of SEAM increases with the adding of rubber particles,and decreases with the reducing of temperature and increasing of the ice thickness.%采用在车辙试件上洒水并在低温环境下凝冰的方法,模拟了沥青路面结冰情况,并在不同温度、橡胶颗粒掺量以及凝冰厚度的条件下,用车辙仪对凝冰试件进行了碾压,通过计算不同条件下的冰层破损率,评价了自应力弹性沥青混合料路面的除冰效果,结果表明,SEAM的除冰效果随橡胶颗粒掺量的增加而提高,随温度的降低和冰层厚度的增加而下降.

  15. Development of Hard Elastic Solids from Glassy Polymers.


    elastic polypropylene (PP) as reported by Park and Noether 5 The stress-strain behavior for three intermittent cycles to 40% extension is shown in Fig. Zb...system. Such viscoelastic effects have been concluded by Park and Noether 1 5 from more extensive stress relaxation investigations of hard elastic PP...Petermann and H. Gleiter, J. Macromol. Sc.- Phys., B12(4), 523 (1976). 4. H. D. Noether , Intern. J. Polymeric Mater.,. 7, 57 (1979). 5. M. E. Mackay


    陶昉敏; 张明焕; 汤任基


    Using the engineering model of elastic line inclusion and the basic solutions of a single inclusion, the interaction problem between line inclusions in an elastic solid was investigated. A set of standard Cauchy-type singular equations of the problem was presented. The stress intensity factors at points of inclusions and the interface stresses of two sides of the inclusion were calculated. Several numerical examples were given. The results could be regarded as a reference to engineering.


    唐立强; 李永东; 刘长海


    A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.

  18. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail:


    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  19. Stress

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin


    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  20. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod


    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  1. Exposure to residual concentrations of elements from a remediated coal fly ash spill does not adversely influence stress and immune responses of nestling tree swallows.

    Beck, Michelle L; Hopkins, William A; Hallagan, John J; Jackson, Brian P; Hawley, Dana M


    Anthropogenic activities often produce pollutants that can affect the physiology, growth and reproductive success of wildlife. Many metals and trace elements play important roles in physiological processes, and exposure to even moderately elevated concentrations of essential and non-essential elements could have subtle effects on physiology, particularly during development. We examined the effects of exposure to a number of elements from a coal fly ash spill that occurred in December 2008 and has since been remediated on the stress and immune responses of nestling tree swallows. We found that nestlings at the site of the spill had significantly greater blood concentrations of Cu, Hg, Se and Zn in 2011, but greater concentrations only of Se in 2012, in comparison to reference colonies. The concentrations of elements were below levels of significant toxicological concern in both years. In 2011, we found no relationship between exposure to elements associated with the spill and basal or stress-induced corticosterone concentrations in nestlings. In 2012, we found that Se exposure was not associated with cell-mediated immunity based on the response to phytohaemagglutinin injection. However, the bactericidal capacity of nestling plasma had a positive but weak association with blood Se concentrations, and this association was stronger at the spill site. Our results indicate that exposure to these low concentrations of elements had few effects on nestling endocrine and immune physiology. The long-term health consequences of low-level exposure to elements and of exposure to greater element concentrations in avian species require additional study.

  2. DNA Bending elasticity

    Sivak, David Alexander

    DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections

  3. Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration.

    Sorrentino, Roberto; Apicella, Davide; Riccio, Carlo; Gherlone, Enrico; Zarone, Fernando; Aversa, Raffaella; Garcia-Godoy, Franklin; Ferrari, Marco; Apicella, Antonio


    This study is aimed at evaluating the biomechanical behavior of feldspathic versus alumina porcelain veneers. A 3D numerical model of a maxillary central incisor, with the periodontal ligament (PDL) and the alveolar bone was generated. Such model was made up of four main volumes: dentin, enamel, cement layer and veneer. Incisors restored with alumina and feldspathic porcelain veneers were compared with a natural sound tooth (control). Enamel, cementum, cancellous and cortical bone were considered as isotropic elastic materials; on the contrary, the tubular structure of dentin was designed as elastic orthotropic. The nonlinear visco-elatic behavior of the PDL was considered. The veneer volumes were coupled with alumina and feldspathic porcelain mechanical properties. The adhesive layers were modeled in the FE environment using spring elements. A 50N load applied at 60 degrees angle with tooth longitudinal axis was applied and validated. Compressive stresses were concentrated on the external surface of the buccal side of the veneer close to the incisal margin; such phenomenon was more evident in the presence of alumina. Tensile stresses were negligible when compared to compressive ones. Alumina and feldspathic ceramic were characterized by a different biomechanical behavior in terms of elastic deformations and stress distributions. The ultimate strength of both materials was not overcome in the performed analysis.

  4. Preparation of A New Type of Stress-absorbed Material

    WU Shao-peng; YANG Tao; YUAN Hai-qing


    Neoprene latex modified emulsified bitumen and fine aggregate are used to prepare a new type of stress-absorbed material, which has strong ability of anti-reflective cracking on asphalt concrete over layer-constructed upon a semi-rigid type base course or cement concrete pavement block. Experimental results demonstrate the stress-absorbed material have excellent mechanical properties including a low modulus of elasticity, high ultimate tensile stress and strain, and a strong distortion ability. Stress concentration in asphalt over layer originated by temperature changes and traffic loads can be alleviated.

  5. Nematic order by elastic interactions and cellular rigidity sensing

    Friedrich, B. M.; Safran, S. A.


    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early nematic alignment of short stress fibers in non-motile, adhered cells. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which orientational, nematic order of stress fibers depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.

  6. Elastic and thermal expansion asymmetry in dense molecular materials.

    Burg, Joseph A; Dauskardt, Reinhold H


    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  7. Elastic and thermal expansion asymmetry in dense molecular materials

    Burg, Joseph A.; Dauskardt, Reinhold H.


    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  8. Blunted serum and enhanced salivary free cortisol concentrations in the chronic phase after aneurysmal subarachnoid haemorrhage--is stress the culprit?

