Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1996-01-01
Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...... values.We show that the extremal overall elastic response is alwaysachieved by a configuration consisting of a single properlyoriented crystal. This result is compared to results for isotropicpolycrystals....
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1997-01-01
Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...
Dynamic frictional contact for elastic viscoplastic material
Directory of Open Access Journals (Sweden)
Kenneth L. Kuttler
2007-05-01
Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.
International Nuclear Information System (INIS)
Jablonskiz, A.; Salvatz, F.; Powellz, C.J.
2004-01-01
Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)
Dynamic nonlinear elasticity in geo materials
International Nuclear Information System (INIS)
Ostrovsky, L.A.; Johnson, P.A.
2001-01-01
The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
The elastic response of composite materials
International Nuclear Information System (INIS)
Laws, N.
1980-01-01
The theory of linear elasticity is used to study the elastic response of composite materials. The main concern is the prediction of overall moduli. Some attention is paid to the problem of deciding upon when the idea of an overall modulus is meaningful. In addition it is shown how to calculate some rigorous bounds on the overall moduli, and some predictions of the self-consistent method are discussed. The paper mainly concentrates on isotropic dispersions of spheres, unidirectional fibre-reinforced materials and laminates. (author)
Superconducting materials fabrication process and materials obtained
International Nuclear Information System (INIS)
Lafon, M.O.; Magnier, C.
1989-01-01
The preparation process of a fine powder of YBaCuO type superconductors of easy sintering comprises: mixing in presence of alcohol an aqueous solution of rare earth nitrate or acetate, alkaline earth nitrate or acetate and copper nitrate or acetate and an oxalic acid solution, the pH value of the mixture is comprised between 2 and 4, the obtained precipitate is separated, dried, calcined and eventually crushed [fr
Nonlinear constitutive relations for anisotropic elastic materials
Sokolova, Marina; Khristich, Dmitrii
2018-03-01
A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.
Study of a Piezo-Thermo-Elastic Materials Console
Directory of Open Access Journals (Sweden)
hamza madjid berrabah
2015-09-01
Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.
Material-Point Method Analysis of Bending in Elastic Beams
DEFF Research Database (Denmark)
Andersen, Søren Mikkel; Andersen, Lars
2007-01-01
The aim of this paper is to test different types of spatial interpolation for the material-point method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown...
Mathematical model predicts the elastic behavior of composite materials
Directory of Open Access Journals (Sweden)
Zoroastro de Miranda Boari
2005-03-01
Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.
Material-point Method Analysis of Bending in Elastic Beams
DEFF Research Database (Denmark)
Andersen, Søren Mikkel; Andersen, Lars
The aim of this paper is to test different types of spatial interpolation for the materialpoint method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown...
On the use of elastic-plastic material characteristics for linear-elastic component assessments
International Nuclear Information System (INIS)
Kussmaul, K.; Silcher, H.; Eisele, U.
1995-01-01
In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)
Elastic properties of various ceramic materials
International Nuclear Information System (INIS)
Zimmermann, H.
1992-09-01
The Young's modulus and the Poisson's ratio of various ceramics have been investigated at room temperature and compared with data from the literature. The ceramic materials investigated are Al 2 O 3 , Al 2 O 3 -ZrO 2 , MgAl 2 O 4 , LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , UO 2 , AlN, SiC, B 4 C, TiC, and TiB 2 . The dependence of the elastic moduli on porosity and temperature have been reviewed. Measurements were also performed on samples of Al 2 O 3 , AlN, and SiC, which had been irradiated to maximum neutron fluences of 1.6.10 26 n/m 2 (E>0.1 MeV) at different temperatures. The Young's modulus is nearly unaffected at fluences up to about 4.10 24 n/m 2 . However, it decreases with increasing neutron fluence and seems to reach a saturation value depending upon the irradiation temperature. The reduction of the Young's modulus is lowest in SiC. (orig.) [de
Observation of elastic topological states in soft materials.
Li, Shuaifeng; Zhao, Degang; Niu, Hao; Zhu, Xuefeng; Zang, Jianfeng
2018-04-10
Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.
Power laws and elastic nonlinearity in materials with complex microstructure
Energy Technology Data Exchange (ETDEWEB)
Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it
2016-01-28
Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.
Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
2001-01-01
Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)
Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.
2018-01-01
Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.
Radiation processed composite materials of wood and elastic polyester resins
International Nuclear Information System (INIS)
Tapolcai, I.; Czvikovszky, T.
1983-01-01
The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)
Elastic properties of synthetic materials for soft tissue modeling
International Nuclear Information System (INIS)
Mansy, H A; Grahe, J R; Sandler, R H
2008-01-01
Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed
Obtaining the general forms of the effective coefficients of laminate magneto-electro - elastic
International Nuclear Information System (INIS)
Cabañas, J. H.; Otero, A.; Castillero, B.; Rodríguez, R.
2008-01-01
In this work using the asymptotic homogenization method obtained general expressions for the calculation of the effective characteristics of magnetoelectro-elastic laminates with layers of any symmetry. You will reach an array of auxiliary functions for determining the effective coefficients for a serial connection and displays a result similar to the case of parallel connection.
Obtaining cementitious material from municipal solid waste
Directory of Open Access Journals (Sweden)
Macías, A.
2007-06-01
Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.
Propagation law of impact elastic wave based on specific materials
Directory of Open Access Journals (Sweden)
Chunmin CHEN
2017-02-01
Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.
Polymeric materials obtained by electron beam irradiation
International Nuclear Information System (INIS)
Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.
1995-01-01
Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)
Interface effects on effective elastic moduli of nanocrystalline materials
International Nuclear Information System (INIS)
Wang Gangfeng; Feng Xiqiao; Yu Shouwen; Nan Cewen
2003-01-01
Interfaces often play a significant role in many physical properties and phenomena of nanocrystalline materials (NcMs). In the present paper, the interface effects on the effective elastic property of NcMs are investigated. First, an atomic potential method is suggested for estimating the effective elastic modulus of an interface phase. Then, the Mori-Tanaka effective field method is employed to determine the overall effective elastic moduli of a nanocrystalline material, which is regarded as a binary composite consisting of a crystal or inclusion phase with regular lattice connected by an amorphous-like interface or matrix phase. Finally, the stiffening effects of strain gradients are examined on the effective elastic property by using the strain gradient theory to analyze a representative unit cell. Our analysis shows two physical mechanisms of interfaces that influence the effective stiffness and other mechanical properties of materials. One is the softening effect due to the distorted atomic structures and the increased atomic spacings in interface regions, and another is the baffling effect due to the existence of boundary layers between the interface phase and the crystalline phase
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
International Nuclear Information System (INIS)
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-01-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs
International Nuclear Information System (INIS)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao
2015-01-01
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications
Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening
International Nuclear Information System (INIS)
Roche, R.
1983-12-01
A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr
A 3D Orthotropic Elastic Continuum Damage Material Model
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2013-08-01
A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.
The variation in elastic modulus throughout the compression of foam materials
International Nuclear Information System (INIS)
Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.
2016-01-01
We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.
Adler, Thomas A.
1996-01-01
The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.
Contribution to research on the elastic and elastoplastic behavior of porous materials
International Nuclear Information System (INIS)
Frappier, J.-C.
1979-11-01
This three-part study concerns the mechanical behavior of porous materials. Part one, a bibliographical survey on the mechanical properties of porous materials, deals in turn with the following subjects: elastic properties, elasto-plastic boundary, plastic flow laws, fracture behavior and characterization methods. Part two is devoted to elastic behavior, giving the results of an experimental study on the elastic properties of a sintered nickel within a wide porosity range (5% to 55%) and establishing a theoretical law for the prediction of such characteristics; apart from the total porosity fraction and the elastic properties of the matrix this law can integrate parameters which represent the morphology of the material and may be determined empirically or by a modelisation, also proposed, of the structure of the material. Part three describes elastoplastic, behavior and includes experimental results obtained on sintered nickel in cases of simple mechanical stress, the demonstration - based on energy considerations of a theoretical plasticity criterion accounting for the substance, a theoretical definition of the plastic Poisson's ratio and the establishment of flow laws associated with this criterion [fr
Elasticity of fractal materials using the continuum model with non-integer dimensional space
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
International Nuclear Information System (INIS)
Ondracek, G.; Thuemmler, F.
1979-01-01
A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de
Optimal determination of the elastic constants of woven 2D SiC/SiC composite materials
International Nuclear Information System (INIS)
Mouchtachi, A; Guerjouma, R El; Baboux, J C; Rouby, D; Bouami, D
2004-01-01
For homogeneous materials, the ultrasonic immersion method, associated with a numerical optimization process mostly based on Newton's algorithm, allows the determination of elastic constants for various synthetic and natural composite materials. Nevertheless, a principal limitation of the existing optimization procedure occurs when the considered material is at the limit of the homogeneous hypothesis. Such is the case of the woven bidirectional SiC matrix and SiC fibre composite material. In this study, we have developed two numerical methods for the determination of the elastic constants of the 2D SiC/SiC composite material (2D SiC/SiC). The first one is based on Newton's algorithm: the elastic constants are obtained by minimizing the square deviation between experimental and calculated velocities. The second method is based on the Levenberg-Marquardt algorithm. We show that these algorithms give the same results in the case of homogeneous anisotropic composite materials. For the 2D SiC/SiC composite material, the two methods, using the same measured velocities, give different sets of elastic constants. We then note that the Levenberg-Marquardt algorithm enables a better convergence towards a global set of elastic constants in good agreement with the elastic properties, which can be measured using classical quasi-static methods
International Nuclear Information System (INIS)
Amos, K.; Allen, L.J.; Steward, C.; Hodgson, P.E.; Sofianos, S.A.
1995-01-01
Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs
Energy Technology Data Exchange (ETDEWEB)
Amos, K.; Allen, L.J.; Steward, C. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hodgson, P.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Sofianos, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics
1995-10-01
Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs.
Evaluation of elastic constants of materials using the frequency spectrum
International Nuclear Information System (INIS)
Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q.
2015-01-01
The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)
Evaluation of elastic constants of materials using the frequency spectrum
Energy Technology Data Exchange (ETDEWEB)
Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q., E-mail: ramirobd@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento de Materiais Nucleares. Laboratorio de Ultrassom
2015-07-01
The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)
X-Ray Elastic Constants for Cubic Materials
Energy Technology Data Exchange (ETDEWEB)
Malen, K
1974-10-15
The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account
X-Ray Elastic Constants for Cubic Materials
Energy Technology Data Exchange (ETDEWEB)
Malen, K.
1974-10-15
The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account
X-Ray Elastic Constants for Cubic Materials
International Nuclear Information System (INIS)
Malen, K.
1974-10-01
The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
Coating multilayer material with improved tribological properties obtained by magnetron sputtering
Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.
2017-02-01
This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.
International Nuclear Information System (INIS)
Nozaki, Hiroshi
2014-01-01
Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)
Pepi, John W.
2017-08-01
Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.
Antimicrobial material obtained from pulping white paper waste
International Nuclear Information System (INIS)
Angioletto, E.; Fiori, M.A.; Pitch, C.T.; Mendes, E.; Oliveira, C.M.; Melo, C.R.; Riella, H.G.
2011-01-01
The paper industry produces white waste, consisting of 45% kaolin, 45% calcium carbonate and 10% cellulose. After calcination at 903K for two hours, the cellulose is burnt and decomposed kaolin in metakaolin. Held treatment of the calcined material with hydrochloric acid to remove calcium carbonate. The metakaolin is treated with sodium hydroxide solution to obtain the type of zeolite 4A. The zeolites were characterized using XRD, XRF and SEM. The zeolite was subjected to ion exchange with zinc sulphate and silver nitrate at room temperature, stirring, for six hours. This material was tested with Staphylococcus aureus and Escherichia coli, to get excellent results with regard to bactericidal properties.(author)
Lithium storage into carbonaceous materials obtained from sugarcane bagasse
International Nuclear Information System (INIS)
Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio
2010-01-01
Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g -1 . The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)
Accuracy of stone casts obtained by different impression materials
Directory of Open Access Journals (Sweden)
Adriana Cláudia Lapria Faria
2008-12-01
Full Text Available Several impression materials are available in the Brazilian marketplace to be used in oral rehabilitation. The aim of this study was to compare the accuracy of different impression materials used for fixed partial dentures following the manufacturers' instructions. A master model representing a partially edentulous mandibular right hemi-arch segment whose teeth were prepared to receive full crowns was used. Custom trays were prepared with auto-polymerizing acrylic resin and impressions were performed with a dental surveyor, standardizing the path of insertion and removal of the tray. Alginate and elastomeric materials were used and stone casts were obtained after the impressions. For the silicones, impression techniques were also compared. To determine the impression materials' accuracy, digital photographs of the master model and of the stone casts were taken and the discrepancies between them were measured. The data were subjected to analysis of variance and Duncan's complementary test. Polyether and addition silicone following the single-phase technique were statistically different from alginate, condensation silicone and addition silicone following the double-mix technique (p .05 to alginate and addition silicone following the double-mix technique, but different from polysulfide. The results led to the conclusion that different impression materials and techniques influenced the stone casts' accuracy in a way that polyether, polysulfide and addition silicone following the single-phase technique were more accurate than the other materials.
Directory of Open Access Journals (Sweden)
Jan Valíček
2015-11-01
Full Text Available The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ, especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Parametric dependence of a morphing wind turbine blade on material elasticity
International Nuclear Information System (INIS)
Puterbaugh, Martin; Beyene, Asfaw
2011-01-01
A few recent works have suggested a morphing blade for wind turbine energy conversion. The concept is derived from fin and wing motions that better adapt to varying load conditions. Previous research has provided the fluid mechanic justification of this new concept. This paper establishes a parametric relationship between an asymmetric wind turbine blade and constituent material modulus to predict the geometric response of the morphing blade for a given material characteristic. The airfoil's trailing edge deflection is associated to a prescribed fluid exit angle via the Moment Area (MA) method. Subsequently, a mathematical model is derived to predict material deformation with respect to imparted aerodynamic forces. Results show that an airfoil, much like a tapered beam, can be modeled as a non-prismatic cantilevered beam using this well established method. -- Research highlights: →A mathematical model relating morphing airfoil thickness and elastic modulus was established. →For non-prismatic beam under a uniform distributive load, the slope and deflection of the airfoil's trailing edge were related to the fluid exit angle. →The main driver of blade deformation was the angular drag force. The Moment Area method was used, verified by Finite Element method. →Displacement to the exit angle is predicated upon the elastic modulus value given that other parameters are constant. →Optimum power output is obtained in part load conditions when the blade deforms to the applicable exit angle.
Elastic constants of stressed and unstressed materials in the phase-field crystal model
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Porous materials based on foaming solutions obtained from industrial waste
Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.
2018-03-01
This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.
Florentin, Éric
2011-08-09
The constitutive equation gap method (CEGM) is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. Recently, CEGM-based functional has been proposed to identify local elastic parameters based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification, that leads to the construction of such a space. Then, the identification strategy is implemented and the obtained results are compared with the actual material parameters for numerically generated benchmarks. The quality of the identification technique is demonstrated that makes it a valuable tool for interactive design as a way to validate local material properties. © 2011 Springer-Verlag.
Moussawi, Ali; Lubineau, Gilles; Xu, Jiangping; Pan, Bing
2015-01-01
Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential
CSIR Research Space (South Africa)
De Beer, Morris
2008-07-01
Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501
Florentin, É ric; Lubineau, Gilles
2010-01-01
study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained
Stress effects on the elastic properties of amorphous polymeric materials
Energy Technology Data Exchange (ETDEWEB)
Caponi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100 (Italy); Corezzi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); CNR-ISC (Istituto dei Sistemi Complessi), c/o Università di Roma “LaSapienza,” Piazzale A. Moro 2, I-00185 Roma (Italy); Mattarelli, M. [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); Fioretto, D. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy)
2014-12-07
Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
A thermodynamic approach to obtain materials properties for engineering applications
Chang, Y. Austin
1993-01-01
With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.
Hugoniot elastic limits and compression parameters for brittle materials
International Nuclear Information System (INIS)
Gust, W.H.
1979-01-01
The physical properties of brittle materials are of interest because of the rapidly expanding use of these material in high-pressure and shock wave techology, e.g., geophysics and explosive compaction as well as military applications. These materials are characterized by unusually high sonic velocities, have large dynamic impedances and exhibit large dynamic yield strengths
FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS
Directory of Open Access Journals (Sweden)
Budi Setiyana
2013-11-01
Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan yang menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan
Characteristic analysis on moderating material for obtaining epithermal neutron beam
International Nuclear Information System (INIS)
Jiang Xinbiao; Chen Da; Zhang Ying
2000-01-01
The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam
International Nuclear Information System (INIS)
Martin, S.E.; Newman, J.B.
1980-11-01
A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference
Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M.; Yazdani, Saami K.; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I.; Ohayon, Jacques
2013-12-01
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10-8±5.7 × 10-8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method.
Functionally graded materials for impedance matching in elastic media
International Nuclear Information System (INIS)
Chen, Shi; Zhang, Yinhong; Hao, Changchun; Lin, Shuyu; Fu, Zhiqiang
2014-01-01
When functionally graded material layers are inserted between two impedance mismatching media, passbands with extremely large bandwidths can appear in these layered systems. An accurate and effective iterative method is developed to deal with these layered systems with extremely large layer number.
Functionally graded materials for impedance matching in elastic media
Energy Technology Data Exchange (ETDEWEB)
Chen, Shi; Zhang, Yinhong, E-mail: zyh5337@163.com; Hao, Changchun; Lin, Shuyu; Fu, Zhiqiang
2014-01-03
When functionally graded material layers are inserted between two impedance mismatching media, passbands with extremely large bandwidths can appear in these layered systems. An accurate and effective iterative method is developed to deal with these layered systems with extremely large layer number.
Directory of Open Access Journals (Sweden)
Mihai-Victor PRICOP
2010-09-01
Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.
VISCO-ELASTIC PROPERTIES OF SOFT RELINING MATERIALS – REVIEW
Directory of Open Access Journals (Sweden)
Ilian Hristov
2017-05-01
Full Text Available Despite the achievements of modern dentistry in fields of implantology and CAD-CAM technologies, the challenges associated with edentulous patients, treatment are still remaining. Difficulties are getting even greater, when it is a matter of highly atrophied alveolar ridges, covered with very thin mucosa, people suffering from xerostomia, exostosis, very well developed torus palatinus or tuberae maxillae. Problems of the patients with removable dentures usually are poor adhesion and stability, pain, wounds, difficult adaptation with the new dentures, etc. At this moment there are only two possibilities to help these people. The first one is the use of implants; the second one is to use soft relining materials. There are some obstacles that reduce the use of implants in all patients, because of medical, anatomical, psychological and financial concerns. While in the second option the contraindications are quite less.
Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.
2018-01-01
The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.
Energy Technology Data Exchange (ETDEWEB)
Vanoost, D., E-mail: dries.vanoost@kuleuven-kulak.be [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)
2016-09-15
This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.
Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials
Hou, Zhilin; Assouar, Badreddine
2018-02-01
We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.
Sound transmission through stiffened double-panel structures lined with elastic porous materials
Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming
This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.
Turco, Emilio; Giorgio, Ivan; Misra, Anil; dell'Isola, Francesco
2017-10-01
One of the most interesting challenges in the modern theory of materials consists in the determination of those microstructures which produce, at the macro-level, a class of metamaterials whose elastic range is many orders of magnitude wider than the one exhibited by `standard' materials. In dell'Isola et al. (2015 Zeitschrift für angewandte Mathematik und Physik 66, 3473-3498. (doi:10.1007/s00033-015-0556-4)), it was proved that, with a pantographic microstructure constituted by `long' micro-beams it is possible to obtain metamaterials whose elastic range spans up to an elongation exceeding 30%. In this paper, we demonstrate that the same behaviour can be obtained by means of an internal microstructure based on a king post motif. This solution shows many advantages: it involves only microbeams; all constituting beams are undergoing only extension or compression; all internal constraints are terminal pivots. While the elastic deformation energy can be determined as easily as in the case of long-beam microstructure, the proposed design seems to have obvious remarkable advantages: it seems to be more damage resistant and therefore to be able to have a wider elastic range; it can be realized with the same three-dimensional printing technology; it seems to be less subject to compression buckling. The analysis which we present here includes: (i) the determination of Hencky-type discrete models for king post trusses, (ii) the application of an effective integration scheme to a class of relevant deformation tests for the proposed metamaterial and (iii) the numerical determination of an equivalent second gradient continuum model. The numerical tools which we have developed and which are presented here can be readily used to develop an extensive measurement campaign for the proposed metamaterial.
