Energy Technology Data Exchange (ETDEWEB)
Suzuki, H.; Yoshida, K. [The University of Tokyo, Tokyo (Japan)
1996-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, H; Yoshida, K [The University of Tokyo, Tokyo (Japan)
1997-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ota, M; Ikegami, H; Yamaguchi, Y [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-10-01
The elastic response of VLFS of 1200m long in wave was studied experimentally using a water tank and integral elastic model of 1/80 scale. As offshore airport, a ultra- thin box type floating structure of 5km long, 1km wide and several meter thick is used, and the effect of elasticity is not negligible for such a structure. The experiment used a water tank of 160m long, 30m wide and 3.1m deep. Supposing a water depth of 20m for real VLFSs, the experiment was carried out mainly in a local shallow water area prepared with a temporary bottom together with that in a deep water area. A simple mooring equipment with a linear spring equivalent to real VLFSs was used. The integral floating model was prepared by not mechanical but welded junction to obtain uniform elasticity. The response in wave showed a complicated 3-D behavior, offering useful data for verification of a behavior estimation method. The response was nearly equal between shallow and deep water areas at the same wave length, and the response amplitude in regular waves was equivalent to the significant amplitude in long and short crested irregular waves. 7 refs., 8 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Yasuzawa, Y.; Kagawa, K.; Kitabayashi, K. [Kyushu University, Fukuoka (Japan); Kawano, D. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-08-01
The theory and formulation for the numerical response analysis of a large floating structure in regular waves were given. This paper also reports the comparison between the experiment in the Shipping Research Institute in the Minitry of Transport and the result calculated using numerical analytic codes in this study. The effect of the bending rigidity of a floating structure and the wave direction on the dynamic response of a structure was examined by numerical calculation. When the ratio of structure length and incident wavelength (L/{lambda}) is lower, the response amplitude on the transmission side becomes higher in a wave-based response. The hydrodynamic elasticity exerts a dominant influence when L/{lambda} becomes higher. For incident oblique waves, the maximum response does not necessarily appear on the incidence side. Moreover, the response distribution is also complicated. For example, the portion where any flexible amplitude hardly appears exists. A long structure response can be predicted from a short structure response to some degree. They differ in response properties when the ridigity based on the similarity rule largely differs, irrespective of the same L/{lambda}. For higher L/{lambda}, the wave response can be easily predicted when the diffrection force is replaced by the concentrated exciting force on the incidence side. 13 refs., 14 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Fujikubo, M.; Yao, T.; Oida, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1996-12-31
Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Fujikubo, M; Yao, T; Oida, H [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1997-12-31
Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.
Investor response to consumer elasticity
International Nuclear Information System (INIS)
Grenaa Jensen, Stine; Meibom, Peter; Ravn, H.F.; Straarup, Sarah
2004-01-01
In the Nordic electricity system there is considerable uncertainty with respect to the long-term development in production capacity. The process towards liberalisation of the electricity sector started in a situation with a large reserve margin, but this margin is gradually vanishing. Since the potential investors in new production capacity are unaccustomed with investments under the new regime it is unknown if and when investments will take place. The electricity price is the key market signal to potential investors. The price is settled as a balance between supply and demand, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used. The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity for investments in a base load and a peak load plant are investigated. The main result of the analysis is that peak load investments can be made unprofitable by the development in consumer price elasticity, such that an investor will tend to wait with his peak load investment, until the development in consumer price elasticity has been revealed. (au)
Energy Technology Data Exchange (ETDEWEB)
Ma, N; Hirayama, T; Sato, N [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1997-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ma, N.; Hirayama, T.; Sato, N. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1996-01-01
Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...... values.We show that the extremal overall elastic response is alwaysachieved by a configuration consisting of a single properlyoriented crystal. This result is compared to results for isotropicpolycrystals....
The elastic response of composite materials
International Nuclear Information System (INIS)
Laws, N.
1980-01-01
The theory of linear elasticity is used to study the elastic response of composite materials. The main concern is the prediction of overall moduli. Some attention is paid to the problem of deciding upon when the idea of an overall modulus is meaningful. In addition it is shown how to calculate some rigorous bounds on the overall moduli, and some predictions of the self-consistent method are discussed. The paper mainly concentrates on isotropic dispersions of spheres, unidirectional fibre-reinforced materials and laminates. (author)
Energy Technology Data Exchange (ETDEWEB)
Maeda, H; Miyajima, S [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K; Ikoma, T [Nihon University, Tokyo (Japan). College of Science and Technology
1997-12-31
Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.
Energy Technology Data Exchange (ETDEWEB)
Maeda, H.; Miyajima, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K.; Ikoma, T. [Nihon University, Tokyo (Japan). College of Science and Technology
1996-12-31
Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1997-01-01
Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...
Response of orthotropic micropolar elastic medium due to time ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
namic response of anisotropic continuum has received the attention of ... linear theory of micropolar elasticity and bending of orthotropic micropolar ... medium due to time harmonic concentrated load, the continuum is divided into two half-.
Elastic response of thermal spray deposits under indentation tests
International Nuclear Information System (INIS)
Leigh, S.H.; Lin, C.K.; Berndt, C.C.
1997-01-01
The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data
Dynamic response of beams on elastic foundations to impact loading
International Nuclear Information System (INIS)
Prasad, B.B.; Sinha, B.P.
1987-01-01
The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)
Elastic limit and microplastic response of hardened steels
Energy Technology Data Exchange (ETDEWEB)
Zaccone, M.A. (McDonnell Douglas Aerospace Co., St. Louis, MO (United States)); Krauss, G. (Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering)
1993-10-01
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Directory of Open Access Journals (Sweden)
Francesco Cordero
2015-12-01
Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
International Nuclear Information System (INIS)
Elsner, B.A.M.; Müller, S.; Bargmann, S.; Weissmüller, J.
2017-01-01
Predicting the influence of the surface on the effective elastic properties of nanoscale structures and nanomaterials remains a challenge, which we here address on both levels, continuum and atomic. Density Functional Theory (DFT) computation at the atomic level yields the first reliable surface excess elastic parameters for the (111) and (001) surfaces of gold. At the continuum level, we derive closed-form expressions for the effective elastic behavior that can be combined with the DFT-derived excess elastic parameters to obtain the effective axial, torsion, and bending stiffness of circular nanowires with surface excess elasticity. The two approaches use different reference frames, and we emphasize the need for consistent stress definitions and for conversion between the separate stress measures when transferring results between the approaches. We present excess elastic parameters separately for Cauchy and 2 nd Piola-Kirchhoff stresses, demonstrating that the conversion substantially modifies their numerical value and may even invert their sign. The results afford an assessment of the contribution of the surface excess elastic parameters to the effective elastic response of nanoscale beams or wires. This assessment sheds doubt on earlier suggestions relating experimental observations of an effective stiffening or softening at small size to the excess elasticity of clean surfaces.
Elastic Nonlinear Response in Granular Media Under Resonance Conditions
Jia, X.; Johnson, P. A.
2004-12-01
We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass
Electrical resistivity response due to elastic-plastic deformations
International Nuclear Information System (INIS)
Stout, R.B.
1987-01-01
The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs
Characteristics of Jerk Response Spectra for Elastic and Inelastic Systems
Directory of Open Access Journals (Sweden)
Haoxiang He
2015-01-01
Full Text Available Jerk is the time rate of acceleration and mainly represents the nonstationary component in high frequency band of the earthquake wave. The study on jerk and its response spectra can enhance the recognition of the nonstationary ground motion. The mechanical meaning and research value of jerk are described. Jerk is recommended to be solved by establishing state-space equations and Runge-Kutta method. The solution method of elastic and inelastic jerk response spectra under ground motion is established, and the accurate jerk spectrum should be calculated directly according to numerical computing instead of pseudo-acceleration spectrum. The characteristics of jerk response spectra are studied according to the influencing factors, such as site condition, amplification factor, ductility factor, and reduction factor. The concept of impact reduction factor is presented. The statistical results show that the jerk spectrum has similar rules as the acceleration spectrum, and the amplitude is relative to the predominant period, especially for structures with short or medium period. If the ductility is improved, the effective jerk will reduce obviously, and the impact reduction factor will be enhanced. Different from the strength reduction factor, the impact reduction factor is nearly not relevant to the period.
Stochastic seismic response of building with super-elastic damper
Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik
2016-05-01
Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.
Invester Response to Consumer Elasticity, Nordic Energy Research
DEFF Research Database (Denmark)
Jensen, Stine Grenaa; Meibom, Peter; Ravn, Hans V.
2004-01-01
. The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity......, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity...... demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used...
Prediction of elastic-plastic response of structural elements subjected to cyclic loading
International Nuclear Information System (INIS)
El Haddad, M.H.; Samaan, S.
1985-01-01
A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)
Response of multiphase magneto-electro-elastic sensors under ...
African Journals Online (AJOL)
The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress assumption is presented in this paper. The beam is subjected to harmonic excitation with a point load at tip and a uniformly distributed load along the bottom surface of the mild steel beam. Numerical ...
Seismic response of elastically restrained single bellows expansion joint in lateral mode
International Nuclear Information System (INIS)
Kameswara Rao, C.; Radhakrishna, M.
2003-01-01
The present paper attempts to derive an exact solution for the seismic response of U type of single bellows that are considered elastically restrained against rotation to classical fixed-fixed case considered by Morishita et al. (author)
Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane
Directory of Open Access Journals (Sweden)
Qiuzhan Zhou
2016-05-01
Full Text Available The Molecular Electric Transducer (MET, widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.
Role of architecture in the elastic response of semiflexible polymer and fiber networks
Heussinger, Claus; Frey, Erwin
2007-01-01
We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that is completely absent in athermal models. In extensive numerical studies we systematically vary the architecture of the networks and identify a wealth of phenomena that clearly show the strong dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure. In particular, we highlight the importance of the polymer length, which to a large extent controls the elastic response of the network, surprisingly, even in parameter regions where it does not enter the macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond the conventional approach that considers the response of typical polymer segments only. Instead, we propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed macroscopic elasticity to the physical mechanisms on the microscopic and mesoscopic scales.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
International Nuclear Information System (INIS)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime
Comparison of elastic and inelastic seismic response of high temperature piping systems
International Nuclear Information System (INIS)
Thomas, F.M.; McCabe, S.L.; Liu, Y.
1994-01-01
A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields
Elastic-plastic response characteristics during frequency nonstationary waves
International Nuclear Information System (INIS)
Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.
1987-01-01
The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)
Demand response driven load pattern elasticity analysis for smart households
Paterakis, N.G.; Catalao, J.P.S.; Tascikaraoglu, A.; Bakirtzis, A.G.; Erdinc, O.
2015-01-01
The recent interest in smart grid vision enables several smart applications in different parts of the power grid structure, where specific importance should be given to the demand side. As a result, changes in load patterns due to demand response (DR) activities at end-user premises, such as smart
The development of demand elasticity model for demand response in the retail market environment
Babar, M.; Nguyen, P.H.; Kamphuis, I.G.
2015-01-01
In the context of liberalized energy market, increase in distributed generation, storage and demand response has expanded the price elasticity of demand, thus causing the addition of uncertainty to the supply-demand chain of power system. In order to cope with the challenges of demand uncertainty
Extracting Earth's Elastic Wave Response from Noise Measurements
Snieder, Roel; Larose, Eric
2013-05-01
Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.
Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints
Directory of Open Access Journals (Sweden)
Shaochong Yang
2017-01-01
Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.
On the Geometrically Nonlinear Elastic Response of Class θ = 1 Tensegrity Prisms
Directory of Open Access Journals (Sweden)
Ida Mascolo
2018-03-01
Full Text Available The present work studies the geometrically nonlinear response of class θ = 1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables or compression (bars, under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either “standard” or “expanded” configurations. An experimental validation of the predicted constitutive response is conducted with reference to a “thick” and a “slender” model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.
Modeling of demand response in electricity markets : effects of price elasticity
International Nuclear Information System (INIS)
Banda, E.C.; Tuan, L.A.
2007-01-01
A design mechanism for the optimal participation of customer load in electricity markets was presented. In particular, this paper presented a modified market model for the optimal procurement of interruptible loads participating in day-ahead electricity markets. The proposed model considers the effect of price elasticity and demand-response functions. The objective was to determine the role that price elasticity plays in electricity markets. The simulation model can help the Independent System Operator (ISO) identify customers offering the lowest price of interruptible loads and load flow patterns that avoid problems associated with transmission congestion and transmission losses. Various issues associated with procurement of demand-response offerings such as advance notification, locational aspect of load, and power factor of the loads, were considered. It was shown that demand response can mitigate price volatility by allowing the ISO to maintain operating reserves during peak load periods. It was noted that the potential benefits of the demand response program would be reduced when price elasticity of demand is taken into account. This would most likely occur in actual developed open electricity markets, such as Nordpool. This study was based on the CIGRE 32-bus system, which represents the Swedish high voltage power system. It was modified for this study to include a broad range of customer characteristics. 18 refs., 2 tabs., 14 figs
On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms
Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando
2018-03-01
The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.
The role of beneficial bacteria wall elasticity in regulating innate immune response
?okrozub, Viktoria V.; Lazarenko, Liudmyla M.; Sichel, Liubov M.; Babenko, Lidia P.; Lytvyn, Petro M.; Demchenko, Olga M.; Melnichenko, Yulia O.; Boyko, Nadiya V.; Biavati, Bruno; DiGioia, Diana; Bubnov, Rostyslav V.; Spivak, Mykola Ya
2015-01-01
Background Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB...
Plastic and Elastic Responses of a Jacket Platform Subjected to Ship Impacts
Directory of Open Access Journals (Sweden)
Liang Li
2013-01-01
Full Text Available This paper deals with ship-jacket platform collisions. An examination on NORSOK N-004 rule is carried out. Furthermore, elastic and plastic response of jacket platform is studied. This paper also conducts a sensitivity analysis, focusing on collision points. Simulation models of a ductile and a rigid supply vessel were developed, as well as models of two typical jacket platforms. Data such as collision force, kinetic energy, and deformation energy have been obtained. Several conclusions have been drawn: NORSOK rule underestimates the resistance for certain indention, due to inaccurate description of column deformation mode. Elastic response is extremely important in dynamic analysis of ship-platform impacts, by contributing to reducing impact loads and local energy dissipation. Struck members are therefore subjected to impacts to a low extent, which can be regarded as result of a buffering effect. Before a buffering effect works, a time delay exists. This is caused because the topside has to take up adequate kinetic energy. Striking position has an effect on dynamic behavior of platform. High local strength is in favor of buffering an effect. Elastic response is more significant in a flexible platform than in a sticky one.
Effect of elastic-band exercise on muscle damage and inflammatory responses in Taekwondo athletes
Directory of Open Access Journals (Sweden)
Keivan Gadruni
2015-08-01
Full Text Available INTRODUCTION: Elastic bands offer variable elastic resistance (ER throughout a range of motion and their incorporation with exercise movements has been used for variable strength training and rehabilitation purposes. Objective: Investigate the effect of acute bout of progressive elastic-band exercise on muscle damage and inflammatory response in Taekwondo athletes (TKD compared with untrained ones.METHODS: Fourteen (TKD, n = 7 and untrained, n = 7 men performed 3 sets of progressive resistance elastic exercise. Blood samples were taken pre-exercise and also immediately and 24h post exercise. Delayed onset muscle soreness (DOMS, creatine kinase (CK and lactate dehydrogenase (LDH activity, total leukocyte counts, interleukin-6 and C-reactive protein (CRP were analyzed.RESULTS: Only DOMS increased in untrained group, but elevation of DOMS was observed in both groups (TKD and untrained at 24h after exercise (p<0.05. CK and LDH activity increased in both groups significantly. Also TKD group only showed CK increasing 24h post exercise (p<0.05. Total circulating leukocyte counts increased immediately in post exercise experiments and decreased in 24h ones in both groups (p<0.05. Serum IL-6 immediately increased in both groups and 24h post exercises but there was no significant difference between immediate and 24h post exercise experiments in TKD group. Furthermore, CRP just increased 24h after exercise in both groups (p<0.05.CONCLUSION: Progressive resistance elastic exercise induced muscle damage and inflammation in TKD athletes, but also had smaller changes in comparison with untrained group and other forms of exercise.
Directory of Open Access Journals (Sweden)
Shengchun Yang
2016-01-01
Full Text Available Demand response (DR programs provide an effective approach for dealing with the challenge of wind power output fluctuations. Given that uncertain DR, such as price elastic load (PEL, plays an important role, the uncertainty of demand response behavior must be studied. In this paper, a multi-objective stochastic optimization problem of PEL is proposed on the basis of the analysis of the relationship between price elasticity and probabilistic characteristic, which is about stochastic demand models for consumer loads. The analysis aims to improve the capability of accommodating wind output uncertainty. In our approach, the relationship between the amount of demand response and interaction efficiency is developed by actively participating in power grid interaction. The probabilistic representation and uncertainty range of the PEL demand response amount are formulated differently compared with those of previous research. Based on the aforementioned findings, a stochastic optimization model with the combined uncertainties from the wind power output and the demand response scenario is proposed. The proposed model analyzes the demand response behavior of PEL by maximizing the electricity consumption satisfaction and interaction benefit satisfaction of PEL. Finally, a case simulation on the provincial power grid with a 151-bus system verifies the effectiveness and feasibility of the proposed mechanism and models.
Price elasticity matrix of demand in power system considering demand response programs
Qu, Xinyao; Hui, Hongxun; Yang, Shengchun; Li, Yaping; Ding, Yi
2018-02-01
The increasing renewable energy power generations have brought more intermittency and volatility to the electric power system. Demand-side resources can improve the consumption of renewable energy by demand response (DR), which becomes one of the important means to improve the reliability of power system. In price-based DR, the sensitivity analysis of customer’s power demand to the changing electricity prices is pivotal for setting reasonable prices and forecasting loads of power system. This paper studies the price elasticity matrix of demand (PEMD). An improved PEMD model is proposed based on elasticity effect weight, which can unify the rigid loads and flexible loads. Moreover, the structure of PEMD, which is decided by price policies and load types, and the calculation method of PEMD are also proposed. Several cases are studied to prove the effectiveness of this method.
Analysis of elastic-plastic dynamic response of reinforced concrete frame structure
International Nuclear Information System (INIS)
Li Zhongcheng
2009-01-01
Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)
The role of beneficial bacteria wall elasticity in regulating innate immune response.
Мokrozub, Viktoria V; Lazarenko, Liudmyla M; Sichel, Liubov M; Babenko, Lidia P; Lytvyn, Petro M; Demchenko, Olga M; Melnichenko, Yulia O; Boyko, Nadiya V; Biavati, Bruno; DiGioia, Diana; Bubnov, Rostyslav V; Spivak, Mykola Ya
2015-01-01
Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. LAB
An analytical approach to activating demand elasticity with a demand response mechanism
International Nuclear Information System (INIS)
Clastres, Cedric; Khalfallah, Haikel
2015-01-01
The aim of this work is to demonstrate analytically the conditions under which activating the elasticity of consumer demand could benefit social welfare. We have developed an analytical equilibrium model to quantify the effect of deploying demand response on social welfare and energy trade. The novelty of this research is that it demonstrates the existence of an optimal area for the price signal in which demand response enhances social welfare. This optimal area is negatively correlated to the degree of competitiveness of generation technologies and the market size of the system. In particular, it should be noted that the value of un-served energy or energy reduction which the producers could lose from such a demand response scheme would limit its effectiveness. This constraint is even greater if energy trade between countries is limited. Finally, we have demonstrated scope for more aggressive demand response, when only considering the impact in terms of consumer surplus. (authors)
Czech Academy of Sciences Publication Activity Database
Eck, Ch.; Jarušek, Jiří; Sofonea, M.
2010-01-01
Roč. 21, č. 3 (2010), s. 229-251 ISSN 0956-7925 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-vosco plastic material * dynamic contact problem * normal damped response * unilateral constraint * Coulomb friction * weak solution * penalitazion * smoothing Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2010 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7675484&fileId=S0956792510000045
Kilicaslan, Baris; Eren, Nihan Kahya; Nazlı, Cem
2015-01-01
We aimed to evaluate the aortic elastic properties in subjects with hypertensive response to exercise stress test (HRE). Sixty-six patients were divided into two groups (33 patients in HRE group and 33 patients in normotensive group). Baseline demographic characteristics were similar. The mean aortic stiffness index (ASI) was significantly higher (p=0.001) whereas aortic distensibility (AD) was significantly lower (p=0.029) in patients suggesting HRE. The C-reactive protein levels of patients with HRE was higher in the HRE group (p=0.03). AD was significantly correlated with age (r=-0.406, pHRE.