    Poll, E M; Gilsbach, J M; Hans, F-J; Kreitschmann-Andermahr, I


    Spontaneous aneurysmal subarachnoid haemorrhage (SAH) is a cause of stroke, which constitutes a severe trauma to the brain and may lead to serious long-term medical, psychosocial and endocrinological sequelae. Adrenocorticotrophic hormone deficiency, which is considered to occur in up to 20% of all survivors, is a possible consequence of bleeding. Moreover, preliminary data suggest that a poor psychosocial outcome in SAH survivors is linked to alterations in cortisol secretion. Despite these findings, investigation of diurnal cortisol profiles and the cortisol awakening response (CAR) in chronic SAH patients has not been done so far. In this study, basal serum cortisol and salivary cortisol concentration profiles were investigated in 31 SAH patients more than 1 year after the acute event and in 25 healthy controls. Additionally, low-dose dexamethasone (DEX) suppression tests were conducted, and sensitivity to stress was measured with a psychometric questionnaire (Neuropattern(TM)). Although significantly higher salivary cortisol concentrations were observed on waking in SAH patients (p = 0.013, ANOVA), without a CAR change, total serum cortisol concentrations were blunted, but only in patients with high levels of perceived stress (SAH high stress: 337 nmol/l, SAH low stress: 442 nmol/l, controls: 467 nmol/l; Controls vs. SAH high stress p = 0.018). DEX suppression of cortisol secretion was not significantly different between patients and controls. The results indicate that total (serum) and free (salivary) cortisol concentrations give different information about cortisol availability in patients after aneurysmal SAH. Enhanced free cortisol concentrations may reflect a meaningful biological coping mechanism in SAH patients.

  9. Elastic scattering phenomenology

    Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)


    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)

  10. Rolling motion of an elastic cylinder induced by elastic strain gradients

    Chen, Lei; Chen, Shaohua


    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  11. Fast variation method for elastic strip calculation.

    Biryukov, Sergey V


    A new, fast, variation method (FVM) for determining an elastic strip response to stresses arbitrarily distributed on the flat side of the strip is proposed. The remaining surface of the strip may have an arbitrary form, and it is free of stresses. The FVM, as well as the well-known finite element method (FEM), starts with the variational principle. However, it does not use the meshing of the strip. A comparison of FVM results with the exact analytical solution in the special case of shear stresses and a rectangular strip demonstrates an excellent agreement.

  12. Elastic turbulence in a shell model of polymer solution

    Ray, Samriddhi Sankar


    We show that, at low inertia and large elasticity, shell models of viscoelastic fluids develop a chaotic behaviour with properties similar to those of elastic turbulence. The low dimensionality of shell models allows us to explore a wide range both in polymer concentration and in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.

  13. No benefit adding eleutherococcus senticosus to stress management training in stress-related fatigue/weakness, impaired work or concentration, a randomized controlled study.

    Schaffler, K; Wolf, O T; Burkart, M


    Plant adaptogens are traditionally used for stress-related symptoms, but clinical evidence is inconsistent. This trial explored the effects of 120 mg/day Eleutherococcus senticosus root extract (ES), 2-day professional stress management training (SMT) and a combination of both (COM). 144 participants suffering from asthenia and reduced working capacity related to chronic stress were randomized to the treatments. Validated scales and tests were used to investigate cognitive performance; feeling stressed; fatigue and exhaustion; alertness, restlessness and mood; quality of life and sleep; physical complaints and activities; and physiological stress parameters including cortisol awakening response (CAR), at baseline, after 2 and 8 weeks of treatment (German Clinical Trials Register DRKS00000692). Almost all parameters improved significantly over time without group differences. Significant differences were found in mental fatigue and restlessness, both in favor of COM vs. ES. COM was not superior to SMT in any parameter at week 8. An attenuation of the CAR was seen at week 2 without group differences. All treatments were well tolerated. Effects of adding ES to SMT are, if any, negligible. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Statistical mechanics of elasticity

    Weiner, JH


    Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.

  15. Effects of iron concentration and redox states on failure of boron-free E-glass fibres under applied stress in different conditions



    Hydrolysis resistance of boron-free E-glass fibre with different total iron oxide (Fe$_2$O$_3$) concentrations, iron redox index and durations of fibre ageing up to 180 days at 50$^{\\circ}$C with 50% relative humidity (RH) was studied. The effect ofageing on the fibre failure measured in two different test environments was examined by using two-point bending method.Based on the differences in failure strains of the fibres obtained from the two conditions as a function of ageing time, theGriffith theory of solid fracture was applied to estimate glass surface energy difference in ageing conditions. The resultsshowed that stress-assisted hydrolysis, when the fibres were under stress, could lead to about 5.18 times reduction in surfaceenergy to account for 2.30 times reduction in fibre failure strain when tested in 50% RH at room temperature.Our study showedthat the boron-free E-glass aged up to 180 days only deteriorated within 13%, independent of total Fe$_2$O$_3$ concentration andFeO/Fe$_2$O$_3$ total ratio, and stress-assisted hydrolysis played a key role during sample testing. Dynamic fatigue of the aged E-glass fibres was also investigated, showing little influence of total Fe$_2$O$_3$ concentration and FeO/Fe$_2$O$_3$ total ratio on fibre stress; corrosion susceptibility was observed.

  16. Idealization of a Gas Turbine Compressor Blade to a Rectangular Plate and Analyzing the Variation of Stress Concentration Factor for U-Notches

    Mohammad Rafi Nadaf


    Full Text Available Aircraft turbine engines routinely experience the ingestion of debris resulting in "foreign object damage‟ FOD. The ingestion of foreign object into aircraft engines leads to severe structural damage of the fan or compressor blades. Foreign object damage by hard particles mostly occurs during motion of the aircraft on the airfield, during take-off and during landing. Typical objects ingested are stones and other debris; sizes in the millimeter regime form the airfield. The worst case condition is experienced during take-off maximum thrusts leads to maximum impact velocity. Typical impact velocities are in the regime of 100 – 400m/sec, depending on the types of engine and impact location on the blades. Foreign object damage does not always lead to sudden catastrophic failure, yet such damage can have a detrimental effect on the fatigue strength of fan and compressor aero foils. However complex stress fields and geometry of the aerofoil make it difficult to use of simple notch analysis. For finding the stress concentration factor on the notches grinded on the typical aerofoil FOD damaged gas turbine compressor blade closed form solutions are difficult proportion. In this paper a finite element analysis is carried out by idealization of the typical aerofoil to rectangular cantilever plate with single edge U-notches for finding the stress concentration factor and is then compared with the standard stress concentration data by R.E.Peterson. The study can then be extended to a typical aerofoil.