International Nuclear Information System (INIS)
Pan, Z.L.
2010-01-01
Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...
Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K
2011-09-01
We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.
Obtaining of Grafted Planting Material at Some Romanian Tomatoes
Directory of Open Access Journals (Sweden)
Madalina Doltu
2016-11-01
Full Text Available The tomatoes have highest share in Romanian crops from protected spaces (greenhouses, solariums. The grafting is an agronomical technique that induces or improves some qualities of the tomato cultivars (resistance to soil diseases and pests, resistance to abiotic factors, quantity and quality of fruit production. The research was aimed the establishing of the technological stages for producing of scion and rootstock seedlings from L. esculentum species, to obtain compatible phenotype when is grafted. The observations of this research were conducted on Department of Horticultural Cultures in Protected Spaces from Horting Institute Bucharest. The experience was carry out on a cultivar collection consisting from L. esculentum plants: scions (‘Siriana’–F1 hybrid and ‘Buzău 1600’– variety, creations from the germplasm bank of Research and Development Station for Vegetable Growing Buzău Romania (VDRS Buzău and rootstock (‘Groundforce’–F1 hybrid. The plant diameters were correlated for a grafting by the annexation method, cutting at 45 degrees. The grafting was performed successfully. The technological steps have achieved phenotypic compatibility of the symbiotes when was the grafting by annexation. The technology for producing of scion and rootstock seedlings at these Romanian tomatoes (‘Siriana’ and ‘Buzău’ 1600 was established for the crops in protected spaces in south area of Romania.
International Nuclear Information System (INIS)
Phadke, Sushil; DShrivastava, B; Dagaonkar, N; Mishra, Ashutosh
2012-01-01
The homogeneous continuous materials are widely used for many structural applications. Migrations of atoms or molecules are the mechanism of mechanical and kinetic processes in materials for their synthesis processing as well as for their structural evolutions. The elastic constant of solids provides valuable information on their mechanical and dynamical properties. In particular, they provide information on the stability and stiffness of materials. In the present study author investigated relation between elastic constant and temperature in Borassus Flabellifier 'BF' wood part. Determination of elastic properties of material is based on the longitudinal wave's velocities via ultrasonic methods. The resonant frequencies of the specimens were measured by Ultrasonic Interferometer (for solids) dual frequency using longitudinal cubic piezoelectric crystal of quartz of frequency 123.62 KHz. The temperature variations from room temperature were done by PID control unit, Mittal Enterprises, New Delhi, India. Characterization of the samples was done by scanning electron microscope (SEM) Model JEOL JSM5400 at 5.0kvx750, 10 μm.
Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials
Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.
1996-04-01
Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material
International Nuclear Information System (INIS)
Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.
2001-01-01
An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs
Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach
Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine
2017-02-01
This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.
Directory of Open Access Journals (Sweden)
Abdelmoumene Djabi
2015-05-01
Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.
Remarks on some reference materials for applications in elastic peak electron spectroscopy
International Nuclear Information System (INIS)
Jablonski, A.; Zemek, J.
2010-01-01
The quantification of results of electron spectroscopies, AES and XPS, requires knowledge of the inelastic mean free path (IMFP) of signal electrons in solids. This parameter determines the surface sensitivity of both techniques. There are two methods of determining the IMFPs that provide these parameters in agreement with the definition: (1) calculations based on the experimental optical data, and (2) calculations based on measurements of the electron elastic backscattering intensity. The latter method requires the use of some reference material for which the IMFP is known. In 1999, an extensive analysis of the published IMFPs has been performed; the results indicated that there is a very good agreement between the calculated and measured IMFPs for four elemental solids: Ni, Cu, Ag and Au. The averaged IMFPs for these elements are known under the name of the recommended IMFPs. However, no preference among these four elements has been established. In the present work, an attempt is made to select an element for which the recommended IMFPs result in the best agreement between the calculated and measured intensities of elastic electron backscattering. For this purpose, the elastic backscattering intensity has been measured at eight electron energies varying from 200 to 1500 eV. At each energy, the intensity was measured over a wide range of emission angles from 35deg to 74deg. The experiments were accompanied with Monte Carlo calculations of the elastic backscattering probability for the same energies and experimental configurations. It has been found, from comparison, that the best agreement is observed for Au, and this element is thus recommended as the reference material. It has been shown that the shape of the emission angle dependence of the elastic backscattering intensity is noticeably influenced by the surface energy losses. (author)
DEFF Research Database (Denmark)
Ravn, Bjarne Gottlieb; Andersen, Claus Bo; Wanheim, Tarras
2001-01-01
There are three demands on a component that must undergo a die-cavity elasticity analysis. The demands to the product are specified as: (i) to be able to measure the loading profile which results in elestic die-cavity deflections; (ii) to be able to compute the elestic deflections using FE; (iii...
Brazhkin, V V; Mukhamadiarov, V V; Gromnitskaya, E L; Lyapin, A G; Popova, S V; Stalgorova, O V
2002-01-01
We observe an anisotropy of the propagation velocities of longitudinal and transverse ultrasonic waves, as well as of the hardness, for disordered graphite-like samples obtained from the C sub 6 sub 0 fullerite, which is heated to different temperatures under a pressure of 7.5 GPa. The anisotropy of the elastic properties and the hardness is connected to the additional pressure component that occurs in the quasi-hydrostatic experimental conditions. The elastic characteristics of the samples are determined. We propose a model description relating the observed properties of superhard sp sup 2 carbon to its possible structural features and to the mechanism of its formation.
A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen
2014-09-01
A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.
International Nuclear Information System (INIS)
Haldipur, P.; Margetan, F. J.; Thompson, R. B.
2006-01-01
Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.
Directory of Open Access Journals (Sweden)
Hwa Kian Chai
2016-04-01
Full Text Available Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.
Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach
Akbarov, Surkay D
2015-01-01
This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.
Janson, Isaac A.; Putnam, Andrew J.
2014-01-01
Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444
X-ray elastic constants in textured Zr-base materials
International Nuclear Information System (INIS)
Ortiz, M.; Pochettino, A.A.; Lebrun, J.L.; Maeder, G.
1993-01-01
A general method for the calculation of the X-ray elastic constants (XREC) for textured hexagonal close-packed (hcp) materials was developed by using the orientation distribution function (ODF) and the Reuss hypothesis. This method was applied to textured zirconium (Zr) sheets and zircaloy 4 (Zry 4) extruded tubes. For these samples, where the elastic anisotropy is not very strong, an 'isotropic approximation' method is proposed using the ODF data. In that case, the classical XREC 1/2S 2 and S, values are calculated and experimentally verified for (10 bar 14) diffracting planes. Theoretical XREC values are also given for different (hkil) that could be chosen according to the experimental conditions, considering texture effects on diffracting peak intensities
Li, Qiang; Popov, Valentin L.
2018-03-01
Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.
Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.
2018-03-01
The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.
International Nuclear Information System (INIS)
Kocer, C.; McKenzie, D.R.; Bilek, M.M.
2009-01-01
The theory of elasticity predicts a variety of phenomena associated with solids that possess a negative Poisson's ratio. The fabrication of metamaterials with a 'designed' microstructure that exhibit a Poisson's ratio approaching the thermodynamic limits of 1/2 and -1 increases the likelihood of realising these phenomena for applications. In this work, we investigate the properties of a layered composite, with alternating layers of materials with negative and positive Poisson's ratio approaching the thermodynamic limits. Using the finite element method to simulate uniaxial loading and indentation of a free standing composite, we observed an increase in the resistance to mechanical deformation above the average value of the two materials. Even though the greatest increase in stiffness is gained as the thermodynamic limits are approached, a significant amount of added stiffness can be attained, provided that the Young's modulus of the negative Poisson's ratio material is not less than that of the positive Poisson's ratio material
Directory of Open Access Journals (Sweden)
M. Borg
2018-03-01
Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.
A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials
Li, Chen; Liao, Yufei
2018-03-01
Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.
Material selection for elastic energy absorption in origami-inspired compliant corrugations
International Nuclear Information System (INIS)
Tolman, Sean S; Delimont, Isaac L; Howell, Larry L; Fullwood, David T
2014-01-01
Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. Recent attention to the potential for using origami in engineering may provide new methods for energy absorption and force distribution. A three-stage strategy is presented for selecting materials for such origami-inspired designs that can deform to achieve a desired motion without yielding, absorb elastic strain energy, and be lightweight or cost effective. Two material indices are derived to meet these requirements based on compliant mechanism theory. Finite element analysis is used to investigate the effects of the material stiffness in the Miura-ori tessellation on its energy absorption and force distribution characteristics compared with a triangular wave corrugation. An example is presented of how the method can be used to select a material for a general energy absorption application of the Miura-ori. Whereas the focus of this study is the Miura-ori tessellation, the methods developed can be applied to other tessellated patterns used in energy absorbing or force distribution applications. (paper)
Coupled electrostatic-elastic analysis for topology optimization using material interpolation
International Nuclear Information System (INIS)
Alwan, A; Ananthasuresh, G K
2006-01-01
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finiteelement mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a 'leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (registered) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case
International Nuclear Information System (INIS)
Ledbetter, H.M.
1983-01-01
This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites
Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...
DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2016-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
Guerquin, B
2015-09-01
Improving the understanding of the adaptation to stress of urinary continence. A transversal analysis between physics of materials and the female anatomy. Laws of physics of the materials and of their viscoelastic behavior are applied to the anatomy of the anterior vaginal wall. The anterior vaginal wall may be divided into two segments of different viscoelastic behavior, the vertical segment below the urethra and the horizontal segment below the bladder. If the urethra gets crushed on the first segment according to the hammock theory, the crushing of the bladder on the second segment is, on the other hand, damped by its important elasticity. The importance of this elasticity evokes an unknown function: damping under the bladder that moderates and delays the increase of intravesical pressure. This damping function below the bladder is increased in the cystocele, which is therefore a continence factor; on the other hand, it is impaired in obesity, which is therefore a factor of SUI. It is necessary to include in the theory of stress continence, the notion of a damping function below the bladder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
22 CFR 212.25 - Procedures for obtaining materials under this subpart.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Procedures for obtaining materials under this subpart. 212.25 Section 212.25 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT PUBLIC INFORMATION Availability of Information for Public Inspection and Copying § 212.25 Procedures for obtaining materials under...
Moussawi, Ali
2015-02-24
Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential of the constitutive compatibility method for tackling such an inverse problem, provided an appropriate domain decomposition technique is introduced. In the method described here, the statically admissible stress field that can be related through the known constitutive symmetry to the kinematic observations is sought through minimization of an objective function, which measures the violation of constitutive compatibility. After this stress reconstruction, the local material parameters are identified with the given kinematic observations using the constitutive equation. Here, we first adapt this method to solve 3D identification problems and then implement it within a domain decomposition framework which allows for reduced computational load when handling larger problems.
Directory of Open Access Journals (Sweden)
Masahiko Kanaoka et al
2007-01-01
Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.
A dehydration process for ovine hide to obtain a new collagenous material
Ollé Otero, Lluís; Sorolla, Silvia; Casas Solé, Concepció; Bacardit Dalmases, Anna
2014-01-01
The aim of the present work is to develop a dehydration process for ovine hide to obtain a new collagenous material for use in the leather industry. What is obtained through this new process is a dry and very porous collagenous substrate which allows the application of tanning chemicals by immersion in aqueous solutions. When compared to existing, traditional processes, economic and environmental advantages are obtained from the use of this new material. More specifically, the new process ...
International Nuclear Information System (INIS)
Park, Jai Hak; Nikishkov, G. P.
2010-01-01
An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems
The additive technology for obtaining thermal storages based on nanomodified materials
Directory of Open Access Journals (Sweden)
Shchegolkov Alexander
2017-01-01
Full Text Available The approaches for the implementation of an additive technology for obtaining heat accumulators are considered. The implementation of the provided technology can be realized on the standard 3D printers, which are aimed to obtain plastic materials. However, the software of the printers has to include adjusting analytical expressions, which take into account thermophysical properties of the heat-retaining materials. The analytical expressions have been derived by solving a mathematical model. The mathematical model contains the main data on thermophysical and mechanical and physical properties of the nanomodified material. These properties of the nanomodified material are defined during the experimental studies.
Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.
2016-01-01
The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.
Sound transmission through double panel constructions lined with elastic porous materials
Bolton, J. S.; Green, E. R.
1986-07-01
Attention is given to a theory governing one-dimensional wave motion in elastic porous materials which is capable of reproducing experimental transmission measurements for unfaced polyurethane foam layers. Calculations of the transmission loss of fuselage-like foam-lined double panels are presented and it is shown that the foam/panel boundary conditions have a large effect on the panel performance; a hybrid arrangement whereby the foam is bonded directly to one panel and separated from the other by a thin air gap appears to be the most advantageous under practical circumstances. With this configuratiom, the mass-air-mass resonance is minimized and increased low-frequency performance is offered.
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
Directory of Open Access Journals (Sweden)
Azuma Takahashi
Full Text Available The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D distribution of strain using tomographic particle image velocimetry (Tomo-PIV and compares the measurement accuracy with the gauge strain in tensile tests.The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen.We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.
Procedures for EPA Libraries to Obtain Materials through Interlibrary Loan/Document Delivery
The purpose of this document is to establish Agency-wide procedures by which EPA libraries obtain materials for Agency employees and authorized EPA contractors through interlibrary loan (ILL) and other document delivery methods.
Florentin, Éric
2010-04-23
Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.
A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
Zhang, XiaoLong; Zhong, Zheng
2017-08-01
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.
2015-10-01
This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.
Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials
Polavarapu, Rinosh; Banerjee, Arindam
2017-11-01
The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A
2008-12-02
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
Smith, Brent
2002-01-01
Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)
Smith, Brent
2002-01-01
Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…
Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light
Hernandez Charpak, Jorge Nicolas
Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (size and spacing of the nanoscale heat sources with the phonon spectrum of a material. This makes our technique one of the only experimental routes to
Kuhn, Matthew R.; Daouadji, Ali
2018-05-01
The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.
Analytic approximations for the elastic moduli of two-phase materials
DEFF Research Database (Denmark)
Zhang, Z. J.; Zhu, Y. K.; Zhang, P.
2017-01-01
Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...
Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.
2014-07-01
The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were
Fine defective structure of silicon carbide powders obtained from different starting materials
Directory of Open Access Journals (Sweden)
Tomila T.V.
2006-01-01
Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.
International Nuclear Information System (INIS)
Li, P.D.; Li, X.Y.; Zheng, R.F.
2013-01-01
This Letter is concerned with thermo-elastic fundamental solutions of an infinite space, which is composed of two half-infinite bodies of different one-dimensional hexagonal quasi-crystals. A point thermal source is embedded in a half-space. The interface can be either perfectly bonded or smoothly contacted. On the basis of the newly developed general solution, the temperature-induced elastic field in full space is explicitly presented in terms of elementary functions. The interactions among the temperature, phonon and phason fields are revealed. The present work can play an important role in constructing farther analytical solutions for crack, inclusion and dislocation problems. -- Highlights: ► Green's functions are constructed in terms of 10 quasi-harmonic functions. ► Thermo-elastic field of a 1D hexagonal QC bi-material body is expressed explicitly. ► Both perfectly bonded and smoothly contacted interfaces are considered
Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.
2017-07-01
The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.
Material and elastic properties of Al-tobermorite in ancient roman seawater concrete
Jackson, Marie D.
2013-05-28
The material characteristics and elastic properties of aluminum-substituted 11 Å tobermorite in the relict lime clasts of 2000-year-old Roman seawater harbor concrete are described with TG-DSC and 29Si MAS NMR studies, along with nanoscale tomography, X-ray microdiffraction, and high-pressure X-ray diffraction synchrotron radiation applications. The crystals have aluminum substitution for silicon in tetrahedral bridging and branching sites and 11.49(3) Å interlayer (002) spacing. With prolonged heating to 350°C, the crystals exhibit normal behavior. The experimentally measured isothermal bulk modulus at zero pressure, K0, 55 ±5 GPa, is less than ab initio and molecular dynamics models for ideal tobermorite with a double-silicate chain structure. Even so, K0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous cementitious matrix, Al-tobermorite with 11.27 Å interlayer spacing is locally associated with phillipsite, similar to geologic occurrences in basaltic tephra. The ancient concretes provide a sustainable prototype for producing Al-tobermorite in high-performance concretes with natural volcanic pozzolans. © 2013 The American Ceramic Society.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Confined disclinations: exterior versus material constraints in developable thin elastic sheets.
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods
Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe
2008-05-01
Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.
Directory of Open Access Journals (Sweden)
Halimatus Sa’diyah
2017-12-01
Full Text Available The purpose of this research is to analyze of students' difficulties on the material elasticity and harmonic oscillation in the inquiry-based physics learning. It has eight stages. They are the orientation, the problem formulation, the formulation of hypotheses, the data obtaining, the testing hypotheses, conclusions, the implementation of the conclusions and generalizations, and the reflection stage. This research determines the student's learning difficulties on the each stage. The subject of this research is all of the students in X IPA 4 SMA N Sambungmacan Sragen. The amount of this research subject is thirty students. The method used in this research is descriptive qualitative. The data acquired with the learning process observation, the student's response questionnaire, and the student's cognitive tests. The results show that the student has difficulty in analyzing the elasticity and the force of deviation, speed, and acceleration concept, illustrates hooke law, and the matter's modulus elasticity. The difficult stages of the inquiry-based physics learning are the problem formulation, the formulation of hypotheses, the data obtaining, the testing hypotheses, conclusions, the implementation of the conclusions and generalizations, and the reflection stage.
Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.
2016-08-01
The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.
The elastic properties of zirconium alloy fuel cladding and pressure tubing materials
International Nuclear Information System (INIS)
Rosinger, H.E.; Northwood, D.O.
1979-01-01
A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)
Eigensolutions of Annular-Like Elastic Disks with Intentionally Removed or Added Material
Vinayak, H.; Singh, R.
1996-05-01
Many examples of elastic, isotropic, stationary annular-like disks are studied analytically and experimentally for free-free and clamped-free boundary conditions. Natural frequencies and deformation shapes of the first few flexural modes including repeated roots are examined and tabulated. Disks with large circular holes or annular holes or annular slots within the disk body with a volume or mass ratio Γ of 5 to 15% are studied with particular emphasis on mode shapes as they deviate from the regular annular plate modes. Material removal cases via incisions or minor cuts at the disk rim, hub or within the body are not considered in this investigation. Material addition cases are simulated by thickening the outer rim or inner hub regions, for Γvalues up to 60%. The final example considers a gear from a helicopter tail rotor gearbox; it has 8 holes and thick rim and hub. A bi-orthogonal polynomial-trigonometrical shape function series is proposed in the Ritz minimization scheme that employs both classical thin and Mindlin's thick plate theories. The effect of number of terms is evaluated by examining an expansion of the linearly independent basis function and by calculating an overall root mean square (rms) error associated with the prediction of a mode shape. The clamped inner edge is described by 4 alternate models and the impedance boundary condition described was found to be the most satisfactory. Predictions of the semi-analytical Ritz method closely match with measured eigensolutions and results yielded by finite element models. The Ritz method is especially attractive because of significant computational savings in addition to the ease with which it can be integrated within a component mode synthesis or multi-body dynamics framework for forced response or system design studies.
Tribological properties of ternary nanolayers, obtained from simple/compound materials
Jinga, V.; Cristea, D.; Samoilă, C.; Ursuţiu, D.; Mateescu, A. O.; Mateescu, G.; Munteanu, D.
2016-06-01
Numerous recently investigations are oriented towards the development of new classes of thin films, having dry-lubrication properties. These efforts were determined by the enormous energy losses generated by friction, and due to technical complications determined by the systems used for classic lubrication. This paper presents our results concerning a new class of nanomaterials, with ternary composition deposited from simple/compound materials (Ti/TixNy, TiB2/TixBiyNz, WC/WxCyNz). The films were deposited by magnetron sputtering, with varying sputtering parameters (sputtering power, reactive gas) on stainless steel substrates - ultrasonically and glow discharge cleaned before the deposition process. The influence of the deposition parameters on the mechanical and wear properties was assessed by nanoindentation, scratch resistance (to quantify the adhesion of the films to the steel substrate) and by pin-on- disk wear tests. The general conclusion was that the sample deposited at 5500 C, with N2 as reactive gas and 0.5 kV for substrate polarization, has the best mechanical characteristics (hardness and elastic modulus) and lubricant properties (represented by μ average), when compared to the remaining samples.