Jelinska, N.; Kalnins, M.; Kovalovs, A.; Chate, A.
2015-11-01
By the surface response method, a regression equation is constructed, and the tensile elastic modulus of films made from polyvinyl alcohol/polyvinyl acetate (PVA/PVAc) blends filled with montmorillonite clay and microcrystalline cellulose nanoparticles is investigated. It is established that the introduction of the nanoparticles improves the mechanical properties of the blends in tension considerably: their strength and elastic modulus increase with content of the particles. Using the regression equation, the optimum composition of nanoparticlefilled PVA/PVAc blends with the highest value of elastic modulus is found.
Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh
2017-11-01
A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.
Full Scale Measurements of the Hydro-Elastic Response of Large Container Ships for Decision Support
DEFF Research Database (Denmark)
Andersen, Ingrid Marie Vincent
scale measurements from four container ships of 4,400 TEU, 8,600 TEU, 9,400 TEU and 14,000 TEU Primarily, strains measured near the deck amidships are used. Furthermore, measurements of motions and the encountered sea state are available for one of the ships. The smallest ship is in operation...... frequency with the waves. Together with the relatively high design speed and often pronounced bow flare this makes large container ship more sensitive to slamming and, consequently, the effects of wave-induced hull girder vibrations. From full scale strain measurements of individual, measured hull girder......The overall topic of this thesis is decision support for operation of ships and several aspects are covered herein. However, the main focus is on the wave-induced hydro-elastic response of large container ships and its implications on the structural response. The analyses are based mainly on full...
Inferring bread doneness with air-pulse/ultrasonic ranging measurements of the loaf elastic response
Faeth, Loren Elbert
This research marks the discovery of a method by which bread doneness may be determined based on the elastic properties of the loaf as it bakes. The purpose of the study was to determine if changes in bread characteristics could be determined by non-contact methods during baking, as the basis for improved control of the baking process. Current control of the baking process is based on temperature and dwell time, which are determined by experience to produce a produce which is approximately ``done.'' There is no direct measurement of the property of interest, doneness. An ultrasonic measurement system was developed to measure the response of the loaf to an external stimulus. ``Doneness,'' as reflected in the internal elastic consistency of the bakery product, is assessed in less than 1/2 second, and requires no closer approach to the moving bakery product than about 2 inches. The system is designed to be compatible with strapped bread pans in a standard traveling-tray commercial oven.
Energy Technology Data Exchange (ETDEWEB)
Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)
2014-10-20
With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.
International Nuclear Information System (INIS)
Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F.; LeDuc, P. R.
2014-01-01
With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.
The local response of elastic tubes and shells to spherical pressure pulse loading
International Nuclear Information System (INIS)
Thompson, J.J.; Holy, Z.J.
1977-01-01
This paper develops a formulation and numerical solution technique for calculating the peak transient stresses developed in tubes or shells with external and internal acoustic media, as a result of shock loadings which may be represented as originating from external or internal point symmetric or dipole sources. The field of application is intended to be the local peak response of the cylindrical fuel cans, core barrels, pressure vessels, pipes and containment shells of Nuclear Reactor Technology, subjected to transient pressure shock loadings for a variety of operational or accident conditions, which cannot adequately be described as one dimensional plane shocks, for which elastic shell responses have been presented by other workers. The work reported here concerns the basic problem of an infinite static fluid filled hollow cylinder of arbitrary thickness, in an infinite static fluid medium, with a source at an arbitrary internal or external radial location. An acoustic model is used, with acoustic damping due to radiation as the only possible damping mechanism. The formulation and solution technique is based on the availability of the multi-dimensional Fast Fourier Transform algorithm. The basic result is the representation, in cylindrical co-ordinates, of the two dimensional (time and axial co-ordinate) Fourier Transform of the infinite medium frequency response function for outgoing waves from a point symmetrical source, as a series of azimuthal Fourier harmonics, from which the result for a dipole source of arbitrary orientation follows. Where possible numerical results will be presented
Energy Technology Data Exchange (ETDEWEB)
Iijima, K.; Yoshida, K.; Suzuki, H. [The University of Tokyo, Tokyo (Japan)
1997-08-01
An analysis method in which the technique of a vehicle obtained when a three-dimensional singular point distribution method and Kagemoto`s mutual interaction theory are combined was expanded for the fluid area was proposed as the structural analysis of very large semi-submersibles in waves. A partial structure method is used for the structure. In a fluid area, the number of unknown quantities appearing in a final expression could be largely reduced by introducing the new concept of a group body. In this process, both hydro-elasticity and hydrodynamic mutual interaction are considered. As a result, floating bodies that could not be previously calculated can be modeled as a three-dimensional frame structure and the response analysis in waves can be carried out without damaging the accuracy. The calculation result is used as the input data required for analyzing the structural fatigue locally during structural design of very large semi-submersibles in the 3,000 (m) class. This study can present a series of procedures between the response analysis of very large floating bodies in waves and the structural design. 11 refs., 14 figs., 1 tab.
Elastic response of URu{sub 2}Si{sub 2} under high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Yanagisawa, Tatsuya; Mombetsu, Shota; Hidaka, Hiroyuki; Amitsuka, Hiroshi [Dept. of Physics, Hokkaido Univ., Sapporo (Japan); Akatsu, Mitsuhiro [Grad. School of Science and Technology, Niigata Univ., Niigata (Japan); Yasin, S.; Zherlitsyn, S.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf and TU Dresden, Dresden (Germany); Huang, K.; Janoschek, M.; Maple, M.B. [Dept. of Physics, Univ. of California, San Diego, La Jolla (United States)
2015-07-01
We have measured the elastic constants, C{sub 44}, C{sub 66}, (C{sub 11}-C{sub 12})/2 in URu{sub 2}Si{sub 2} by means of high-frequency ultrasonic measurements in pulsed magnetic fields up to 68.7 T in a wide temperature range from 1.5 to ∝120 K. We found a reduction of (C{sub 11}-C{sub 12})/2 for magnetic field H parallel [001] that appears only in the temperature and magnetic field region in which URu{sub 2}Si{sub 2} exhibits a heavy-electron state and hidden order. This change in (C{sub 11}-C{sub 12})/2 appears to be a response of the 5f electrons to an orthorhombic and volume conservative strain field ε{sub xx}-ε{sub yy} with Γ{sub 3} symmetry. The lattice instability is likely related to a symmetry-breaking band instability that arises due to the hybridization of the localized 5f electrons with the conduction electrons and is probably linked to the hidden-order parameter of this compound. Recent progress obtained by our measurements of the transverse ultrasonic modes C{sub 44} and C{sub 66} will also be discussed.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A
2008-12-02
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
Gallezot, M.; Treyssède, F.; Laguerre, L.
2018-03-01
This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.
Response statistics of rotating shaft with non-linear elastic restoring forces by path integration
Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael
2017-07-01
Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.
Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment
Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.
2002-01-01
high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1
Directory of Open Access Journals (Sweden)
Kotaro eKojima
2016-01-01
Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.
On the Effect of Unit-Cell Parameters in Predicting the Elastic Response of Wood-Plastic Composites
Directory of Open Access Journals (Sweden)
Fatemeh Alavi
2013-01-01
Full Text Available This paper presents a study on the effect of unit-cell geometrical parameters in predicting elastic properties of a typical wood plastic composite (WPC. The ultimate goal was obtaining the optimal values of representative volume element (RVE parameters to accurately predict the mechanical behavior of the WPC. For each unit cell, defined by a given combination of the above geometrical parameters, finite element simulation in ABAQUS was carried out, and the corresponding stress-strain curve was obtained. A uniaxial test according to ASTM D638-02a type V was performed on the composite specimen. Modulus of elasticity was determined using hyperbolic tangent function, and the results were compared to the sets of finite element analyses. Main effects of RVE parameters and their interactions were demonstrated and discussed, specially regarding the inclusion of two adjacent wood particles within one unit cell of the material. Regression analysis was performed to mathematically model the RVE parameter effects and their interactions over the modulus of elasticity response. The model was finally employed in an optimization analysis to arrive at an optimal set of RVE parameters that minimizes the difference between the predicted and experimental moduli of elasticity.
Chetty, Raj; Friedman, John N.; Olsen, Tore; Pistaferri, Luigi
2011-01-01
We show that the effects of taxes on labor supply are shaped by interactions between adjustment costs for workers and hours constraints set by firms. We develop a model in which firms post job offers characterized by an hours requirement and workers pay search costs to find jobs. We present evidence supporting three predictions of this model by analyzing bunching at kinks using Danish tax records. First, larger kinks generate larger taxable income elasticities. Second, kinks that apply to a larger group of workers generate larger elasticities. Third, the distribution of job offers is tailored to match workers' aggregate tax preferences in equilibrium. Our results suggest that macro elasticities may be substantially larger than the estimates obtained using standard microeconometric methods. PMID:21836746
Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.
2012-01-01
Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.
Directory of Open Access Journals (Sweden)
Daniel Pelaez
2016-12-01
Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance
DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING
Ozgan, Korhan; Daloglu, Ayse T.
2014-01-01
In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...
International Nuclear Information System (INIS)
Phadke, Sushil; DShrivastava, B; Dagaonkar, N; Mishra, Ashutosh
2012-01-01
The homogeneous continuous materials are widely used for many structural applications. Migrations of atoms or molecules are the mechanism of mechanical and kinetic processes in materials for their synthesis processing as well as for their structural evolutions. The elastic constant of solids provides valuable information on their mechanical and dynamical properties. In particular, they provide information on the stability and stiffness of materials. In the present study author investigated relation between elastic constant and temperature in Borassus Flabellifier 'BF' wood part. Determination of elastic properties of material is based on the longitudinal wave's velocities via ultrasonic methods. The resonant frequencies of the specimens were measured by Ultrasonic Interferometer (for solids) dual frequency using longitudinal cubic piezoelectric crystal of quartz of frequency 123.62 KHz. The temperature variations from room temperature were done by PID control unit, Mittal Enterprises, New Delhi, India. Characterization of the samples was done by scanning electron microscope (SEM) Model JEOL JSM5400 at 5.0kvx750, 10 μm.
Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels
Bednarcyk, Brett A.; Yarrington, Phillip W.
2009-01-01
This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.
A closed form solution for the response of a long elastic beam to dynamic loading
International Nuclear Information System (INIS)
Mittal, R.K.
1989-01-01
Closed form solutions have been obtained using Fourier transform method for the deflection, curvature and particle velocity of a long elastic beam when it is subjected to a concentrated transverse force which is varying with time. These solutions have been illustrated with the help of two force histories, i.e. a half-sine pulse and a rectangular pulse. Dimensionless parameters representing deflection, curvature and particle velocity have been plotted as functions of dimensionless distance and dimensionless time. Furthermore, the particular case of constant velocity impact which has been studied by other authors using different techniques has also been considered in the present paper and the results compare within numerical errors involved in the evaluation of integrals. (orig.) [de
Dynamic elastic-plastic response of a 2-DOF mass-spring system.
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibit elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; ABATT FG; JOHNSON KI
2009-01-16
The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks
International Nuclear Information System (INIS)
Kim, Jeong Soo; Kim, Moon Kyum
2012-01-01
In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.
International Nuclear Information System (INIS)
Ledbetter, H.M.
1983-01-01
This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites
Energy Technology Data Exchange (ETDEWEB)
Rashidifar, Mohammed Amin [Faculty of Mechanical Engineering, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of); Rashidifar, Ali Amin, E-mail: rashidifar_58@yahoo.com [Computer Science, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of)
2014-07-01
Conventional model-based control strategies are very complex and difficult to synthesize due to high complexity of the dynamics of robots manipulator considering joint elasticity. This paper presents investigations into the development of hybrid control schemes for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, initially a collocated proportional-derivative (P D)-type Fuzzy Logic Controller (FLC) is developed for tip angular position control of a flexible joint manipulator. This is then extended to incorporate a non-collocated Fuzzy Logic Controller and input shaping scheme for vibration reduction of the flexible joint system. The positive zero-vibration-derivative-derivative (ZVDD) shaper is designed based on the properties of the system. Simulation results of the response of the flexible joint manipulator with the controllers are presented in time and frequency domains. The performances of the hybrid control schemes are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed. (Author)
International Nuclear Information System (INIS)
Chanfray, G.
1988-01-01
We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment
Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.
2012-01-01
To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter
2014-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Energy Technology Data Exchange (ETDEWEB)
Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering
1997-08-01
The response strength in which deflection waves propagating in the elastic body of a large floating structure with an order of km in length and width was investigated. Attention was paid to the waves propagating the place fully away from the boundary of a very large floating body so as to obtain the dispersion relation of waves and the relation between incident waves and deflection waves. Next, the frequency response was checked from the aspect of the displacement amplitude and strength for beams and plates. The dispersion relation of waves propagating the place fully away from the boundary of a very large floating body and the relation between the waves and infinite-point incident waves were represented by an expression. Similarly, the waves propagates more than the infinite-point incident waves in frequency, wavelength, and speed. A lower-limit value exists in the propagation speed. The displacement and stress amplitudes are represented by a relational expression. For plates, the displacement amplitude increases when the wave direction coincides with the small-rigidity direction. The stress amplitude is maximized when the waves corresponding to the ``wave below a floating body = size of a characteristic wave number`` reach the large-rigidity direction. 10 refs., 10 figs., 2 tabs.
Directory of Open Access Journals (Sweden)
Afed U. Khan
2017-11-01
Full Text Available Investigating water–land–climate interactions is critical for urban development and watershed management. This study examined this nexus by elasticity and statistical approaches through the lens of three watersheds: The Yukon, Mekong and Murray. Here, this study reports the fundamental characteristics, explanations and ecological and management implications of terrestrial determinant influence on the response of water quality to climate drivers. The stability of the response, measured by climate elasticity of water quality (CEWQ, is highly dependent on terrestrial determinants, with strong impacts from anthropogenic biomes and low impacts from surficial geology. Compared to temperature elasticity, precipitation elasticity of water quality is more unstable due to its possible linkages with many terrestrial determinants. Correlation and linear models were developed for the interaction system, which uncovered many interesting scenarios. The results implied that watersheds with a higher ratio of rangeland biomes have a lower risk of instability as compared to watersheds with a higher proportion of dense settlement, cropland and forested biomes. This study discusses some of the most essential pathways where instability might adversely affect CEWQ parameters and recommends suggestions for policy makers to alleviate the instability impacts to bring sustainability to the water environment.
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Pospíšil, Stanislav
2012-01-01
Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012
Liang, F M; Yang, T; Dong, L; Hui, J J; Yan, J
2017-05-01
Objective: To assess whether dynamic arterial elastance(Ea(dyn))can be used to predict the reduction of arterial pressure after decreasing norepinephrine (NE) dosage in patients with septic shock. Methods: A prospective observational cohort study was conducted. Thirty-two patients with septic shock and mechanical ventilationwere enrolledfrom January 2014 to December 2015 in ICU of Wuxi People's Hospital of Nanjing Medical University. Hemodynamic parameters were recorded by pulse contour cardiac output(PiCCO)monitoring technology before and after decreasing norepinephrine dosage. Ea(dyn) was defined as the ratio of pulse pressure variation (PPV) to stroke volume variation (SVV). Mean arterial pressure(MAP) variation was calculated after decreasing the dose of NE. Response was defined as a ≥15% decrease of MAP. AUC was plotted to assess the value of Ea(dyn) in predicting MAP response. Results: A total of 32 patients were enrolled in our study, with 13 responding to NE dose decrease where as the other 19 did not. Ea(dyn) was lower in responders than in nonresponders (0.77±0.13 vs 1.09±0.31, P blood pressure variation, diastolic blood pressure variation, systemic vascular resistance variation and MAP variation( r =0.621, P =0.000; r =0.735, P =0.000; r =0.756, P =0.000; r =0.568, P =0.000 respectively). However, stoke volume variation, baseline level of systemic vascular resistance and NE baseline dose were not correlated with Ea(dyn) baseline value( r =0.264, P =0.076; r =0.078, P =0.545; r =0.002, P =0.987 respectively). Ea(dyn)≤0.97 predicted a decrease of MAP when decreasing NE dose, with an area under the receiver-operating characteristic curve of 0.85.The sensitivity was 100.0% and specificity was 73.7%. Conclusions: In septic shock patients treated with NE, Ea(dyn) is an index to predict the decrease of arterial pressure in response to NE dose reduction.
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac
2015-01-01
The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type...... computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model....... A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center...
The Morishima Gross elasticity of substitution
Blackorby, Charles; Primont, Daniel; Russell, R. Robert
2007-01-01
We show that the Hotelling-Lau elasticity of substitution, an extension of the Allen-Uzawa elasticity to allow for optimal output-quantity (or utility) responses to changes in factor prices, inherits all of the failings of the Allen-Uzawa elasticity identified by Blackorby and Russell [1989 AER]. An analogous extension of the Morishima elasticity of substitution to allow for output quantity changes preserves the salient properties of the original Hicksian notion of elasticity of substitution.
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano
2017-10-01
This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.
CSIR Research Space (South Africa)
Maina, JW
2007-08-01
Full Text Available in this study. The new AASHTO pavement design guide for flexible pavements is shifting from an experience (or purely empirical) based design method to a mechanistic-empirical (M-E) design method. The latter approach requires an elastic multi-layered analysis...
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Form finding in elastic gridshells
Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.
2018-01-01
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Transient Response of a Fluid-Filled, Thick-Walled Spherical Shell Embedded in an Elastic Medium
Directory of Open Access Journals (Sweden)
Bahari Ako
2016-01-01
Full Text Available The paper addresses the problem of transient elastodynamics analysis of a thick-walled, fluid-filled spherical shell embedded in an elastic medium with an analytical approach. This configuration is investigated at first step for a full-space case. Different constitutive relations for the elastic medium, shell material and filling fluid can be considered, as well as different excitation sources (including S/P wave or plane/spherical incident wave at different locations. With mapmaking visualisation, the wave propagation phenomena can be described and better understood. The methodology is going to be applied to analysis of the tunnels or other shell like structures under the effect of nearby underground explosion.
International Nuclear Information System (INIS)
Willaime, F.; Rosato, V.
1990-01-01
We calculate the shear elastic constants of the alloy NiZr 2 by molecular dynamics simulations in the crystalline and amorphous phases as well as upon introduction of antisite defects in the crystal at T=300K. For S (long range order parameter) equal to 0.5, the system is amorphous and C' is larger than the same quantity relative to the crystal whereas C 44 and C 66 are smaller
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
International Nuclear Information System (INIS)
Kohno, M.
1983-01-01
We report fully consistent calculations of the longitudinal and transverse response functions of the inclusive quasi-elastic electron scattering on 12 C in the Hartree-Fock approximation. The distorted wave for the outgoing nucleon is constructed from the same non-local Hartree-Fock field as in the ground-state description. Thus the orthogonality and Pauli principle requirements are naturally satisfied. The theoretical prediction, based on the standard density-dependent effective interaction (GO force), shows a good correspondence to the experimental data. Since the calculated response functions automatically satisfy the relevant sum rule, this work illuminates the well-known puzzle concerning the longitudinal part, which remains to be solved. We study the energy-weighted sum rules and discuss effects beyond the mean-field approximation. Meson-exchange-current contributions to the transverse response function are also estimated and found to be small due to cancellations among them. (orig.)
Cordero, F.