  17. The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud subjected to short-term salinity stress

    Shucheng Li


    Full Text Available Salt stress, and particularly short-term salinity stress, is one of the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd stimulats tolerance to salt stress in plants. In the present study, two cultivars that are typically grown in China were used. The two zoysiagrass cultivars, exhibiting a sensitive ( cv. Z081 or tolerant ( cv. Z057 salt stress adaptation ability, were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine (Put, Spd and Spm contents and polyamine metabolic enzyme (ADC, ODC, SAMDC, PAO and DAO, malondialdehyde (MDA, H2O2 and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase were measured. The results showed that salt stress induced increases in Spd and Spm contents and the activity of ornithine decarboxylase (ODC, S-adenosylmethionine decarboxylase (SAMDC and diamine oxidase (DAO in both cultivars. Exogenous Spd application did not compromise polyamine contents through the regulation of polyamine-degrading enzymes, and an increase in PA synthesis enzymes was observed during the experiment. The application resulted in a tendency for the Spd and Spm contents and the activities of ODC, S-adenosylmethionine decarboxylase (SAMDC, DAO, and antioxidant enzymes to first increase and then decrease in both cultivars with an increase in the exogenous Spd concentration. H2O2 and MDA significantly decreased in both cultivars treated with Spd. With an increase in the exogenous Spd concentration, the Spd + Spm level scores showed positive correlations with polyamine synthesis enzymes (ADC, SAMDC, DAO, antioxidant enzymes (SOD, POD, CAT, while showing negative correlations with H2O2 and MDA in both cultivars.

  18. Mastering ElasticSearch

    Kuc, Rafal


    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  19. Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mertolenga, Frisian and Limousine cattle breeds

    Pereira, Alfredo M. F.; Baccari, Flávio; Titto, Evaldo A. L.; Almeida, J. A. Afonso


    The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7°C to 40.0°C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.

  20. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations.

    Whitaker, W Brian; Parent, Michelle A; Naughton, Lynn M; Richards, Gary P; Blumerman, Seth L; Boyd, E Fidelma


    Vibrio parahaemolyticus inhabits marine, brackish, and estuarine waters worldwide, where fluctuations in salinity pose a constant challenge to the osmotic stress response of the organism. Vibrio parahaemolyticus is a moderate halophile, having an absolute requirement for salt for survival, and is capable of growth at 1 to 9% NaCl. It is the leading cause of seafood-related bacterial gastroenteritis in the United States and much of Asia. We determined whether growth in differing NaCl concentrations alters the susceptibility of V. parahaemolyticus O3:K6 to other environmental stresses. Vibrio parahaemolyticus was grown at a 1% or 3% NaCl concentration, and the growth and survival of the organism were examined under acid or temperature stress conditions. Growth of V. parahaemolyticus in 3% NaCl versus that in 1% NaCl increased survival under both inorganic (HCl) and organic (acetic acid) acid conditions. In addition, at 42 degrees C and -20 degrees C, 1% NaCl had a detrimental effect on growth. The expression of lysine decarboxylase (encoded by cadA), the organism's main acid stress response system, was induced by both NaCl and acid conditions. To begin to address the mechanism of regulation of the stress response, we constructed a knockout mutation in rpoS, which encodes the alternative stress sigma factor, and in toxRS, a two-component regulator common to many Vibrio species. Both mutant strains had significantly reduced survival under acid stress conditions. The effect of V. parahaemolyticus growth in 1% or 3% NaCl was examined using a cytotoxicity assay, and we found that V. parahaemolyticus grown in 1% NaCl was significantly more toxic than that grown in 3% NaCl.

  1. Measurement of elastic nonlinearity of soft solid with transient elastography

    Catheline, S.; Gennisson, J.-L.; Fink, M.


    Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus μ (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.

  2. Measurement of elastic nonlinearity of soft solid with transient elastography.

    Catheline, S; Gennisson, J L; Fink, M


    Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus mu (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.

  3. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)


    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  4. Investigation of the relationship between psychosocial stress and temporomandibular disorder in adults by measuring salivary cortisol concentration: A case-control study

    Salameh, Ebtisam; Alshaarani, Fandi; Hamed, Hussein Abou; Nassar, Jihad Abou


    Background/Purpose of the Study: Psychological factors, particularly psychosocial stress, have been implicated as risk indicators for temporomandibular disorder (TMD). The aim of this study was to assess any differences in salivary cortisol concentration, scores of perceived stress scale (PSS), and scores of depression and distress between TMD patients and matched controls. Materials and Methods: This case-control study comprised two groups; the patient group consisted of 60 patients attending the Department of Fixed Prosthodontics at the Faculty of Dentistry who met the inclusion criteria (42 females and 18 males aged 19–44), whereas the control group was selected to match the patient group in number, age and sex. Two questionnaires were used for stress assessment: The PSS 10 and the psychosocial measure of Research Diagnostic Criteria (RDC) for TMD axis II. Salivary cortisol levels were measured by a competitive immunoenzymatic colorimetric method. Data were analyzed using SPSS 17. Descriptive statistics, one-way ANOVA test, and independent t-test were used. Results: This study showed statistically significant differences between the patient group and the control group at the three measures of psychosocial stress (P < 0.05). Increased occurrence of this disorder in women has been observed. Conclusion: Psychosocial stress plays an important role in the etiopathogenesis of TMD. Women are at increased risk of TMD when compared to men. Sub-types TMD patients approximately have the same level of stress. Muscle disorders were the most common. PMID:26929502

  5. Heat stress and its impact on the workers’ cortisol concentration: A case study in a metal melding industry

    M. Ansari


    Conclusion: Results of the present study indicate that physical stresses of working environment can lead to changes in physiology of human body. Thus, variations in hormone level in its consequences in hot environment should be considered in occupational hygine.