Directory of Open Access Journals (Sweden)
Atika Arshad
2015-05-01
Full Text Available The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired
Energy Technology Data Exchange (ETDEWEB)
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-07-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.
Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.
2017-09-01
High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.
Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton
2016-01-01
In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.
Directory of Open Access Journals (Sweden)
S. Psakhie
2013-04-01
Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.
Semi-conducting material obtained from natural fiber modified with PAni
International Nuclear Information System (INIS)
Rocha, Eli V. da; Silva Junior, Fernando Gomes; Oliveira, Geiza E.; Pinto, Jose Carlos
2009-01-01
The surface of natural Brazilian Amazonic fibers (curaua, Ananas erectifolius) was modified with polyaniline nanoparticles, through in-situ preparation of polyaniline nanoparticles in presence of the curaua fibers. As it was shown here, this modification allowed a very significant increase of the electrical conductivity of the fibers (about 2.500 times). The modified materials were also characterized by FTIR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy) and SAXS (Small Angle X-ray Scattering) and the obtained results were used to explain some of the chemical and morphological aspects of the materials. (author)
Palm oil based polymer materials obtained by ROMP: study by low field NMR
International Nuclear Information System (INIS)
Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.
2015-01-01
Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)
Application of the final flotation waste for obtaining the glass-ceramic materials
Directory of Open Access Journals (Sweden)
Cocić Mira
2017-01-01
Full Text Available This work describes the investigation of the final flotation waste (FFW, originating from the RTB Bor Company (Serbia, as the main component for the production of glass-ceramic materials. The glass-ceramics was synthesized by the sintering of FFW, mixtures of FFW with basalt (10%, 20%, and 40%, and mixtures of FFW with tuff (20% and 40%. The sintering was conducted at the different temperatures and with the different time duration in order to find the optimal composition and conditions for crystallization. The increase of temperature, from 1100 to 1480°C, and sintering time, from 4 to 6h resulted in a higher content of hematite crystal in the obtained glass-ceramic (up to 44%. The glass-ceramics sintered from pure FFW (1080°C/36h has good mechanical properties, such as high propagation speed (4500 m/s and hardness (10800 MPa, as well as very good thermal stability. The glass-ceramics obtained from mixtures shows weaker mechanical properties compared to that obtained from pure FFW. The mixtures of FFW with tuff have a significantly lower bulk density compared to other obtained glass-ceramics. Our results indicate that FFW can be applied as a basis for obtaining the construction materials. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 176010: Composition, genesis, application, and contribution to the environmental sustainability
Obtaining of dense and highly porous ceramic materials from metallurgical slag
Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.
2003-01-01
Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.
Obtaining of dense and highly porous ceramic materials from metallurgical slag
Directory of Open Access Journals (Sweden)
Fidancevska E.
2003-01-01
Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.
Directory of Open Access Journals (Sweden)
Tieliang Yang
2016-01-01
Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.
MATERIAL BALANCE FOR OBTAINING MUSSEL AND OYSTER CANS IN OWN JUICE AND OIL
Directory of Open Access Journals (Sweden)
CARMEN NICOLAE
2007-10-01
Full Text Available Seafood could be presented as food products with a great nourishing value and aspecial contribution to human nutrition optimization, but also as raw material forthe processing unit. After the end of the Second World War, seafood production andconsumption have followed and increasing trajectory. Thus, their productionincreased from 19 millions tons in 1950 to 39 millions tons in 1961, but 130 millionstons in 2002. The present study proposed itself the analyze of processing 100kg/day mussels andoysters having in view the obtaining of two canned sorts (in own juice and oilestablishing the material balance for each sort. Upon the balance it can concludethat by processing the same amount of seafood it is obtained a larger amount of cansin oil.
International Nuclear Information System (INIS)
Aly, Kamal A.
2015-01-01
Highlights: • The calculated values of bulk modulus in Reddy et al. [1] are now recalculated correctly. • Eq. (11) suggested by Reddy et al. [1] is not suitable to calculate the bulk modulus, B, for any element or material. • Eq. (12) in Ref. [1] is suitable to calculate, B, for all elements and materials except the underlined materials in Table 4. • All values of the electronic polarizability have been recalculated by different methods. • The bulk modulus, B, and microhardness parameter, H are different; Eq. (8) gives the relation between B and H. - Abstract: In reference Reddy et al. (2009) the correlations between energy gap, optical electronegativity and electronic polarizability for different materials have been studied. The authors of this paper (Reddy et al., 2009) aimed to make extinction or complete some previous works (Bahadur and Mishra, 2013; Reddy et al., 1999, 2000, 1998, 2005, 2008; Reddy and Nazeer Ahammed, 1996; Oshcherin, 1979; Neumann, 1983, 1987; Deus and Schneider; 1985; Deus et al., 1983; Kumar et al. 1992). However, this paper (Reddy et al., 2009) contains many fundamental errors in the calculation of bulk modulus, especially Tables 4–6. As a result, all the obtained values of the bulk modulus and consequently the electronic polarizability are incorrect. Moreover in Table 4 (Reddy et al., 2009), the bulk modulus of II−VI group semiconductors have been calculated by substituting the values of the band gap, E g , into Eq. (11) (B = 14.91 E g + 23.3). The obtained values of B using Eq. (11) are conflicted with that calculated values of B based on the electronegativity and the published previously data. Therefore Eq. (11) in reference Reddy et al. (2009) is not suitable for calculating the values of B for any element or materials. When I recalculated the values of B for all materials in Tables 1 and 4–6 in paper (Reddy et al., 2009) using Eq. (12), I found that, Eq. (12) gives acceptable values of B for all materials except the
Nanocarbon materials obtained of coniferous trees in the composition of black powder
Directory of Open Access Journals (Sweden)
Zulkhair Mansurov
2012-03-01
Full Text Available Obtained black powders from coniferous wood. The carbon content of up to 90% can be used in warfare, pyrotechnics and industries. In the Republic of Kazakhstan does not produce gunpowder. In the energy-intensive materials laboratory, developed industrial black powders (ordinary, composed of components produced in the republic of Kazakhstan. Sulfur, activated carbon, based on apricot seeds and rice husks, softwood sawdust, which have lower costs than their foreign counterparts.
International Nuclear Information System (INIS)
Bukallah, Saeed B.; Bumajdad, Ali; Khalil, Kamal M.S.; Zaki, Mohamed I.
2010-01-01
Spherical-particle MCM-41 was synthesized at room temperature, and, then, impregnated with aqueous solutions of NH 4 VO 3 to produce variously loaded VO x /MCM-41 composite materials. Bulk and surface properties of the materials thus produced were characterized by means of X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), N 2 sorptiometry and X-ray photoelectron spectroscopy (XPS). Results obtained indicated that subsequent calcination at 550 deg. C (for 2 h) of the blank and impregnated MCM-41 particles, results in materials assuming the same bulk structure of MCM-41, and exposing uniformly mesporous, high area surfaces (P w = 2.0-2.3 nm; 974-829 m 2 /g), except for the material obtained at 20 wt%-V 2 O 5 that was shown to suffer a considerable loss on surface area (down to 503 m 2 /g). XPS results implied that the immobilization of the VO x species occurs via interaction with surface OH/H 2 O groups of MCM-41, leading to the formation of vanadate (VO 3 - ) surface species, as well as minor V-O-Si and V 2 O 5 -like species. However, in all cases, the vanadium sites remained pentavalent and exposed on the surface.
CSIR Research Space (South Africa)
De Beer, Morris
2008-07-01
Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...
Energy Technology Data Exchange (ETDEWEB)
Fu, Zhenjin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo, E-mail: LB6711@126.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)
2014-08-20
Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g{sup −1}. • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g{sup −1} and 78.67 J g{sup −1}, respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials.
International Nuclear Information System (INIS)
Fu, Zhenjin; Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie; Li, Bo
2014-01-01
Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g −1 . • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g −1 and 78.67 J g −1 , respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials
Energy Technology Data Exchange (ETDEWEB)
Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.
2015-07-01
Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.
International Nuclear Information System (INIS)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
Crăciun, R. C.; Stanciu, S.; Geantă, V.; Voiculescu, I.; Manole, V.; Gârneţ, I. A.; Alexandru, A.; Cimpoesu, N.; Săndulache, F.
2017-06-01
Abstract Iron based materials still represent a high percentage from metallic materials used in industry, in general, and in automotive industry, in particular. In this case we used a duplex process in order to obtain the FeMnSiAl experimental alloy for a more efficient use of various units. In the first stage iron, manganese, silicon and aluminum were melted and mixed together using arc melting technology and for the second stage the alloy was re-melt for homogeneity in an induction furnace. Chemical composition, after each melting step, was analyzed using EDS Bruker detector for various areas and microstructural characterization using SEM, VegaTescan LMH II with SE detector, equipment. This alloy is proposed as a metallic approach of mechanical dumpers used in automotive industry for low and medium impact contacts.
International Nuclear Information System (INIS)
Gelebart, L.; Colin, C.
2008-01-01
The aim of this work is to reveal the role of porosity inhering to the CVI fabrication process. Indeed, this process which consists of depositing by a gaseous way a SiC layer on a fibrous preform (assembling weaved of SiC fibers) does not allow a complete densification of the material and induces thus a porosity of size and shape particularly heterogeneous and complex. The effect of this porosity, studied at the strand scale (unidirectional composite) is revealed by the elastic anisotropy of the behaviour as well as by the local stresses distribution heterogeneity inside the strand. A discussion is proposed on the representative elementary volume size associated with this type of microstructures. The method used depends on a generation model of 'representative' microstructures of the microstructures induced by the CVI process. On account of the lack of data on the three-dimensional characterization of the porosity, a microstructure invariance hypothesis in the direction of fibers is used. In order to study the elastic behaviour of these microstructures, a periodic homogenisation process, with stress control, is carried out on these porous microstructures in the finite elements CASTEM calculation code. The obtained results reveals an important elastic anisotropy. In order to reveal the interest of this approach and the requirement to take into account the complex geometry of the porosity, these results are compared to a Mori-Tanaka analytical model frequently used for this type of material. Then is studied the evolution of the heterogeneity of the local stresses, that no analytical model can describe, in term of the type of load. If for a traction direction parallel to fibers, the stresses are homogeneous, a strong heterogeneity appears when the traction direction diverges from the fibers direction. For a solicitation perpendicular to fibers, the stresses distribution reveals a peak with zero stress corresponding to zones unloaded inside the material; a second peak
Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.
2016-10-01
The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.
SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices
Shikunov, S. L.; Kurlov, V. N.
2017-12-01
We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.
International Nuclear Information System (INIS)
Rosa, Joyce Rover; Silva, Ingrid S.V. da; Pasquini, Daniel; Santos, Daniele B. dos; Barud, Hernane S.; Ribeiro, Sidney J.L.
2011-01-01
This study aimed to partial oxypropylation of bacterial cellulose (CB), as well as the characterization of pure CB, oxypropylated CB (CBO) and oxypropylated CB after Soxhlet extraction with hexane (CBOE). The oxypropylation reaction was carried out by propylene oxide polymerization, catalyzed by KOH, in the presence of CB The CB samples, before and after modification, were subjected to analysis of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was possible verify that the partial transformation of bacterial cellulose by inserting a layer of thermoplastic polymer on its surface occurred efficiently, obtaining a biphasic monocomponent composite material. (author)
Soloviev, A. N.; Giang, N. D. T.; Chang, S.-H.
This paper describes the application of complex artificial neural networks (CANN) in the inverse identification problem of the elastic and dissipative properties of solids. Additional information for the inverse problem serves the components of the displacement vector measured on the body boundary, which performs harmonic oscillations at the first resonant frequency. The process of displacement measurement in this paper is simulated using calculation of finite element (FE) software ANSYS. In the shown numerical example, we focus on the accurate identification of elastic modulus and quality of material depending on the number of measurement points and their locations as well as on the architecture of neural network and time of the training process, which is conducted by using algorithms RProp, QuickProp.
Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties
Directory of Open Access Journals (Sweden)
Jörg Neugebauer
2012-10-01
Full Text Available We present a scale-bridging approach for modeling the integral elasticresponse of polycrystalline composite that is based on a multi-disciplinary combination of(i parameter-free first-principles calculations of thermodynamic phase stability andsingle-crystal elastic stiffness; and (ii homogenization schemes developed forpolycrystalline aggregates and composites. The modeling is used as a theory-guidedbottom-up materials design strategy and applied to Ti-Nb alloys as promising candidatesfor biomedical implant applications. The theoretical results (i show an excellent agreementwith experimental data and (ii reveal a decisive influence of the multi-phase character ofthe polycrystalline composites on their integral elastic properties. The study shows thatthe results based on the density functional theory calculations at the atomistic level canbe directly used for predictions at the macroscopic scale, effectively scale-jumping severalorders of magnitude without using any empirical parameters.
International Nuclear Information System (INIS)
Kozachenko, V.V.; Kucherov, I.Ya.; Revo, S.L.
2004-01-01
Full text: The composite materials (CM) with success are widely used in a science and in an industry. From the practical point of view important for CM the mechanical and thermal properties are. Therefore, study of these properties for them is the important problem. At change of a temperature state of materials of their property in many cases are featured by combinations of elastic and thermal parameters E/1-σ=E n and χ/ρc=D T , where E, -σ, ρ and c are the Young's modulus, Poisson's ratio, thermal conductivity coefficient, density and specific heat of materials, respectively. Now for examination of substances in various aggregate states has received development a photothermoacoustic (PTA) method. As shown in this work, use a PTA method with piezoelectric detection of a PTA signal from a layered plate, under certain conditions, allows immediately determining the reduced Young's modulus E n and thermal diffusivity D T . Therefore, the purpose of this work was study the PTA effect with piezoelectric detection of an informative signal from CM. Were explored steel-copper CM such as 'sandwich' and fluoro plastic-thermo exfoliated graphite FP-TEG CM. Explored triplex structure as a plate made of a CM sample and a two-layer piezoelectric transducer. The surface of a CM is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. The rather low frequencies of modulation are considered, at which length of ultrasonic waves is much more than the reference sizes of structure (quasi-static approach). The amplitudes ratio and phase difference of voltages oscillations taken from separate layer of piezoelectric transducer, as functions of physical and geometrical parameters of structure and a frequency of a light flux modulation is found. Experimentally the
Rayleigh wave behavior in functionally graded magneto-electro-elastic material
Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben
2017-12-01
Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.
de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony
2016-10-03
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.
Improving the Technology of Obtaining Technical Ethanol from Alternative Raw Materials
Directory of Open Access Journals (Sweden)
Sergіj Petrov
2018-05-01
Full Text Available The purpose of the article is to study the properties of fallen leaves as raw materials for the production of bioethanol; Improvement of the technology of recycling cellulosic raw materials into bioethanol in the most energy-efficient and ecological way. As a result of the study, it has been found out that the production of biofuels from renewable raw materials is characterized by features of innovative technology: the rapid growth of this sector of economy is accompanied by a significant increase in market share. The use of fallen leaves as raw material will eliminate the current conflict of interests associated with the use of food raw materials for the production of bioethanol, will prevent the withdrawal of resources from the sphere of food production. Significant positive factors in the production and use of biofuels are improvement of environmental conditions, reduction of the harmful effects of exhaust gases on the human body, reducing environmental pollution and, consequently, reducing morbidity and associated costs of medical care. The use of bioethanol as an ecobiopilot makes it possible to increase the octane number of fuel, and, accordingly, increase the efficiency of the engine. Thus, the use of bioethanol leads to a qualitative improvement of technical and economic indicators, which is also an indicator of innovation. The threat of reducing (exhausting non-renewable sources of energy is also the factor that necessitates the development and improvement of biofuel production technology. The relatively low profitability of biofuel production is due to the low yield of the target product and the high cost of pre-treatment of cellulose raw materials. The method of obtaining bioethanol from renewable non-demanded raw materials - fallen leaves - was improved. The technique allows to increase the bioethanol yield due to more effective hydrolysis of hard-hydrolysable polysaccharides. Further development of the study of the differences in
International Nuclear Information System (INIS)
Grellner, W.
1978-01-01
In the region between room temperature and 1400 0 C the elastic constants, fracture values and flow-stress values of different compositions of the Al 2 O 3 +TiC system were determined. It was found that: 1. The elasticity modulus and shear modulus increase linearly with the TiC content. 2. Up to approximately 1050 0 C the elastic constants decrease linearly with increasing temperature. 3. Additions of dispersed TiC lead to a uniform grain size distribution. 4. In the low temperature region the faults leading to cracks are about 50 times as large as the average grain size; this suggests the effect of thermal stresses on the occurrence of microcracks. 5. At temperatures above 900 0 C TiC deforms macroscopically. In the case of a high proportion of the 2nd phase the latter contributes, as a plastic substance, to stress reduction and thus to an increase of fracture stress in comparison to the single-phase material. (orig.) [de
Directory of Open Access Journals (Sweden)
Gaoyan Zhong
2017-12-01
Full Text Available The present study proposes a back propagation artificial neural network (BPANN to provide improved precision for predicting the material removal rate (MRR in ultrasonic machining. The BPANN benefits from the advantage of artificial neural networks (ANNs in dealing with complex input-output relationships without explicit mathematical functions. In our previous study, a conventional linear regression model and improved nonlinear regression model were established for modelling the MRR in ultrasonic machining to reflect the influence of machining parameters on process response. In the present work, we quantitatively compare the prediction precision obtained by the previously proposed regression models and the presently proposed BPANN model. The results of detailed analyses indicate that the BPANN model provided the highest prediction precision of the three models considered. The present work makes a positive contribution to expanding the applications of ANNs and can be considered as a guide for modelling complex problems of general machining.
International Nuclear Information System (INIS)
Oliveira, I.B.; Barin, G.B.; Barreto, L.S.; Santos, M.C.G.
2014-01-01
The conversion of biomass into carbon materials with special morphologies via hydrothermal carbonization presents itself as a potential route for the use of renewable precursors in obtaining carbonaceous structures. In the present study the influence of the hydrothermal carbonization (250 ° C / 4 h) followed by microwave treatment (1-2-4 hours at 25 and 40 mL) in morphology and structure of lignin. The samples were analyzed by X-ray diffraction and scanning electron microscopy. The plaque morphology of lignin was preserved during the hydrothermal process. However, when treated by microwave can be observed partial dissolution of lignin leading to the formation of microspheres on the surface. XRD presence of an amorphous halo 2θ = 23 ° attributed to the (002) network of the amorphous carbon was observed. (author)
Sweet whey as a raw material for the dietary supplements obtaining with immunomodulatory effect
Directory of Open Access Journals (Sweden)
G. Didukh
2017-06-01
Full Text Available This article presents the results of the study of literary sources to prove the viability of the idea of using sweet whey to deep its fractionation, and to obtain biologically active proteins with immunomodulatory effect. We demonstrated methods for fractionation of milk whey (membrane and chromatographic, as well as the technological scheme of concentration of sweet whey. We introduced the composition of sweet whey and protein content of immunomodulatory action. Modern methods of processing whey, which include, basically, only the process of dehydration and concentration of whey and its use in the complete component composition, which limits its use for food purposes are shown. The necessity of processing of secondary resources in a catastrophic ecological situation on the planet and full use of the composite processing of raw materials for food purposes, and also shows properties of proteins immunomodulating actions which are part of the whey are grounded.
Directory of Open Access Journals (Sweden)
Nikita E. Styopin
2016-09-01
Full Text Available Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
International Nuclear Information System (INIS)
Chang, T.Y.; Prachuktam, S.; Reich, M.
1975-01-01
The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used
Directory of Open Access Journals (Sweden)
Parikin Parikin
2015-12-01
Full Text Available Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming during fabrication. This research was carried out on cold-rolled stainless steel (SS 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a specimen was maximum, reaching 442 MPa, for a sample reducing 34% in thickness and minimum; and about 10 MPa for a 196% sample. The quantities showed that the biggest residual stress caused lowering of the proportional limit of material in stress-strain curves. The proportional modulus elasticity varied between 187 GPa and of about 215 GPa and was free from residual stresses.
Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung
2017-07-01
Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.
A facile method to compare EFTEM maps obtained from materials changing composition over time
Casu, Alberto
2015-10-31
Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn\\'t take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.
A facile method to compare EFTEM maps obtained from materials changing composition over time
Casu, Alberto; Genovese, Alessandro; Di Benedetto, Cristiano; Lentijo Mozo, Sergio; Sogne, Elisa; Zuddas, Efisio; Falqui, Andrea
2015-01-01
Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn't take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.
Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2017-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
International Nuclear Information System (INIS)
Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.
1990-01-01
This paper describes the method and the experiment for the determination of the x-ray elastic constants of Zn-Ni-alloy electroplate. For this material, the sin 2 ψ method is not adequate to use because this material shows severely curved sin 2 ψ diagrams. Therefore, a new method developed by the authors was explained first. This new method is effective for materials showing nonlinear sin 2 ψ diagrams. Secondly, the experiment was made on the application of this method to the Zn-Ni-alloy electroplate. And it was found out that the experimental data agreed well to the theory of this method. As a result, the following values were obtained as the x-ray elastic constants of the sample measured: (1+ν)/E=8.44 TPa -1 ν/E=2.02 TPa -1 (author)
Energy Technology Data Exchange (ETDEWEB)
Berryman, J. G.
2012-03-01
While the well-known Voigt and Reuss (VR) bounds, and the Voigt-Reuss-Hill (VRH) elastic constant estimators for random polycrystals are all straightforwardly calculated once the elastic constants of anisotropic crystals are known, the Hashin-Shtrikman (HS) bounds and related self-consistent (SC) estimators for the same constants are, by comparison, more difficult to compute. Recent work has shown how to simplify (to some extent) these harder to compute HS bounds and SC estimators. An overview and analysis of a subsampling of these results is presented here with the main point being to show whether or not this extra work (i.e., in calculating both the HS bounds and the SC estimates) does provide added value since, in particular, the VRH estimators often do not fall within the HS bounds, while the SC estimators (for good reasons) have always been found to do so. The quantitative differences between the SC and the VRH estimators in the eight cases considered are often quite small however, being on the order of ±1%. These quantitative results hold true even though these polycrystal Voigt-Reuss-Hill estimators more typically (but not always) fall outside the Hashin-Shtrikman bounds, while the self-consistent estimators always fall inside (or on the boundaries of) these same bounds.
Directory of Open Access Journals (Sweden)
Alfredo García-Arribas
2014-04-01
Full Text Available The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.
Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E
2013-10-01
A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.
Co-disposal of industrial wastes to obtain an inert material for environmental reclamation
Energy Technology Data Exchange (ETDEWEB)
Polcaro, A.M.; Palams, S.; Mascia, M.; Renoldi, F. [Cagliari Univ., Cagliari (Italy). Dipt. di Ingegneria Chimica e dei Materiali
2000-02-01
The present work deals with the treatment of red mud from Eurallumina Bayer plant with gypsum, in order to obtain an inert which might be disposed without risk. The proposed process has particular concern in the local contest in which the Bayer plant is located. The paper compares the characteristics of the effluents obtained leaching with water, beds of either red mud coming from the thickening filters of the Bayer plant (RMF) or from the holding ponds (RMP) or their mixtures with gypsum. The results obtained up to now show that the process is able to lower ph at values near 9, which is stable to further leaching runs. Also the physical characteristics of the resulting material are enhanced, in terms of both particle size distribution and hydraulic permeability. The addition of 10% sandy soil is sufficient to give permeability in the order of 10{sup -4} cm/s, which is typical od sandy soil. [Italian] Il lavoro analizza il trattamento di fango rosso del processo Bayer con gesso allo scopo di ottenere un materiale inerte, che possa essere smaltito senza particolari precauzioni. Il trattamento proposto puo' avere una certa rilevanza nel contesto territoriale in cui l'impianto di produzione e' inserito. In particolare sono state esaminate e confrontate le caratteristiche degli effluenti da prove di liscivazione con acqua di letti costituiti sia da fango prelevato direttamente dai filtri di ispessimento, che da fango prelevato dal bacino di lagunaggio. I risultati mostrano che il processo e' in grado di abbassare il pH del fango ad un valore intorno a 9, che si mantiene stabile alla liscivazione, anche quando la salinita' della massa ha raggiunto valori molto bassi. Il processo consente inoltre di migliorare le caratteristiche fisiche del materiale, sia in termini di granulometria, che si sposta verso le frazioni piu' grosse, che di permeabilita'. Una miscelazione con il 10% di terreno sabbioso e' sufficiente a conferire al
Mechanical and trybological characterization of ceramic materials obtained of mine solid wastes
International Nuclear Information System (INIS)
Soto T, J.L.
2003-01-01
A discussion of the physical, mechanical and tribological characterization of the ceramics Jaar, Jaca and Vijaar is presented in this work. They have been obtained from the industrial residuals, coming from metals and sand of the mining industry in Pachuca Hidalgo, Mexico. The methodology followed for the obtention and characterization of these ceramics consists on eliminating the cyanides from the tailings through columns coupled with a system controlled with thermostats. Then, the chemical composition is analysed with spectrometry emission of plasma and scanning electronic microscopy. Then the ceramics are produced. The base material is agglutinated with clay or kaolin. For this purpose, it was used a sintering processes and isothermal compacting in hot condition. Finally, the physical, chemical, mechanical and tribological properties of these new products are determined. Carbon, oxygen, sodium, magnesium, aluminium, manganese, silicon, potassium, phosphor, calcium, titanium, iron, molybdenum, silver and gold are in the chemical composition or ceramic analysed. Also these are heterogeneous mixture of clay and kaolin. The cyanide was eliminated. The results show that Vijaar has better wear resistances to the waste; this was demonstrated in tribology tests. They were not perforated with the abrasive particles. Also, they have high hardness and they can to support more loads in compression than Jaar and the Jaca. Consequently, they are less fragile and, therefore, they can tolerate bending stresses and bigger impact loading. (Author)
International Nuclear Information System (INIS)
Peteu, Gh.; Iliescu, V.
1995-01-01
General estimates and references are made in connection with the role of technological physics in obtaining materials with specific features. The first part of the paper presents the modification of weak wood essences as well as technological processes at bench-scale and semi industrial scale of wood-plastic composites, under various irradiation conditions. Two technological installations for the fabrication of wood-plastic composites on both scales with technical and practical specifications of their performances are presented. Experimental data for different wood-plastic composite systems using some local wood essences in combination with several polymer and copolymer systems are given. Impregnation and polymerization levels are mentioned for every specific system. The radiation dose rate and integrated dose are given for every experimental polymerization system. The features of the wood-plastic composites are compared with the initial wood essences. Finally, a few technical and economic assessments of wood-plastic composites and their implications in the domestic economy are presented. (author)
Directory of Open Access Journals (Sweden)
Pacheco de Carvalho, J. A.
2008-08-01
Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of ^{12}C and ^{16}O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (^{4}He+ ions are also used.
Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de ^{12}C y de ^{16}O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (^{4}He+, tanto a Rutherford como resonante.
Characterization of fly ash, slag and glass hull for the obtaining of vitreous materials
Ayala Valderrama, D. M.; Gómez Cuaspud, J. A.
2017-12-01
This article presents the structural and thermal characterization of fly ash, the waste from blast furnace slag and the glass hull, generated as common residues in industry, which cannot be recycled easily or destroyed in a simple and fast way. In the particular case of fly ash, at present are being used as a lightweight aggregate in the production of cement, concrete and additive in the production of glass and glass ceramics. As far as the slag and hull, are being used as additives for the asphalt and concretes, however its use still is restricted, reason why its use in alternative ways are necessary. Initially the chemical composition of residues was established, determining that the fly ashes contains SiO2, Al2O3 and Fe2O3 oxides; 90% of the total composition, was confirmed by X-ray diffraction analysis. As minor constituents, small percentages of Mg, P, S, K, Na and Ti were found. For the slag case, the phases of Fe3O4, Ca3Mg (SiO2)4 and Ca(MgAl)(Si,Al)2O6 were identified, observing the presence of amorphous phase higher than 94% of the total phase of the system. Meanwhile, the glass hull sample showed a higher percentage of 95% amorphicity, mainly identifying a weak signal associated with silicon oxide SiO2. The thermal analyses of the samples, exhibit a decrease in mass for samples between 25-1000°C was observed, which can be attributed to different physical-chemical events that occur in the materials. The heat flow for each sample is related with the removal of the water retained by the physisorption processes around 92-110°C in all cases. With this previous characterization of the precursors, a sample was composed using 70% fly ash, 10% slag and 20% of glass hull was composed and treated at 1200°C/1.5 hours, obtaining a dense black glassy material for potential applications in field of the glass ceramics.
Kearney, C M; Buckley, C T; Jenner, F; Moissonnier, P; Brama, P A J
2014-07-01
Selection of suture material in equine surgery is often based on costs or subjective factors, such as the surgeon's personal experience, rather than objective facts. The amount of objective data available on durability of suture materials with regard to specific equine physiological conditions is limited. To evaluate the effect of various equine physiological and pathological fluids on the rate of degradation of a number of commonly used suture materials. In vitro material testing. Suture materials were exposed in vitro to physiological fluid, followed by biomechanical analysis. Three absorbable suture materials, glycolide/lactide copolymer, polyglactin 910 and polydioxanone were incubated at 37°C for 7, 14 or 28 days in phosphate-buffered saline, equine serum, equine urine and equine peritoneal fluid from an animal with peritonitis. Five strands of each suture material type were tested to failure in a materials testing machine for each time point and each incubation medium. Yield strength, strain and Young's modulus were calculated, analysed and reported. For all suture types, the incubation time had a significant effect on yield strength, percentage elongation and Young's modulus in all culture media (Ptype was also shown significantly to influence changes in each of yield strength, percentage elongation and Young's modulus in all culture media (Ptype of fluid have significant effects on the biomechanical properties of various suture materials. These findings are important for evidence-based selection of suture material in clinical cases. © 2013 EVJ Ltd.
Roubíček, Tomáš; Tomassetti, Giuseppe
2018-06-01
A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.
Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.
2017-09-01
We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
International Nuclear Information System (INIS)
Lefevre, F.; Thevenot, G.; Rasneur, B.; Botter, F.
1986-06-01
Studies about controlled fusion reactor of the Tokamak type require the examination of the radiation effects on the behaviour of various potential materials. Thus, in the first part of this paper, are presented the devices adapted to these materials studies and used in the OSIRIS reactor. In a second part, is described an experiment of irradiation ceramics used as candidates for breeding material and are given the first results
International Nuclear Information System (INIS)
Grenier, J.C.; Pouchard, M.; Wattiaux, A.
1991-01-01
The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs
International Nuclear Information System (INIS)
Schnabel, F.
1987-01-01
The present report deals with the influence of time-dependent material behavior on the load-carrying capacity of thin-walled shells of revolution. In the first part various creep-hardening hypotheses as well as the spatial and temporal discretization procedures employed are described. The adaptation of a well-tested finite element method based on ring elements to the treatment of creep problems and several time-integration procedures, in particular the iterative treatment of the coupling between creep and elastic-plastic strains as well as the important aspect of time-step-control are discussed in detail. In the second part several typical shell configurations are analyzed and a comparison with available theoretical and experimental results is made. Finally, the time-dependent load-carrying behavior of torispherical pressure vessel ends subjected to internal and external pressure is investigated and design aids for the determination of creep collapse times are proposed. (orig.) [de
Characterization of raw materials to obtain the mass for white ware, using waste glass
International Nuclear Information System (INIS)
Cavalcanti, M.S.L.; Porto, V.S.; Meneses, R.L; Albuquerque, A.V.; Guedes, B.F.R.; Morais, C.R.S.; Santana, L.N.L.
2009-01-01
A major problem faced in the post modern society is the huge amount of glass, accumulated in landfills cities. The glass material is one hundred percent recyclable and has the property to act as fluxes as well as feldspar. Given this premise, this study aimed to characterize materials - raw materials and waste glass regional plan for development of ceramic bodies with the similar behavior produced industrially, using shards of glass to partially replace the feldspar. The materials - raw materials used were clay, ball clay, kaolin, quartz, feldspar and shard of glass, being characterized by the techniques: chemical analysis, size analysis, differential thermal analysis vibrational spectroscopy in the infrared region, the Ray-Diffraction X and scanning electron microscopy. The results showed that the waste had higher rates of vitreous oxides fluxes and similar. (author)
On elastic structural elements for nuclear reactors
International Nuclear Information System (INIS)
Povolo, F.
1978-03-01
The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de
Simplified method to solve sound transmission through structures lined with elastic porous material.
Lee, J H; Kim, J
2001-11-01
An approximate analysis method is developed to calculate sound transmission through structures lined with porous material. Because the porous material has both the solid phase and fluid phase, three wave components exist in the material, which makes the related analysis very complicated. The main idea in developing the approximate method is very simple: modeling the porous material using only the strongest of the three waves, which in effect idealizes the material as an equivalent fluid. The analysis procedure has to be conducted in two steps. In the first step, sound transmission through a flat double panel with a porous liner of infinite extents, which has the same cross sectional construction as the actual structure, is solved based on the full theory and the strongest wave component is identified. In the second step sound transmission through the actual structure is solved modeling the porous material as an equivalent fluid while using the actual geometry of the structure. The development and validation of the method are discussed in detail. As an application example, the transmission loss through double walled cylindrical shells with a porous core is calculated utilizing the simplified method.
Nalbantoglu Yilmaz, Funda
2017-01-01
This study aims to determine the reliability of scores obtained from self-, peer-, and teacher-assessments in terms of teaching materials prepared by teacher candidates. The study group of this research constitutes 56 teacher candidates. In the scope of research, teacher candidates were asked to develop teaching material related to their study.…
Coupled modeling and simulation of electro-elastic materials at large strains
Possart, Gunnar; Steinmann, Paul; Vu, Duc-Khoi
2006-03-01
In the recent years various novel materials have been developed that respond to the application of electrical loading by large strains. An example is the class of so-called electro-active polymers (EAP). Certainly these materials are technologically very interesting, e.g. for the design of actuators in mechatronics or in the area of artificial tissues. This work focuses on the phenomenological modeling of such materials within the setting of continuum-electro-dynamics specialized to the case of electro-hyperelastostatics and the corresponding computational setting. Thereby a highly nonlinear coupled problem for the deformation and the electric potential has to be considered. The finite element method is applied to solve the underlying equations numerically and some exemplary applications are presented.
International Nuclear Information System (INIS)
Ruffino, E.; Scalerandi, M.
2000-01-01
As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented
John G. Michopoulos; Tomonari Furukawa; John C. Hermanson; Samuel G. Lambrakos
2011-01-01
The goal of this paper is to propose and demonstrate a multi level design optimization approach for the coordinated determination of a material constitutive model synchronously to the design of the experimental procedure needed to acquire the necessary data. The methodology achieves both online (real-time) and offline design of optimum experiments required for...
The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation
International Nuclear Information System (INIS)
Lankford, J.; Davidson, D.L.
1979-01-01
The threshold for indentation cracking is established for a range of ceramic materials, using the techniques of scanning electron microscopy and acoustic emission. It is found that by taking into account indentation plasticity, current theories may be successfully combined to predict threshold indentation loads and crack sizes. Threshold cracking is seen to relate to radial rather than median cracking. (author)
Directory of Open Access Journals (Sweden)
Chengbo Yu
2016-02-01
Full Text Available The generalized mixture rule (GMR is used to provide a unified framework for describing Young's (E, shear (G and bulk (K moduli, Lame parameter (λ, and P- and S-wave velocities (Vp and Vs as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and λ of each material are systematically different and display consistent correlations with the Poisson's ratio of the nonporous material (ν0. For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson's ratio (ν remains constant is at ν0 = 0.2, and J(G > J(E > J(K > J(λ and J(G 0.2 and ν0 J(Vp and J(Vs 0.2 and ν0 0.2 and ν0 = 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the ν fixed point decreases nonlinearly with decreasing pore aspect ratio (α: width/length. With increasing depth or pressure, cracks with smaller α values are progressively closed, making the ν fixed point rise and finally reach to the point at ν0 = 0.2.
Attarzadeh, M. A.; Nouh, M.
2018-05-01
One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.
Directory of Open Access Journals (Sweden)
N. Rodella
2016-09-01
Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.
On the possibility of high-dispersed composite material obtaining in impulsive high-enthalpy flow
International Nuclear Information System (INIS)
Blinkov, I.V.; Brodyagin, A.G.; Ivanov, A.V.
1987-01-01
Thermodynamic possibility for the formation of TiC-Mo composite dispersed material in 1200-2800 K temperature interval and effect of H/Cl, C/Ti relation on the composite material composition are demonstrated. Investigation into the plasmo-chemical process of producing high-dispersed composite material in the pulsed regime has pointed out to a possibility of the product chemical composition regulation by changing the energy, flow-rate parameters and by conditions of component introduction into the plasmochemical reactor. Molybdenum-carbide composition powders produced are characterized by the particle size of ∼ 10 nm and high Mo and TiC distribution steadyness which allows one to exclude the stage of a long-term component mixing under the composition production
Kumeeva, T. Yu.; Prorokova, N. P.
2018-02-01
The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.
Similarity and symmetry methods applications in elasticity and mechanics of materials
Mladenov, Ivaïlo
2014-01-01
The principle aim of the book is to present a self-contained, modern account of similarity and symmetry methods, which are important mathematical tools for both physicists, engineers and applied mathematicians. The idea is to provide a balanced presentation of the mathematical techniques and applications of symmetry methods in mathematics, physics and engineering. That is why it includes recent developments and many examples in finding systematically conservation laws, local and nonlocal symmetries for ordinary and partial differential equations. The role of continuous symmetries in classical and quantum field theories is exposed at a technical level accessible even for non specialists. The importance of symmetries in continuum mechanics and mechanics of materials is highlighted through recent developments, such as the construction of constitutive models for various materials combining Lie symmetries with experimental data. As a whole this book is a unique collection of contributions from experts in the field...
Experimental study of termo-visco-elastic material behavior at low temperatures
Czech Academy of Sciences Publication Activity Database
Svoboda, Jaroslav; Pešek, Luděk; Fröhlich, Vladislav
2007-01-01
Roč. 1, č. 1 (2007), s. 281-288 ISSN 1802-680X. [Applied and Computational Mechanics 2007. Nečtiny, 05.11.2007 - 07.11.2007] R&D Projects: GA ČR GA101/05/2669 Institutional research plan: CEZ:AV0Z20760514 Keywords : static and dynamic characteristics, lifetime curves, limit lines Subject RIV: JJ - Other Materials
Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.
2012-01-01
To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.
International Nuclear Information System (INIS)
Emmerich, F.G.
1987-01-01
A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt
International Nuclear Information System (INIS)
Bejar, M.A; Fuenzalida, J.L
2008-01-01
A ferrous compound material was synthesized in this work, by the air auto-combustion of mixtures of powdered ferroboron and ferrotitanium, compacted under pressures of 79 and 93 MPa and preheated to a temperature of about 1000 o C. The synthesized compounds were characterized by XRD analysis, and macro and micro-hardness tests. The formation of titanium diboride was found in all the synthesized test pieces (au)
Raw material from the state of Rio Grande do Norte, Brazil, to obtain sandstone porcelain
International Nuclear Information System (INIS)
Sousa, Maria Rosimar de
2009-01-01
Currently, the production of the ceramic industry of the River Great of the North she is restricted to the manufacture of bricks and roofing tiles. development of new ceramic products of bigger added value, such as gres covering porcelanato, using regional raw materials is of basic importance for the growth of the local ceramic industry and economic development of the region. In this work, they had been studied raw materials as kaolin, sodico feldspato and quartz of the State of the Great River of the North for the attainment of an covering of the gres type porcelanato of base white.The ceramic masses had been prepared by the process saw humid. The body-of-tests they had been conformed by uniaxial prensagem of 40MPa, dried in 110 deg C and burnt between 1160 and 1240 deg, used a cycle of fast burning (approximately 60min.). The qualitative analysis of the formed phases disclosed silica, mullite e sodico feldspato after the sintering. The technological properties of burning evaluated they had been: linear retraction, water absorption, apparent specific mass, porosity and breaking strength to the flexal (shipment of 3 points). Results show that raw materials proceeding from the State of the Great River of North could be used in processes for gres porcelanato, therefore they present characteristics technological, similar chemistry, physics and to the standard of reference and the data of literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Lafon, M O; Magnier, C
1989-03-24
The preparation process of a fine powder of YBaCuO type superconductors of easy sintering comprises: mixing in presence of alcohol an aqueous solution of rare earth nitrate or acetate, alkaline earth nitrate or acetate and copper nitrate or acetate and an oxalic acid solution, the pH value of the mixture is comprised between 2 and 4, the obtained precipitate is separated, dried, calcined and eventually crushed.