2018-03-01
A method is proposed for evaluating the potential piezoelectric response, that a ferroelectric material would exhibit after full poling, from elastic and dielectric measurements of the unpoled ceramic material. The method is based on the observation that the softening in a ferroelectric phase with respect to the paraelectric phase is of piezoelectric origin, and is tested on BaTiO3. The angular averages of the piezoelectric softening in unpoled ceramics are calculated for ferroelectric phases of different symmetries. The expression of the orientational average with the piezoelectric and dielectric constants of single crystal tetragonal BaTiO3 from the literature reproduces well the softening of the Young's modulus of unpoled ceramic BaTiO3, after a correction for the porosity. The agreement is good in the temperature region sufficiently far from the Curie temperature and from the transition to the orthorhombic phase, where the effect of fluctuations should be negligible, but deviations are found outside this region, and possible reasons for this are discussed. This validates the determination of the piezoelectric response by means of purely elastic measurements on unpoled samples. The method is indirect and, for quantitative assessments, requires the knowledge of the dielectric tensor. On the other hand, it does not require poling of the sample, and therefore is insensitive to inaccuracies from incomplete poling, and can even be used with materials that cannot be poled, for example, due to excessive electrical conductivity. While the proposed example of the Young's modulus of a ceramic provides an orientational average of all the single crystal piezoelectric constants, a Resonant Ultrasound Spectroscopy measurement of a single unpoled ceramic sample through the ferroelectric transition can in principle measure all the piezoelectric constants, together with the elastic ones.
Elastic-plastic response of a piping system due to simulated double-ended guillotine break events
International Nuclear Information System (INIS)
Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.
1987-01-01
From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in the reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 mPA were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. On account of the safety margins proved in the experiments, potential inaccuracies in theoretical structure analyses are recommended so as to be on the safe side. On the other hand, it appears that designing pipework with reference to elastic stress categories does not adequately take into account the actual reserves of the pipework material
Cell Elasticity Determines Macrophage Function
Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry
2012-01-01
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423
Cell elasticity determines macrophage function.
Directory of Open Access Journals (Sweden)
Naimish R Patel
Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.
Elastic-plastic response of a piping system due to simulated double-ended guillotine break events
International Nuclear Information System (INIS)
Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.
1987-01-01
From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 MPa were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. (orig./GL)
Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.
2012-01-01
Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.
CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES
Tadeu Mascia,Nilson
2003-01-01
Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...
Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao
2014-01-21
We developed a dynamic cell culture platform with dynamically tunable nano-roughness and elasticity. Temperature-responsive poly(ε-caprolactone) (PCL) films were successfully prepared by crosslinking linear and tetra-branched PCL macromonomers. By optimizing the mixing ratios, the crystal-amorphous transition temperature (Tm) of the crosslinked film was adjusted to the biological relevant temperature (~33 °C). While the crosslinked films are relatively stiff (50 MPa) below the Tm, they suddenly become soft (1 MPa) above the Tm. Correspondingly, roughness of the surface was decreased from 63.4-12.4 nm. It is noted that the surface wettability was independent of temperature. To investigate the role of dynamic surface roughness and elasticity on cell adhesion, cells were seeded on PCL films at 32 °C. Interestingly, spread myoblasts on the film became rounded when temperature was suddenly increased to 37 °C, while significant changes in cell morphology were not observed for fibroblasts. These results indicate that cells can sense dynamic changes in the surrounding environment but the sensitivity depends on cell types.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Norouzzadeh, A.; Ansari, R.; Rouhi, H.
2017-05-01
Differential form of Eringen's nonlocal elasticity theory is widely employed to capture the small-scale effects on the behavior of nanostructures. However, paradoxical results are obtained via the differential nonlocal constitutive relations in some cases such as in the vibration and bending analysis of cantilevers, and recourse must be made to the integral (original) form of Eringen's theory. Motivated by this consideration, a novel nonlocal formulation is developed herein based on the original formulation of Eringen's theory to study the buckling behavior of nanobeams. The governing equations are derived according to the Timoshenko beam theory, and are represented in a suitable vector-matrix form which is applicable to the finite-element analysis. In addition, an isogeometric analysis (IGA) is conducted for the solution of buckling problem. Construction of exact geometry using non-uniform rational B-splines and easy implementation of geometry refinement tools are the main advantages of IGA. A comparison study is performed between the predictions of integral and differential nonlocal models for nanobeams under different kinds of end conditions.
Ullm, Sandra; Krüger, Anne; Tondera, Christoph; Gebauer, Tim P; Neffe, Axel T; Lendlein, Andreas; Jung, Friedrich; Pietzsch, Jens
2014-12-01
Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only Mɸ altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.
A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.
Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin
2016-10-28
By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.
Zhao, Xin
2013-01-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects
International Nuclear Information System (INIS)
Mackey, T.C.; Abatt, F.G.; Johnson, K.I.
2009-01-01
The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10 3 Pa and 4.135 x 10 9 Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks and tanks
Cabrera-Fischer, Edmundo I; Bia, Daniel; Zócalo, Yanina; Wray, Sandra; Armentano, Ricardo
2013-12-01
There is a relationship between the intra-aortic balloon pumping (IABP) benefits and the dynamic behavior of muscular arteries, which is associated with induced changes on the vessel walls through an endothelial-dependent mechanism. The arterial wall elastic behavior is influenced by adventitial function; however, no studies were performed in order to elucidate if this layer plays a role in the changes determined by IABP. Our aim was to quantify acute IABP effects on the mechanical properties of muscular arteries in induced acute heart failure (AHF), before and after adventitia removal. Pressure and diameter were recorded in the iliac arteries (IA) of sheep (n = 7), before and during 1:2 IABP: (i) in control state (CS) with intact IA, (ii) in CS after IA adventitia removal, and (iii) in de-adventitialized IA after AHF. Conduit function, compliance and arterial distensibility were calculated in each state. During CS, IABP resulted in intact IA dilatation and in an increase in conduit function, compliance and distensibility; adventitial removal determined an increase of arterial stiffness with respect to the CS, which decreased when IABP was used; the increase in arterial stiffness observed after adventitia removal was also detected in AHF state; IABP improves conduit function and arterial stiffness in de-adventitialized arteries, both before and during AHF. However, the improvement in these properties was lower than in intact arteries. Before and after AHF induction, the improvements of conduit function and arterial distensibility determined by IABP in intact IA were significantly reduced after adventitia removal. Adventitial layer integrity would be necessary to maximize IABP-related beneficial effects on arterial system properties. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
International Nuclear Information System (INIS)
Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi
1998-01-01
Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)
Elastic properties of spherically anisotropic piezoelectric composites
International Nuclear Information System (INIS)
En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon
2010-01-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)
Energy Technology Data Exchange (ETDEWEB)
Murai, M.; Kagemoto, H.; Fujino, M. [The University of Tokyo, Tokyo (Japan)
1997-08-01
On the hydroelastic behaviors of a huge floating structure, a mutual interaction theory based on the area division method is used for the analysis of a fluid problem and a mode analysis method is used for the analysis of deformation. On the continuous deformation of a floating structure, the structure is considered as a set of partial structures obtained when the plane shape was divided into squares and discretely handled as a series of rigid motions in the small partial structures obtained by dividing the partial structures more finely. The experimental result in a water tank and the distribution method at a singular point were compared on the deformation of the elastic floating structure estimated by calculation based on this formulation. The result showed that the estimation method on the hydroelastic problem proposed in this paper is valid. On the prediction of hydroelastic behaviors of a huge floating structure, various calculation examples indicate that the hydroelastic behavior is not only the relation between the structure length and wavelength, but also that the bending rigidity of a structure is a very important factor. For a huge floating structure in the 5,000 m class, up to shorter wavelength of about {lambda}/L = 1/100 must be investigated. 6 refs., 14 figs., 5 tabs.
Experimental determination of third-order elastic constants of diamond.
Lang, J M; Gupta, Y M
2011-03-25
To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.
Head, D.A.; Levine, A.M.; Mac Kintosh, F.C.
2003-01-01
Semiflexible polymers such as filamentous actin (F-actin) play a vital role in the mechanical behavior of cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue, we have performed numerical studies of the linear response of homogeneous and
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
International Nuclear Information System (INIS)
Caillon, J-C.; Labarsouque, J.
1997-01-01
So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei
Elastic and viscoplastic properties
International Nuclear Information System (INIS)
Lebensohn, R.A.
2015-01-01
In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)
In Situ elastic property sensors
International Nuclear Information System (INIS)
Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.
1987-01-01
Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples
Directory of Open Access Journals (Sweden)
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
International Nuclear Information System (INIS)
Gouda, Mohammed K.; Gepreel, Mohamed A. H.; Nakamura, Koichi
2015-01-01
Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus
International Nuclear Information System (INIS)
Liu, K.C.
1975-01-01
Two tubular specimens of type 304 stainless steel with uniform thin walls were subjected to a program of segmental combined tension/compression and torsion loadings at room temperature. A proportional, or radial, loading into the plastic range was initially applied to each specimen. Two nonproportional (nonradial) loadings along straight line segments for which neither the loading paths nor their linear extrapolations passed through the origin of the stress space were then applied. The axial and torsional stress-strain curves for these segmental prestress loadings were plotted. Hence, the stress-strain response characteristics for nonproportional loadings as well as for proportional loading can be studied. In addition, the axial and torsional plastic strain components were calculated, and the total plastic strain trajectories were plotted in a plastic strain space. Finally, using results from a detailed study of yield surfaces, which was performed for the first specimen, a spectrum of initial and subsequent yield curves corresponding to the segmental prestress loadings is presented. (U.S.)
Buschmann, Johanna; Calcagni, Maurizio; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Neuenschwander, Peter; Milleret, Vincent; Giovanoli, Pietro
2015-05-01
Tendon rupture repair is a surgical field where improvements are still required due to problems such as repeat ruptures, adhesion formation and joint stiffness. In the current study, a reversibly expandable and contractible electrospun tube based on a biocompatible and biodegradable polymer was implanted around a transected and conventionally sutured rabbit Achilles tendon. The material used was DegraPol® (DP), a polyester urethane. To make DP softer, more elastic and surgeon-friendly, the synthesis protocol was slightly modified. Material properties of conventional and new DP film electrospun meshes are presented. At 12 weeks post-surgery, tenocyte and tenoblast density, nuclei and width, collagen fibre structure and inflammation levels were analyzed histomorphometrically. Additionally, a comprehensive histological scoring system by Stoll et al. (2011) was used to compare healing outcomes. Results showed that there were no adverse reactions of the tendon tissue following the implant. No differences were found whether the DP tube was applied or not for both traditional and new DP materials. As a result, the new DP material was shown to be an excellent carrier for delivery of growth factors, stem cells and other agents responsible for tendon healing. Copyright © 2015 John Wiley & Sons, Ltd.
Pan, E.; Chen, J.Y.; Bevis, M.; Bordoni, Andrea; Barletta, Valentina Roberta; Tabrizi, A. Molavi
2015-01-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in ...
International Nuclear Information System (INIS)
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Energy Technology Data Exchange (ETDEWEB)
Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering
1997-08-01
A very large floating structure was replaced with the beam on an elastic foundation to examine the response characteristics in waves. Another evidence was regularly and numerically given for the basic characteristics of a very large floating body Suzuki found. New information was also obtained. The frequency response is mainly classified into a wave number control area and proper frequency control area when buoyancy elasticity exists. When the buoyancy structure is long and flexible, the proper frequency becomes continuous and the frequency control area becomes a resonance area. In the wave number control area, the Suzuki`s characteristic wave number becomes a control parameter, and various characteristic values are indicated by characteristic wave numbers. The response in the wave number control area becomes quasi-static when the distribution mass of buoyancy is fully small. The design in which the distribution mass of buoyancy is fully large must be avoided. In the displacement amplitude, the mass on the free end is severest. The proper frequency of vertical vibration relatively moves to the high-frequency side when buoyancy is considered as an elastic foundation. Attention must be thus paid to the proper frequency of vibration on the horizontal surface. 9 refs., 12 figs., 3 tabs.
Elastic scattering and quasi-elastic transfers
International Nuclear Information System (INIS)
Mermaz, M.C.
1978-01-01
Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr
DEFF Research Database (Denmark)
Andersen, Lars; Nielsen, Søren R. K.
2003-01-01
The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source...... is approximated, but the error which is introduced in this way is insignificant. Numerical examples are given for a moving rectangular load on an elastic half-space. The result from a boundary element code based on the derived Green's function are compared with a semi-analytic solution....
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
International Nuclear Information System (INIS)
Zhong, H; Li, H; Gordon, J; Chetty, I
2015-01-01
Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor local control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients
Energy Technology Data Exchange (ETDEWEB)
Zhong, H; Li, H; Gordon, J; Chetty, I [Henry Ford Health System, Detroit, MI (United States)
2015-06-15
Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor local control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients.
Application Service Program (ASP) Price Elasticities
Hong Jaeweon; Cho Wanwoo; Jang Ho; Kwak Youngsik
2010-01-01
Although the price elasticities for off-line industry are well documented in academic field, the report of price elasticities for on-line to a given brand or industry in practice have beenrelatively rare. The researcher aims to try to full this gap by applying a price response function to Home Trading System’s on-line transaction data for the first time in Korean securities market. The different price elasticities among seven brands were found from -0.819 to -1.811. These results suggested th...
Paro, Alberto
2015-01-01
If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.
Elasticity theory and applications
Saada, Adel S; Hartnett, James P; Hughes, William F
2013-01-01
Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...
Sabatelli, Lorenzo
2016-01-01
Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.
Directory of Open Access Journals (Sweden)
Lorenzo Sabatelli
Full Text Available Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences, mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.
Tahouneh, Vahid; Naei, Mohammad Hasan
2016-03-01
The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.
Statistical mechanics of elasticity
Weiner, JH
2012-01-01
Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.
Elasticity of energy consumption
International Nuclear Information System (INIS)
Stam, M.
2004-01-01
Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.
2015-12-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
Energy Technology Data Exchange (ETDEWEB)
Atac, Hamza [Temple University, Philadelphia, PA
2017-12-01
The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusive electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
International Nuclear Information System (INIS)
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Lai, Yun
2011-06-26
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing
2011-01-01
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Directory of Open Access Journals (Sweden)
Sergio Cesare Masin
2010-01-01
Full Text Available Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight-a cognitive law analogous to Hooke¿s law of elasticity. Participants also estimated the total imagined elongation of springs joined either in series or in parallel. This total elongation was longer for serial than for parallel springs, and increased proportionally to the number of serial springs and inversely proportionally to the number of parallel springs. The results suggest that participants integrated load weight with imagined elasticity rather than with spring length.
Rogozinski, Marek
2014-01-01
This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.
Elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Measuring global gasoline and diesel price and income elasticities
International Nuclear Information System (INIS)
Dahl, Carol A.
2012-01-01
Price and income elasticities of transport fuel demand have numerous applications. They help forecast increases in fuel consumption as countries get richer, they help develop appropriate tax policies to curtail consumption, help determine how the transport fuel mix might evolve, and show the price response to a fuel disruption. Given their usefulness, it is understandable why hundreds of studies have focused on measuring such elasticities for gasoline and diesel fuel consumption. In this paper, I focus my attention on price and income elasticities in the existing studies to see what can be learned from them. I summarize the elasticities from these historical studies. I use statistical analysis to investigate whether income and price elasticities seem to be constant across countries with different incomes and prices. Although income and price elasticities for gasoline and diesel fuel are not found to be the same at high and low incomes and at high and low prices, patterns emerge that allow me to develop suggested price and income elasticities for gasoline and diesel demand for over one hundred countries. I adjust these elasticities for recent fuel mix policies, and suggest an agenda of future research topics. - Research highlights: ► Surveyed econometric studies of transport fuel demand. ► Developed price elasticities of demand for gasoline and diesel fuel for 120 countries. ► Developed income elasticities of demand for gasoline and diesel fuel for 120 countries. ► Suggested a research agenda for future work.
Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.
2018-03-01
We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.
The Measurement of Tax Elasticity in India: A Time Series Approach
Acharya, Hem
2011-01-01
Revenue generation is an important goal of tax reform. The built-in responsiveness of revenues to changes in income, tax elasticity, provides very critical information for tax policy formulation. This paper utilises a time series approach to empirically estimate tax elasticities for India for the period 1991-2010. Tax elasticities are computed for income, turnover, excise, import and total taxes for the post-reform period. The elasticity coefficients reveal a low responsiveness of taxes to i...
The real-time price elasticity of electricity
Lijesen, M.G.
2007-01-01
The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Autonomic Vertical Elasticity of Docker Containers with ElasticDocker
Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe
2017-01-01
International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Designing interactively with elastic splines
DEFF Research Database (Denmark)
Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie
2018-01-01
We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....
Elastic Gauge Fields in Weyl Semimetals
Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles
We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).
Elastic Moduli of Permanently Densified Silica Glasses
Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.
2014-01-01
Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Elasticity in Elastics-An in-vitro study.
Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha
2014-04-01
Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
International Nuclear Information System (INIS)
Vavra, G.
1978-01-01
Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr
Energy Technology Data Exchange (ETDEWEB)
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
Two Propositions on the Application of Point Elasticities to Finite Price Changes.
Daskin, Alan J.
1992-01-01
Considers counterintuitive propositions about using point elasticities to estimate quantity changes in response to price changes. Suggests that elasticity increases with price along a linear demand curve, but falling quantity demand offsets it. Argues that point elasticity with finite percentage change in price only approximates percentage change…
Elastic properties of Gum Metal
International Nuclear Information System (INIS)
Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi
2006-01-01
In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation
International Nuclear Information System (INIS)
Winey, J. M.; Gupta, Y. M.
2014-01-01
Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
International Nuclear Information System (INIS)
Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.
2011-01-01
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
Energy Technology Data Exchange (ETDEWEB)
Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)
2011-08-15
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
Impact loads on beams on elastic foundations
International Nuclear Information System (INIS)
Kameswara Rao, N.S.V.; Prasad, B.B.
1975-01-01
Quite often, complex structural components are idealised as beams in engineering analysis and design. Also, equations governing the responses of shallow shells are mathematically equivalent to the equations governing the responses of beams on elastic foundations. Hence with possible applications in several technical disciplines, the behaviour of beams on elastic foundations subjected to impact loads is studied in detail in the present investigation both analytically and experimentally. The analytical methods include analysis and energy method. The effect of foundation parameters (stiffness, and damping constants) on the dynamic responses of the beam-foundation system has been analysed. In modal analysis, the free-vibration equation has been solved by replacing the applied impulse by suitable initial conditions and the solution has been obtained as the linear combination of an infinite sequence of discrete eigen-vectors. In the energy method, the beam-foundation system is treated to be under forced vibrations and the forcing function has been obtained using the Hertz's law of impact. In the case of free-free end conditions of the beam, the rigid body modes and the elastic modes have been superposed to obtain the total response. The responses predicted using modal analysis are higher than those obtained using energy method. From the present study it is observed that model analysis is preferable to energy method. (Auth.)
Dynamic nonlinear elasticity in geo materials
International Nuclear Information System (INIS)
Ostrovsky, L.A.; Johnson, P.A.
2001-01-01
The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics
Orthodontic Elastic Embedded in Gingiva for 7 Years
Directory of Open Access Journals (Sweden)
Shruti Tandon
2013-01-01
Full Text Available Dental materials especially orthodontic elastics often get embedded in gingival tissues due to iatrogenic factors. If retained for a long time, inflammatory response starts as asymptomatic crestal bone loss and may progress to severe periodontal abscess. Unsupported orthodontic elastics used for diastema closure may result in exfoliation of teeth, while elastic separators may get embedded in interdental gingiva if banding is performed without removing it. These cases of negligence are detrimental for survival of affected teeth. This paper highlights a case of orthodontic elastic embedded in interproximal gingiva of a 23-year-old healthy female for 7 years after completion of fixed orthodontic treatment. Surprisingly, there was no clinical sign of inflammation around elastic band and it was removed easily without any local anaesthesia. However, mild crestal bone loss was observed on periapical radiograph. The gingiva healed completely after sub gingival debridement.
Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings
Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.
1997-01-01
Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
WE-E-9A-01: Ultrasound Elasticity
Energy Technology Data Exchange (ETDEWEB)
Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)
2014-06-15
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement
WE-E-9A-01: Ultrasound Elasticity
International Nuclear Information System (INIS)
Emelianov, S; Hall, T; Bouchard, R
2014-01-01
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement
Modeling Pseudo-elastic Behavior of Springback
International Nuclear Information System (INIS)
Xia, Z. Cedric
2005-01-01
constant. In the context of this investigation we refer psuedoelastic behavior in the most general sense as any deviation from linearity in the unloading curve. The non-linearity leads to a hysteresis loop upon reloading. The approach is based on the non-conventional theory with a vanishing elastic region as advanced by Dafalias and Popov. The treatment is purely phenomenological where we don't distinguish between macroscopic plasticity and micro-plasticity. The macroscopic uniaxial stress-strain curve is used to define effective plastic response in the same manner as classical plasticity theory except that the nonlinearity during unloading and reloading are incorporated into plasticity. It is shown that such models can be easily formulated within the context of elastoplasticity without violating any physical mechanisms of deformation. Springback for a plane strain bending model is used to demonstrate the potential effect if such a model is applied
Negative stiffness honeycombs as tunable elastic metamaterials
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
Mathematical methods in elasticity imaging
Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
2015-01-01
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Energy Technology Data Exchange (ETDEWEB)
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
Design guidance for elastic followup
International Nuclear Information System (INIS)
Naugle, F.V.