  6. A numerical study on localized volume reduction in elastic media: some insights on the mechanics of anticracks

    Katsman, R; Scher, H


    Porous rocks, subjected to compressive stress, often undergo mechanical compaction via grain crushing and grain rearrangement, and chemical compaction by pressure solution. Such volume reduction processes are known to spontaneously localize under certain conditions, creating compaction and compacting shear bands, solution-seams, and stylolites. However the localization process is poorly understood. The formation and propagation of compaction bands has recently been studied using an elasto-plastic Spring Network Model [Katsman, Aharonov, and Scher, 2005]. In the current paper, the same technique was employed to systematically analyze localized volume reduction (LVR) defects and their interactions with the surrounding elastic media, i. e., the stress distribution around an LVR region. Simulation results show that LVR regions experience stress concentrations at their tips, reminiscent of Mode I cracks. However, aside from this similarity point, comparison of stress around LVR regions to stress around cracks reve...

  7. Is gill cortisol concentration a good acute stress indicator in fish? A study in rainbow trout and zebrafish.

    Gesto, Manuel; Hernández, Juan; López-Patiño, Marcos A; Soengas, José L; Míguez, Jesús M


    Cortisol is the main biomarker of physiological stress in fish. It is usually measured in plasma, which requires blood collection. Though cortisol is produced in the anterior kidney, it can diffuse easily through cell membranes due to its lipophilic nature. Taking advantage of that, some non-invasive techniques have been developed to measure cortisol directly in the water from fish-holding tanks, in skin mucus or in scales. In this study, we explored the possibility to analyze fish cortisol from gill filaments as a reliable acute stress marker. Our results show that gill cortisol levels correlate well with plasma cortisol levels in both rainbow trout and zebrafish exposed or not to an acute stress protocol. Measuring cortisol in gill filaments increases the available possibilities for stress assessment in fish. Although this approach should yet be tested for its use with other stressors, it has several advantages: In relatively large fish (i.e. above 30 g) gill cortisol levels could be measured in vivo. Sampling of gill biopsies is very fast and easy, and the procedure does not induce stress if properly performed, making it an ideal option for in vivo stress assessment. In small fish, the use of gill tissue to measure cortisol has important technical advantages with respect to the current methods using whole-body homogenates. Gill homogenates could be used directly for ELISA cortisol analysis, avoiding the need of tedious and expensive cortisol extraction protocols, and, since no organic solvent is required, contributing for a more environmentally friendly analysis.

  8. Effect of large elastic strains on cavitation instability predictions for elastic-plastic solids

    Tvergaard, Viggo


    For an infinite solid containing a void, the cavitation instability limit is defined as the remote stress-and strain state, at which the void grows without bound, driven by the elastic energy stored in the surrounding material. Such cavitation limits have been analysed by a number of authors...

  9. Nonlinear elastic waves in materials

    Rushchitsky, Jeremiah J


    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  10. The Elastic Constants for Wrought Aluminum Alloys

    Templin, R L; Hartmann, E C


    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  11. Elastic and viscoelastic properties of a type I collagen fiber.

    Sopakayang, Ratchada; De Vita, Raffaella; Kwansa, Albert; Freeman, Joseph W


    A new mathematical model is presented to describe the elastic and viscoelastic properties of a single collagen fiber. The model is formulated by accounting for the mechanical contribution of the collagen fiber's main constituents: the microfibrils, the interfibrillar matrix and crosslinks. The collagen fiber is modeled as a linear elastic spring, which represents the mechanical contribution of the microfibrils, and an arrangement in parallel of elastic springs and viscous dashpots, which represent the mechanical contributions of the crosslinks and interfibrillar matrix, respectively. The linear elastic spring and the arrangement in parallel of elastic springs and viscous dashpots are then connected in series. The crosslinks are assumed to gradually break under strain and, consequently, the interfibrillar is assumed to change its viscous properties. Incremental stress relaxation tests are conducted on dry collagen fibers reconstituted from rat tail tendons to determine their elastic and viscoelastic properties. The elastic and total stress-strain curves and the stress relaxation at different levels of strain collected by performing these tests are then used to estimate the parameters of the model and evaluate its predictive capabilities.

  12. First-Principles Study of Thermodynamical and Elastic Properties of η'-(Cu,Co)6Sn5 Ternary Alloys

    Zhang, Xuechao; Zhao, Xiuchen; Zheng, Bing; Liu, Ying; Cheng, Jingwei; Li, Hong


    First-principles calculations were made to investigate the formation energy and elastic properties of η'-Cu6Sn5-based intermetallic compounds (IMCs) with different amounts of Co substitutional atom concentrations. The possible Co substitutional sites in η'-Cu6Sn5 structures are examined. The formation energy of substitutional Co in η'-Cu6Sn5 is reduced with increasing Co concentration. The effect of Co on the elastic modulus and ductility of η'-Cu6Sn5 dramatically increased the elastic properties of Cu-Sn IMCs in the range 0-27.27 at.%. Cu4Co2Sn5 has the highest Young's modulus, bulk modulus and shear modulus with a maximum Poisson's ratio of 0.32 with 18.18 at.% Co concentration. Ductility for these compounds is further analyzed by calculating the ratio of B/ G and Cauchy's stress ( C 12 - C 44) and the results indicate that η'-Cu6Sn5 with Co substitutions should have a better ductility than the pure η'-Cu6Sn5 structure. The electronic structures of Co-substituted η'-Cu6Sn5 are analyzed and the increasing hybridization between Co- d and Sn- p accounts for the improved phase stability and elastic modulus of η'-Cu6Sn5 with Co addition up to 18.18 at.%.

  13. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.


    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  14. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.