Lubineau, Gilles
2011-04-01
New identification strategies have to be developed in order to perform the identification quickly and at very-low cost. A popular class of approaches relies on full-field measurement obtained through digital image correlation. We propose here a global equilibrium approach. It is based on the virtual field method in case specific virtual fields are used. It can also be seen as a generalization of the equilibrium gap method. This approach is easy to implement and we prove that it provides better or comparable results to the constitutive equation gap method that is known to be a very accurate reference. © 2010 Elsevier B.V.
Fracture of thermally loaded disks of materials in elastic-brittle state
International Nuclear Information System (INIS)
Egorov, V.S.; Lanin, A.G.; Fedik, I.I.
1981-01-01
Fracture kinetics and limiting supporting power were studied in a solid thin disk axisymmetrically cooled from the periphery depending on the deqree of the stressed state nonuniformity and crack interaction. Basing on a strength approach of fracture linear mechanism it has become possible to obtain limit equilibrium curves and to evaluate thermoelastic stress redistribution on the boundary of the disk with one, two and four symmetrical radial cracks. Calculated data are confirmed by the results of the experiments performed with zirconium carbide water-cooled disks. It is shown that while determining the limit supporting power of a thermally loaded body, the loading history and fracture kinetics should be taken into account
International Nuclear Information System (INIS)
Pietrzak, R.
2010-01-01
The effect of the processes of carbonisation and activation on adsorbents obtained from sewage sludge and their sorption properties towards NO 2 were studied. Carbonaceous adsorbents were obtained by carbonisation of sewage sludge at 600 o C for four different times 30, 60, 90 and 120 min followed by activation of the carbonisates by CO 2 at 800 o C for 60 min. Adsorption of NO 2 was carried out in wet air. It has been shown that by appropriate thermal and chemical treatment of sludge, mesoporous adsorbents capable of NO 2 removal can be obtained. The sorption abilities of the carbonised and activated samples to adsorb NO 2 have been shown to increase with increased time of carbonisation and reach maximum for the carbonisation maintained for 90 min. Further increase in this time causes a decrease in the adsorption abilities of the samples. The sorption properties of the carbonisates have been proved to be determined by the chemical character of the surface, while those of the activated samples - by the porous structure. (author)
Application of the Method of Direct Solidification for Obtaining New Materials
International Nuclear Information System (INIS)
Grankin, S.S.
2007-01-01
The influence of the method of direct solidification on the formation of the material structure has been considered. The main methods of single crystal growth have been described. A considerable influence of the crystal growth parameters (temperature gradient at the front of solidification and the speed of moving of the front of solidification) on the type of the structure and morphology of single crystals has been shown. The examples of application of the method of direct solidification in experimental and industrial production are showed: production of directly crystallized blades for turbines of nuclear power plants and gas-turbine engines
The J-integral concept for elastic-plastic material behavior
International Nuclear Information System (INIS)
Schmitt, W.; Kienzler, R.
1987-03-01
A simple analytical extension of the J integral has been presented which extends the J concept to apply for materials described by an incremental theory of plasticity. The stress work density replacing the strain energy density is load-history dependent. The J integral may be made path independent by virtue of an additional volume integral and may be understood as work dissipation rate. The discussion of the consequences for the applicability of the J concept to describe fracture processes showed that validity criteria proposed in the standards are not sufficient to yield configuration-independent J-resistance curves. However, a possibility is sketched to assess those structure-dependent resistance curves based on plastic-collapse considerations. With 6 figs., 33 refs
Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials
Directory of Open Access Journals (Sweden)
Chao Chang
2018-01-01
Full Text Available Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical indentation. Tabor empirically determined the stress constraint factor (stress CF, ψ, and strain constraint factor (strain CF, β, but the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can fit better with nominal stress-strain curve than those using Tabor’s constraint factors.
Lei, Wanqing; Fang, Changqing; Zhou, Xing; Yin, Qian; Pan, Shaofei; Yang, Rong; Liu, Donghong; Ouyang, Yun
2018-02-01
Annually a tremendous amount of office waste paper (OWP) is discarded creating environmental pollution. Therefore, how to make this paper from waste to wealth and use it in new approaches have become a meaningful and challenging work. In this work, OWP being a cellulose rich biomass was employed for the production of cellulose nanocrystals (CNCs) by acid hydrolysis with different acid concentrations but without subjecting OWP to alkali and bleaching treatments. The testing results showed that CNCs prepared using sulfuric acid concentration of 59% with respect to OWP had the highest crystallinity and this concentration was the transition concentration for the production of opaque CNCs film with convoluted nanofibers to transparent one with orientated nanofibers. Besides, CNCs prepared using acid concentration of 65% coated on PET sheet not only had a better water vapor barrier property but also was on a par with the transparency of PET, which was hopeful to be used as coating materials in packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Paola Antoniotti
2015-05-01
Full Text Available Amorphous germanium carbides have been prepared by X-ray activated Chemical Vapor Deposition from germane/allene systems. The allene percentage and irradiation time (total dose were correlated to the composition, the structural features, and the optical coefficients of the films, as studied by IR and UV-VIS spectroscopic techniques. The materials composition is found to change depending on both the allene percentage in the mixture and the irradiation time. IR spectroscopy results indicate that the solids consist of randomly bound networks of carbon and germanium atoms with hydrogen atoms terminating all the dangling bonds. Moreover, the elemental analysis results, the absence of both unsaturated bonds and CH3 groups into the solids and the absence of allene autocondensation reactions products, indicate that polymerization reactions leading to mixed species, containing Ge-C bonds, are favored. Eopt values around 3.5 eV have been found in most of the cases, and are correlated with C sp3-bonding configuration. The B1/2 value, related to the order degree, has been found to be dependent on solid composition, atoms distribution in the material and hydrogenation degree of carbon atoms.
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
Martisek, Dalibor; Prochazkova, Jana
2017-12-01
The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
Directory of Open Access Journals (Sweden)
Martisek Dalibor
2017-12-01
Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets
Energy Technology Data Exchange (ETDEWEB)
Fang, Hailiang, E-mail: hailiang.fang@kemi.uu.se [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Kontos, Sofia [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Ångström, Jonas; Cedervall, Johan [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Svedlindh, Peter; Gunnarsson, Klas [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Sahlberg, Martin [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden)
2016-05-15
The metastable tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest M{sub s} of 117 emu/g was achieved in the (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process. - Graphical abstract: The tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). - Highlights: • The ferromagnetic τ-phase has been directly obtained from casting. • The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2}. • Ball milling increases the coercivity but decreases the magnetic saturation.
Directory of Open Access Journals (Sweden)
Jocić Dragan
2003-01-01
Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.
Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup
Directory of Open Access Journals (Sweden)
Thulliez L.
2017-01-01
Full Text Available In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method and after (EV method neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.
Modeling material-degradation-induced elastic property of tissue engineering scaffolds.
Bawolin, N K; Li, M G; Chen, X B; Zhang, W J
2010-11-01
The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.
International Nuclear Information System (INIS)
Mirsaidov, I.U.
2014-01-01
The uranium deposits of Tajikistan played an immensely significant role in the practical solution of a radioactive raw materials problem which appeared during the post-World War II years in the USSR. The pioneer in this field became complex №6 (currently known as 'Vostokredmet'). The first soviet uranium was produced from the ores extracted from the republic's deposits. For 50 years (1945-1995 y.), uranium bearing raw materials from all over the former USSR were delivered to Tajikistan, and uranium oxide was produced, which was later delivered back to Russia for further production of enriched uranium. The total volume of uranium produced in Tajikistan plants was approximately 100 thousands tons. In Sughd region, during that period, more than 55 million tons of uranium waste was accumulated. The total activity of the waste, according to different calculations, is approximately 240-285 TBq. The total amount of waste in dumps and tailings piles is estimated to be more than 170 million tons, most of which are located in the neighborhoods of hydrometallurgical plants and heap leaching locations. Uranium industry wastes in Northern Tajikistan have become attractive for different investors and commercial companies, from secondary reprocessing of mines and tailings' point of view, since the uranium price is increasing. In this regard, research on developing uranium extraction methods from wastes is broadening. The study of the possibility and economic reasonability of reprocessing former year's dumps requires comprehensive examination, and relates not only to uranium extraction but to safe extraction of dumps from tailings as well.
Microstructure study of a material on the basis of YSZ obtained be freeze-drying
International Nuclear Information System (INIS)
Rizea, A.; Abrudeanu, M.; Petot, C.; Petot Ervas, G.
2001-01-01
Freeze-drying is a dehydration proceeding of the products in a frozen state, which is based on the ice sublimation process. It is a method, which leads to a very good homogeneity of the products and it allows obtaining very fine powders, which directs to reducing the sintering temperature. Freeze drying always supposes three stages: - freezing, sublimation and absorption of the residual water. The preparation of ZrO 20.91 Y 2 O 30.09 samples proceeds through the following stages: - a. solution preparation; b. solution spraying (into small droplets in liquid nitrogen); c. freeze drying processing; d. calcination of the freeze dried powder; e. powder compacting; f. sintering at four different temperature. The different structure of samples with different density are characterized on basis of micrographs. The results of these analyses are presented, discussed and explained through the chemical composition of the samples
Obtaining Material Data for Heat Treatment Simulation of Casr Alloy Parts with Unified Models
DEFF Research Database (Denmark)
Bellini, Anna; Thorborg, Jesper; Hattel, Jesper
2004-01-01
subjected to high temperature. In this paper a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep and viscoplasticity, which are both irreversible strains developed because...... study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement.......The objective of this work, which is part of the IDEAL (Integrated Development Routes for Optimized Cast Aluminium Components) project, financed by the EU in frame work 6 and born in collaboration with the automobile and foundry industries, is to simulate creep behavior of aluminum cast samples...
Capecchi, Danilo
2015-01-01
This book examines the theoretical foundations underpinning the field of strength of materials/theory of elasticity, beginning from the origins of the modern theory of elasticity. While the focus is on the advances made within Italy during the nineteenth century, these achievements are framed within the overall European context. The vital contributions of Italian mathematicians, mathematical physicists, and engineers in respect of the theory of elasticity, continuum mechanics, structural mechanics, the principle of least work, and graphical methods in engineering are carefully explained and discussed. The book represents a work of historical research that primarily comprises original contributions and summaries of work published in journals. It is directed at those graduates in engineering, but also in architecture, who wish to achieve a more global and critical view of the discipline and will also be invaluable for all scholars of the history of mechanics.
New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites
International Nuclear Information System (INIS)
Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B
2004-01-01
New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration
Selenium incorporated in vegetable material for the obtaining of worm flour and compost
Directory of Open Access Journals (Sweden)
Ulbio Alcivar Cedeño
2015-02-01
Full Text Available A study was done to evaluate the quality of the earthworm flour fed with the addition of selenium. Two groups with three replicates were used; a food made of sterilized vegetable waste and other with the addition of soya (5% as a source of selenium. Temperature, humidity, and pH were controlled to ensure the optimal growth of earthworms. A 0.5 g sample of both groups replicates was weighed in order to determine the amount of Na, K, Fe, Ca, Zn, Mg, Mn, Cu, Li, Se, Hg and Pb. The humus quality provided by the samples was also qualitatively analyzed, and the amount of moisture, protein, dry matter, fat, ash, crude fiber and soluble carbohydrates were determined. The amount of the elements Ca, Fe, Mg, Zn, Cu, Mn and Li was satisfactory because the flour had concentrations similar to the conventional worm flour, which is first achieved for this type of product. The amount of protein and lipid was also high similar to the conventional foods derived from animals. No heavy metals were found. Remarkably, the use of Eisenia foetida Savigny extracts can be used as a dietary supplement in amounts less than 1 g per person, which minimizes the risk of heavy metals. The application of humus from earthworms that were fed with a diet that contained selenium, corn plants obtained were significantly different from the untreated ones.
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Jacob C.; Branden, Henrik
2006-10-19
This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.
The profile of Brazilian agriculture as source of raw material to obtain organic cosmetics
Directory of Open Access Journals (Sweden)
Neila de Paula Pereira
2017-05-01
Full Text Available With one of the most notable floras in the world for sustainable research, the Brazilian Amazon region currently counts on financial incentives from the Brazilian Government for private national and foreign businesses. The ongoing implantation of a Biocosmetics Research and Development Network (REDEBIO aims to stimulate research involving natural resources from the Brazilian states that make up the zone defined as “Amazônia Legal”. The objective of this region, still under development in Brazil, is principally to aggregate value to products manufactured in small local industries through the use of sustainable technology currently being established. Certain certified raw materials already included in the country’s sustainability program, have also begun to be cultivated according to the requirements of organic cultivation (Neves, 2009. The majority are species of Amazonian vegetation: Euterpe oleracea (Açai, Orbignya martiana (Babaçu, Theobroma grandi-florum (Cupuaçu, Carapas guianensis (Andiroba, Pentaclethra macroloba (Pracaxi, Copaifera landesdorffi (Copaiba, Platonia insignis (Bacuri, Theobroma cacao (Cacao, Virola surinamensis (Ucuuba and Bertholletia excelsa (Brazil nut. These generate phytopreparations, such as oils, extracts, and dyes that are widely used in the manufacture of Brazilian organic cosmetics with scientifically proven topical and capillary benefits. In the final balance, Brazilian organic cosmetics should continue to gain force over the next few years, especially with the regulation of the organic cosmetics market that is being drafted by the Brazilian Ministry of Agriculture. Moreover, lines of ecologically aware products that provide quality of life for both for rural and metropolitan communities show a tendency to occupy greater space in the market.
International Nuclear Information System (INIS)
Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.
2012-01-01
The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)
Directory of Open Access Journals (Sweden)
Claudia Estela Bonnin
2012-06-01
Full Text Available La pérdida de tejido en la zona cervical ha sido atribuida principalmente a la erosión y abrasión producidas por el cepillo de dientes. El rol de las fuerzas oclusales es un factor muy importante a tener en cuenta en el desarrollo y avance de estas lesiones cervicales no cariosas. Distinguir las diferentes propiedades mecánicas y sobre todo el módulo de elasticidad de los materiales estéticos utilizados para la restauración de este tipo de lesiones, permitirá una sobrevida mayor de las obturaciones y una gran mejoría en el tratamiento de nuestros pacientes. El objetivo de este trabajo fue evaluar el módulo de elasticidad de 6 materiales restauradores estéticos. Siguiendo la norma ISO 4049 se confeccionaron 10 probetas de cada material experimental. Se empleó el ensayo de flexión de 3 puntos con una INSTRON 4486. De la relación numérica entre los valores de tensión (T y deformación (D, se obtuvo el módulo de elasticidad o de Young (E, para cada material experimental. El análisis de varianza mostró diferencias significativas (p Te loss of tissue in the cervical zone has been attributed to the erosion and abrasion provoked by toothbrush. The role of occlusal forces is a very important factor to be taken into account in the development and advance of these carious non-cervical lesions. To distinguish the different mechanical properties and mainly the elasticity module of aesthetic material used for repair of this type of lesion, will allows a great survival of the obturations and in large extent in the treatment of our patients. The aim of present paper was to assess the elasticity module of 6 esthetic restoring materials. Following the ISO 4049 rule 10 test tubes of ach experimental material. A flexion assay of 3 points with INSTRON 4486 was used. From the numerical relation among the tension values (T and deformation (D we obtained the elasticity or Young (E elasticity module for each experimental material. The variance
International Nuclear Information System (INIS)
Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.
2004-01-01
The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO 2 -MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs
Directory of Open Access Journals (Sweden)
Sergey Kalugin
2014-12-01
Full Text Available The paper represents the results of development of a technology for obtaining oxane-3 and its application for enrichment of carbon mineral raw materials. Studies on enrichment of a shungite rock showed that the increase of a pulp temperature to 30°C significantly improves the characteristics and rate of the flotation process. Measured indicators of a shungite rock enrichment using Flotol B were lower in comparison with an enrichment by oxane-3. For schungite mineral, it was established that the obtained heterocyclic compound can replace existing industrial flotation reagents in enrichment processes.
First-principles calculations for elastic properties of OsB{sub 2} under pressure
Energy Technology Data Exchange (ETDEWEB)
Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)
2009-11-01
The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.
First-principles calculations for elastic properties of OsB2 under pressure
International Nuclear Information System (INIS)
Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu
2009-01-01
The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.
First-principles calculations for elastic properties of OsB 2 under pressure
Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu
2009-11-01
The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.
Gupta, Mousumi; Chatterjee, Somenath
2018-04-01
Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.
Directory of Open Access Journals (Sweden)
Eryi Hu
2016-01-01
Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Directory of Open Access Journals (Sweden)
Ting-Ting Li
2016-02-01
Full Text Available Elastic warp-knitted composite fabrics with far-infrared emissivity and an anion-releasing property were prepared using bamboo charcoal (BC, copper (Cu, and phase-change material (PCM. The functional composite fabric, which was composed of self-made complex yarns with various twisting degrees and material composition, were created using a rotor twister and ring-spinning technique. The fabric structure was diversified by the feeding modes of weft yarn into a crochet-knitting machine. The twist number of complex yarns was optimized by tensile tenacity, twist contraction, and hairiness, and analysis showed that twisting at 12 twists per inch produced the highest tensile tenacity and appropriate twist contraction and hairiness. Comfort evaluation showed that the elastic composite fabrics with BC weft yarns exhibited higher water–vapor transmission rate and air permeability, reaching 876 g/m2∙ day and 73.2 cm3/s/cm2, respectively. Three structures of composite fabric with various weft yarns had >0.85 ε far-infrared emissivity and 350–420 counts/cm3 anion amount. The prepared elastic warp-knitted fabrics can provide a comfortable, dry, and breathable environment to the wearer and can thus be applied as health-care textiles in the future.
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Tosi, M.P.
1987-08-01
Neutron scattering experiments on SrCl 2 , CaF 2 and PbF 2 have shown that intensity and width of the coherent diffuse quasi-elastic spectrum increase rapidly with temperature into the fast-ion conducting phase, the main feature in the integrated quasi-elastic intensity being a peak just beyond the (200) point along the (100) direction in scattering wave vector space. The Zwanzig-Mori memory function formalism is used in this work to analyze the quasi-elastic scattering cross section from charge density fluctuations in terms of anharmonic couplings between the vibrational modes of the crystal. The two- and three-mode channels are examined for compatibility with the quasi-elastic neutron scattering evidence, on the basis of (i) energy and momentum conservation and van Hove singularity arguments and (ii) measured phonon dispersion curves along the main symmetry directions in SrCl 2 , CaF 2 , SrF 2 and BaF 2 . The analysis identifies a specific microscopic role for the Raman-active optic branches. The eigenvectors of the relevant Raman-active and partner modes in the three-mode channel describe relative displacements of the two halogens in the unit cell superposed on relative displacements of the halogen and alkaline earth components. This microscopic picture is thus consistent with the superionic transition being associated with the onset of dynamic disorder in the anionic component of the crystal. (author). 13 refs, 2 tabs
Muñoz, M.; Vera, E.; Gómez, J.; Pineda, Y.