1983-01-01
The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed
Income Elasticity of Environmental Amenities
Daniel Miles; Andrés Pereyra; Máximo Rossi
2000-01-01
In this paper we are concerned with the estimation of income elasticities of environmental amenities. The novelty is the application of econometric methods that take into account the problem of measurement errors when estimating these elasticities, which are common in microeconomic data and are not usually considered in the applied literature related with this issue. Our aim is to discuss whether the measurement error has signi…cant e¤ects on the elasticities. Data from the Expenditure Budget...
Price Elasticity of Alcohol Demand in India.
Kumar, Santosh
2017-05-01
Using a household survey conducted in 2014, this study estimates price elasticity of demand (PED) for beer, country liquor and spirits in India. Ordinary least-square models were used to estimate the responsiveness in alcohol demand due to price change. A large number of control variables were included to adjust for potential confounding in the model. Inter-district variation in alcohol consumption is adjusted for by including district fixed effects. Alcohol prices are negatively associated with demand for alcoholic beverages. The PED ranged from -0.14 for spirits to -0.46 for country liquor. Low level of education was positively associated with spirits consumption. The magnitude of elasticity varied by rural-urban, education and gender. Results indicate that a policy mix of price controls and awareness campaigns would be most effective in tackling the adverse effects of harmful drinking in India. The demand for beer, country liquor and spirits is negatively associated with its own price. The elasticity estimates ranged from -0.14 for spirits to -0.44 for country liquor. The elasticity estimates varied by rural-urban, gender and by education levels of the drinkers. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved
Directory of Open Access Journals (Sweden)
Vebil Yıldırım
2017-10-01
Full Text Available A broad parametric study is carried out to investigate the effects of both the inhomogeneity parameter, and a profile index of Stodola’s hyperbolic function on the static response of such structures subjected to both the inner and outer pressures. The investigation is based on the analytical formulas lately published by the author. The effects of those parameters on the variation of the radial displacement, the radial and hoop stresses are all graphically illustrated for an annulus pressurized at its both surfaces. It is observed that, especially, the variation of the hoop stress in radial coordinate is closely sensible to variation of those parameters. For the chosen problems it was observed that one of two materials whose Young’s modulus is higher than the other is better to locate at the inner surface of the disc having divergent profile to get reasonable maximum hoop stresses. However much smaller radial displacements may be obtained by using positive inhomogeneity indexes for all discs whose surfaces host a material whose Young’s modulus is smaller than the other. To reach a final decision, analytical formulas such as those used in the present study together with a failure criteria such as Von Mises and Tresca become indispensable means in a design process.
Recent advances in elasticity, viscoelasticity and inelasticity
Rajagopal, KR
1995-01-01
This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.
Elastic Property Simulation of Nano-particle Reinforced Composites
Directory of Open Access Journals (Sweden)
He Jiawei
2016-01-01
Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Cell elasticity with altered cytoskeletal architectures across multiple cell types.
Grady, Martha E; Composto, Russell J; Eckmann, David M
2016-08-01
The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonlinear Elasticity of Doped Semiconductors
2017-02-01
AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Elasticity theory of ultrathin nanofilms
International Nuclear Information System (INIS)
Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan
2015-01-01
A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)
Multipurpose hooks for elastic attachment
Directory of Open Access Journals (Sweden)
Siddharth Shashidhar Revankar
2014-01-01
Full Text Available As certain bracket systems do not include hooks on premolar brackets for elastic attachment, Kobayashi or custom made ligature hooks have proven as an alternative. However, these hooks tend to bend labially when used with heavy elastics and these elastics can even pop loose from the hooks on mouth opening. The following article describes an innovative multipurpose hook which is simple, stiff and inexpensive and can be used for engagement of class II elastics on premolars in case of missing molars as well as engagement of intermaxillary elastics for settling of occlusion in finishing stages. As the hooks can be prefabricated, this saves a lot of chair side time and is more practical for use in day-to-day orthodontic practice.
Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.
1985-01-01
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
Blocky inversion of multichannel elastic impedance for elastic parameters
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Morphoelasticity: A theory of elastic growth
Goriely, Alain; Moulton, Derek
2011-01-01
This chapter is concerned with the modelling of growth processes in the framework of continuum mechanics and nonlinear elasticity. It begins by considering growth and deformation in a one-dimensional setting, illustrating the key relationship between growth, the elastic response of the material, and the generation of residual stresses. The general three-dimensional theory of morphoelasticity is then developed from conservation of mass and momentum balance equations. In the formulation, the multiplicative decomposition of the deformation tensor, the standard approach in morphoelasticity, is derived in a new way. A discussion of continuous growth is also included. The chapter concludes by working through a sample problem of a growing cylindrical tube. A stability analysis is formulated, and the effect of growth on mucosal folding, a commonly seen instability in biological tubes, is demonstrated.
Morphoelasticity: A theory of elastic growth
Goriely, Alain
2011-10-11
This chapter is concerned with the modelling of growth processes in the framework of continuum mechanics and nonlinear elasticity. It begins by considering growth and deformation in a one-dimensional setting, illustrating the key relationship between growth, the elastic response of the material, and the generation of residual stresses. The general three-dimensional theory of morphoelasticity is then developed from conservation of mass and momentum balance equations. In the formulation, the multiplicative decomposition of the deformation tensor, the standard approach in morphoelasticity, is derived in a new way. A discussion of continuous growth is also included. The chapter concludes by working through a sample problem of a growing cylindrical tube. A stability analysis is formulated, and the effect of growth on mucosal folding, a commonly seen instability in biological tubes, is demonstrated.
Application of elasticity theory at Sandia Labortories
International Nuclear Information System (INIS)
Davison, L.
1975-01-01
Examples are given of the application of linear elasticity theory to the solution of practical problems encountered at Sandia Laboratories. It is being applied to a very broad range of problems: those in one, two, and three spatial dimensions, some involving static and some dynamic response, to materials having isotropic and anisotropic symmetry, to homogeneous and inhomogeneous bodies, etc. Various extensions of the theory to include electric, magnetic and thermal effects, to account for material microstructure, for radiation and spall damage, chemical reactions, and other phenomena have been developed and/or applied. In some applications linear elasticity represents the physics of a problem well and is the theory of choice. In others the theory was used because it lent insight into a larger problem that was also attacked by means of other theories and/or experiment, and in some cases it serves as a part of a more encompassing theory
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
Nonlocal elasticity tensors in dislocation and disclination cores
International Nuclear Information System (INIS)
Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.
2017-01-01
We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.
bessel functions for axisymmetric elasticity problems of the elastic
African Journals Online (AJOL)
HOD
2, 3DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ENUGU STATE. ... theory of elasticity and in the case of vertical applied loads, was first ... partial differential equations in bodies having cylindrical symmetry.
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
High energy elastic hadron scattering
International Nuclear Information System (INIS)
Fearnly, T.A.
1986-04-01
The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described
Spectral dimension of elastic Sierpinski gaskets with general elastic forces
International Nuclear Information System (INIS)
Liu, S.H.; Liu, A.J.
1985-01-01
The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class
Estimating Price Elasticity using Market-Level Appliance Data
Energy Technology Data Exchange (ETDEWEB)
Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-08-04
This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focused on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.
The real-time price elasticity of electricity
International Nuclear Information System (INIS)
Lijesen, Mark G.
2007-01-01
The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time relationship between total peak demand and spot market prices. We find a low value for the real-time price elasticity, which may partly be explained from the fact that not all users observe the spot market price. If we correct for this phenomenon, we find the elasticity to be fairly low for consumers currently active in the spot market. If this conclusion applies to all users, this would imply a limited scope for government intervention in supply security issues. (Author)
Model-Based Reconstructive Elasticity Imaging Using Ultrasound
Directory of Open Access Journals (Sweden)
Salavat R. Aglyamov
2007-01-01
Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.
Astronomical optics and elasticity theory
Lemaitre, Gerard Rene
2008-01-01
Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.
Uniqueness theorems in linear elasticity
Knops, Robin John
1971-01-01
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...
Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-01-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells
CONFERENCE: Elastic and diffractive scattering
Energy Technology Data Exchange (ETDEWEB)
White, Alan
1989-09-15
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.
A Labor Supply Elasticity Accord?
Lars Ljungqvist; Thomas J. Sargent
2011-01-01
A dispute about the size of the aggregate labor supply elasticity has been fortified by a contentious aggregation theory used by real business cycle theorists. The replacement of that aggregation theory with one more congenial to microeconomic observations opens possibilities for an accord about the aggregate labor supply elasticity. The new aggregation theory drops features to which empirical microeconomists objected and replaces them with life-cycle choices. Whether the new aggregation theo...
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Identification of elastic properties of composite plate
International Nuclear Information System (INIS)
Kovalovs, A; Rucevskis, S
2011-01-01
Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima
Defect-dependent elasticity: Nanoindentation as a probe of stress state
International Nuclear Information System (INIS)
Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.
2000-01-01
Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society
Effective stress law for anisotropic elastic deformation
International Nuclear Information System (INIS)
Carroll, M.M.
1979-01-01
An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee
Dynamic elastic moduli of rocks under pressure
Energy Technology Data Exchange (ETDEWEB)
Schock, R N [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-01
Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)
Dynamic elastic moduli of rocks under pressure
International Nuclear Information System (INIS)
Schock, R.N.
1970-01-01
Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)
Temperature dependence of elastic properties of paratellurite
International Nuclear Information System (INIS)
Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.
1987-01-01
New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)
Comparison of elastic and inelastic analyses
International Nuclear Information System (INIS)
Ammerman, D.J.; Heinstein, M.W.; Wellman, G.W.
1992-01-01
The use of inelastic analysis methods instead of the traditional elastic analysis methods in the design of radioactive material (RAM) transport packagings leads to a better understanding of the response of the package to mechanical loadings. Thus, better assessment of the containment, thermal protection, and shielding integrity of the package after a structure accident event can be made. A more accurate prediction of the package response can lead to enhanced safety and also allow for a more efficient use of materials, possibly leading to a package with higher capacity or lower weight. This paper discusses the advantages and disadvantages of using inelastic analysis in the design of RAM shipping packages. The use of inelastic analysis presents several problems to the package designer. When using inelastic analysis the entire nonlinear response of the material must be known, including the effects of temperature changes and strain rate. Another problem is that there currently is not an acceptance criteria for this type of analysis that is approved by regulatory agencies. Inelastic analysis acceptance criteria based on failure stress, failure strain , or plastic energy density could be developed. For both elastic and inelastic analyses it is also important to include other sources of stress in the analyses, such as fabrication stresses, thermal stresses, stresses from bolt preloading, and contact stresses at material interfaces. Offsetting these added difficulties is the improved knowledge of the package behavior. This allows for incorporation of a more uniform margin of safety, which can result in weight savings and a higher level of confidence in the post-accident configuration of the package. In this paper, comparisons between elastic and inelastic analyses are made for a simple ring structure and for a package to transport a large quantity of RAM by rail (rail cask) with lead gamma shielding to illustrate the differences in the two analysis techniques
Thermodynamic analysis of elastic-plastic deformation
International Nuclear Information System (INIS)
Lubarda, V.
1981-01-01
The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt
Price-elastic demand in deregulated electricity markets
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, Afzal S.
2003-05-01
The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.
Price and income elasticities of residential energy demand in Germany
International Nuclear Information System (INIS)
Schulte, Isabella; Heindl, Peter
2017-01-01
We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.
Phason elasticity and surface roughening
International Nuclear Information System (INIS)
Tang Leihan; Jaric, M.V.
1990-01-01
The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs
Appraisal of elastic follow up
International Nuclear Information System (INIS)
Roche, R.L.
1981-08-01
The aim of this paper is to provide indications to choose what fraction of a self limiting stress can be considered as secondary. At first, considerations are given to a simple structure which could be called ''creep relaxation tensile test''. A bar (with constant cross section) is loaded by an elastic spring in order to obtain a given elongation of the assembly. The stress evolution is studied. Then the creep damage is computed, and compared to the damage corresponding to the elastic computed stress. This comparison gives the fraction of the self limiting stress which must be considered as primary. This involve the structural parameter 0 which is the initial value of the ratio of elastic energy to dissipating power. Extension of the rule is made with the help of KACHANOV approximation. As a conclusion a procedure is described which determines what fraction of a self limiting stress must be considered as primary
CONFERENCE: Elastic and diffractive scattering
International Nuclear Information System (INIS)
White, Alan
1989-01-01
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago
International Nuclear Information System (INIS)
Gale, J.; Tiselj, I.
2002-01-01
One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)
Analysis of price and income elasticities for cereals food crops in an ...
African Journals Online (AJOL)
The objective of the study is to estimate the price and income elasticities of cereals food crops in the study area. The results of the price and income elasticities of demand suggest that urban households in general are responsive to changes in own price and income in adjusting their consumption patterns. It was shown that ...
Elastic constants of stressed and unstressed materials in the phase-field crystal model
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Reference-based transitions in short-run price elasticity
K.H. Pauwels (Koen); Ph.H.B.F. Franses (Philip Hans); S. Srinivasan (Shuba)
2003-01-01
textabstractMarketing literature has long recognized that price response need not be monotonic and symmetric, but has yet to provide generalizable market-level insights on reference price type, asymmetric thresholds and sign and magnitude of elasticity transitions. In this paper, we introduce smooth
Price elasticity of demand for psychiatric consultation in a Nigerian ...
African Journals Online (AJOL)
Objective: This paper addresses price elasticity of demand (PED) in a region where most patients make payments for consultations out of pocket. PED is a measure of the responsiveness of the quantity demanded of goods or services to changes in price. The study was done in the context of an outpatient psychiatric clinic in ...
Nonlinear theory of elastic shells
International Nuclear Information System (INIS)
Costa Junior, J.A.
1979-08-01
Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
Heart transplantation and arterial elasticity
Directory of Open Access Journals (Sweden)
Colvin-Adams M
2013-12-01
Full Text Available Monica Colvin-Adams,1 Nonyelum Harcourt,1 Robert LeDuc,2 Ganesh Raveendran,1 Yassir Sonbol,3 Robert Wilson,1 Daniel Duprez11Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA; 2Division of Biostatistics University of Minnesota, Minneapolis, MN, USA; 3Cardiovascular Division, St Luke's Hospital System, Sugar Land, TX, USAObjective: Arterial elasticity is a functional biomarker that has predictive value for cardiovascular morbidity and mortality in nontransplant populations. There is little information regarding arterial elasticity in heart transplant recipients. This study aimed to characterize small (SAE and large (LAE artery elasticity in heart transplant recipients in comparison with an asymptomatic population free of overt cardiovascular disease. A second goal was to identify demographic and clinical factors associated with arterial elasticity in this unique population.Methods: Arterial pulse waveform was registered noninvasively at the radial artery in 71 heart transplant recipients between 2008 and 2010. SAEs and LAEs were derived from diastolic pulse contour analysis. Comparisons were made to a healthy cohort of 1,808 participants selected from our prevention clinic database. Multiple regression analyses were performed to evaluate associations between risk factors and SAE and LAE within the heart transplant recipients.Results: LAE and SAE were significantly lower in heart transplant recipients than in the normal cohort (P <0.01 and P < 0.0001, respectively. Female sex and history of ischemic cardiomyopathy were significantly associated with reduced LAE and SAE. Older age and the presence of moderate cardiac allograft vasculopathy were also significantly associated with reduced SAE. Transplant duration was associated with increased SAE.Conclusion: Heart transplants are associated with peripheral endothelial dysfunction and arterial stiffness, as demonstrated by a significant reduction in SAE and LAE when compared with a
Modeling dynamic acousto-elastic testing experiments: validation and perspectives.
Gliozzi, A S; Scalerandi, M
2014-10-01
Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.
Collusion and the elasticity of demand
David Collie
2004-01-01
The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.
Mechanical behaviour of nanoparticles: Elasticity and plastic ...
Indian Academy of Sciences (India)
2015-06-03
Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2016-01-01
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
Elastic least-squares reverse time migration
Feng, Zongcai
2016-09-06
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
Vibrations of Elastic Systems With Applications to MEMS and NEMS
Magrab, Edward B
2012-01-01
This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Non-Conventional Thermodynamics and Models of Gradient Elasticity
Directory of Open Access Journals (Sweden)
Hans-Dieter Alber
2018-03-01
Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.
Elastic gauge fields and Hall viscosity of Dirac magnons
Ferreiros, Yago; Vozmediano, María A. H.
2018-02-01
We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.
Health care demand elasticities by type of service.
Ellis, Randall P; Martins, Bruno; Zhu, Wenjia
2017-09-01
We estimate within-year price elasticities of demand for detailed health care services using an instrumental variable strategy, in which individual monthly cost shares are instrumented by employer-year-plan-month average cost shares. A specification using backward myopic prices gives more plausible and stable results than using forward myopic prices. Using 171 million person-months spanning 73 employers from 2008 to 2014, we estimate that the overall demand elasticity by backward myopic consumers is -0.44, with higher elasticities of demand for pharmaceuticals (-0.44), specialists visits (-0.32), MRIs (-0.29) and mental health/substance abuse (-0.26), and lower elasticities for prevention visits (-0.02) and emergency rooms (-0.04). Demand response is lower for children, in larger firms, among hourly waged employees, and for sicker people. Overall the method appears promising for estimating elasticities for highly disaggregated services although the approach does not work well on services that are very expensive or persistent. Copyright © 2017 Elsevier B.V. All rights reserved.
Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.
Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R
2013-06-18
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics
Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.
2013-01-01
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375
Applications of super elasticity in vibrational control
International Nuclear Information System (INIS)
Soul, H
2005-01-01
In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work
Thermodynamic parameters of elasticity and electrical conductivity ...
African Journals Online (AJOL)
The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...
On Elasticity Measurement in Cloud Computing
Directory of Open Access Journals (Sweden)
Wei Ai
2016-01-01
Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.
Elasticities for U.S. Wheat Food Use by Class
Marsh, Thomas L.
2003-01-01
We conceptualize wheat for food use as an input into flour production and derive demand functions to quantify price responsiveness and economic substitutability across wheat classes. Cost, price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft white winter, and durum wheat. In general, hard red winter and spring wheat varieties are much more responsive to their own price than are soft wheat varieties and durum wheat. Morishima elasticitie...
International Nuclear Information System (INIS)
Petruschke, W.; Strunk, G.
1987-01-01
The investigations according to the system identification show that the piping model using beam theory and flexibility factors according to the Karman theory are adequate for evaluating natural frequencies, mode shapes, static displacements and stresses. The same accuracy can be seen by comparing the piping response due to blowdown within the elastic range. The simplified elastic-plastic analysis in general overestimates the maximum amplitudes while the frequency content is not simulated very well. For practical purposes, it can be an adequate tool in many cases. The elastic-plastic analysis is the most expensive procedure but gives also the best results. The use of beam elements with multilinear moment-curvature relationships results in a good approximation for the global behaviour (displacements). The strains according to this theory only include the beam deformation modes
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Elasticity of Long Distance Travelling
DEFF Research Database (Denmark)
Knudsen, Mette Aagaard
2011-01-01
With data from the Danish expenditure survey for 12 years 1996 through 2007, this study analyses household expenditures for long distance travelling. Household expenditures are examined at two levels of aggregation having the general expenditures on transportation and leisure relative to five other...... aggregated commodities at the highest level, and the specific expenditures on plane tickets and travel packages at the lowest level. The Almost Ideal Demand System is applied to determine the relationship between expenditures on transportation and leisure and all other purchased non-durables within...... packages has higher income elasticity of demand than plane tickets but also higher than transportation and leisure in general. The findings within price sensitiveness are not as sufficient estimated, but the model results indicate that travel packages is far more price elastic than plane tickets which...
Pipeline robots with elastic elements
Directory of Open Access Journals (Sweden)
A. Matuliauskas
2002-10-01
Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.