    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  15. Measurements of blood flow and blood concentration change using laser speckle in fiber illumination and its application to estimation of stress condition

    Yokoi, Naomichi; Shinohara, Tomomi; Funamizu, Hideki; Kyoso, Masaki; Shimatani, Yuichi; Yuasa, Tomonori; Aizu, Yoshihisa


    Speckle imaging method is useful for monitoring of blood flow in living bodies. We have proposed so far the method for simultaneous imaging of blood flow and blood concentration change using laser speckle patterns at two wavelengths. However, our conventional measurement system has difficulty in adjusting the illuminating optical axis of two laser sources. Therefore, we introduce a novel arrangement using a coaxial fiber illumination in the detection of speckle patterns in two wavelengths. By this arrangement, the blood flow can be stably analyzed with a frame rate using an estimation parameter proposed by the authors based on the spatial contrast of speckle patterns. This parameter is useful for estimating an autonomic nervous function which reflects stress conditions caused by tension and excitement. In this study, we present measurements of the blood flow and blood concentration change in the fiber illumination, and its application to estimation of stress condition.

  16. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    Orn-uma Yanpanitch


    Full Text Available Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE, which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR or vitamin E (Vit-E, and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P<0.01 in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.

  17. Effect of mycorrhizal fungi and phosphorus fertilizer on concentration of leaf nutrients and photosynthetic pigments of common bean (Phaseolus vulgaris L. under salinity stress condition

    B. Parsa-Motlagh


    Full Text Available In order to investigate the effect of Mycorrhizal fungi and phosphorus fertilizer on concentration of leaf nutrients and photosynthetic pigments of bean (Phaseolus vulgaris L. in condition of irrigation with saline water, an experiment was conducted based on completely randomized design with three replications in greenhouse of Bahonar University of Kerman, Iran during 2010. The studied factors were water salinity (500 (control, 2000, 4000 and 6000 , phosphorus fertilizer (0, 100 and 200 soil in form of Triple super phosphate and mycorrhizal fungi with three levels (GLOMUS MOSSEAE AND GLOMUS INTRARADICES AND no fungi (control. The results showed that the concentrations of chlorophyll a, chlorophyll b, total chlorophyll, carotenoeids, K, Ca and P were decreased with increasing of salinity levels. But salinity increased the concentration of Na and Na/K ratio. Mycorrhizal fungi had no significant effect on concentration of Ca and chlorophyll a. The interaction of salinity and phosphorus fertilizer on concentration of chlorophyll b, Na and P was significant. Results demonstrated that GLOMUS INTRARADICES had better effect on improvement of photosynthetic pigments concentration and concentration of nutrition elements. In low levels of salinity stress, use of MYCORRHIZAL FUNGI WITH PHOSPHORUS FERTILIZER, can reduce the negative effects of salt by increasing of concentration of photosynthetic pigments and nutrition elements.

  18. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien


    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  19. A comparison between different finite elements for elastic and aero-elastic analyses.

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani


    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  20. 点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响∗%Effects of p oint defect concentrations on elastic properties of off-stoichiometric L12-type A13Sc

    张朝民; 江勇; 尹登峰; 陶辉锦; 孙顺平; 姚建刚


    Elastic properties and phase stabilities of L12-A13Sc precipitate phase in Al-Sc alloys have been topics of experi-mental and theoretical research over the past years. However, these properties of off-stoichiometric L12-A13Sc have not been investigated. Firstly, in combination with Wagner-Schottky model, the first-principles total energy calculations based on density functional theory are performed to study point defect concentrations of intermetallic L12-A13Sc each as a function of temperature and alloy composition. We calculate the point defect formation enthalpies and plot the point defect density curves of stoichiometric and off-stoichiometric L12-A13Sc at 1000 K. The results show that within the whole temperature range (300–1200 K), Al and Sc vacancies dominate on stoichiometric L12-A13Sc but with low concentrations (∼10−6 even at 1200 K); on the Al-rich side of off-stoichiometric L12-A13Sc, the Al anti-site and the Sc vacancy concentrations dominate, and their concentrations are comparable, however, on Sc-rich side of off-stoichiometric L12-A13Sc, the Sc anti-site defect dominates. Furthermore, the lattice constants and the elastic constants of stoichio-metric and off-stoichiometric L12-Al3Sc are calculated, and it is worth noting that 2 × 2 × 2 supercell models with a point defect are used for off-stoichiometric L12-Al3Sc in the calculation. Then employing calculated elastic constants, the values of Young’s modulus, shear modulus, bulk modulus, anisotropic index, G/B ratio, Cauchy pressure, and Poisson ratio of stoichiometric and off-stoichiometric L12-Al3Sc are computed. And lastly, combining these data with point defect concentrations of off-stoichiometric L12-Al3Sc at 1000 K, the comprehensive effects of four point defects on elastic properties of L12-Al3Sc are evaluated. The four point defects coexist in L12-Al3Sc as we know from the calculations of equilibrium point defect density. The conclusions are as follows. 1) The point defects can cause

  1. Fracture Mechanics of an Elastic Softening Material like Concrete

    Reinhardt, H.W.


    Concrete is modelled as a linear elastic softening material and introduced into fracture mechanics. A discrete crack is considered with softening zones at the crack tips. Following the approach of Dugdale/Barenblatt, closing stresses are applied to the crack faces in the softening zone. The stresses

  2. Vibration of Timoshenko Beams Using Non-classical Elasticity Theories

    J.V. Araújo dos Santos


    Full Text Available This paper presents a comparison among classical elasticity, nonlocal elasticity, and modified couple stress theories for free vibration analysis of Timoshenko beams. A study of the influence of rotary inertia and nonlocal parameters on fundamental and higher natural frequencies is carried out. The nonlocal natural frequencies are found to be lower than the classical ones, while the natural frequencies estimated by the modified couple stress theory are higher. The modified couple stress theory results depend on the beam cross-sectional size while those of the nonlocal theory do not. Convergence of both non-classical theories to the classical theory is observed as the beam global dimension increases.

  3. Elastic anisotropy of crystals

    Christopher M. Kube


    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  4. Elastic constants of calcite

    Peselnick, L.; Robie, R.A.


    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  5. Elastic scattering of hadrons

    Dremin, I M


    When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...