2017-12-01
Semiconductor type Cu2ZnTiS4 (CZTiS) and Cu2ZnSnS4 (CZTS),were synthetized starting from a hydrothermal route from precursor powders such as copper, zinc, tin, titanium isopropoxide and tiocarbammide metal nitrates dissolved in deionized water in concentrations of 1molL-1. Dosed and placed in a steel autoclave equipped with a Teflon jacket under magnetic stirring (150rpm) and at a temperature of 300°C for 24 hours in order to promote the formation of the respective ceramic phases. Segregates have been repeatedly washed with ethanol at all times until obtaining crystalline-looking solids. Subsequently, in order to promote the production of pure crystalline phases, the materials were subjected to a second reaction stage in a tubular furnace at 400°C in flow (50mLmin-1) for the purpose of Reduce the concentration of secondary phases of sulphides. The characterization of the CZTiS and CZTS materials was performed by X-ray Diffraction (XRD) and Raman spectroscopy where the presence of Kesterite type crystalline structures was confirmed in the two materials revealing that the effect of titanium with a higher ionic radius than tin produces a distortion in the cell of the CZTiS material compared to the report for the CZTS system. The results of Scanning Electron Microscopy (SEM), confirm the regular aggregates obtained with composition consistent with the proposal theoretically and validated by Energy-Dispersion X-ray Spectroscopy (EDX) techniques and comparison between secondary emission spectra and Retro-dispersed.
Tahouneh, Vahid; Naei, Mohammad Hasan
2016-03-01
The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.
Cao, Quankun; Xie, Huimin
2017-12-01
Fused deposition modelling (FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method (VFM) is applied to characterize all the mechanical parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) using the full-field strain, which is measured by digital image correlation (DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method (FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30°. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants (Q_{11}, Q_{22}, Q_{12}, Q_{66}) were determined from the test with an angle of 27°.
International Nuclear Information System (INIS)
Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman
2011-01-01
Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.
Directory of Open Access Journals (Sweden)
Iličković Zoran
2012-01-01
Full Text Available The aim of this paper was to investigate the possibility of obtaining oil from spent coffee grounds, which are left behind after the coffee is prepared, as the potential feedstock for biodiesel production. The effect of process parameters, such as are the type of solvent, the ratio of spent coffee grounds/solvent and the extraction time on oil yielded from coffee grounds was examined. The oil was obtained by maceration and extraction in the Soxhlet apparatus. The obtain results show that the spent coffee grounds could be used as an alternative raw material for biodiesel production, because it contains a significant amount of oil that can be extracted. The oil yield depends on the extraction (maceration process parameters. The maximum oil yield obtained by the Soxhlet extraction with the n-hexane for the period of 5 h was 11.85% (the weight percentage of oil on dry mater, whereas with petroleum ether the oil yield was slightly lower and amounted to 10.44%. The yield of the oil extracted by maceration increases with the decrease of spent coffee grounds/solvent ratio from 1/3 to 1/7 g/cm3, and other parameters being constant. The oil yield increases with the duration of the maceration. Greater oil yield, ranging from 3 to 8.5%, can be obtained with n-hexane compared to the extraction with petroleum ether. Furthermore, n-hexane is less volatile and flammable, compared to petroleum ether, so it is more convenient to use.
Stressed-deformed state of mountain rocks in elastic stage and between elasticity
Directory of Open Access Journals (Sweden)
Samedov A.M.
2017-12-01
Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and
Design of manufacturable 3D extremal elastic microstructure
DEFF Research Database (Denmark)
Andreassen, Erik; Lazarov, Boyan Stefanov; Sigmund, Ole
2014-01-01
We present a method to design manufacturable extremal elastic materials. Extremal materials can possess interesting properties such as a negative Poisson's ratio. The effective properties of the obtained microstructures are shown to be close to the theoretical limit given by mathematical bounds...
Identification of elastic properties of composite plate
International Nuclear Information System (INIS)
Kovalovs, A; Rucevskis, S
2011-01-01
Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima
Czech Academy of Sciences Publication Activity Database
Friák, Martin; Hickel, T.; Kormann, F.; Udyansky, A.; Dick, A.; Šob, Mojmír
2011-01-01
Roč. 82, č. 2 (2011), s. 86-100 ISSN 1611-3683 R&D Projects: GA AV ČR IAA100100920; GA MŠk OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : electronic structure * elasticity * theoretical strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.733, year: 2011
International Nuclear Information System (INIS)
Rivera Martinez, Maria Cinthya
2012-01-01
Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es
Energy Technology Data Exchange (ETDEWEB)
Aquino, F.M., E-mail: flavyma@hotmail.com [Federal University of Rio Grande of Norte, Laboratory of Catalysis and Refining – NUPRAR, Av. Senador Salgado Filho, 3000, CEP 59078-970, Natal-RN (Brazil); Melo, D.M.A. [Federal University of Rio Grande of Norte, Laboratory of Catalysis and Refining – NUPRAR, Av. Senador Salgado Filho, 3000, CEP 59078-970, Natal-RN (Brazil); Pimentel, P.M. [Universidade Federal Rural do Semi-Árido, Campus Angicos, CEP 59515-000, Angicos-RN (Brazil); Braga, R.M.; Melo, M.A.F.; Martinelli, A.E.; Costa, A.F. [Federal University of Rio Grande of Norte, Laboratory of Catalysis and Refining – NUPRAR, Av. Senador Salgado Filho, 3000, CEP 59078-970, Natal-RN (Brazil)
2012-09-15
Graphical abstract: The micrograph in figure shows sample calcined at temperature 900 °C. The sample exhibits morphology with considerable porosity and the formation of agglomerated nanometric particles. Gelatin provides the system with a large amount of organic matter, which is then removed during calcinations, favoring the appearance of pores in the material. Highlights: ► Oxides with PrNiO{sub 3} and PrCoO{sub 3} were prepared by new method synthesis. ► The gelatin, through its carboxylate groups and amine, is an efficient director. ► The obtained materials have magnetic properties and application in catalysis. ► The decomposition kinetic study of bonding groups of gelatin with metallic ions that takes part in the synthesis of PrMO{sub 3}. -- Abstract: Metal oxides with perovskite-type structure have attracted considerable interest in recent years due to their magnetic and electrical properties, as well as their catalytic activity. In this study, oxides with PrNiO{sub 3} and PrCoO{sub 3} composition were prepared by using gelatin powder as a precursor agent for its use as a catalyst. The powders obtained were calcined at 700 °C and 900 °C and characterized using the X-ray diffraction, thermal analysis (thermogravimetry and differential thermal analysis), infrared spectroscopy, temperature programed reduction and scanning electron microscopy techniques. Thermogravimetric data using the non-isothermal kinetic models of Flynn and Wall and “Model-free Kinetics” were used to determine the activation energy to study the decomposition kinetics of the ligand groups with system's metallic ions that takes part in the synthesis of PrMO{sub 3} (M = Ni or Co).
Prediction of elastic-plastic response of structural elements subjected to cyclic loading
International Nuclear Information System (INIS)
El Haddad, M.H.; Samaan, S.
1985-01-01
A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
Perez, Danny; Lewis, Laurent J
2006-09-01
We present a multiscale model based on the classical lattice time-dependent density-functional theory to study microstructure evolution in multiphase systems. As a first test of the method, we study the static and dynamic properties of isolated inclusions. Three cases are explored: elastically homogeneous systems, elastically inhomogeneous systems with soft inclusions, and elastically inhomogeneous systems with hard inclusions. The equilibrium properties of inclusions are shown to be consistent with previous results: both homogeneous and hard inclusions adopt a circular shape independent of their size, whereas soft inclusions are circular below a critical radius and elliptic above. In all cases, the Gibbs-Thomson relation is obeyed, except for a change in the prefactor at the critical radius in soft inclusions. Under growth conditions, homogeneous inclusions exhibit a Mullins-Sekerka shape instability [W. Mullins and R. Sekerka, J. Appl. Phys. 34, 323 (1963)], whereas in inhomogeneous systems, the growth of perturbations follows the Leo-Sekerka model [P. Leo and R. Sekerka, Acta Metall. 37, 3139 (1989)]. For soft inclusions, the mode instability regime is gradually replaced by a tip-growing mechanism, which leads to stable, strongly out-of-equilibrium shapes even at very low supersaturation. This mechanism is shown to significantly affect the growth dynamics of soft inclusions, whereas dynamical corrections to the growth rates are negligible in homogeneous and hard inclusions. Finally, due to its microscopic formulation, the model is shown to automatically take into account phenomena caused by the presence of the underlying discrete lattice: anisotropy of the interfacial energy, anisotropy of the kinetics, and preferential excitation of shape perturbations commensurate with the rotational symmetry of the lattice.
Vincent, Abhilash
studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 microN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Transient Vibrations of an Elastic Cylinder Inserted in the Elastic Medium
Directory of Open Access Journals (Sweden)
Sulym Heorgij
2016-06-01
Full Text Available Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elastic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological process of hydraulic fracturing during shale gas extraction.
International Nuclear Information System (INIS)
Tauste, R.; Moreno-Navarro, F.; Gallego, R.; Rubio-Gámez, M.C.
2017-01-01
The modulus value of bituminous materials is a key factor in the design of road pavements and the estimation of their life service. This parameter can be measured in laboratory but, unfortunately, this requires the deterioration of the pavement so as the consumption of time and resources. Therefore, this study analyses the feasibility of using impact resonance frequency tests as an alternative to traditional methods for determining the dynamic modulus of bituminous mixtures. The sensitivity of this technique has been studied by analyzing its repeatability and reproducibility, studying the variations in the values measured by modifying the dimensions of the specimens, test temperatures and types of mixture tested. In addition, this non-destructive technique has been compared with other traditional tests used to determine the elastic properties of bituminous materials. The results show that this test could be an interesting tool to characterize the properties and damage state of asphalt layers. [es
Directory of Open Access Journals (Sweden)
R. Tauste
2017-07-01
Full Text Available The modulus value of bituminous materials is a key factor in the design of road pavements and the estimation of their life service. This parameter can be measured in laboratory but, unfortunately, this requires the deterioration of the pavement so as the consumption of time and resources. Therefore, this study analyses the feasibility of using impact resonance frequency tests as an alternative to traditional methods for determining the dynamic modulus of bituminous mixtures. The sensitivity of this technique has been studied by analyzing its repeatability and reproducibility, studying the variations in the values measured by modifying the dimensions of the specimens, test temperatures and types of mixture tested. In addition, this non-destructive technique has been compared with other traditional tests used to determine the elastic properties of bituminous materials. The results show that this test could be an interesting tool to characterize the properties and damage state of asphalt layers.
Kerdi, Fatmé
2011-04-01
The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
Elastic fiber-mediated enthesis in the human middle ear.
Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko
2012-10-01
Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.
Elastic characteristics and microplastic deformation of amorphous alloys on iron base
International Nuclear Information System (INIS)
Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.
1983-01-01
Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials
Elastic characteristics and microplastic deformation of amorphous alloys on iron base
Energy Technology Data Exchange (ETDEWEB)
Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))
1983-01-01
Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.
International Nuclear Information System (INIS)
Chung, Nam Yong; Kim, Moon Young; Kim, Jong Woo
1999-01-01
In the study, the analysis of elastic-plastic J-integral was performed in high temperature components for gas turbine based on elastic-plastic fracture mechanics. It had been operated on the range of about 700 deg C and degraded by high temperature. It was tested for material properties of used component because of material properties changing at high temperature condition. The elastic-plastic fracture mechanics parameter, J is obtained with finite element method. A method is suggested which determines J Ic applying analysis of elastic-plastic finite element method and results of experimental load-displacements with CT specimen. It is also investigated that J-integral is applied for the elastic-plastic analysis in high temperature components. The elastic-plastic fracture toughness. J Ic determined by finite element was obtained with high accuracy using the experimental method.=20
Elasticity in Elastics-An in-vitro study.
Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha
2014-04-01
Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were
Effective elasticity coefficients of native rocks and consolidated granular matter
International Nuclear Information System (INIS)
Schulz, Beatrix M.; Schulz, Michael
2008-01-01
The elastic coefficients of binary heterogeneous materials, such as several native rock materials or consolidated granular matter will be determined in terms of a perturbation expansion. Furthermore, in order to check the validity of the obtained results, these are compared with numerical investigations using Boole's model of randomly distributed spheres. Finally, we apply the results on several classes of native rocks and consolidated granular materials
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Influence of temperature on elastic properties of caesium cyanide
International Nuclear Information System (INIS)
Singh, Preeti; Gaur, N.K.; Singh, R.K.
2007-01-01
An extended three body force shell model (ETSM), which incorporates the effects of translational-rotational (TR) coupling, three body interactions (TBI) and anharmonicity, has been applied to investigate the temperature dependence of the second order elastic constants (c ij , i,j=1,2) of CsCN. The elastic constant c 44 obtained by us shows an anomalous behaviour with the variation of temperature. The variations of elastic constants (c 11 , c 12 , c 44 ) with temperature are almost in excellent agreement with Brillouin scattering measured data. We have also evaluated the temperature variations of the third order elastic constants (c ijk ) and the pressure derivatives of the c ij in the CsCN material. However, their values could not be compared due to lack of experimental data. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Dislocations, the elastic energy momentum tensor and crack propagation
International Nuclear Information System (INIS)
Lung, Chi-wei
1979-07-01
Based upon dislocation theory, some stress intensity factors can be calculated for practical cases. The results obtained by this method have been found to agree fairly well with the results obtained by the conventional fracture mechanics. The elastic energy momentum tensor has been used to calculate the force acting on the crack tip. A discussion on the kinetics of migration of impurities to the crack tip was given. It seems that the crack tip sometimes may be considered as a singularity in an elastic field and the fundamental law of classical field theory is applicable on the problem in fracture of materials. (author)
International Nuclear Information System (INIS)
Jackson, Andrew W.; Shebanova, Olga; Hector, Andrew L.; McMillan, Paul F.
2006-01-01
Solution phase reactions between tetrakisdimethylamidotitanium (Ti(NMe 2 ) 4 ) and ammonia yield precipitates with composition TiC 0.5 N 1.1 H 2.3 . Thermogravimetric analysis (TGA) indicates that decomposition of these precursor materials proceeds in two steps to yield rocksalt-structured TiN or Ti(C,N), depending upon the gas atmosphere. Heating to above 700 deg. C in NH 3 yields nearly stoichiometric TiN. However, heating in N 2 atmosphere leads to isostructural carbonitrides, approximately TiC 0.2 N 0.8 in composition. The particle sizes of these materials range between 4-12 nm. Heating to a temperature that corresponds to the intermediate plateau in the TGA curve (450 deg. C) results in a black powder that is X-ray amorphous and is electrically conducting. The bulk chemical composition of this material is found to be TiC 0.22 N 1.01 H 0.07 , or Ti 3 (C 0.17 N 0.78 H 0.05 ) 3.96 , close to Ti 3 (C,N) 4 . Previous workers have suggested that the intermediate compound was an amorphous form of Ti 3 N 4 . TEM investigation of the material indicates the presence of nanocrystalline regions x (C,N) y crystalline phases
Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong
2014-08-13
Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.
Energy Technology Data Exchange (ETDEWEB)
Dubois, B; Odier, P
1989-09-15
A fabrication process of a fine superconducting powder easy to sinter is claimed. It consists in thermal treatment of an aerosol containing an organic and/or inorganic salt and/or a hydroxide of a rare earth, an alkaline earth metal and a transition metal in a ratio corresponding to the stoichiometry of the superconducting materials.
Kerdi, Fatmé
2011-01-01
was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix
O'Keeffe, Stephen G.
2013-11-01
We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
International Nuclear Information System (INIS)
Eraslan, Ahmet N.; Akis, Tolga
2006-01-01
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters
International Nuclear Information System (INIS)
1980-10-01
According to the demands for obtaining the licence for restarting the Ra reactor and the experimental operation this document includes the radiation monitoring measured data in the working space and environment of the RA reactor, i.e. Boris Kidric Institute. The meteorology measured data are included as well. All the measurements are performed according to the radiation protection program applied actually from the first reactor start-up at the end of 1959 [sr
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
Directory of Open Access Journals (Sweden)
Roberto Muñoz
2018-02-01
Full Text Available Thrombotic material retrieved from acute ischemic stroke (AIS patients represents a valuable source of biological information. In this study, we have developed a clinical proteomics workflow to characterize the protein cargo of thrombi derived from AIS patients. To analyze the thrombus proteome in a large-scale format, we developed a workflow that combines the isolation of thrombus by endovascular thrombectomy and peptide chromatographic fractionation coupled to mass-spectrometry. Using this workflow, we have characterized a specific proteomic expression profile derived from four AIS patients included in this study. Around 1600 protein species were unambiguously identified in the analyzed material. Functional bioinformatics analyses were performed, emphasizing a clustering of proteins with immunological functions as well as cardiopathy-related proteins with blood-cell dependent functions and peripheral vascular processes. In addition, we established a reference proteomic fingerprint of 341 proteins commonly detected in all patients. Protein interactome network of this subproteome revealed protein clusters involved in the interaction of fibronectin with 14-3-3 proteins, TGFβ signaling, and TCP complex network. Taken together, our data contributes to the repertoire of the human thrombus proteome, serving as a reference library to increase our knowledge about the molecular basis of thrombus derived from AIS patients, paving the way toward the establishment of a quantitative approach necessary to detect and characterize potential novel biomarkers in the stroke field.
Solonenko, A. P.
2018-01-01
Research aimed at developing new bioactive materials for the repair of defects in bone tissues, do not lose relevance due to the strengthening of the regenerative approach in medicine. From this point of view, materials based on calcium phosphates, including silicate ions, consider as one of the most promising group of substances. Methods of synthesis and properties of hydroxyapatite doped with various amounts of SiO4 4- ions are described in literature. In the present work synthesis of a solid phase in the systems Ca(NO3)2 - (NH4)2HPO4 - Na2SiO3 - NH4OH - H2O (Cca/CP = 1.70) performed with a wide range of sodium silicate additive concentration (y = CSi/CP = 0 ÷ 5). It is established that under the studied conditions at y ≥ 0.3 highly dispersed poorly crystallized apatite containing isomorphic impurities of CO3 2- and SiO4 4- precipitates in a mixture with calcium hydrosilicate and SiO2. It is shown that the resulting composites can gradually dissolve in physiological solution and initiate passive formation of the mineral component of hard tissues.
International Nuclear Information System (INIS)
Ali, S.A.H.; Knapp, J.; Reinhardt, J.
1977-01-01
A method to obtain a highly pure Mo 99 compound is suggested which is easy to perform even with remote handling. The matrix irradiated by neutrons is rendered soluble with aqueous alkali hydroxide solution, the Mo 99 being dissolved. The Mo rhodanide complex is collected on an organic ion exchanger. The individual process steps are described. A suitable iodine reducing agent (e.g. Na or Ka sulphite, hydroxyl ammonium sulphate) is already added to the first step and to the washing of the ion exchanger. Where necessary Tc 99 is eluated from the fixed Mo 99 mother nuclide for use in nuclear medicine. (UWI) [de
Elastic-plastic analysis of the SS-3 tensile specimen
International Nuclear Information System (INIS)
Majumdar, S.
1998-01-01
Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
International Nuclear Information System (INIS)
Wuhrer, R; Moran, K
2014-01-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper
International Nuclear Information System (INIS)
Obrezkov, O I; Vinogradov, V P; Krauz, V I; Mozgrin, D V; Guseva, I A; Andreev, E S; Zverev, A A; Starostin, A L
2016-01-01
Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time. (paper)
International Nuclear Information System (INIS)
Shad-Manamen, N.; Eskandari-Ghadi, M.
2008-01-01
The existing theory for wave propagation through a soil layer are not compatible with the real soil layers because in the theory the layers are flat and the sub-layers are parallel, while in real the soil layers are not flat and they may not be parallel. Thus, wave propagations through a corrugated interface are so important. In this paper, a two dimensional SH-wave propagation through a corrugated interface between two linear transversely isotropic half-spaces is assessed. In order to do this, Lord Rayleigh's method is accepted to express the non-flat surface by a Fourier series. In this way, the amplitude of the reflected and transmitted waves is analytically determined in terms of the incident SH-wave amplitude. It is shown that except for the regular reflected and refracted waves, some irregular reflected and refracted waves are exist, and the amplitudes of these waves vary in terms of the angle and frequency of incident wave, equation of surface, and the material properties of the domains. The numerical computations for some cases of different amplitude/wave-length ratio of the interface are done. This work is an extension of Asano's paper (1960) for a more complicated interface, where more non-zero coefficients are considered in expressing the equation of surface in the form of Fourier series. The analytical results for some simpler case of isotropic domain are collapsed on Asano's results (1960). In addition, the numerical evaluation is in good agreement with Asano's.
Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues
Goriely, A.; Moulton, D. E.; Vandiver, R.
2010-01-01
Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence
CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES
Tadeu Mascia,Nilson
2003-01-01
Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...
Resolvent estimates in homogenisation of periodic problems of fractional elasticity
Cherednichenko, Kirill; Waurick, Marcus
2018-03-01
We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier-Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.
Blocky inversion of multichannel elastic impedance for elastic parameters
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Directory of Open Access Journals (Sweden)
André Tomazini Gomes de Sá
2008-02-01
Full Text Available The purpose of this study was to evaluate the accuracy of the respective dies after polyether elastomeric procedure in the presence or absence of cervical contact of the acrylic resin shell with the cervical region, establishing a comparison to dies obtained with stock trays. This study consisted of three groups with 10 specimens each: 1 acrylic copings without cervical contact, (cn; 2 acrylic copings with cervical contact (cc; 3 perforated stock tray, (st. The accuracy of the resulting dies was verified with the aid of a master crown, precisely fit to the master steel die. ANOVA test found statistically significant differences among groups (p<0.001. Tukey's test found that the smallest discrepancy occurred in group cn, followed by cc, while the st group presented the highest difference (cc x cn: p=0.007; st x cn: p<0.001; st x cc: p<0.001.
International Nuclear Information System (INIS)
Carcreff, Hubert; Salmon, Laurent; Courtaux, Cedric
2013-06-01
Nuclear heating rate inside an MTR has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry [1, 2]. An innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. The development of the calorimetric probe required the manufacturing and the irradiation of mock-ups in the ex-core area, where nuclear heating rate does not exceed 2 W.g -1 . The calorimeter working mode, the different measurement procedures allowed with such a new probe and main modeling and experimental results have been already presented [3, 4]. In this paper, we present the first results obtained during several measurement campaigns carried out in 2012 and 2013 inside the OSIRIS core with the final device. For the first time, this new experimental measurement system was operated in nominal in-core thermo hydraulic conditions with nominal neutron and gamma fluxes (up to 6 W.g -1 ) in several experimental locations. After a brief presentation of the displacement system specificities, first nuclear heating distributions are presented and discussed. Experimental data were also used to upgrade the Finite Element model of the calorimeter in order to match measured temperatures with calculated ones. This model allowed to estimate a Kc correction factor which takes into account small nonlinearities when the heating rate is deduced from the calibration method. A comparison is made between nuclear heating rates determined from the probe calibration and from the zero method. In addition, an evaluation of the global uncertainty associated to the measurements is detailed. Finally, a global comparison is made with available measurements obtained from previous calorimeters. (authors)
International Nuclear Information System (INIS)
Carcreff, Hubert; Salmon, Laurent; Courtaux, Cedric
2014-01-01
Nuclear heating rate inside an MTR has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. An innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Development of the calorimetric probe required manufacturing and irradiation of mock-ups in the ex-core area, where nuclear heating rate does not exceed 2 W.g -1 . The calorimeter working mode, the different measurement procedures, main modeling and ex-core experimental results have been already presented in previous papers. In this paper, we present in-core results obtained from 2011 to 2013 with the final device. For the first time, this new experimental measurement system was operated in several experimental locations, with nominal in-core thermal hydraulic conditions, nominal neutron flux and nuclear heating rate up to 6 W.g -1 (in graphite). After a brief presentation of the displacement system specificities, first nuclear heating distributions are presented and discussed. The Finite Element model of the calorimeter was upgraded in order to match calculated temperatures with measured ones. This 'validated' model allowed to estimate a Kc factor which tends to correct small nonlinearities when heating rate is calculated from the 'calibration method'. A comparison is made between nuclear heating rates determined from 'calibration' and 'zero methods'. In addition, an evaluation of the global uncertainty associated to the measurements is detailed. Finally, a comparison is made with available measurements obtained from previous calorimeters. (authors)
Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J
2015-11-01
The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.
Elasticity theory of ultrathin nanofilms
International Nuclear Information System (INIS)
Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan
2015-01-01
A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)
International Nuclear Information System (INIS)
Gomez, A G; Szieber, W C; Vizcaino, P; Loureiro, N; Bianchi, D R; Banchik, A D
2012-01-01
The Zr-2.5Nb alloy is used in the manufacture of pressure tubes for the CANDU nuclear power reactors. These tubes are subjected to severe service conditions: one o f them, the heavy water corrosion due to the coolant generates release of hydrogen, part of which ingress in the material raising its initial concentration and exposing them to a phenomena referred as delay hydrogen cracking. The results presented in this paper show the performance of a pressure tube of domestic manufacture under conditions of tension and hydrogen content in order to be compared with the behavior of a standard pressure tube in operation in the nuclear power plant. To do this is, cantilever notched and pre cracked samples were hydrided from both kinds of tubes. Each one of these samples was subjected to the cantilever beam test, which consists in a bending test performed in a furnace at 250 o C. Starting from a stress intensity factor Ki which determines the propagation start of the crack, the growth is followed by the acoustic emission technique up to the arrest of the crack by controlling the bending load. This work presents the comparative data such as critical voltages, behavior of hydrides, and DHC parameters from both trials. Although the number of tests is reduced; results show a good performance of the tubes of domestic manufacture (author)
Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy
2018-03-01
Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.
International Nuclear Information System (INIS)
Vavra, G.
1978-01-01
Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr
Energy Technology Data Exchange (ETDEWEB)
Athalathil, S.; Stüber, F.; Bengoa, C.; Font, J. [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain); Fortuny, A. [Departament d’Enginyeria Quimica, EPSEVG, Universitat Politecnica de Catalunya, Av. Victor Balaguer s/n, 08800 Vilanova i la Geltru, Catalunya (Spain); Fabregat, A., E-mail: azael.fabregat@urv.cat [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain)
2014-02-01
Graphical abstract: - Highlights: • Carbonaceous materials were prepared from exhausted sludge materials. • High surface area and good physicochemical properties were achieved. • Utilization of waste sludge materials and mixed anaerobic cultures were used in a continuous anaerobic UPBR system (upflow packed bed biological reactor). • Effective treatment of dye contaminated wastewater in a cheapest and environmental friendly method was demonstrated. - Abstract: This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl{sub 2} and the activation by means of carbonization at different temperatures (400, 600 and 800 °C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0 m{sup 2}/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0 min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.
International Nuclear Information System (INIS)
Yamaguchi, Yoshihito; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng; Sugino, Hideharu
2011-01-01
The magnitude of Niigata-ken Chuetsu-Oki earthquake in 2007 was beyond the assumed one provided in seismic design. Therefore it becomes an important issue to evaluate the crack growth behaviors due to the cyclic overload like large earthquake. Fatigue crack growth is usually evaluated by Paris's law using the range of stress intensity factor (ΔK). However, ΔK is inappropriate in a loading condition beyond small scale yielding. In this study, the crack growth behaviors for piping materials were investigated based on an elastic-plastic fracture mechanics parameter, J-integral. It was indicated that the crack growth due to the cyclic overload beyond small scale yielding could be the sum of fatigue and ductile crack growth. The retardation effect of excessive loading on the crack growth was observed after the loading. The modified Wheeler model using J-integral has been proposed for the prediction of retardation effect. Finally, an evaluation method for crack growth behaviors due to the cyclic overload is suggested. (author)
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Inverse problemfor an inhomogeneous elastic beam at a combined strength
Directory of Open Access Journals (Sweden)
Andreev Vladimir Igorevich
2014-01-01
Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.
Teaching nonlinear dynamics through elastic cords
International Nuclear Information System (INIS)
Chacon, R; Galan, C A; Sanchez-Bajo, F
2011-01-01
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
International Nuclear Information System (INIS)
Magomedov, A.M.
1986-01-01
Rates of propagation of longitudinal and transverse acoustic waves in samples as well as density of Tl, Pb, Sn, Bi, Cd, Zn and their binary alloys with indium are determined. The results obtained are used for calculation of elasticity constants of these materials. It is stated that concentration dependences of elasticity constants for indium alloys have non-linear character; negative deflection from the additive line is observed
Elastic and viscoplastic properties
International Nuclear Information System (INIS)
Lebensohn, R.A.
2015-01-01
In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)
In Situ elastic property sensors
International Nuclear Information System (INIS)
Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.
1987-01-01
Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
International Nuclear Information System (INIS)
Kasahara, Naoto; Takasho, Hideki
1998-12-01
Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of material. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. It was clarified that strain concentration was caused from strain redistribution between elastic and inelastic regions, which can be quantified by the elastic follow-up parameter. As a function of inelastic strain, the elastic follow-up parameter can describe variation of strain concentration during incremental loading and relaxation process, caused by transition of strain distribution from peak strain concentration to secondary stress redistribution. Structures have their own elastic follow-up characteristics as a function of inelastic strain, which is insensitive to constitutive equations. It means that application of inelastic analysis is not difficult to obtain elastic follow-up characteristics. (author)
Effect of elastic anisotropy of crystal grain on stress intensity factor
International Nuclear Information System (INIS)
Kamaya, Masayuki
2002-01-01
The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)
Effect of elastic anisotropy of crystal grain on stress intensity factor
Energy Technology Data Exchange (ETDEWEB)
Kamaya, Masayuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2002-09-01
The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)
Diffraction plane dependency of elastic constants in ferritic steel in neutron stress measurement
International Nuclear Information System (INIS)
Hayashi, M.; Ishiwata, M.; Minakawa, N.; Funahashi, S.
1993-01-01
Neutron diffraction measurements have been made to investigate the elastic properties of the ferritic steel obtained from socket weld. The Kroner elastic model is found to account for the [hkl]-dependence of Young's modulus and Poisson's ratio in the material. Maps of residual stress are later to be made by measuring lattice strain from shifts in the (112) diffraction peak, for which the diffraction elastic constants the herein found to be E=243±5GPa and ν=0.28±0.01. (author)
Energy Technology Data Exchange (ETDEWEB)
Fernandez, R.; Hunicke, U. D.; Mundt, K. H.; Acosta, P.; Kowalski, W.; Schulz, G.; Gonzalez-Doncel, G.
2001-07-01
The purpose of this investigation is to study the elastic behavior of a discontinuously reinforced composite material, Al(6061)-40vol%SiC, by using three different procedures; Extensometry in uniaxial testing, pendulum elastomeric, and propagation of acoustic signals in the materials. The high ceramic content of this material provides it with a high stiffness without a significant increase in density. Because of this, the material is suitable as structural component in the automotive and aerospace industry. (Author) 8 refs.
Elastic Characterization of Concrete Materials
Guerra-Vela, Claudio; Ruiz, Abraham; Zypman, Fredy R.
2001-03-01
Many geographical locations share a common problem of high environmental humidity. It is thus desirable to build houses that can withstand strong water loading. In this work we study the evolution of High Performance Concrete as a function of hardening stage. The technique that we use is based on the propagation of resonant audio frequency modes of oscillation along the long axis of homemade HPC cylindrical samples. An audio generator fed piezoelectric (at one end of the rod) excites vibrations in the sample. Off resonance these vibrations do not propagate away from the piezoelectric site. On the other hand, when a resonance is reached the vibration extends all over the bar. A second piezoelectric is placed at the other extreme of the cylinder. We measure three parameters: the resonant frequency, speed of sound, and loss factor. To measure the resonant frequency we connect the two piezos to an oscilloscope in the x-y mode. At resonance the oscilloscope displays an ellipse and the audio generator reports the frequency. To measure the speed of sound, we excite the firs piezo with a pulse and measure the delay time in the second piezo. The loss factor can be extracted from the ratio of the exciting pulse and the measured one. From these parameters we calculate the Young modulus, the area moment of inertia and the effective density of the HPC. These quantities are measured twice a day during the 28-day hardening time.
Zhao, Xin
2013-01-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects
International Nuclear Information System (INIS)
Baruah, D; Choudhury, S; Singh, K M; Ghatak, K P
2007-01-01
In this paper we study the carrier contribution to elastic constants in quantum confined heavily doped non-linear optical compounds on the basis of a newly formulated electron dispersion law taking into account the anisotropies of the effective electron masses and spin orbit splitting constants together with the proper inclusion of the crystal field splitting in the Hamiltonian within the framework of k.p formalism. All the results of heavily doped three, and two models of Kane for heavily doped III-V materials form special cases of our generalized analysis. It has been found, taking different heavily doped quantum confined materials that, the carrier contribution to the elastic constants increases with increase in electron statistics and decrease in film thickness in ladder like manners for all types of quantum confinements with different numerical values which are totally dependent on the energy band constants. The said contribution is greatest in quantum dots and least in quantum wells together with the fact the heavy doping enhances the said contributions for all types of quantum confined materials. We have suggested an experimental method of determining the carrier contribution to the elastic constants in nanostructured materials having arbitrary band structures
Uniqueness theorems in linear elasticity
Knops, Robin John
1971-01-01
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...
Astronomical optics and elasticity theory
Lemaitre, Gerard Rene
2008-01-01
Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.
Applications of super elasticity in vibrational control
International Nuclear Information System (INIS)
Soul, H
2005-01-01
In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
International Nuclear Information System (INIS)
Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru
2013-01-01
Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. -- Highlights: ► Scanning electron (SE) images contain many kind of information on material surfaces. ► We investigate energy-filtered SE images for practical materials. ► The brightness of the images is divided into two parts by the bias voltage. ► Topographic and material contrasts are extracted by subtracting the filtered images.
Energy Technology Data Exchange (ETDEWEB)
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
Energy Technology Data Exchange (ETDEWEB)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)
2016-04-15
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.
International Nuclear Information System (INIS)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young
2016-01-01
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.
Elastic properties of graphite and interstitial defects
International Nuclear Information System (INIS)
Ayasse, J.-B.
1977-01-01
The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr
Directory of Open Access Journals (Sweden)
Guanghui Li
2016-11-01
Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.
Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru
2013-01-01
Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Monitoring elastic strain and damage by neutron and synchrotron beams
International Nuclear Information System (INIS)
Withers, P.J.
2001-01-01
Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)
2017-04-01
Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.
International Nuclear Information System (INIS)
Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie
2017-01-01
Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.
Elastic-plastic transition on rotating spherical shells in dependence of compressibility
Directory of Open Access Journals (Sweden)
Thakur Pankaj
2017-01-01
Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.
Elastic stability of thick auxetic plates
International Nuclear Information System (INIS)
Lim, Teik-Cheng
2014-01-01
Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)
Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando
2009-02-15
Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.
Directory of Open Access Journals (Sweden)
Jiefeng Liu
2018-02-01
Full Text Available The life expectancy of a transformer is largely depended on the service life of transformer polymer insulation materials. Nowadays, several papers have reported that the traditional system poles obtained from polarization and depolarization current (PDC data can be used to assess the condition of transformer insulation systems. However, the traditional system poles technique only provides limited ageing information for transformer polymer insulation. In this paper, the modified system poles obtained from PDC data are proposed to assess the ageing condition of transformer polymer insulation. The aim of the work is to focus on reporting a comparative investigation on the performance of modified system poles and traditional system poles for assessing the ageing condition of a transformer polymer insulation system. In the present work, a series of experiments have been performed under controlled laboratory conditions. The PDC measurement data, degree of polymerization (DP and moisture content of the oil-immersed polymer pressboard specimens were carefully monitored. It is observed that, compared to the relationships between traditional system poles and DP values, there are better correlations between the modified system poles and DP values, because the modified system poles can obtain much more ageing information on transformer polymer insulation. Therefore, the modified system poles proposed in the paper are more suitable for the diagnosis of the ageing condition of transformer polymer insulation.
Detailed Monte Carlo simulation of electron elastic scattering
International Nuclear Information System (INIS)
Chakarova, R.
1994-04-01
A detailed Monte Carlo model is described which simulates the transport of electrons penetrating a medium without energy loss. The trajectory of each electron is constructed as a series of successive interaction events - elastic or inelastic scattering. Differential elastic scattering cross sections, elastic and inelastic mean free paths are used to describe the interaction process. It is presumed that the cross sections data are available and the Monte Carlo algorithm does not include their evaluation. Electrons suffering successive elastic collisions are followed until they escape from the medium or (if the absorption is negligible) their path length exceeds a certain value. The inelastic events are thus treated as absorption. The medium geometry is a layered infinite slab. The electron source could be an incident electron beam or electrons created inside the material. The objective is to obtain the angular distribution, the path length and depth distribution and the collision number distribution of electrons emitted through the surface of the medium. The model is applied successfully to electrons with energy between 0.4 and 20 keV reflected from semi-infinite homogeneous materials with different scattering properties. 16 refs, 9 figs
Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.
2018-04-01
We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.
Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses
International Nuclear Information System (INIS)
Sauer, G.
1998-01-01
Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES
Directory of Open Access Journals (Sweden)
Numan Behlül BEKTAŞ
2004-02-01
Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.
Directory of Open Access Journals (Sweden)
Vebil Yıldırım
2017-10-01
Full Text Available A broad parametric study is carried out to investigate the effects of both the inhomogeneity parameter, and a profile index of Stodola’s hyperbolic function on the static response of such structures subjected to both the inner and outer pressures. The investigation is based on the analytical formulas lately published by the author. The effects of those parameters on the variation of the radial displacement, the radial and hoop stresses are all graphically illustrated for an annulus pressurized at its both surfaces. It is observed that, especially, the variation of the hoop stress in radial coordinate is closely sensible to variation of those parameters. For the chosen problems it was observed that one of two materials whose Young’s modulus is higher than the other is better to locate at the inner surface of the disc having divergent profile to get reasonable maximum hoop stresses. However much smaller radial displacements may be obtained by using positive inhomogeneity indexes for all discs whose surfaces host a material whose Young’s modulus is smaller than the other. To reach a final decision, analytical formulas such as those used in the present study together with a failure criteria such as Von Mises and Tresca become indispensable means in a design process.
Appraisal of elastic follow up
International Nuclear Information System (INIS)
Roche, R.L.
1981-08-01
The aim of this paper is to provide indications to choose what fraction of a self limiting stress can be considered as secondary. At first, considerations are given to a simple structure which could be called ''creep relaxation tensile test''. A bar (with constant cross section) is loaded by an elastic spring in order to obtain a given elongation of the assembly. The stress evolution is studied. Then the creep damage is computed, and compared to the damage corresponding to the elastic computed stress. This comparison gives the fraction of the self limiting stress which must be considered as primary. This involve the structural parameter 0 which is the initial value of the ratio of elastic energy to dissipating power. Extension of the rule is made with the help of KACHANOV approximation. As a conclusion a procedure is described which determines what fraction of a self limiting stress must be considered as primary
Adaptation of generalized Hill inequalities to anisotropic elastic ...
African Journals Online (AJOL)
user
Thallium manganese chloride(TIMnCl 3 ). 101.4. 16.5. 32.2. 5.2 For Isotropic Media. For some materials, it is possible to make approaches from cubic symmetry to isotropic symmetry. With cubic symmetry, three independent elastic constants are needed. If the medium is elastically isotropic, the elastic properties are ...
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
Directory of Open Access Journals (Sweden)
Artem Potanin
2017-09-01
Full Text Available This study aimed to obtain biocompatible ceramic materials in a Ti–C–Co–Ca3(PO42–Ag–Mg system by the combustion mode of mechanically activated (MA reaction mixtures. The influence of the MA time on the reaction ability capability of the mixtures, on their structural and chemical homogeneity, on the combustion parameters and structural-phase conversions in the combustion wave, as well as on the structure and phase composition of the electrode materials has been researched. It was found that the intense treatment of powder mixtures causes plastic deformation of components, the formation of lamellar composite granules, a reduction in the sizes of coherent scattering regions, and also the formation of minor amounts of products. The influence of the activation duration of the ignition temperature and heat release during the combustion of the reaction mixtures was studied. By the method of quenching the combustion front, it was demonstrated that in a combustion wave, chemical transformations occur within the lamellar structures formed during the process of mechanoactivation. It was shown that in the combustion wave, parallel chemical reactions of Ti with C as well as Ti with Co and Ca3(PO42 occur, with a Ti–Co-based melt forming the reaction surface. Ceramic electrodes with different contents of Ag and Mg were synthesized by force self-propagating high-temperature synthesis (SHS-pressing technology using the MA mixtures. The microstructure of the materials consisted of round-shaped grains of nonstoichiometric titanium carbide TiCx grains, intermetallic matrix (TiCo, TiCo2, CoTiP, inclusions of Ca and Mg oxides, and grains of the Ag-based solid solution. An increased content of Ag and Mg in the composition of the electrodes, as well as an increased MA duration, leads to an enlargement of the inclusions of the Ag-containing phase size and deterioration in the uniformity of their distribution.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
2014-04-15
In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the
Modular correction method of bending elastic modulus based on sliding behavior of contact point
International Nuclear Information System (INIS)
Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi
2015-01-01
During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Elastic scattering and quasi-elastic transfers
International Nuclear Information System (INIS)
Mermaz, M.C.