The poverty elasticity of growth
Heltberg, Rasmus
2002-01-01
How much does economic growth contribute to poverty reduction? I discuss analytical and empirical approches to assess the poverty elasticity of growth, and emphasize that the relationship between growth and poverty change is non-constant. For a given poverty measure, it depends on initial inequality and on the location of the poverty line relative to mean income. In most cases, growth is more important for poverty reduction than changes in inequality, but this does not tender inequality unimp...
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Teaching nonlinear dynamics through elastic cords
International Nuclear Information System (INIS)
Chacon, R; Galan, C A; Sanchez-Bajo, F
2011-01-01
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Elastic interaction between surface and spherical pore
International Nuclear Information System (INIS)
Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.
2000-01-01
The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)
Kaspar, Jan; Deile, M
The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...
Biomimetic heterogenous elastic tissue development.
Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala
2017-01-01
There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.
Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments
Đuričković, Bojan; Goriely, Alain; Maddocks, John H.
2013-01-01
that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory
Localization of elastic layers by correlated disorder
International Nuclear Information System (INIS)
Balents, L.
1993-01-01
The equilibrium behavior of a system of elastic layers under tension in the presence of correlated disorder is studied using functional renormalization group techniques. The model exhibits many of the features of the Bose-glass phase of type-II superconductors induced by columnar defects, but may be more directly applicable to charge density waves, incommensurate striped magnetic phases, stacked membranes under tension, vicinal crystal surfaces, or superconducting ''vortex-chains''. Below five dimensions, an epsilon expansion for the stable zero-temperature fixed point yields the properties of the glassy phase. Transverse to the direction of correlation, the randomness induces logarithmic growth of displacements. The absence of a response to a weak applied transverse field (transverse Meissner effect) is demonstrated analytically. In this simple model, the localized phase is stable to point disorder, in contrast to the behavior in the presence of dislocations, in which the converse is believed to be true. (orig.)
Motivation and compliance with intraoral elastics.
Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C
2014-07-01
Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Characterization of the elastic displacement demand: Case study - Sofia city
International Nuclear Information System (INIS)
Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.
2008-02-01
The results of the study on the seismic site response in a part of the metropolitan Sofia are discussed. The neo-deterministic seismic hazard assessment procedure has been used to compute realistic synthetic waveforms considering four earthquake scenarios, with magnitudes M = 3.7, M = 6.3 and M = 7.0. Source and site specific ground motion time histories are computed along three investigated cross sections, making use of the hybrid approach, combining the modal summation technique and the finite differences scheme. Displacement and acceleration response spectra are considered. These results are validated against the design elastic displacement response spectra and displacement demand, recommended in Eurocode 8. The elastic response design spectrum from the standard pseudo-acceleration, versus natural period, Tn, format is converted to the Sa - Sd format. The elastic displacement response spectra and displacement demand are discussed with respect to the earthquake magnitude, the seismic source-to-site distance, seismic source mechanism, and the local geological site conditions. (author)
Examining the short-run price elasticity of gasoline demand in the United States
Brannan, Michael James
Estimating the consumer demand response to changes in the price of gasoline has important implications regarding fuel tax policies and environmental concerns. There are reasons to believe that the short-run price elasticity of gasoline demand fluctuates due to changing structural and behavioral factors. In this paper I estimate the short-run price elasticity of gasoline demand in two time periods, from 2001 to 2006 and from 2007 to 2010. This study utilizes data at both the national and state levels to produce estimates. The short-run price elasticities range from -0.034 to -0.047 during 2001 to 2006, compared to -0.058 to -0.077 in the 2007 to 2010 period. This paper also examines whether there are regional differences in the short-run price elasticity of gasoline demand in the United States. However, there appears to only be modest variation in price elasticity values across regions.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Elastic Moduli of Carbon Nanohorns
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2011-01-01
Full Text Available Carbon nanotube is a special case of carbon nanohorns or carbon nanocones with zero apex angle. Research into carbon nanohorns started almost at the same time as the discovery of nanotubes in 1991. Most researchers focused on the investigation of nanotubes, and the exploration of nanohorns attracted little attention. To model the carbon nanohorns, we make use of a more reliable second-generation reactive empirical bond-order potential by Brenner and coworkers. We investigate the elastic moduli and conclude that these nanohorns are equally strong and require in-depth investigation. The values of Young's and Shear moduli decrease with apex angle.
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
Surface elastic properties in silicon nanoparticles
Melis, Claudio; Giordano, Stefano; Colombo, Luciano
2017-09-01
The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.
Effective elastic properties of damaged isotropic solids
International Nuclear Information System (INIS)
Lee, U Sik
1998-01-01
In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids
Anomalous elasticity, fluctuations and disorder in elastic membranes
Le Doussal, Pierre; Radzihovsky, Leo
2018-05-01
Motivated by freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an extensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky, 1992; 1993). The experimental realization atom-thin graphene sheets (Novoselov et al., 2004) have driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic "membrane" embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: (i) d → ∞, (ii) D → 4, and (iii) D = d. Focusing on the critical "flat" phase, for a homogeneous two-dimensional (D = 2) membrane embedded in three dimensions (d = 3), we predict its universal roughness exponent ζ = 0 . 590, length-scale dependent elastic moduli exponents η = 0 . 821 and ηu = 0 . 358, and an anomalous Poisson ratio, σ = - 1 / 3. In the presence of random uncorrelated heterogeneity the membrane exhibits a glassy wrinkled ground state, characterized by ζ‧ = 0 . 775 ,η‧ = 0 . 449, ηu‧ = 1 . 101 and a Poisson ratio σ‧ = - 1 / 3. Motivated by a number of physical realizations (charged impurities, disclinations and dislocations) we also study power-law correlated quenched disorder that leads to a variety of distinct glassy wrinkled phases. Finally, neglecting self-avoiding interaction we demonstrate that at high temperature a "phantom" sheet undergoes a continuous crumpling transition, characterized by a radius of gyration exponent, ν = 0 . 732 and η = 0
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Hummingbird tongues are elastic micropumps
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A.
2015-01-01
Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074
Elastic properties of graphite and interstitial defects
International Nuclear Information System (INIS)
Ayasse, J.-B.
1977-01-01
The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr
Demand elasticity of oil in Barbados
Energy Technology Data Exchange (ETDEWEB)
Moore, Alvon, E-mail: armoore@centralbank.org.bb [Economist, Central Bank of Barbados, Toms Adams Financial Centre, Bridgetown (Barbados)
2011-06-15
The importation of oil is a significant component of Barbados' imports, rising from 7% of imports in 1998 to over 20% in 2009. This increase has impacted greatly on the level of foreign reserves. As a price-taker, relying entirely on imported oil for our energy needs could prove a continuous drain on the economy. With a view to formulating an appropriate energy policy for Barbados, this paper analyses the demand for oil using monthly data from 1998 to 2009. The paper estimates the elasticities of demand for oil by employing single equation cointegration approach and comparing the results with countries that rely heavily on imported oil and whose policy objective are to alter their energy structure to rely less on imported oil. The results show that the demand for oil imports is price inelastic in the long run. The consumption of oil is responsive to past consumption, prices, income, electricity consumption and the number of appliances imported in the short-run. A policy framework to reduce the use of oil for electricity consumption via alternative energy sources should be considered and the taxation of oil imports given its elasticity is a good source of revenue. - Highlights: > Demand for oil is price inelastic in the long-run (-0.552). > The relationship between oil demand and income is insignificant in the long run. > As electricity consumption increases by 1%, the demand for oil rises by 1.43%. > Need to determine if investments in alternative sources can offset demand for oil. > Investment in alternative resources may be required before gains are realised.
A new approach to ultrasonic elasticity imaging
Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.
2016-04-01
Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.
Demand elasticity of oil in Barbados
International Nuclear Information System (INIS)
Moore, Alvon
2011-01-01
The importation of oil is a significant component of Barbados' imports, rising from 7% of imports in 1998 to over 20% in 2009. This increase has impacted greatly on the level of foreign reserves. As a price-taker, relying entirely on imported oil for our energy needs could prove a continuous drain on the economy. With a view to formulating an appropriate energy policy for Barbados, this paper analyses the demand for oil using monthly data from 1998 to 2009. The paper estimates the elasticities of demand for oil by employing single equation cointegration approach and comparing the results with countries that rely heavily on imported oil and whose policy objective are to alter their energy structure to rely less on imported oil. The results show that the demand for oil imports is price inelastic in the long run. The consumption of oil is responsive to past consumption, prices, income, electricity consumption and the number of appliances imported in the short-run. A policy framework to reduce the use of oil for electricity consumption via alternative energy sources should be considered and the taxation of oil imports given its elasticity is a good source of revenue. - Highlights: → Demand for oil is price inelastic in the long-run (-0.552). → The relationship between oil demand and income is insignificant in the long run. → As electricity consumption increases by 1%, the demand for oil rises by 1.43%. → Need to determine if investments in alternative sources can offset demand for oil. → Investment in alternative resources may be required before gains are realised.
Determination of corneal elasticity coefficient using the ORA database.
Avetisov, Sergei E; Novikov, Ivan A; Bubnova, Irina A; Antonov, Alexei A; Siplivyi, Vladimir I
2010-07-01
To propose a new approach for the study of corneal biomechanics using the Reichert Ocular Response Analyzer (ORA) database, which is based on changes in velocity retardation in the central cornea at the peak of flattening. The ORA applanation curve was analyzed using a mathematical technique, which allowed calculation of the elasticity coefficient (Ke), which is primarily characteristic of the elastic properties of the cornea. Elasticity coefficient values were obtained in patients with presumably different biomechanical properties of the cornea: "normal" cornea (71 eyes, normal group), keratoconus (34 eyes, keratoconus group), LASIK (36 eyes, LASIK group), and glaucoma with elevated and compensated intraocular pressure (lOP) (38 eyes, glaucoma group). The mean Ke value in the normal group was 11.05 +/- 1.6, and the corneal thickness correlation coefficient r2 was 0.48. In the keratoconus group, the mean Ke value was 4.91 +/- 1.87 and the corneal thickness correlation coefficient r2 was 0.47. In the LASIK group, Ke and r2 were 5.99 +/- 1.18 and 0.39, respectively. In the glaucoma group, the same eyes that experienced a two-fold reduction in lOP developed a statistically significant reduction in the Ke (1.06 times lower), whereas their corneal hysteresis value increased 1.25 times. The elasticity coefficient calculated using the ORA applanation curve can be used in the evaluation of corneal biomechanical properties.
Bayesian Analysis of Demand Elasticity in the Italian Electricity Market
Directory of Open Access Journals (Sweden)
Maria Chiara D'Errico
2015-09-01
Full Text Available The liberalization of the Italian electricity market is a decade old. Within these last ten years, the supply side has been extensively analyzed, but not the demand side. The aim of this paper is to provide a new method for estimation of the demand elasticity, based on Bayesian methods applied to the Italian electricity market. We used individual demand bids data in the day-ahead market in the Italian Power Exchange (IPEX, for 2011, in order to construct an aggregate demand function at the hourly level. We took into account the existence of both elastic and inelastic bidders on the demand side. The empirical results show that elasticity varies significantly during the day and across periods of the year. In addition, the elasticity hourly distribution is clearly skewed and more so in the daily hours. The Bayesian method is a useful tool for policy-making, insofar as the regulator can start with a priori historical information on market behavior and estimate actual market outcomes in response to new policy actions.
Brazilian sawn wood price and income elasticity
Directory of Open Access Journals (Sweden)
Rommel Noce
2010-09-01
Full Text Available This study estimated the sawn wood demand price and income elasticity. Specifically it was estimated the priceelasticity of sawn wood, the cross price elasticity of wood panels and the income elasticity of Brazilian GDP. A log-log model withcorrection through outline of the mobile average (MA(1 was used, adjusted for the period of 1971 to 2006, which showed to bestable, with satisfactory significance levels. It was observed that sawn wood demand is inelastic in relation to price and elastic inrelation to income.
Elastic properties of icosahedral and decagonal quasicrystals
International Nuclear Information System (INIS)
Chernikov, Mikhail A
2005-01-01
Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Elastic moduli and elastic anisotropy of cold sprayed metallic coatings
Czech Academy of Sciences Publication Activity Database
Seiner, Hanuš; Cizek, J.; Sedlák, Petr; Huang, R.; Cupera, J.; Dlouhý, I.; Landa, Michal
2016-01-01
Roč. 291, April (2016), s. 342-347 ISSN 0257-8972 R&D Projects: GA ČR GA13-13616S; GA ČR(CZ) GA13-35890S Grant - others:NETME Centre Plus - národní program udržitelnosti(CZ) LO1202 Institutional support: RVO:61388998 Keywords : kinetic spray * CGDS * elastic properties * metals and alloys * deposition * resonant ultrasound spectroscopy Subject RIV: JG - Metallurgy Impact factor: 2.589, year: 2016 http://ac.els-cdn.com/S0257897216301165/1-s2.0-S0257897216301165-main.pdf?_tid=1083617a-017f-11e6-92e7-00000aacb361&acdnat=1460555773_2e80d3df20843f3af649bf3ac71c8844
Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand
Coglianese, John; Davis, Lucas W; Kilian, Lutz; Stock, James H
2015-01-01
Traditional least squares estimates of the responsiveness of gasoline consumption to changes in gasoline prices are biased toward zero, given the endogeneity of gasoline prices. A seemingly natural solution to this problem is to instrument for gasoline prices using gasoline taxes, but this approach tends to yield implausibly large price elasticities. We demonstrate that anticipatory behavior provides an important explanation for this result. We provide evidence that gasoline buyers increase g...
Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.
Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix
2016-07-05
We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.
Quasi-experimental taxation elasticities of US gasoline demand
International Nuclear Information System (INIS)
Goel, R.K.
1994-01-01
Taxation elasticities provide inputs in public policy aimed at raising revenues. Using the quasi-experimental method, this paper calculates gasoline taxation elasticities for the USA over 1952-86. The medium (mean) elasticity over this period is found to be -0.075 (-0.122). However, the elasticity following the oil shock of 1973 is found to be statistically different from the pre-shock elasticity. Reasons for this change in elasticity are discussed. The implication of this analysis is that tax policies based on price elasticities, rather than on tax elasticities, might be using an inappropriate elasticity estimate and consequently misinterpreting the government's ability to raise tax revenues. (author)
Multidiscipline simulation of elastic manipulators
Directory of Open Access Journals (Sweden)
T. Rølvåg
1992-10-01
Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Price elasticity of natural gas demand in the power generation sector
International Nuclear Information System (INIS)
McArdle, P.F.
1990-01-01
Today, the demand for energy by the electric generation sector is highly competitive and price-responsive. Previous estimates of the price elasticity of natural gas demand in this sector have focused primarily on data from the 1960s and 1970s. Such estimates fail to take full account of economic, regulatory, and legislative developments that have altered the structure of the electric generation market during the 1980s. Structural changes include an increased ability of utilities to choose among generating options, the increase in non-utility generators, the amending of the Fuel Use Act, and a more competitive market for electricity. An accurate estimate of price elasticity requires a refocusing on data from the post-1983 period. The purpose of this paper is to answer two questions: how price responsive (elastic) is natural gas demand in this market; and what changes in natural gas demand elasticity have occurred over time
The elasticity and failure of fluid-filled cellular solids: theory and experiment.
Warner, M; Thiel, B L; Donald, A M
2000-02-15
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
The elasticity and failure of fluid-filled cellular solids: Theory and experiment
Warner, M.; Thiel, B. L.; Donald, A. M.
2000-02-01
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
An analysis of gasoline demand elasticities at the national and local levels in Mexico
Energy Technology Data Exchange (ETDEWEB)
Crotte, Amado [Mexican Ministry of Communications and Transport, Mexico City (Mexico); Noland, Robert B. [Alan M. Voorhees Transportation Center, E. J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 (United States); Graham, Daniel J. [Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ London (United Kingdom)
2010-08-15
The majority of evidence on gasoline demand elasticities is derived from models based on national data. Since the largest growth in population is now taking place in cities in the developing world it is important that we understand whether this national evidence is applicable to demand conditions at the local level. The aim of this paper is to estimate and compare gasoline per vehicle demand elasticities at the national and local levels in Mexico. National elasticities with respect to price, income, vehicle stock and metro fares are estimated using both a time series cointegration model and a panel GMM model for Mexican states. Estimates for Mexico City are derived by modifying national estimates according to mode shares as suggested by, and by estimating a panel Within Groups model with data aggregated by borough. Although all models agree on the sign of the elasticities the magnitudes differ greatly. Elasticities change over time and differ between the national and local levels, with smaller price responses in Mexico City. In general, price elasticities are smaller than those reported in the gasoline demand surveys, a pattern previously found in developing countries. The fact that income and vehicle stock elasticities increase over time may suggest that vehicles are being used more intensively in recent years and that Mexico City residents are purchasing larger vehicles. Elasticities with respect to metro fares are negligible, which suggests little substitution between modes. Finally, the fact that fuel efficiency elasticities are smaller than vehicle stock elasticities suggests that vehicle stock size, rather than its composition, has a larger impact on gasoline consumption in Mexico City. (author)
An analysis of gasoline demand elasticities at the national and local levels in Mexico
International Nuclear Information System (INIS)
Crotte, Amado; Noland, Robert B.; Graham, Daniel J.
2010-01-01
The majority of evidence on gasoline demand elasticities is derived from models based on national data. Since the largest growth in population is now taking place in cities in the developing world it is important that we understand whether this national evidence is applicable to demand conditions at the local level. The aim of this paper is to estimate and compare gasoline per vehicle demand elasticities at the national and local levels in Mexico. National elasticities with respect to price, income, vehicle stock and metro fares are estimated using both a time series cointegration model and a panel GMM model for Mexican states. Estimates for Mexico City are derived by modifying national estimates according to mode shares as suggested by, and by estimating a panel Within Groups model with data aggregated by borough. Although all models agree on the sign of the elasticities the magnitudes differ greatly. Elasticities change over time and differ between the national and local levels, with smaller price responses in Mexico City. In general, price elasticities are smaller than those reported in the gasoline demand surveys, a pattern previously found in developing countries. The fact that income and vehicle stock elasticities increase over time may suggest that vehicles are being used more intensively in recent years and that Mexico City residents are purchasing larger vehicles. Elasticities with respect to metro fares are negligible, which suggests little substitution between modes. Finally, the fact that fuel efficiency elasticities are smaller than vehicle stock elasticities suggests that vehicle stock size, rather than its composition, has a larger impact on gasoline consumption in Mexico City. (author)
The visco-elastic multilayer program VEROAD
Hopman, P.C.
1996-01-01
The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of
Heavy ion elastic scattering of code : OPTHI
International Nuclear Information System (INIS)
Ismail, M.; Divatia, A.S.
1982-01-01
A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)
Thermo-elastic optical coherence tomography
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, A.F.W.; Huber, Robert; Van Soest, Gijs
2017-01-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive
2010-01-01
...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2515 Elasticity. The flexible, springy... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2515 Section 29.2515 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...
2010-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3516 Elasticity. The flexible, springy nature of the tobacco leaf to recover... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.3516 Section 29.3516 Agriculture...
2010-01-01
... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1014 Elasticity. The flexible, springy nature of the tobacco leaf to recover... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.1014 Section 29.1014 Agriculture...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2265 Section 29.2265 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2265 Elasticity. The flexible, springy nature of the tobacco leaf to recover approximately its original size and...
Elastic least-squares reverse time migration
Feng, Zongcai
2017-03-08
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Modelling the elastic properties of cellulose nanopaper
DEFF Research Database (Denmark)
Mao, Rui; Goutianos, Stergios; Tu, Wei
2017-01-01
The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2017-01-01
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Elastic properties and electron transport in InAs nanowires
Energy Technology Data Exchange (ETDEWEB)
Migunov, Vadim
2013-02-22
was found that the lattice distortion due to stacking fault does not affect the Young's modulus significantly. The effect of electron density redistribution is suggested as the main aspect which is responsible for an enhancement of the Young's modulus by up to 200%. This study suggests that both electrical and elastic properties of the InAs nanowires can be tuned by changing the defect density.
Braybrook, Siobhan A
2017-01-01
Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.