  6. An elastic second skin

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert


    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  7. Properties of elastic percolating networks in isotropic media with arbitrary elastic constants

    Pla, O.; Garcia-Molina, R.; Guinea, F.; Louis, E.


    The properties of diluted elastic media in two dimensions are investigated in an isotropic system in which the ratio between the two Lamé coefficients can be varied. Changes in the ratio between the continuum elastic constants induce significant variations in the behavior of the system away from the threshold for percolation, but not in the properties near the percolation transition. We discuss the results in both cases and their relevance to the definition of the universal properties of diluted elastic networks. It is shown that many features of interest, like the bulk modulus at intermediate concentrations of voids and the backbone, are very dependent on the microscopic details of the model, and not only on its macroscopic behavior. Thus, elastic percolation does not seem to have the same degree of universality as scalar percolation.

  8. Thermal elastic deformations of the planet Mercury.

    Liu, H.-S.


    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  9. Thermal elastic deformations of the planet Mercury.

    Liu, H.-S.


    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  10. Anisotropic elastic plates

    Hwu, Chyanbin


    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  11. Hybrid elastic solids

    Lai, Yun


    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  12. Mechanics of elastic composites

    Cristescu, Nicolaie Dan; Soós, Eugen


    This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book''s many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading

  13. ElasticSearch server

    Rogozinski, Marek


    This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.

  14. UEffect of acute sleep deprivation on concentration and mood states with a controlled effect of experienced stress

    Tanja Kajtna


    Conclusions: As previous studies have shown, mood changes rather than decreased concentration occur after acute sleep deprivation – cognitive abilities seem to be more resistant to sleep deprivation. Further studies with longer sleep deprivation should show how long it takes to disrupt our concentration and higher cognitive abilities.

  15. Pulsed Dielectric Breakdown of Aluminum Oxide (ALOX) Filled Epoxy Encapsulants: Effects of Formulation and Electric Stress Concentration



    Aluminum oxide (ALOX) filled epoxy is the dielectric encapsulant in shock driven high-voltage power supplies. ALOX encapsulants display a high dielectric strength under purely electrical stress, but minimal information is available on the combined effects of high voltage and mechanical shock. We report breakdown results from applying electrical stress in the form of a unipolar high-voltage pulse of the order of 10-{micro}s duration, and our findings may establish a basis for understanding the results from proposed combined-stress experiments. A test specimen geometry giving approximately uniform fields is used to compare three ALOX encapsulant formulations, which include the new-baseline 459 epoxy resin encapsulant and a variant in which the Alcoa T-64 alumina filler is replaced with Sumitomo AA-10 alumina. None of these encapsulants show a sensitivity to ionizing radiation. We also report results from specimens with sharp-edged electrodes that cause strong, localized field enhancement as might be present near electrically-discharged mechanical fractures in an encapsulant. Under these conditions the 459-epoxy ALOX encapsulant displays approximately 40% lower dielectric strength than the older Z-cured Epon 828 formulation. An investigation of several processing variables did not reveal an explanation for this reduced performance. The 459-epoxy encapsulant appears to suffer electrical breakdown if the peak field anywhere reaches a critical level. The stress-strain characteristics of Z-cured ALOX encapsulant are measured under high triaxial pressure and we find that this stress causes permanent deformation and a network of microscopic fractures. Recommendations are made for future experimental work.

  16. Elasticity soltion of rupture model of shallow earthquake

    Li YU; Zhaohua YANG; Yingyu JIN; Li ZHANG


    Based on the theory of elastic mechanics, and using the typical rupture model of shallow earthquake, the authors considered the shallow earthquake as a plane mechanical problem, which was constructed the corresponding mechanical model. By the stress components' formulas of the semi-infinite model acted by the finite even shearing force, the main stress is deduced. It is clear that the sector on the right of the center section is squeezed zone, where the maximum principal stress points at the "source of stress", and that on the left is tensile zone, where the minimum principal stress points to the "source of stress".

  17. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    Wang, K.; Hu, Y.


    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  18. Asymmetric Vibrations of a Circular Elastic Plate on an Elastic Half Space

    Schmidt, H.; Krenk, Steen


    The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two-dim...... of the vibration frequency of various plate stiffnesses and the normal component of the surface displacement field for simple excitation of the plate and passage of a plane Rayleigh wave.......The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two......-dimensional problems. The radial variations of contact stresses and surface displacements are represented by polynomials, the coefficients of which are directly related by an infinite matrix that is a function of the vibration frequency. The results include a parametric study of the power input as a function...

  19. Semi-analytical solution to plane strain loading of elastic layered coating on an elastic substrate

    Thamarai Selvan Vasu; Tanmay K Bhandakkar


    The plane strain loading of a linear elastic layered coating halfspace is solved semi-analytically through a combination of Airy stress function and Fourier transforms and highly simplified and compact expressions for displacement and stresses in layer and substrate are presented in terms of pressure distribution in the loaded region. The results are applied to study the influence of layer thickness and mismatch in elastic modulus between layer and substrate on the stresses and displacement during loading of layered coating system. Lastly the effect of degree of smoothness of the pressure profile on the plane strain loading response of layered coating system is simulated through three different pressure profiles for a fixed total load and loading zone length.

  20. Active elastic thin shell theory for cellular deformations

    Berthoumieux, Hélène; Maître, Jean-Léon; Heisenberg, Carl-Philipp; Paluch, Ewa K.; Jülicher, Frank; Salbreux, Guillaume


    We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description is relevant to describe the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically at a short timescale and subjected to active internal forces arising from myosin molecular motor activity. We show that the recent observations of cell deformation following detachment of adherent cells (Maître J-L et al 2012 Science 338 253-6) are well accounted for by this mechanical description. The actin cortex elastic and bending moduli can be obtained from a quantitative analysis of cell shapes observed in these experiments. Our approach thus provides a non-invasive, imaging-based method for the extraction of cellular physical parameters.

  1. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    shahrzad karami


    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  2. Grape juice concentrate (G8000™) modulates apoptosis but not oxidative stress following rat colon carcinogenesis induced by azoxymethane.