Forest biomass and Armington elasticities in Europe
International Nuclear Information System (INIS)
Lundmark, Robert; Shahrammehr, Shima
2011-01-01
The purpose of this paper is to provide estimated Armington elasticities for selected European countries and for three forest biomass commodities of main interest in many energy models: roundwood, chips and particles and wood residues. The Armington elasticity is based on the assumption that a specific forest biomass commodity is differentiated by its origin. The statistically significant estimated Armington elasticities range from 0.52 for roundwood in Hungary to approximately 4.53 for roundwood in Estonia. On average, the statistically significant Armington elasticity for chips and particles over all countries is 1.7 and for wood residues and roundwood 1.3 and 1.5, respectively. These elasticities can provide benchmark values for simulation models trying to assess trade patterns of forest biomass commodities and energy policy effects for European countries or for the EU as a whole.
Elasticity of Substitution and Antidumping Measures
DEFF Research Database (Denmark)
Drud Hansen, Jørgen; Meinen, Philipp; Nielsen, Jørgen Ulff-Møller
Abstract This paper analyzes the role of the elasticity of substitution for anti-dumping decisions across countries. In monopolistic competition models with cost heterogeneous firms across countries, price differences vary inversely with the elasticity of substitution. Anti-dumping duties should...... therefore also vary inversely with the elasticity of substitution at least for countries which have a strong focus on prices in the determination of their anti-dumping measures. We test this for ten countries from 1990 to 2009 using data on anti-dumping from Chad Bown (2010) and US-data at 8-digit level...... in our empirical investigation support the predicted role of the elasticity of substitution as we find a significant negative relation between the elasticity of substitution and the final anti-dumping duties for the ‘lesser duty rule’ group of countries. The countries which do not follow the ‘lesser duty...
Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses
International Nuclear Information System (INIS)
Sauer, G.
1998-01-01
Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)
New empirical generalizations on the determinants of price elasticity
Bijmolt, THA; Van Heerde, HJ; Pieters, RGM
The importance of pricing decisions for firms has fueled an extensive stream of research on price elasticities. In an influential meta-analytical study, Tellis (1988) summarized price elasticity research findings until 1986. However, empirical generalizations on price elasticity require
Elastically driven intermittent microscopic dynamics in soft solids
Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela
2017-06-01
Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.
Role of estrogen receptor-α on food demand elasticity.
Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C
2015-05-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.
Elastic moduli of a Brownian colloidal glass former
Fritschi, S.; Fuchs, M.
2018-01-01
The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.
Soft Elasticity in Main Chain Liquid Crystal Elastomers
Directory of Open Access Journals (Sweden)
Anselm C. Griffin
2013-06-01
Full Text Available Main chain liquid crystal elastomers exhibit several interesting phenomena, such as three different regimes of elastic response, unconventional stress-strain relationship in one of these regimes, and the shape memory effect. Investigations are beginning to reveal relationships between their macroscopic behavior and the nature of domain structure, microscopic smectic phase structure, relaxation mechanism, and sample history. These aspects of liquid crystal elastomers are briefly reviewed followed by a summary of the results of recent elastic and high-resolution X-ray diffraction studies of the shape memory effect and the dynamics of the formation of the smectic-C chevron-like layer structure. A possible route to realizing auxetic effect at molecular level is also discussed.
Strain gradient elasticity within the symmetric BEM formulation
Directory of Open Access Journals (Sweden)
S. Terravecchia,
2014-07-01
Full Text Available The symmetric Galerkin Boundary Element Method is used to address a class of strain gradient elastic materials featured by a free energy function of the (classical strain and of its (first gradient. With respect to the classical elasticity, additional response variables intervene, such as the normal derivative of the displacements on the boundary, and the work-coniugate double tractions. The fundamental solutions - featuring a fourth order partial differential equations (PDEs system - exhibit singularities which in 2D may be of the order 1/ r 4 . New techniques are developed, which allow the elimination of most of the latter singularities. The present paper has to be intended as a research communication wherein some results, being elaborated within a more general paper [1], are reported.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Elastic metamaterial beam with remotely tunable stiffness
Energy Technology Data Exchange (ETDEWEB)
Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)
2016-02-07
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Microstructural evolution in inhomogeneous elastic media
International Nuclear Information System (INIS)
Jou, H.J.; Leo, P.H.; Lowengrub, J.S.
1997-01-01
We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Energy Technology Data Exchange (ETDEWEB)
Hu, Feng Feng; Sun, Yu; Peng, Bin Bin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing (China)
2016-10-15
An elastic dynamic model of high-speed multi-link precision press considering structural stiffness of rotation joints was established by the finite element method. In the finite element model, rotation joint was established by four bar elements with equivalent stiffness, and connected link was established by beam element. Then, the elastic dynamics equation of the system was established, and modal superposition method was used to solve the dynamic response. Compared with the traditional elastic dynamic model with perfect constraint of the rotation joints, the elastic dynamic response value of the improved model is larger. To validate the presented new method of elastic dynamics analysis with stiffness of rotation joints, a related test of slider Bottom dead center (BDC) position in different speed was designed. The test shows that the model with stiffness of rotation joints is more reasonable. So it provides a reasonable theory and method for dynamic characteristics research of such a multi-link machine.
Robust Force Control of Series Elastic Actuators
Directory of Open Access Journals (Sweden)
Andrea Calanca
2014-07-01
Full Text Available Force-controlled series elastic actuators (SEA are widely used in novel human-robot interaction (HRI applications, such as assistive and rehabilitation robotics. These systems are characterized by the presence of the “human in the loop”, so that control response and stability depend on uncertain human dynamics, including reflexes and voluntary forces. This paper proposes a force control approach that guarantees the stability and robustness of the coupled human-robot system, based on sliding-mode control (SMC, considering the human dynamics as a disturbance to reject. We propose a chattering free solution that employs simple task models to obtain high performance, comparable with second order solutions. Theoretical stability is proven within the sliding mode framework, and predictability is reached by avoiding the reaching phase by design. Furthermore, safety is introduced by a proper design of the sliding surface. The practical feasibility of the approach is shown using an SEA prototype coupled with a human impedance in severe stress tests. To show the quality of the approach, we report a comparison with state-of-the-art second order SMC, passivity-based control and adaptive control solutions.
Dispersive elastic properties of Dzyaloshinskii domain walls
Pellegren, James; Lau, Derek; Sokalski, Vincent
Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.
Higgins, Chris
2012-01-01
This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…
Elastic/Inelastic Measurement Project
International Nuclear Information System (INIS)
Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey; McEllistrem, Marcus
2015-12-01
The work scope involves the measurement of neutron scattering from natural sodium ( 23 Na) and two isotopes of iron, 56 Fe and 54 Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23 Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-@@energy (few MeV) fast-@@neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-@@region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., @@ 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.
Elastic/Inelastic Measurement Project
Energy Technology Data Exchange (ETDEWEB)
Yates, Steven [Univ. of Kentucky, Lexington, KY (United States); Hicks, Sally [Univ. of Dallas, TX (United States); Vanhoy, Jeffrey [U.S. Naval Academy, Annapolis, MD (United States); McEllistrem, Marcus [Univ. of Kentucky, Lexington, KY (United States)
2016-03-01
The work scope involves the measurement of neutron scattering from natural sodium (^{23}Na) and two isotopes of iron, ^{56}Fe and ^{54}Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on ^{23}Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-energy (few MeV) fast-neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β_{2} must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.
SIMULATION OFTHERMO-ELASTICS PROPERTIESOFTHERMALBARRIERCOATINGS
Directory of Open Access Journals (Sweden)
A.M.Ferouani M. Ferouani
2015-07-01
Full Text Available Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray results in a lamellar structure granting a low thermal conductivity, but with a low thermal expansion compliance. Electron Beam Physical Vapour Deposition generates a columnar structure allowing a better accommodation of the thermal expansion stresses, entailing improved lifetime of the coating, but with a higher thermal conductivity. The aim of the paper presented here is to develop a procedure of analysis based on the micro structural observation for the prediction of the properties of new coatings in court of industrial development and to predict the effect of the posterior thermal treatment on the properties of the coatings carried out. For a given coating, one has to calculate linear elasticity and its evolution with the temperature as well as thermal expansion, aiming at predicting different parameters related to the in service deterioration.
Marangoni elasticity of flowing soap films
Kim, Ildoo; Mandre, Shreyas
2016-01-01
We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...
Demand Elasticity on the Transport Market
Teodor Perić; Nada Štrumberger
2002-01-01
The elasticity of demand for traffic se1vices is the adaptationof traffic supply to traffic demand. The elasticity of suchdemand is low which is specific of the transport market, especiallyfrom the aspect of designing traffic demand.The essence of the problem of low elasticity can be noticedin three basic properties:First, in the change of place which determines the traffic demandor traffic relation.Second is the continuity of the need to transport goods andpassengers.Third, the needs for tra...
Elastic and inelastic psi production by muons
International Nuclear Information System (INIS)
Loken, S.C.
1981-06-01
Results are presented on the elastic and inelastic production of psi (3.1). The elastic data are qualitative agreement with the predictions of photon-gluon fusion but have a steeper dependence on Q 2 than the model predicts. A QCD calculation accounts well for the shape of the inelastic data in inelasticity, Q 2 and E/sub γ/, but fails to account for the absolute cross section. At 209 GeV, the cross-section for elastic psi production is 0.36 +- 0.07 nb; for inelastic, 0.28 +- 0.06nb
Marangoni elasticity of flowing soap films
Kim, Ildoo; Mandre, Shreyas
2017-08-01
We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.
The role of pressure in rubber elasticity.
Bower, A F; Weiner, J H
2004-06-22
We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy epsilon(LJ) and radius sigma(LJ). We calculate the difference stress t(11)-(t(22)+t(33))/2 and mean stress (t(11)+t(22)+t(33))/3 induced by a constant volume extension in the x(1) direction, as a function of temperature T and reduced density rho(*)=Nsigma(IJ) (3)/nu. Here, N is the number of atoms in the simulation cell and nu is the cell volume. Results show that for rho(*)rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to rho(*)=1.2. For rho(*)>1, the system is entropic for kT/epsilon(LJ)>2, but at lower temperatures the difference stress contains an additional energy component, which increases as rho(*) increases and temperature decreases. Finally, the model exhibits a glass transition for rho(*)=1.2 and kT/epsilon(LJ) approximately 2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution sigma(nbr)>0 to the difference stress, the attractive portion provides sigma(nba) approximately 0, while the covalent bonds provide sigma(b)nbr)0, and Pi(b)nbr)=-APi(nbr)P(2)(theta(b)), sigma(b)=BPi(b)P(2)(theta(b)), where P(2)(theta(b)) is a measure of the anisotropy of the orientation of the covalent bonds, and A and B are coefficients that depend weakly on rho(*) and temperature. For high
How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model
Directory of Open Access Journals (Sweden)
G De Santis
2011-10-01
Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.
Metric elasticity in a collapsing star: Gravitational radiation coupled to torsional motion
International Nuclear Information System (INIS)
Gerlach, U.H.; Scott, J.F.
1986-01-01
Torsional oscillatory matter motion as well as differential rotation couple via the linearized Einstein field equations to the gravitational degrees of freedom. For an arbitrary spherically symmetric background, such as that of a wildly pulsating or a catastrophically collapsing star, we exhibit (a) the strain tensor and (b) the corresponding stress-energy tensor. It is found that in the star there are two elasticity tensors. One expresses the familiar elasticity of matter, the other expresses the elasticity of the geometry. This metric elasticity is responsible for coupling the gravitational and matter degrees of freedom. The two coupled scalar wave equations for these degrees of freedom are exhibited. Also exhibited are their characteristics as well as the junction conditions for their solutions across any spherical surface of discontinuity
Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.
2012-01-01
We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...
A comparison of time-history elastic plastic piping analysis with measurement
International Nuclear Information System (INIS)
Scavuzzo, R.J.; Sansalone, K.H.
1992-01-01
The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)
International Nuclear Information System (INIS)
Sancho, Ferran
2010-01-01
There is a considerable body of literature that has studied whether or not an adequately designed tax swap, whereby an ecotax is levied and some other tax is reduced while keeping government income constant, may achieve a so-called double dividend, that is, an increase in environmental quality and an increase in overall efficiency. Arguments in favor and against are abundant. Our position is that the issue should be empirically studied starting from an actual, non-optimal tax system structure and by way of checking the responsiveness of equilibria to revenue neutral tax regimes under alternate scenarios regarding technological substitution. With the use of a CGE model, we find that the most critical elasticity for achieving a double dividend is the substitution elasticity between labor and capital whereas the elasticity that would generate the highest reduction in carbon dioxide emissions is the substitution elasticity among energy goods.
Energy Technology Data Exchange (ETDEWEB)
Sancho, Ferran [Departament d' Economia, Universitat Autonoma de Barcelona, 08193-Bellaterra (Spain)
2010-06-15
There is a considerable body of literature that has studied whether or not an adequately designed tax swap, whereby an ecotax is levied and some other tax is reduced while keeping government income constant, may achieve a so-called double dividend, that is, an increase in environmental quality and an increase in overall efficiency. Arguments in favor and against are abundant. Our position is that the issue should be empirically studied starting from an actual, non-optimal tax system structure and by way of checking the responsiveness of equilibria to revenue neutral tax regimes under alternate scenarios regarding technological substitution. With the use of a CGE model, we find that the most critical elasticity for achieving a double dividend is the substitution elasticity between labor and capital whereas the elasticity that would generate the highest reduction in carbon dioxide emissions is the substitution elasticity among energy goods. (author)
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
International Nuclear Information System (INIS)
Eraslan, Ahmet N.; Akis, Tolga
2006-01-01
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters
Elasticity of frictionless particles near jamming.
Karimi, Kamran; Maloney, Craig E
2015-08-01
We study the linear elastic response of harmonic disk packings near jamming via three types of probes: (i) point forcing, (ii) constrained homogeneous deformation of subregions of large systems, and (iii) unconstrained deformation of the full system subject to periodic boundary conditions. For the point forcing, our results indicate that the transverse component of the response is governed by a lengthscale ξT, which scales with the confining pressure, p, as ξT∼p-0.25, while the longitudinal component is governed by ξL, which scales as ξL∼p-0.4. The former scaling is precisely the transverse lengthscale, which has been invoked to explain the structure of normal modes near the density of states anomaly in sphere packings, while the latter is much closer to the rigidity length, l*∼p-0.5, which has been invoked to describe the jamming scenario. For the case of constrained homogeneous deformation, we find that μ(R), the value of the shear modulus measured in boxes of size R, gives a value much higher than the continuum result for small boxes and recedes to its continuum limit only for boxes bigger than a characteristic length, which scales like p-0.5, precisely the same way as l*. Finally, for the case of unconstrained homogeneous deformation, we find displacement fields with power spectra, which are consistent with independent, uncorrelated Eshelby transformations. The transverse sector is amazingly invariant with respect to p and very similar to what is seen in Lennard-Jones glasses. The longitudinal piece, however, is sensitive to p. It develops a plateau at long wavelength, the start of which occurs at a length that grows in the p→0 limit. Strikingly, the same behavior is observed both for applied shear and dilation.
Ye, Wei; Liu, Yifei
2018-04-01
This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.
ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD
Directory of Open Access Journals (Sweden)
Adriano Wagner Ballarin
2003-01-01
Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.
Demand Elasticity on the Transport Market
Directory of Open Access Journals (Sweden)
Teodor Perić
2002-09-01
Full Text Available The elasticity of demand for traffic se1vices is the adaptationof traffic supply to traffic demand. The elasticity of suchdemand is low which is specific of the transport market, especiallyfrom the aspect of designing traffic demand.The essence of the problem of low elasticity can be noticedin three basic properties:First, in the change of place which determines the traffic demandor traffic relation.Second is the continuity of the need to transport goods andpassengers.Third, the needs for transport may vmy according to thechanges in society and economy, and they also change thesources of traffic demand. Therefore, the elasticity of demandfor traffic se1vices is relatively low.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang
2017-01-01
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion
Thermo-elastic optical coherence tomography.
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van
2017-09-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.
Elastic scattering of slow positrons by helium
International Nuclear Information System (INIS)
Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.
1976-01-01
The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)
Elastic and Anelastic Structure Beneath Eurasia
National Research Council Canada - National Science Library
Ekstrom, Goran
1997-01-01
The primary objective of this work has been to map the variations of elastic mantle properties beneath Eurasia over horizontal length scales of approximately 1000-1500 kilometers and vertial length...
Elastic and inelastic heavy ion scattering
International Nuclear Information System (INIS)
Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.
1977-02-01
In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction betwe...... nonlinearity. The balance between dispersion and nonlinearity in the equation is investigated.......Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...... the solitary waves numerically. It is demonstrated that the waves behave almost like solitons in agreement with the fact that the improved Boussinesq equations are nearly integrable. Thus three conservation theorems can be derived from the equations. A new subsonic quasibreather is found in the case of a cubic...
Elastic form factors at higher CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Petratos, G.G. [Kent State Univ., OH (United States)
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
Laboratory Tests of Bitumen Samples Elasticity
Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.
2018-05-01
This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.
On the use of elastic-plastic material characteristics for linear-elastic component assessments
International Nuclear Information System (INIS)
Kussmaul, K.; Silcher, H.; Eisele, U.
1995-01-01
In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)
International Nuclear Information System (INIS)
Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco
2014-01-01
Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions
Elastic-plastic dynamic analysis of a reactor building
International Nuclear Information System (INIS)
Umemura, Hajime; Tanaka, Hiroshi.
1976-01-01
The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)
Elastic reflection waveform inversion with variable density
Li, Yuanyuan
2017-08-17
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.
Income Elasticity Literature Review | Science Inventory | US ...
Following advice from the SAB Council, when estimating the economic value of reductions in air pollution-related mortality and morbidity risk, EPA accounts for the effect of personal income on the willingness to pay to reduce the risk of adverse health outcomes. These income growth adjustment factors are calculated using a combination of income elasticity estimates and income growth projections, both of which have remained essentially unchanged since 1999. These income elasticity estimates vary according to the severity of illness. EPA recently received advice from the SAB regarding the range of income elasticities to apply as well as the research standards to use when selecting income elasticity estimates. Following this advice, EPA consulted with a contractor to update its income elasticity and income growth projections, and generate new income growth adjustment factors. The SAB would evaluate the income elasticity estimates identified in the EPA-provided literature review, determining the extent to which these estimates are appropriate to use in human health benefits assessments.
Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies
International Nuclear Information System (INIS)
Shirley, A.I.; Hall, C.K.
1986-01-01
The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride
Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space
Kunnath, R.
2012-12-01
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai; Qiu, Chunyin; Liu, Zhengyou; Wu, Ying
2014-01-01
waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic
THE ELASTICITY OF EXPORT DEMAND FOR US COTTON
Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala
2004-01-01
There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.
Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.
Directory of Open Access Journals (Sweden)
Schanila Nawaz
Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.
Theoretical study of the electron-cluster elastic scattering
International Nuclear Information System (INIS)
Descourt, P.; Guet, C.; Farine, M.
1997-01-01
The properties of the clusters consisting of some tens to several hundreds of alkali atoms are generally quite well described in the jellium approximation. This approximation treats the cluster as a charged Fermi liquid of finite size. The optical response predicted by this approximation and taking into account the electron-electron correlations of the Hartree-Fock mean field agrees rather well with the experiment. The objective of this work was to obtain a quantal many-body formalism, within jellium approximation, applicable to elastic scattering of electrons from an alkali-metal-cluster. Influence of correlations on the phase shifts was also taken into account
Elastic interaction between defects during dynamic aging of stainless steels
International Nuclear Information System (INIS)
Journaux, J.; Monteiro, S.N.
1977-01-01
The study of the mechanical properties through traction tests, at temperatures above room temperature in 316 type stainless steel emphasizes the existence of the dynamic aging phenomenon (Portevin-Lechantelier effect). The present paper explains in a general way the fundamental causes of this effect by examining the elastic interactions that occur between the solute atoms in solid solution and the crystal dislocations. These interactions, which are present only at a certain temperature range, are responsible for the improvement of the mechanical properties always noticed in the alloys showing this phenomenon. (F.R.) [pt
Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.
2017-10-01
Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.
Effects of elastic support on the dynamic behaviors of the wind turbine drive train
Institute of Scientific and Technical Information of China (English)
Shuaishuai WANG; Caichao ZHU; Chaosheng SONG; Huali HAN
2017-01-01
The reliability and service life of wind turbines are influenced by the complex loading applied on the hub,especially amidst a poor external wind environment.A three-point elastic support,which includes the main bearing and two torque arms,was considered in this study.Based on the flexibilities of the planet carrier and the housing,a coupled dynamic model was developed for a wind turbine drive train.Then,the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed.Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train.Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train.A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing,whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing.The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.
Is the Armington Elasticity Really Constant across Importers?
Yilmazkuday, Hakan
2009-01-01
This paper shows that the Armington elasticity, which refers to both the elasticity of substitution across goods and the price elasticity of demand under the assumption of a large number of varieties, systematically changes from one importer country to another in an international trade context. Then a natural question to ask is "What determines the Armington elasticity?" The answer comes from the distinction between the elasticity of demand with respect to the destination price (i.e., the Arm...
Report of study meeting on nuclear physics of quasi-elastic scattering
International Nuclear Information System (INIS)
1992-10-01
This meeting was held for three days from June 8 to 10, 1992, as one of the study meetings of Research Center for Nuclear Physics, Osaka University. The lectures were given on spin observables in quasi-elastic scattering, calculation of spin observables in 12 C, 40 Ca(p,n) reaction in quasifree scattering region, present state of quasi-elastic scattering, first results of (p,n) quasifree scattering with the new facility of the RCNP, spin-isospin response function and effect of Δ-hole configuration in finite nuclei, effective polarization of nuclei and observed amount of spin, (p,2p) measurement in the RCNP, quasi-elastic scattering in 2 H, 3 He and 4 He of polarized protons, quasifree Δ formation, 3 He(gamma, pπ ± ) reaction in Δ region, search for isobar components in 3 He by quasifree knockout studies, nonquasi-elastic process in photonuclear reaction, QF and NQF processes in gamma d→π + π - pn, coincidence scattering experiment in quasi-elastic scattering region, exclusive electron scattering of 3 He with full inclusion of final state interaction, quasi-elastic electron scattering and internucleon correlation and 13 other themes. (K.I.)
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A
2010-03-01
The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.
Vibration of an Elastic Circular Plate on an Elastic Half Space
DEFF Research Database (Denmark)
Krenk, Steen; Schmidt, H.
1981-01-01
The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved by a direct method, in which the contact stresses and the normal displacements of the plate are taken as the unknown functions. First, the influence functions that give the displacements in terms...
Asymmetric Vibrations of a Circular Elastic Plate on an Elastic Half Space
DEFF Research Database (Denmark)
Schmidt, H.; Krenk, Steen
1982-01-01
The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two...
Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids
International Nuclear Information System (INIS)
Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T
2014-01-01
Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.
Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L
2017-10-01
elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.
The variation in elastic modulus throughout the compression of foam materials
International Nuclear Information System (INIS)
Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.
2016-01-01
We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.
MAXIMIZING OPTO-ELASTIC INTERACTION
DEFF Research Database (Denmark)
Gersborg, Allan Roulund; Sigmund, Ole
2008-01-01
This contribution is concerned with topology optimization of a coupled optical and mechanical problem in photonic crystals. It is motivated by the potential gain in functionality of optical devices where the mechanical loading influences the optical response by distorting the geometry and through...
Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect
International Nuclear Information System (INIS)
Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong
2013-01-01
The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
Vascular elastic photoacoustic tomography in humans
Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.
2016-03-01
Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Population and energy elasticity of tornado casualties
Fricker, Tyler; Elsner, James B.; Jagger, Thomas H.
2017-04-01
Tornadoes are capable of catastrophic destruction and mass casualties, but there are yet no estimates of how sensitive the number of casualties are to changes in the number of people in harm's way or to changes in tornado energy. Here the relationship between tornado casualties (deaths and injuries), population, and energy dissipation is quantified using the economic concept of "elasticity." Records of casualties from individual tornadoes over the period 2007-2015 are fit to a regression model. The coefficient on the population term (population elasticity) indicates that a doubling in population increases the casualty rate by 21% [(17, 24)%, 95% credible interval]. The coefficient on the energy term (energy elasticity) indicates that a doubling in energy dissipation leads to a 33% [(30, 35)%, 95% credible interval] increase in the casualty rate. The difference in elasticity values show that on average, changes in energy dissipation have been relatively more important in explaining tornado casualties than changes in population. Assuming no changes in warning effectiveness or mitigation efforts, these elasticity estimates can be used to project changes in casualties given the known population trends and possible trends in tornado activity.
Non-invasive determination of the complete elastic moduli of spider silks
Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.
2013-03-01
Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.
Alumina strength degradation in the elastic regime
International Nuclear Information System (INIS)
Furnish, Michael D.; Chhabildas, Lalit C.
1998-01-01
Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.
2017-05-26
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali
2017-01-01
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Elastic interaction energies of defect structures
International Nuclear Information System (INIS)
Seitz, E.; de Fontaine, D.
1976-01-01
The elastic strain energy between point defects and small disk-shaped clusters of defects are calculated to determine stable configurations. A distortion tensor of tetragonal symmetry is assigned to each impurity atom. The tetragonality ratio t is varied to cover needle-type (t greater than 1), spherical (t = 1) and disk-type (t less than 0) strain fields. To vary the elastic properties of the host material, Fe, Cu, Al, and V were chosen as examples. Computer calculations are based on the microscopic theory of elasticity which emphasizes calculations in discrete Fourier space. Pairs of point defects order along [001] for t less than 1 and along (001) for t = 1 for all host elements. For t greater than 1 fcc lattices and bcc lattices behave differently. It is shown that only certain three dimensional periodic arrangements of parallel and perpendicular disk-like defect clusters are realized for given tetragonality ratio t and host element
Elastic properties of some transition metal arsenides
Nayak, Vikas; Verma, U. P.; Bisht, P. S.
2018-05-01
The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.
Thomson, C. J.
2015-08-01
The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
Modeling elastic anisotropy in strained heteroepitaxy
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.
Fully coupled heat conduction and deformation analyses of visco-elastic solids
Khan, Kamran
2012-04-21
Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.
Non-linear theory of elasticity
Lurie, AI
2012-01-01
This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....
Elastic-plastic-creep analysis of shells
International Nuclear Information System (INIS)
Pai, D.H.
1979-01-01
This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given
An introduction to the theory of elasticity
Atkin, R J
2005-01-01
Thanks to intense research activity in the field of continuum mechanics, the teaching of subjects such as elasticity theory has attained a high degree of clarity and simplicity. This introductory volume offers upper-level undergraduates a perspective based on modern developments that also takes into account the limited mathematical tools they are likely to have at their disposal. It also places special emphasis on areas that students often find difficult upon first encounter. An Introduction to the Theory of Elasticity provides an accessible guide to the subject in a form that will instill a f
Effect of elastic boundaries in hydrostatic problems
Volobuev, A. N.; Tolstonogov, A. P.
2010-03-01
The possibility and conditions of use of the Bernoulli equation for description of an elastic pipeline were considered. It is shown that this equation is identical in form to the Bernoulli equation used for description of a rigid pipeline. It has been established that the static pressure entering into the Bernoulli equation is not identical to the pressure entering into the impulse-momentum equation. The hydrostatic problem on the pressure distribution over the height of a beaker with a rigid bottom and elastic walls, filled with a liquid, was solved.
Price elasticity and medication use: cost sharing across multiple clinical conditions.
Gatwood, Justin; Gibson, Teresa B; Chernew, Michael E; Farr, Amanda M; Vogtmann, Emily; Fendrick, A Mark
2014-11-01
To address the impact that out-of-pocket prices may have on medication use, it is vital to understand how the demand for medications may be affected when patients are faced with changes in the price to acquire treatment and how price responsiveness differs across medication classes. To examine the impact of cost-sharing changes on the demand for 8 classes of prescription medications. This was a retrospective database analysis of 11,550,363 commercially insured enrollees within the 2005-2009 MarketScan Database. Patient cost sharing, expressed as a price index for each medication class, was the main explanatory variable to examine the price elasticity of demand. Negative binomial fixed effect models were estimated to examine medication fills. The elasticity estimates reflect how use changes over time as a function of changes in copayments. Model estimates revealed that price elasticity of demand ranged from -0.015 to -0.157 within the 8 categories of medications (P less than 0.01 for 7 of 8 categories). The price elasticity of demand for smoking deterrents was largest (-0.157, P less than 0.0001), while demand for antiplatelet agents was not responsive to price (P greater than 0.05). The price elasticity of demand varied considerably by medication class, suggesting that the influence of cost sharing on medication use may be related to characteristics inherent to each medication class or underlying condition.
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Mathematical model predicts the elastic behavior of composite materials
Directory of Open Access Journals (Sweden)
Zoroastro de Miranda Boari
2005-03-01
Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.
DEFF Research Database (Denmark)
Gaihede, Michael Lyhne; Donghua, Liao; Gregersen, H.
2007-01-01
The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are r...... finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus....
Toward an Elasticity of Chip-N-Saw: Demand and Supply Models of Chip-N-Saw Stumpage in Louisiana
Directory of Open Access Journals (Sweden)
Shaun M. Tanger
2018-04-01
Full Text Available Softwood chip-n-saw (CNS is a relatively new stumpage product in the sawtimber- and pulpwood-dominated stumpage markets in the U.S. South. Based on a quarterly data series from 2003 to 2016, this study estimates the demand and supply models of the softwood CNS stumpage market in Louisiana. The two-stage least squares (2SLS results reveal that own price elasticity of demand (PED is price elastic, and the cross-price elasticity (XEDwith sawtimber approaches unit elasticity. On the supply side, CNS is price inelastic in supply (PES, but more responsive to own price changesthan sawtimber quantity supplied. Further, severance tax increases are found to decrease the supply of CNS, indicating that suppliers are responsive to severance tax incidence. As the first empirical estimation of CNS, the findings should be of interest to those involved in the analysis of Southeastern stumpage markets.
DEFF Research Database (Denmark)
Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos
2015-01-01
Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...
Money flexibility, price elasticity, and elasticity of marginal utility of consumption
Malakhov, Sergey
2014-01-01
The development of G.Stigler’s original model of search describes the mathematical relationship between the elasticity of the marginal utility of consumption, the price elasticity, and the elasticity of the marginal utility of money income with respect to increase in the price of living and/or to inflation. This relationship can be used not only in economics of well-being but also in microeconomics where the increase in the price of living, i.e., in purchase price, can make consumption “bad” ...
Stressed-deformed state of mountain rocks in elastic stage and between elasticity
Directory of Open Access Journals (Sweden)
Samedov A.M.
2017-12-01
Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and
Nonlinear elasticity in resonance experiments
Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel
2018-04-01
Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.
Jamari, Jamari; Schipper, Dirk J.
2007-01-01
This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully
Elastic softness of hybrid lead halide perovskites
Ferreira, A. C.; Lé toublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé , B.; Cordier, S.; Katan, C.; Saidaminov, Makhsud I.; Zhumekenov, A. A.; Bakr, Osman; Even, J.; Bourges, Ph.
2018-01-01
scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear
On elastic structural elements for nuclear reactors
International Nuclear Information System (INIS)
Povolo, F.
1978-03-01
The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de
On the K+-nucleus elastic scattering
International Nuclear Information System (INIS)
Ning, P.; Men, D.
1991-01-01
In this paper conventional and unconventional nuclear medium effects in the K + scattering are briefly reviewed. Microscopic calculations of the K + elastic scattering on 4 He, 12 C, 40 Ca, 120 Sn at 800 MeV/c are performed and then possible swellings of nucleons in nuclei are discussed
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results ar...... are compared with predictions of conservation theorems for energy and momentum....
Hadron elastic scattering at small angles
2002-01-01
This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...
First-principles elasticity of monocarboaluminate hydrates
Moon, J.
2014-07-01
The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.
Quasi-elastic Neutrino Scattering - an Overview
International Nuclear Information System (INIS)
Sobczyk, Jan T.
2011-01-01
A non-technical overview of charge current quasi-elastic neutrino interaction is presented. Many body computations of multinucleon ejection which is proposed to explain recent large axial mass measurements are discussed. A few comments on recent experimental results reported at NuInt11 workshop are included.
Elastic proton-proton scattering at RHIC
Energy Technology Data Exchange (ETDEWEB)
Yip, K.
2011-09-03
Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.
Plane strain problem in microstretch elastic solid
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
College, Patti 143 416, India. 3Department of Mathematics, Guru Nanak Dev University, Amritsar 143 005, ... lem in microstretch elastic solid by employing the eigenvalue approach. 975. Page 2. 976. Rajneesh Kumar et al. 2. Basic equations ..... of the matrix A are characteristic roots of (29) assuming that real parts of qs.
Elastic kirchhoff migration for vertical seismic profiles
International Nuclear Information System (INIS)
Keho, T.H.; Wu, R.S.
1987-01-01
Elastic Kirchhoff migration is implemented for the VSP recording geometry. The resulting migration formula requires measurement of the stress as well as the displacement. Since stress is not measured in a VSP, and in many cases the horizontal component of displacement is not measured, approximate migration formulas are given for these cases. The elastic migration formula for the case where only the vertical components are available, is the same as the acoustic migration formula, where the pressure data are replaced by the magnitudes of the elastic data as reconstructed from the vertical components, and the acoustic Green's functions are replaced with either the P or S wave elastic Green's functions. Two expressions for migration of two component displacement data are presented. In the first, the terms involving traction data are simply ignored. In the second, an improved backpropagation operator for the displacement field is obtained by replacing the traction data in the Kirchhoff integral by displacement data using Hooke's law. The migration expressions for the cases where two component data are available produce images which are less contaminated by artifacts than the migration images of one component data
Some remarks on elastic fracture mechanics
International Nuclear Information System (INIS)
Destuynder, P.; Djaoua, M.; Lescure, S.
1981-12-01
A thermodynamical approach of propagation law in elastic media is given in this paper. From a particular choice of an energy dissipation potential, we deduce some propagation laws corresponding to particular loading cases. Finally a new computational method of the energy release rate is suggested and discussed from a computational point of view [fr
A Linear Theory for Pretwisted Elastic Beams
DEFF Research Database (Denmark)
Krenk, Steen
1983-01-01
contains a general system of differential equations and gives explicit solutions for homogenous extension, torsion, and bending. The theory accounts explicitly for the shear center, the elastic center, and the axis of pretwist. The resulting torsion-extension coupling is in agreement with a recent...
Elastic plastic buckling of elliptical vessel heads
International Nuclear Information System (INIS)
Alix, M.; Roche, R.L.
1981-08-01
The risks of buckling of dished vessel head increase when the vessel is thin walled. This paper gives the last results on experimental tests of 3 elliptical heads and compares all the results with some empirical formula dealing with elastic and plastic buckling
Magma flow through elastic-walled dikes
Bokhove, Onno; Woods, A.W.; de Boer, A
2005-01-01
A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the
The theory of elastic waves and waveguides
Miklowitz, J
1984-01-01
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
Dynamic frictional contact for elastic viscoplastic material
Directory of Open Access Journals (Sweden)
Kenneth L. Kuttler
2007-05-01
Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.
First-principles elasticity of monocarboaluminate hydrates
Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.
2014-01-01
The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.
Elastic electron scattering at large momentum transfer
International Nuclear Information System (INIS)
Arnold, R.G.
1979-05-01
A review is given of elastic electron scattering at large momentum transfer (Q 2 > 20 fm -2 ) from nuclei with A less than or equal to 4. Recent experimental results are reviewed and the current problems in interpretation of these results are pointed out. Some questions for future experiments are posed, and a preview of possible future measurements is presented. 28 references
Elastic modulus and fracture of boron carbide
International Nuclear Information System (INIS)
Hollenberg, G.W.; Walther, G.
1978-12-01
The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C
Membrane elastic properties and cell function.
Directory of Open Access Journals (Sweden)
Bruno Pontes
Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.
Elastic and inelastic electron and muon scattering
International Nuclear Information System (INIS)
Hand, L.N.
1977-01-01
The current status of experiments in the field of elastic and inelastic electron and muon scattering is discussed. The talk is divided into discussions of the single arm inclusive experiments at SLAC and Fermilab; the multiparticle inclusive experiments at SLAC, Fermilab und Cornell, and a description of selected results from exclusive channel measurements on electroproduced final states. (orig.) [de
Relativistic elasticity of stationary fluid branes
DEFF Research Database (Denmark)
Armas, J.; Obers, N.A.
2013-01-01
under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...
Robotic edge machining using elastic abrasive tool
Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.
2018-03-01
The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.
Elastic behaviour of North Sea chalk
DEFF Research Database (Denmark)
Gommesen, Lars; Fabricius, Ida Lykke; Mukerji, T.
2007-01-01
-consistent approximation, which here represents the unrelaxed scenario where the pore spaces of the rock are assumed to be isolated, and the Gassmann theory, which assumes that pore spaces are connected, as tools for predicting the effect of hydrocarbons from the elastic properties of brine-saturated North Sea reservoir...
Thickness dependence of nanofilm elastic modulus
Czech Academy of Sciences Publication Activity Database
Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.
2009-01-01
Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1
Structural, elastic, optoelectronic and magnetic properties of ...
Indian Academy of Sciences (India)
2017-09-22
Sep 22, 2017 ... 1Laboratoire de Physique Quantique de la Matière et de la ... 5Department of Physics and Astronomy, College of Science, King Saud ... elastic moduli, CdHo2S4 is mechanically stable with a ductile nature and a noticeable.
International Nuclear Information System (INIS)
Berryman, J.G.
1997-01-01
Eshelby close-quote s formula gives the response of a single ellipsoidal elastic inclusion in an elastic whole space to a uniform strain imposed at infinity. Using a linear combination of results from two simple thought experiments, we show how this formula may be generalized to both poroelasticity and thermoelasticity. The resulting new formulas are important for applications to analysis of poroelastic and thermoelastic composites, including but not restricted to rocks. copyright 1997 The American Physical Society
Failure above and Below the Elastic Limit in AD995
Bourne, N. K.; Millett, J. C. F.; Chen, M. W.; Dandekar, D. P.; McCauley, J. W.
2007-12-01
There is an ongoing interest in identifying inexpensive armour materials for use in the protection of personnel and vehicles. The response of AD995 under shock loading is one of the materials most extensively investigated. Over recent years, workers have reported failure occurring in various polycrystalline ceramics behind the shock front. This phenomenon has been investigated using embedded stress sensors and a recovery technique that has allowed observation of the microstructure above and below the Hugoniot Elastic Limit (HEL) and these results are brought together here to explain the observed behaviour. The failure front velocity is found to change with the applied stress, in particular it slows as the HEL is exceeded. The microstructure shows the response below the HEL is dominated by intergranular failure whilst above it, the grains exhibit plasticity (including twinning). The HEL is thus shown to be characteristic of alumina viewed as a composite with randomly oriented alumina grains.
The everyday elasticity of compliance in a symptomless disease
DEFF Research Database (Denmark)
Felde, Lina Hoel
2011-01-01
Medically, compliance refers to the extent to which a patient's response to medical advice coincides with doctors' orders. Rather than this absolute standard, this article treats compliance as an institutionally available discourse continually figured in practice. The aim of this article is to de......Medically, compliance refers to the extent to which a patient's response to medical advice coincides with doctors' orders. Rather than this absolute standard, this article treats compliance as an institutionally available discourse continually figured in practice. The aim of this article...... give-and-take. This elasticity of compliance reveals a reflexive critique of medical compliance as a moral standard and leads us to discuss how people are adequately compliant in everyday moral contexts....
Elastic versus acoustic inversion for marine surveys
Mora, Peter; Wu, Zedong
2018-04-01
Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.
Elastic versus acoustic inversion for marine surveys
Mora, Peter
2018-04-24
Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory – at least for a hard water bottom case – it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.
Elasticity problems in domains with nonsmooth boundaries
International Nuclear Information System (INIS)
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Cost Optimal Elastic Auto-Scaling in Cloud Infrastructure
Mukhopadhyay, S.; Sidhanta, S.; Ganguly, S.; Nemani, R. R.