    Oshima, Celina Tizuko Fujiyama; Landman, Gilles; Paiotti, Ana Paula Ribeiro; Artigiani Neto, Ricardo; Silva, Roseane Mendes; Campanholo, Vanessa Maria De Lima Pazine; Gollucke, Andrea Pittelli Boiago; Ribeiro, Daniel Araki; Forones, Nora Manoukian


    The aim of this study was to evaluate if grape juice concentrate is able to protect against experimental colon carcinogenesis. For this purpose, a total of 35 male Wistar rats were randomly distributed into seven groups: G1: SHAM animals receiving only saline; G2: animals receiving 15 mg/kg azoxymethane (AOM); G3: animals receiving 1% grape juice concentrate 2 weeks before the administration of AOM; G4: animals receiving 2% grape juice concentrate 2 weeks before the administration of AOM; G5: animals receiving 1% grape juice concentrate 4 weeks after the last administration of AOM; G6: animals receiving 2% grape juice concentrate 4 weeks after the last administration of AOM; G7: animals receiving only 2% grape juice concentrate. The group that received 2% grape juice concentrate before induction with AOM showed the decreased expression of Bcl-2 compared to those animals that were induced by AOM (positive control). Regarding Bax, animals that received grape juice at 2% decreased Bax immunoexpression when compared to AOM group. Furthermore, animals that intake grape juice at 1% after induced by AOM decreased Bax immunoexpression as well. 8-OHdGLI did not show significant statistically differences (p > 0.05) among groups. In summary, our results demonstrate that grape juice is able to modulate rat colon carcinogenesis as a result of induction of apoptosis.

  3. Elastic clearance change in axisymmetric shearing process

    Yoshida, Yoshinori


    An axisymmetric shearing experiment is conducted for a sheet of low carbon steel and stainless steel. Elastic change in the clearance between punch and die is measured. The increase of the clearance in shearing is confirmed and the influence of sheared material's flow stress on the clearance change is shown. Finite element analysis (FEA) of shearing with Gurson-Tvergaard-Needlman model (GTN model) is conducted for shearing of the carbon steels with rigid tools as a numerical experiment. Burr height is predicted in the FEA and the result is compared with the experimental result. In addition, the influence of the clearance on stress state in the material is investigated.

  4. bessel functions for axisymmetric elasticity problems of the elastic ...



  5. Acquired disorders of elastic tissue: Part II. decreased elastic tissue.

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie


    Elastic fibers in the extracellular matrix are integral components of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin are attributable to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood owing to the paucity of reported cases. Several acquired disorders in which loss of dermal elastic tissue produces prominent clinical and histopathologic features have recently been described, including middermal elastolysis, papular elastorrhexis, and pseudoxanthoma-like papillary dermal elastolysis, which must be differentiated from more well-known disorders such as anetoderma, acquired cutis laxa, and acrokeratoelastoidosis. Learning objective At the conclusion of this learning activity, participants should have an understanding of the similarities and differences between acquired disorders of elastic tissue that are characterized by a loss of elastic tissue.

  6. Yielding elastic tethers stabilize robust cell adhesion.

    Matt J Whitfield


    Full Text Available Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  7. Is gill cortisol concentration a good acute stress indicator in fish? A study in rainbow trout and zebrafish

    Gesto, Manuel; Hernandez, Juan; Lopez-Patino, Marcos A.


    Cortisol is the main biomarker of physiological stress in fish. It is usually measured in plasma, which requires blood collection. Though cortisol is produced in the anterior kidney, it can diffuse easily through cell membranes due to its lipophilic nature. Taking advantage of that, some non-inva...... is required, contributing for a more environmentally friendly analysis. (C) 2015 Elsevier Inc. All rights reserved.......-invasive techniques have been developed to measure cortisol directly in the water from fish-holding tanks, in skin mucus or in scales. In this study, we explored the possibility to analyze fish cortisol from gill filaments as a reliable acute stress marker. Our results show that gill cortisol levels correlate well...

  8. Effects of PVA and PEG on pH Dependent Shear Yield Stress of Concentrated Alumina Suspensions

    ZHENGRenjie; B.RAND


    The pH dependence of the extrapolated shear yield stress for Alcoa A16 α-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. Whith the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yied stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.

  9. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K


    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  10. Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development.

    Lopez, Gerardo; Girona, Joan; Marsal, Jordi


    Effect of water stress during stage III of peach fruit development on winter root starch concentration (RSC) and subsequent reproductive development was studied. Two irrigation treatments were applied in two consecutive seasons (2003-2004): full irrigation (FI) and no irrigation during stage III of fruit development until visible leaf wilting (LWI), which occurred when midday stem water potential reached -1.80 MPa. Three fruit thinning intensities were applied within each irrigation treatment. The year 2005 was a recovery year in which all trees received full irrigation and commercial fruit thinning. Water deficit and high fruit loads in the previous season significantly reduced the concentration of winter RSC. Fruit set and fruit growth from full bloom to 30 days after full bloom (30 DAFB) increased with increasing winter RSC before other factors, such as inter-fruit competition and availability of carbon from current photosynthesis, came into play. Consequently, severe water stress reduced the total number of fruits and fruit dry mass growth 30 DAFB. However, during the recovery year and after fruit thinning, fruit loads were similar between irrigation treatments and yield capacity remained unaffected. Peach fruit production recovered quickly from the deleterious effects of two consecutive years of water stress because of a combination of two factors: (1) reduced initial fruit set that was still adequate to achieve a commercial crop; and (2) the low sensitivity of fruit growth 30 DAFB to winter RSC.

  11. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro.

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika


    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  12. Application of Elastic Layered System in the Design of Road

    Jia Ying


    Full Text Available Elastic layered system is widely used in road design because of its reasonable assumptions, simple calculation model and typical represent activeness. Although the hypothesis is partly different from the actual structure, it is irreplaceable and worthy of further study in the current level of science and technology. This paper lists and briefly describes the application of elastic layered system theory in the calculation of asphalt pavement thickness and subgrade the stress analysis of cement concrete pavement and porous concrete base load to illustrate the generalizability of application of elastic layered system and look to the future road.