2014-12-01
Today, elastic scaling is critical part of leveraging cloud. Elastic scaling refers to adding resources only when it is needed and deleting resources when not in use. Elastic scaling ensures compute/server resources are not over provisioned. Today, Amazon and Windows Azure are the only two platform provider that allow auto-scaling of cloud resources where servers are automatically added and deleted. However, these solution falls short of following key features: A) Requires explicit policy definition such server load and therefore lacks any predictive intelligence to make optimal decision; B) Does not decide on the right size of resource and thereby does not result in cost optimal resource pool. In a typical cloud deployment model, we consider two types of application scenario: A. Batch processing jobs → Hadoop/Big Data case B. Transactional applications → Any application that process continuous transactions (Requests/response) In reference of classical queuing model, we are trying to model a scenario where servers have a price and capacity (size) and system can add delete servers to maintain a certain queue length. Classical queueing models applies to scenario where number of servers are constant. So we cannot apply stationary system analysis in this case. We investigate the following questions 1. Can we define Job queue and use the metric to define such a queue to predict the resource requirement in a quasi-stationary way? Can we map that into an optimal sizing problem? 2. Do we need to get into a level of load (CPU/Data) on server level to characterize the size requirement? How do we learn that based on Job type?
Household demand elasticities for meat products in Uruguay
Energy Technology Data Exchange (ETDEWEB)
Lanfranco, B. A.; Rava, C.
2014-06-01
This article analyzed the demand for meats at household level over the past decade in Uruguay, a country that exhibits a very high per capita consumption of these products. In particular, the consumption of beef is one of the highest in the world and only comparable to Argentina. The analysis involved a two-step estimation of an incomplete system of censored demand equations using household data from the last available national income and expenditure survey (2005/06). Thirteen meat products were included in the analysis: six broad beef products (de boned hindquarter cuts, bone-in hindquarter cuts, ground beef, rib plate, bone-in forequarter cuts, and other beef cuts), four products from other meats (sheep, pork, poultry, and fish), and three generic mixed-meat products. A complete set of short-term income, own-price and cross-price elasticities were computed and reported along with their 90% confidence intervals (CI). The results were consistent with both economic theory and empirical evidence as well as with the expected behavior, considering the relevance of these products, particularly beef, in the diet of Uruguayan consumers. All meat items were necessary goods and evidenced income-inelastic responses, which was expected given their high consumption level. All meats behaved as normal goods although exhibiting different reactions to changes in price. In general, beef cuts were more price elastic than other more broadly defined products. The more specific and dis aggregated the meat product the higher its corresponding direct price elasticity. The complement/substitute relationships found in this study were highly depended on the specific product combinations. (Author)
A-thermal elastic behavior of silicate glasses.
Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique
2016-02-24
Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.
Household demand elasticities for meat products in Uruguay
Directory of Open Access Journals (Sweden)
Bruno A. Lanfranco
2014-01-01
Full Text Available This article analyzed the demand for meats at household level over the past decade in Uruguay, a country that exhibits a very high per capita consumption of these products. In particular, the consumption of beef is one of the highest in the world and only comparable to Argentina. The analysis involved a two-step estimation of an incomplete system of censored demand equations using household data from the last available national income and expenditure survey (2005/06. Thirteen meat products were included in the analysis: six broad beef products (deboned hindquarter cuts, bone-in hindquarter cuts, ground beef, rib plate, bone-in forequarter cuts, and other beef cuts, four products from other meats (sheep, pork, poultry, and fish, and three generic mixed-meat products. A complete set of short-term income, own-price and cross-price elasticities were computed and reported along with their 90% confidence intervals (CI. The results were consistent with both economic theory and empirical evidence as well as with the expected behavior, considering the relevance of these products, particularly beef, in the diet of Uruguayan consumers. All meat items were necessary goods and evidenced income-inelastic responses, which was expected given their high consumption level. All meats behaved as normal goods although exhibiting different reactions to changes in price. In general, beef cuts were more price elastic than other more broadly defined products. The more specific and disaggregated the meat product the higher its corresponding direct price elasticity. The complement/substitute relationships found in this study were highly depended on the specific product combinations.
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes
Goriely, A.
2013-03-06
Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.
Study of the Quasi-Elastic Scattering in the NOvA Detector Prototype
Energy Technology Data Exchange (ETDEWEB)
Betancourt, Minerba [Univ. of Minnesota, Minneapolis, MN (United States)
2013-06-01
NOvA is a 810 km long base-line neutrino oscillation experiment with two detectors (far 14 KTon and near detector 300 Ton) currently being installed in the NUMI o -axis neutrino beam produced at Fermilab. A 222 Ton prototype NOvA detector (NDOS) was built and operated in the neutrino beam for over a year to understand the response of the detector and its construction. The goal of this thesis is to study the muon neutrino interaction data collected in this test, specifically the identification of quasi-elastic charged-current interactions and measure the behavior of the quasi-elastic muon neutrino cross section.
Forced excitation and active control for the measurement of fluid-elastic forces
International Nuclear Information System (INIS)
Caillaud, Sebastien
1999-01-01
The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr
A meta-analysis of the price elasticity of gasoline demand. A SUR approach
Energy Technology Data Exchange (ETDEWEB)
Brons, Martijn; Rietveld, Piet [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands); Tinbergen Institute Amsterdam (TIA), Roetersstraat 31, 1018 WB Amsterdam (Netherlands); Nijkamp, Peter [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands); Tinbergen Institute Amsterdam (TIA), Roetersstraat 31, 1018 WB Amsterdam (Netherlands); The Netherlands Organisation of Scientific Research (NWO), postbus 93138 - 2509 AC Den Haag (Netherlands); Pels, Eric [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands)
2008-09-15
Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In this meta-analytical study we aim to investigate and explain the variation in empirical estimates of the price elasticity of gasoline demand. A methodological novelty is that we use the linear relationship between the elasticities to develop a meta-analytical estimation approach based on a Seemingly Unrelated Regression (SUR) model with Cross Equation Restrictions. This approach enables us to combine observations of different elasticities and thus increase our sample size. Furthermore, it allows for a more detailed interpretation of our meta-regression results. The empirical results of the study demonstrate that the SUR approach leads to more precise results (i.e., lower standard errors) than a standard meta-analytical approach. We find that, with mean short run and long run price elasticities of - 0.34 and - 0.84, respectively, the demand for gasoline is not very price sensitive. Both in the short and the long run, the impact of a change in the gasoline price on demand is mainly driven by responses in fuel efficiency and mileage per car and to a slightly lesser degree by changes in car ownership. Furthermore, we find that study characteristics relating to the geographic area studied, the year of the study, the type of data used, the time horizon and the functional specification of the demand equation have a significant impact on the estimated value of the price elasticity of gasoline demand. (author)
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
A meta-analysis of the price elasticity of gasoline demand. A SUR approach
International Nuclear Information System (INIS)
Brons, Martijn; Rietveld, Piet; Nijkamp, Peter; Pels, Eric
2008-01-01
Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In this meta-analytical study we aim to investigate and explain the variation in empirical estimates of the price elasticity of gasoline demand. A methodological novelty is that we use the linear relationship between the elasticities to develop a meta-analytical estimation approach based on a Seemingly Unrelated Regression (SUR) model with Cross Equation Restrictions. This approach enables us to combine observations of different elasticities and thus increase our sample size. Furthermore, it allows for a more detailed interpretation of our meta-regression results. The empirical results of the study demonstrate that the SUR approach leads to more precise results (i.e., lower standard errors) than a standard meta-analytical approach. We find that, with mean short run and long run price elasticities of - 0.34 and - 0.84, respectively, the demand for gasoline is not very price sensitive. Both in the short and the long run, the impact of a change in the gasoline price on demand is mainly driven by responses in fuel efficiency and mileage per car and to a slightly lesser degree by changes in car ownership. Furthermore, we find that study characteristics relating to the geographic area studied, the year of the study, the type of data used, the time horizon and the functional specification of the demand equation have a significant impact on the estimated value of the price elasticity of gasoline demand. (author)
Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.
2016-10-01
The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.
Numerical estimate of fracture parameters under elastic and elastic-plastic conditions
International Nuclear Information System (INIS)
Soba, Alejandro; Denis, Alicia C.
2003-01-01
The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)
Leadership Elasticity Enhancing Style-Flex for Leadership Equilibrium
Rajbhandari, Mani Man Singh
2017-01-01
Leadership elasticity enhances leadership style flexibility and mobility to enable educational leaders to maintain appropriate leadership equilibrium. The essential of leadership elasticity contributes towards organizational effectiveness by followership's maintenance through appropriate expansion and contraction of relations and task behavioural…
Elastic electron scattering from the DNA bases: cytosine and thymine
International Nuclear Information System (INIS)
Colyer, C J; Bellm, S M; Lohmanny, B; Blanco, F; Garcia, G
2012-01-01
Relative elastic differential cross sections for elastic scattering from cytosine and thymine have been measured using the crossed beam method. The experimental data are compared with theoretical cross sections calculated by the screen corrected additivity rule method.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
The elastic theory of a single DNA molecule
Indian Academy of Sciences (India)
methods and Monte Carlo simulations to understand the entropic elasticity, ... DNA; elastic theory; stacking interaction; supercoiling; hairpin-coil transition. .... the probability distribution of t and ϕ along the DNA chain [14,15], is governed by.
International Nuclear Information System (INIS)
Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.
2014-01-01
We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)
Making Cloud-based Systems Elasticity Testing Reproducible
Albonico , Michel; Mottu , Jean-Marie; Sunyé , Gerson; Alvares , Frederico
2017-01-01
International audience; Elastic cloud infrastructures vary computational resources at runtime, i. e., elasticity, which is error-prone. That makes testing throughout elasticity crucial for those systems. Those errors are detected thanks to tests that should run deterministically many times all along the development. However, elasticity testing reproduction requires several features not supported natively by the main cloud providers, such as Amazon EC2. We identify three requirements that we c...
Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry
Directory of Open Access Journals (Sweden)
Just Agbodjan Prince
2016-09-01
Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
Elasticities of demand for gasoline in Canada and the United States
International Nuclear Information System (INIS)
Nicol, C.J.
2003-01-01
Fluctuations in the world price of oil, the concern with greenhouse gas emissions and the efforts to revive the 1997 Kyoto Protocol have resulted in renewed interest in the estimation of elasticities of demand for gasoline. In this paper, a complete system of demand equations is estimated, including an equation for the demand for gasoline. Canadian family expenditure (FAMEX) and United States consumer expenditure (CEX) survey data are used. Household-level data permits estimation of elasticities for various household groups. Also, differences in demand responsiveness to own-price and income changes are estimated for different regions in Canada and the United States. Demand is found to be own-price and income inelastic, on the whole, as reported in earlier studies. There is also variation in these elasticities across regions of Canada and the United States. However, larger differences are observed with respect to household size and housing tenure, than to region of residence
The importance of being elastic: deflection of a badminton racket during a stroke.
Kwan, Maxine; Rasmussen, John
2010-03-01
The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.
Gender-related difference in arterial elastance during exercise in patients with hypertension.
Park, Sungha; Ha, Jong-Won; Shim, Chi Young; Choi, Eui-Young; Kim, Jin-Mi; Ahn, Jeong-Ah; Lee, Se-Wha; Rim, Se-Joong; Chung, Namsik
2008-04-01
Exercise intolerance and heart failure with preserved ejection fraction are common in females. Recently, arterial stiffness has been suggested to be a significant contributor in the development of heart failure. How gender difference affects arterial stiffening and its response to exercise is not well known. We hypothesized that arterial elastance index during exercise would be more abnormal in females with hypertension than males. Arterial elastance index was estimated as arterial end systolic pressure/stroke volume controlled for body surface area and was measured at rest and during graded supine bicycle exercise (25 watts, 3-minute increments) in 298 patients with hypertension (149 males; 149 females; mean age, 59). The subjects were divided into 2 groups by gender. Exercise duration was significantly shorter in females compared to males (692+/-222 versus 483+/-128 seconds, Pexercise being significantly higher in females compared to males (0.69+/-0.83 versus 0.43+/-0.69, P=0.018). Arterial elastance index at each stage of exercise up to 75 W was independently associated with decreased exercise duration. In conclusion, despite lower arterial elastance index at rest, the increase during exercise was steeper in women with hypertension, suggesting a gender-related difference in dynamic arterial stiffness. The arterial elastance index during exercise was significantly associated with exercise duration in patients with hypertension.
Estimating elasticities of demand for natural gas in the European household sector
Energy Technology Data Exchange (ETDEWEB)
Nilsen, Odd Bjarte; Asche, Frank; Tveteras, Ragnar
2005-12-15
This paper analyzes the residential natural gas demand in 12 European countries using a dynamic loglinear demand model, which allows for country-specific elasticity estimates in the short-run and long run. The explanatory variables include a heating degree days index, real prices of natural gas, light fuel oil, electricity, and real private income per capita. Our data set is a country panel with annual observations from 1978 to 2002. Short panel data sets like this represents a challenge for econometric estimation, as standard estimators often provide implausible estimates of elasticities. The demand model is estimated using both homogeneous and heterogeneous estimators, with a particular focus on the shrinkage estimator (an empirical Bayes estimator). The shrinkage short-run own-price and income elasticity tend to be very inelastic, but with greater long-run responsiveness. We provide support for employing a heterogeneous estimator such as the shrinkage estimator. But the empirical results also motivate a further scrutiny of its properties. We also consider the problem of reporting t-statistics of shrinkage estimators in the empirical Bayes (EB) framework and the problem of using the delta method to approximate the elasticities. The delta method biases upward the t-statistics of the shrinkage elasticities. An alternative approach, the bootstrap sampling methods obtained more reliable confidence intervals. We call into question - is the traditional way of constructing confidence intervals or t-statistics of the shrinkage estimator to naive. (Author)
Directory of Open Access Journals (Sweden)
M. Mohammadi
Full Text Available In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
Muhlestein, Michael B; Haberman, Michael R
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport
Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack
2016-01-01
This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.
Parameter Optimisation for the Behaviour of Elastic Models over Time
DEFF Research Database (Denmark)
Mosegaard, Jesper
2004-01-01
Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...
Adaptation of generalized Hill inequalities to anisotropic elastic ...
African Journals Online (AJOL)
user
Thallium manganese chloride(TIMnCl 3 ). 101.4. 16.5. 32.2. 5.2 For Isotropic Media. For some materials, it is possible to make approaches from cubic symmetry to isotropic symmetry. With cubic symmetry, three independent elastic constants are needed. If the medium is elastically isotropic, the elastic properties are ...
Theory of the change of elastic constants by interstitials
International Nuclear Information System (INIS)
Breuer, N.; Dederichs, P.H.; Lehmann, C.; Leibfried, G.; Scholz, A.
1975-01-01
The theory of the change of elastic constants by point-defects, in particular by interstitials, is briefly summarized. The typical effects of spring changes in a defect lattice on the elastic data are discussed qualitatively. Numerical results for the change of elastic constants by self-interstitials and vacancies are given and compared with experimental data for Cu and Al
Consumer brand choice: individual and group analyses of demand elasticity.
Oliveira-Castro, Jorge M; Foxall, Gordon R; Schrezenmaier, Teresa C
2006-03-01
Following the behavior-analytic tradition of analyzing individual behavior, the present research investigated demand elasticity of individual consumers purchasing supermarket products, and compared individual and group analyses of elasticity. Panel data from 80 UK consumers purchasing 9 product categories (i.e., baked beans, biscuits, breakfast cereals, butter, cheese, fruit juice, instant coffee, margarine and tea) during a 16-week period were used. Elasticity coefficients were calculated for individual consumers with data from all or only 1 product category (intra-consumer elasticities), and for each product category using all data points from all consumers (overall product elasticity) or 1 average data point per consumer (interconsumer elasticity). In addition to this, split-sample elasticity coefficients were obtained for each individual with data from all product categories purchased during weeks 1 to 8 and 9 to 16. The results suggest that: 1) demand elasticity coefficients calculated for individual consumers purchasing supermarket food products are compatible with predictions from economic theory and behavioral economics; 2) overall product elasticities, typically employed in marketing and econometric research, include effects of interconsumer and intraconsumer elasticities; 3) when comparing demand elasticities of different product categories, group and individual analyses yield similar trends; and 4) individual differences in demand elasticity are relatively consistent across time, but do not seem to be consistent across products. These results demonstrate the theoretical, methodological, and managerial relevance of investigating the behavior of individual consumers.
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
2001-01-01
Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)
Elastic Multi-scale Mechanisms: Computation and Biological Evolution.
Diaz Ochoa, Juan G
2018-01-01
Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.
Power laws and elastic nonlinearity in materials with complex microstructure
Energy Technology Data Exchange (ETDEWEB)
Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it
2016-01-28
Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.
Mechanisms of elastic wave generation in solids by ion impact
International Nuclear Information System (INIS)
Deemer, B.; Murphy, J.; Claytor, T.
1990-01-01
This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering
Structural changes in elastically stressed crystallites under irradiation
Energy Technology Data Exchange (ETDEWEB)
Zolnikov, K.P., E-mail: kost@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Korchuganov, A.V. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Kryzhevich, D.S. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Chernov, V.M. [Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); A.A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, 5a Rogova St., Moscow (Russian Federation); Psakhie, S.G. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk Polytechnic University, 30 Lenin Ave., Tomsk (Russian Federation); Skolkovo Institute of Science and Technology, 100 Novaya St., Skolkovo (Russian Federation)
2015-06-01
The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning.
Structural changes in elastically stressed crystallites under irradiation
International Nuclear Information System (INIS)
Zolnikov, K.P.; Korchuganov, A.V.; Kryzhevich, D.S.; Chernov, V.M.; Psakhie, S.G.
2015-01-01
The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning
Finite element elastic-plastic analysis of LMFBR components
International Nuclear Information System (INIS)
Levy, A.; Pifko, A.; Armen, H. Jr.
1978-01-01
The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)
Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.
Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko
2016-01-01
The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Young's modulus of elasticity of Schlemm's canal endothelial cells.
Zeng, Dehong; Juzkiw, Taras; Read, A Thomas; Chan, Darren W-H; Glucksberg, Matthew R; Ethier, C Ross; Johnson, Mark
2010-02-01
Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young's modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young's modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8-15 mm Hg). However, increasing intraocular pressure (22-30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.
Plutonium Elastic Moduli, Electron Localization, and Temperature
International Nuclear Information System (INIS)
Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.
2008-01-01
In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)
Anticavitation and Differential Growth in Elastic Shells
Moulton, Derek E.
2010-07-22
Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.
Elastic softness of hybrid lead halide perovskites
Ferreira, A. C.
2018-01-26
Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C44. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr3. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI3.
Mathematical methods in electro-magneto-elasticity
Bardzokas, DI; Filshtinsky, LA
2007-01-01
The mechanics of Coupled Fields is a discipline at the edge of modern research connecting Continuum Mechanics with Solid State Physics. It integrates the Mechanics of Continuous Media, Heat Conductivity and the theory of Electromagnetism that are usually studied separately. For an accurate description of the influence of static and dynamic loadings, high temperatures and strong electromagnetic fields in elastic media and constructive installations, a new approach is required; an approach that has the potential to establish a synergism between the above mentioned fields. Throughout the book a vast number of problems are considered: two-dimensional problems of electro-magneto-elasticity as well as static and dynamical problems for piecewise homogenous compound piezoelectric plates weakened by cracks and openings. The boundary conditions, the constructive equations and the mathematical methods for their solution are thoroughly presented, so that the reader can get a clear quantitative and qualitative understandi...
Relativistic elasticity of stationary fluid branes
Armas, Jay; Obers, Niels A.
2013-02-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Elastic K-means using posterior probability.
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.
Data-Driven Problems in Elasticity
Conti, S.; Müller, S.; Ortiz, M.
2018-01-01
We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.
Diffraction by an immersed elastic wedge
Croisille, Jean-Pierre
1999-01-01
This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.
Elastic Multibody Dynamics A Direct Ritz Approach
Bremer, H
2008-01-01
This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected for the derivation of the motion equations of holonomic and of non-holonomic systems. The method is applied to rigid multibody systems where the rigid body is defined such that, by relaxation of the rigidity constraints, one can directly proceed to elastic bodies. A decomposition into subsystems leads to a minimal representation and to a recursive representation, respectively, of the equations of motion. Applied to elastic multibody systems one obtains, along with the use of spatial operators, a straight-on procedure for the interconnected partial and ordinary differential equations and the corresponding boundary conditions. The spatial operators are eventually applied to a RITZ series for approximation. The resulting equ...
Elastic wave scattering methods: assessments and suggestions
International Nuclear Information System (INIS)
Gubernatis, J.E.
1985-01-01
The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed
The multiple V-shaped double peeling of elastic thin films from elastic soft substrates
Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.
2018-04-01
In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.
On the elastic stiffness of grain boundaries
International Nuclear Information System (INIS)
Zhang Tongyi; Hack, J.E.
1992-01-01
The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)