  13. Pure Azimuthal Shear of an Elastic Dielectric Material

    Kuldeep Kumar


    Full Text Available The purpose of this research is to examine the effect of polarization for the problem of pure azimuthal shear of an elastic dielectric material. The present problem is investigated in context of finite deformation theory. In this paper, the author studied the effect of polarization on the stresses for Neoprene rubber and compare the results with elastic material (Mooney-Rivlin material graphically. Twisting of a rigid cylinder in an infinite elastic medium is considered as a special case in this research.

  14. Third order elastic constants of bcc Cu-Al-Ni

    Gonzàlez Comas, Alfons; Mañosa, Lluís


    We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been abl...

  15. Non-linear elastic deformations

    Ogden, R W


    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  16. Mathematical methods in elasticity imaging

    Ammari, Habib; Garnier, Josselin; Wahab, Abdul


    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertai

  17. Urinary Concentrations of Bisphenols and Their Association with Biomarkers of Oxidative Stress in People Living Near E-Waste Recycling Facilities in China.

    Zhang, Tao; Xue, Jingchuan; Gao, Chuan-zi; Qiu, Rong-liang; Li, Yan-xi; Li, Xiao; Huang, Ming-zhi; Kannan, Kurunthachalam


    In this study, concentrations of bisphenol A (BPA) and seven other bisphenols (BPs) were measured in urine samples collected from people living in and around e-waste dismantling facilities, and in matched reference population from rural and urban areas in China. BPA, bisphenol S (BPS), and bisphenol F (BPF) were frequently detected (detection frequencies: > 90%) in urine samples collected from individuals who live near e-waste facilities, with geometric mean (GM) concentrations of 2.99 (or 3.75), 0.361 (or 0.469), and 0.349 (or 0.435) ng/mL (or μg/g Cre), respectively; the other five BPs were rarely found in urine samples, regardless of the sampling location. The urinary concentrations of BPA and BPF, but not BPS, were significantly higher in individuals from e-waste recycling locations than did individuals from a rural reference location. Our findings indicated that e-waste dismantling activities contribute to human exposure to BPA and BPF. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in urine as a marker of oxidative stress. In the e-waste dismantling location, urinary 8-OHdG was significantly and positively correlated (p < 0.001) with urinary BPA and BPS, but not BPF; a similar correlation was also observed in reference sites. These findings suggest that BPA and BPS exposures are associated with elevated oxidative stress.

  18. Hypothalamic kappa opioid receptor mediates both diet‐induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress

    Imbernon, Monica; Sanchez‐Rebordelo, Estrella; Romero‐Picó, Amparo; Kalló, Imre; Chee, Melissa J.; Porteiro, Begoña; Al‐Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M.; van Gestel, Margriet; Adan, Roger A.; Liposits, Zsolt; Dieguez, Carlos; López, Miguel


    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose‐regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH‐R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone–induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline–deficient, diet‐induced and choline‐deficient, high‐fat diet–induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose‐regulated protein 78 kDa in the liver abolished hypothalamic κOR‐induced steatosis by reducing hepatic ER stress. Conclusions: This study reveals a novel hypothalamic–parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086‐1104) PMID:27387967

  19. Stress Concentration Analysis of Reinforced Cylindrical Shells with Large Opening%圆柱壳大开孔补强的应力集中分析

    舒斌; 胡刚义; 肖伟; 张元盛


    Combined with practical engineering, stress concentration on the reinforcement of pressure hull of submarine with large opening was studied.Different forms of reinforcement were investigated by the Finite Element Method (FEM) and rules of thumb.Models were constructed and the stress concentration factors were worked out.By comparing and analyzing the results from these two methods, it shows that the bending hoop stress of opening where lies in maximum hoop membrane stress cannot be ignored when the opening stiffened by coaming.The calculations also prove effective in reinforcement of structural design of large openings.%针对潜艇耐压壳体上大开孔补强处的应力集中现象,结合工程实际问题,采用规范和有限元法对潜艇耐压壳体上大开孔不同补强形式进行了研究,建立了相应的模型,并求出了应力集中系数.通过对两种方法的计算结果进行分析比较,发现当围壁加强时,最大周向应力处的弯曲应力不容忽视.结果说明,用有限单元法进行大开孔补强结构设计是合理、有效的,是对规范计算的完善和补充.

  20. Influence of maltodextrin and environmental stresses on stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions.

    Onsaard, E; Putthanimon, J; Singthong, J; Thammarutwasik, P


    The influence of maltodextrin with different concentrations (0-30%) and dextrose equivalent (dextrose equivalent 10 and dextrose equivalent 15) under different environmental stresses (pH 3-8, NaCl 0-500 mM, and sucrose 0-20%) on the stability of whey protein concentrate/κ-carrageenan stabilized sesame oil-in-water emulsions was investigated by mean particle diameter, particle size distribution, ζ-potential, microstructure, and viscosity. Sesame oil-in-water emulsions containing anionic droplets stabilized by interfacial membranes comprising whey protein concentrate/κ-carrageenan/maltodextrin (15% sesame oil, 0.5% whey protein concentrate, 0.2% κ-carrageenan, 0.02% sodium azide and 0-30% maltodextrin with dextrose equivalent of 10 and 15, 5 mM phosphate buffer, pH 7) were produced using a homogenizer. The primary emulsion (1°) containing whey protein concentrate-coated droplets was prepared by homogenizing. The secondary emulsion (2°) containing whey protein concentrate-κ-carrageenan in the absence or presence of maltodextrin was produced by mixing the 1° emulsion with an aqueous κ-carrageenan in the absence or presence of maltodextrin solution. There were no significant changes in mean droplet diameter and ζ-potential of droplets at any maltodextrin concentration (0-30%) or dextrose equivalent (10 and 15) after 24 h storage. The apparent viscosity of emulsions increased when the maltodextrin concentration increased. The 2° emulsion containing 15% maltodextrin with dextrose equivalent of 10 had the stability to aggregation at pH 6-8, NaCl ≤ 300 mM, and sucrose 0-20%. The addition of maltodextrin to emulsion can be used to form emulsions with different physicochemical properties for various applications in food processing (for example, encapsulation).