1978-01-01
Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr
Energy Technology Data Exchange (ETDEWEB)
Oziel Mendez Guerrero, D.; Alicia Vazquez Mendez, B.; Alvarez Mendez, A.
2011-07-01
In this paper, the qualitative, quantitative and thermal characterization of a steel slag and glass cullet of high generation rate in northern Mexico were made in order to use these wastes as raw materials in the production of glass ceramics. The particle size was controlled at sizes = 75 micrometers and the major components of the slag were located in a phase equilibrium diagram for proposing a reaction temperature that leaded to the starting glass. Later, heat treatments were performed to obtain the glass ceramics. The materials were characterized by powder X-ray diffraction (XRD), differential thermal analysis coupled with thermal gravimetric analysis (DTA-TGA), reflected light optical microscopy (RLOM) and scanning electron microscopy (SEM). Subsequently, Vickers microhardness and chemical resistance tests were performed, which enabled us to propose an application of the glass ceramics. (Author) 18 refs.
Towards an elastic model of wurtzite AlN nanowires
International Nuclear Information System (INIS)
Mitrushchenkov, A; Chambaud, G; Yvonnet, J; He, Q-C
2010-01-01
Starting with ab initio calculations of AlN wurtzite [0001] nanowires with diameters up to 4 nm, a finite element method is developed to deal with larger nanostructures/nanoparticles. The ab initio calculations show that the structure of the nanowires can be well represented by an internal part with AlN bulk elastic properties, and one atomic surface layer with its own elastic behavior. The proposed finite element method includes surface elements with their own elastic properties using surface elastic coefficients deduced from the ab initio calculations. The elastic properties obtained with the finite element model compare very well with those obtained with the full ab initio calculations.
Energy Technology Data Exchange (ETDEWEB)
Soto T, J.L
2003-07-01
A discussion of the physical, mechanical and tribological characterization of the ceramics Jaar, Jaca and Vijaar is presented in this work. They have been obtained from the industrial residuals, coming from metals and sand of the mining industry in Pachuca Hidalgo, Mexico. The methodology followed for the obtention and characterization of these ceramics consists on eliminating the cyanides from the tailings through columns coupled with a system controlled with thermostats. Then, the chemical composition is analysed with spectrometry emission of plasma and scanning electronic microscopy. Then the ceramics are produced. The base material is agglutinated with clay or kaolin. For this purpose, it was used a sintering processes and isothermal compacting in hot condition. Finally, the physical, chemical, mechanical and tribological properties of these new products are determined. Carbon, oxygen, sodium, magnesium, aluminium, manganese, silicon, potassium, phosphor, calcium, titanium, iron, molybdenum, silver and gold are in the chemical composition or ceramic analysed. Also these are heterogeneous mixture of clay and kaolin. The cyanide was eliminated. The results show that Vijaar has better wear resistances to the waste; this was demonstrated in tribology tests. They were not perforated with the abrasive particles. Also, they have high hardness and they can to support more loads in compression than Jaar and the Jaca. Consequently, they are less fragile and, therefore, they can tolerate bending stresses and bigger impact loading. (Author)
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks
Sol-S?nchez, Miguel; Moreno-Navarro, Fernando; Rubio-G?mez, M? Carmen
2014-01-01
Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of ela...
Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites
Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova
This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures
International Nuclear Information System (INIS)
Lee, L.H.N.; Horng, J.T.
1975-01-01
The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained
Fully coupled heat conduction and deformation analyses of visco-elastic solids
Khan, Kamran
2012-04-21
Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.
International Nuclear Information System (INIS)
Khalikov, D.Kh.
2012-01-01
The elaboration of method of continuous production of styptic and antibacterial material was the purpose of present scientific research. The flowsheet of continuous production of styptic and antibacterial material was elaborated and described. The process of iodine sorption by modified materials was studied. The iodine sorption by modified materials in moment of its formation from the potassium iodide was studied as well. The influence of nature of grafted polymer on sorption of iodide ions was studied as well.
Elastic buckling of ellipsoids of revolution
International Nuclear Information System (INIS)
Solal, Roger; Hoffmann, Alain; Roche, Roland.
1976-02-01
The CEASEMT system of calculation by finite elements is used to determine critical internal pressures on a flattened ellipsoid of revolution. This case resembles that of an ellipsoidal head of a thin pressure vessel fitted onto a flexible colla. The calculations are performed assuming the geometry perfect, the deformations slight and the behaviour of the material perfectly elastic. The results obtained are presented favourably by plotting a reduced pressure p* against the geometry. A good definition of p* would be: p*=pπ 2 E/1-μ 2 .e 2 b 2 /a 4 (p* critical pressure, E Young's modulus, μ Poisson's coefficient, e thickness, a half large axis, b half small axis). When a/b is above 2 the p value remains close to 1. For lower a/b values the p value rises considerably with a/b [fr
Self-folding miniature elastic electric devices
International Nuclear Information System (INIS)
Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J
2014-01-01
Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)
Analysis of elastic-plastic problems using edge-based smoothed finite element method
International Nuclear Information System (INIS)
Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.
2009-01-01
In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
Actin dynamics and the elasticity of cytoskeletal networks
Directory of Open Access Journals (Sweden)
2009-09-01
Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.
Elastic constants and internal friction of fiber-reinforced composites
International Nuclear Information System (INIS)
Ledbetter, H.M.
1982-01-01
We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Quasi-elastic high-pressure waves in 2024 Al and Cu
International Nuclear Information System (INIS)
Morris, C.E.; Fritz, J.N.; Holian, B.L.
1981-01-01
Release waves from the back of a plate slap experiment are used to estimate the longitudinal modulus, bulk modulus and shear strength of the metal in the state produced by a symmetric collision. The velocity of the interface between the metal target and a window material is measured by the axially symmetric magnetic (ASM) probe. Wave profiles for initial states up to 90 GPa for 2024 Al and up to 150 GPa for Cu have been obtained. Elastic perfectly-plastic (EPP) theory cannot account for the results. A relatively simple quasi-elastic plastic (QEP) model can
Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction
International Nuclear Information System (INIS)
Sahoo, Prasanta
2006-01-01
The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient
Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies
International Nuclear Information System (INIS)
Shirley, A.I.; Hall, C.K.
1986-01-01
The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride
Directory of Open Access Journals (Sweden)
Hakan Keskin
2016-04-01
Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.
Paro, Alberto
2015-01-01
If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.
Directory of Open Access Journals (Sweden)
Pedro Gutemberg de Alcântara Segundinho
2012-12-01
on the effectiveness of the testing methods based on the natural frequencies of vibration versus static bending to obtain the elastic properties of reforested structural wood components usually employed in civil construction. The following components were evaluated: 24 beams of Eucalyptus sp. with nominal dimensions (40 x 60 x 2.000 mm and 14 beams of Pinus oocarpa with nominal dimensions (45 x 90 x 2.300 mm both without treatment; 30 boards with nominal dimensions (40 x 240 x 2.010 mm and 30 boards with nominal dimensions (40 x 240 x 3.050 mm, both of Pinus oocarpa and with chromate copper arsenate (CCA preservative treatment. The results obtained in thiswork show good correlation when compared to the results obtained by the static bending mechanical method, especially when applying the natural frequency of longitudinal vibration. The use of longitudinal frequency was reliable and practical, therefore recommended for determining the modulus of elasticity of wood structural elements. It was also found that no specific support is needed for the specimens using the longitudinal frequency, as well as no previous calibrations, reducing the execution time and enabling to test many samples.
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Elasticity theory and applications
Saada, Adel S; Hartnett, James P; Hughes, William F
2013-01-01
Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...
Lyukshin, B. A.; Barashkov, V. N.; Gerasimov, A. V.; Elkin, E. E.; Likhachev, V. N.; Mudarisov, Sh. Sh.; Cherepanov, O. I.
1993-04-01
Experimental methods for determining the physicomechanical characteristics of powder, polymer, and composite materials under thermal-force static and dynamic loads are presented. The results of the experimental investigations are used in numerical methods for calculating the stress — strain state and the stability and for describing the supercritical behavior as well as in methods for efficient design of strong machine-building structures made from new constructional materials.
International Nuclear Information System (INIS)
Yoneda, A; Sohag, F H
2010-01-01
The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.
Reciprocity, passivity and causality in Willis materials.
Muhlestein, Michael B; Sieck, Caleb F; Alù, Andrea; Haberman, Michael R
2016-10-01
Materials that require coupling between the stress-strain and momentum-velocity constitutive relations were first proposed by Willis (Willis 1981 Wave Motion 3 , 1-11. (doi:10.1016/0165-2125(81)90008-1)) and are now known as elastic materials of the Willis type, or simply Willis materials. As coupling between these two constitutive equations is a generalization of standard elastodynamic theory, restrictions on the physically admissible material properties for Willis materials should be similarly generalized. This paper derives restrictions imposed on the material properties of Willis materials when they are assumed to be reciprocal, passive and causal. Considerations of causality and low-order dispersion suggest an alternative formulation of the standard Willis equations. The alternative formulation provides improved insight into the subwavelength physical behaviour leading to Willis material properties and is amenable to time-domain analyses. Finally, the results initially obtained for a generally elastic material are specialized to the acoustic limit.
Energy Technology Data Exchange (ETDEWEB)
Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)
2015-09-01
The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.
International Nuclear Information System (INIS)
Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna
2015-01-01
The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds
A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.
Consumer brand choice: individual and group analyses of demand elasticity.
Oliveira-Castro, Jorge M; Foxall, Gordon R; Schrezenmaier, Teresa C
2006-03-01
Following the behavior-analytic tradition of analyzing individual behavior, the present research investigated demand elasticity of individual consumers purchasing supermarket products, and compared individual and group analyses of elasticity. Panel data from 80 UK consumers purchasing 9 product categories (i.e., baked beans, biscuits, breakfast cereals, butter, cheese, fruit juice, instant coffee, margarine and tea) during a 16-week period were used. Elasticity coefficients were calculated for individual consumers with data from all or only 1 product category (intra-consumer elasticities), and for each product category using all data points from all consumers (overall product elasticity) or 1 average data point per consumer (interconsumer elasticity). In addition to this, split-sample elasticity coefficients were obtained for each individual with data from all product categories purchased during weeks 1 to 8 and 9 to 16. The results suggest that: 1) demand elasticity coefficients calculated for individual consumers purchasing supermarket food products are compatible with predictions from economic theory and behavioral economics; 2) overall product elasticities, typically employed in marketing and econometric research, include effects of interconsumer and intraconsumer elasticities; 3) when comparing demand elasticities of different product categories, group and individual analyses yield similar trends; and 4) individual differences in demand elasticity are relatively consistent across time, but do not seem to be consistent across products. These results demonstrate the theoretical, methodological, and managerial relevance of investigating the behavior of individual consumers.
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
International Nuclear Information System (INIS)
Bittner, A.; Jungwirth, D.; Knell, M.; Schnitzler, L.
1984-04-01
Numerical values of neutron fluxes, activations, dose rates etc. as a function of characteristic values of materials required for optimization purposes to reduce the radiation effect of the biological shield of a PWR are not available. Design concepts are presented for biological shields of PWRs made of concrete with respect to both the most suitable application of materials and the design principles aiming at reduced radiation exposure as compared to present designs during entering, waste disposal and ultimate storage. To evaluate the present-state design the above values have been calculated. Suggested alternative designs are biological shields with selective material application, built from precast elements with or without boron carbide layer arranged in front of it. (orig./HP) [de
Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids
International Nuclear Information System (INIS)
Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T
2014-01-01
Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.
Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4
Directory of Open Access Journals (Sweden)
Baobing Zheng
2015-03-01
Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.
Jandaghian, A. A.; Rahmani, O.
2016-03-01
In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Modeling and analysis of waves in a heat conducting thermo-elastic plate of elliptical shape
Directory of Open Access Journals (Sweden)
R. Selvamani
Full Text Available Wave propagation in heat conducting thermo elastic plate of elliptical cross-section is studied using the Fourier expansion collocation method based on Suhubi's generalized theory. The equations of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermo elastic plate of elliptical cross-sections composed of homogeneous isotropic material. The frequency equations are obtained by using the boundary conditions along outer and inner surface of elliptical cross-sectional plate using Fourier expansion collocation method. The computed non-dimensional frequency, velocity and quality factor are plotted in dispersion curves for longitudinal and flexural (symmetric and antisymmetric modes of vibrations.
The elasticity of demand for gasoline in China
International Nuclear Information System (INIS)
Lin, C.-Y. Cynthia; Zeng, Jieyin
2013-01-01
This paper estimates the price and income elasticities of demand for gasoline in China. Our estimates of the intermediate-run price elasticity of gasoline demand range between −0.497 and −0.196, and our estimates of the intermediate-run income elasticity of gasoline demand range between 1.01 and 1.05. We also extend previous studies to estimate the vehicle miles traveled (VMT) elasticity and obtain a range from −0.882 to −0.579. - highlights: • The price elasticity of demand for gasoline in China is between −0.497 and −0.196. • The income elasticity of demand for gasoline in China is between 1.01 and 1.05. • The price elasticity of demand for VMT in China is between −0.882 and −0.579
In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals
Sidky, Hythem; de Pablo, Juan J.; Whitmer, Jonathan K.
2018-03-01
Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.
Statistical mechanics of elasticity
Weiner, JH
2012-01-01
Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.
Elasticity of energy consumption
International Nuclear Information System (INIS)
Stam, M.
2004-01-01
Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Directory of Open Access Journals (Sweden)
Adriana Almeida
2018-05-01
where $\\Omega$ is a bounded connected open set of $\\mathbb{R}^n$ $(n\\geq 2$ with regular boundary $\\Gamma,$ $\\phi=(\\phi_1(x,t,\\dots, \\phi_n(x,t,$ $x=(x_1,\\dots,x_n$ are $n$-dimensional vectors and $p$ denotes a pressure term. The function $a(x$ is assumed to be nonnegative and essentially bounded and, in addition, $a(x\\geq a_0>0$ a.e. in $\\omega\\subset \\Omega$, where $\\omega$ satisfies the geometric control condition. The first result is obtained by applying HUM (Hilbert Uniqueness Method due to J. L. Lions while the second one is obtained by employing ideas first introduced in the literature by Lasiecka and Tataru.
International Nuclear Information System (INIS)
Cvikl, B.
1980-03-01
Incoherent scattering function for case of simple translation of center of mass and the random torsional oscillations of the rigid body along the long molecular axes of an amplitude phi 0 , of perfectly ordered molecules in nematic phase, has been calculated. The model of a random molecular torsional motion is built on the assumption that each proton in the molecule suffers a large number of equal angular displacements between two perfectly reflecting barriers at phi 0 and -phi 0 . The dynamics of molecular tail has been described by uniaxial free rotational diffusion and freely rotating spherical top models, respectively. The predictions of the calculations are tested on measured time of flight spectra, obtained on three members of a homologous series of cholesteric liquid crystals and agreement is obtained
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
International Nuclear Information System (INIS)
Mirbach, David von
2014-01-01
Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. The mechanical methods for residual stress measurement are divided into the groups of non-destructive and destructive methods. Two commonly used mechanical methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded as semi-destructive methods. In the context of reactor safety research of the German Federal Ministry of Economic and Technology (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by Universitaet of Stuttgart-Otto-Graf-Institut - materials testing institute. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. The state of art was reground in the first research chapter and the analysed strain gauges where
International Nuclear Information System (INIS)
Topchyan, I.I.; Dokhner, R.D.
1977-01-01
The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects
Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals
Directory of Open Access Journals (Sweden)
Valeri S. Harutyunyan
2017-11-01
Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants
Topology optimization for elastic base under rectangular plate subjected to moving load
Directory of Open Access Journals (Sweden)
Jilavyan Samvel H.
2015-09-01
Full Text Available Distribution optimization of elastic material under elastic isotropic rectangular thin plate subjected to concentrated moving load is investigated in the present paper. The aim of optimization is to damp its vibrations in finite (fixed time. Accepting Kirchhoff hypothesis with respect to the plate and Winkler hypothesis with respect to the base, the mathematical model of the problem is constructed as two-dimensional bilinear equation, i.e. linear in state and control function. The maximal quantity of the base material is taken as optimality criterion to be minimized. The Fourier distributional transform and the Bubnov-Galerkin procedures are used to reduce the problem to integral equality type constraints. The explicit solution in terms of two- dimensional Heaviside‘s function is obtained, describing piecewise-continuous distribution of the material. The determination of the switching points is reduced to a problem of nonlinear programming. Data from numerical analysis are presented.
Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.
Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C
2010-12-01
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Plasticity characteristic obtained by indentation
International Nuclear Information System (INIS)
Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.
2011-01-01
Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.
International Nuclear Information System (INIS)
Mirbach, David von
2015-01-01
Residual stresses in mechanical components can result in both detrimental but also beneficial effects on the strength and lifetime of the components. The most detailed knowledge of the residual stress state is of advantage or a pre-requisite for the assessment of the component performance. Two commonly used methods for determination of residual stresses are the hole drilling method and the ring core method which can be regarded to the mechanical methods. In the context of reactor safety research of the German Federal Ministry of Economic and Energy (BMWi) two fundamental and interacting weak points of the hole drilling method as well as of the ring core method, respectively, in order to determine residual stresses are going to be investigated. As a consequence reliability of the methods will be improved in this joint research project. On the one hand there are effects of geometrical boundary conditions of the components and on the other hand there is the influence of plasticity due to notch effects both affecting the released strain field after removing material and after all the calculated residual stresses. The first issue mentioned above is under the responsibility of the Institute of Materials Engineering (Kassel University) and the last one is investigated by materials testing institute university Stuttgart. As a consequence of a successful project the knowledge base will be considerably improved resulting in benefits for various engineering fields. Especially the quantitative consideration of real residual stress states for optimized component designs will be possible and after all the consequences of residual stresses on safety of components which are used in nuclear facilities can be evaluated. In this second experimental research chapter (phase 2) the findings of the first numerical and theoretical research chapter (phase 1) where proofed. The developed differential calculation method with the method of adaptive calibration functions were compared with the
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks
Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen
2014-01-01
Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks. PMID:28788168
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks
Directory of Open Access Journals (Sweden)
Miguel Sol-Sánchez
2014-08-01
Full Text Available Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats to be used in railway tracks.
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks.
Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen
2014-08-18
Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks.
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
Data-Driven Problems in Elasticity
Conti, S.; Müller, S.; Ortiz, M.
2018-01-01
We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.
Remarks on orthotropic elastic models applied to wood
Directory of Open Access Journals (Sweden)
Nilson Tadeu Mascia
2006-09-01
Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.
A numerical approximation to the elastic properties of sphere-reinforced composites
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)
Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.
2017-02-01
In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.
Directory of Open Access Journals (Sweden)
Abdelaali Rahmouni
2017-02-01
Full Text Available Natural materials (e.g. rocks and soils are porous media, whose microstructures present a wide diversity. They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturated with one or more fluids. The prediction of elastic and acoustic properties of porous materials is very important in many fields, such as physics of rocks, reservoir geophysics, civil engineering, construction field and study of the behavior of historical monuments. The aim of this work is to predict the elastic and acoustic behaviors of isotropic porous materials of a solid matrix containing dry, saturated and partially saturated spherical pores. For this, a homogenization technique based on the Mori–Tanaka model is presented to connect the elastic and acoustic properties to porosity and degree of water saturation. Non-destructive ultrasonic technique is used to determine the elastic properties from measurements of P-wave velocities. The results obtained show the influence of porosity and degree of water saturation on the effective properties. The various predictions of Mori–Tanaka model are then compared with experimental results for the elastic and acoustic properties of calcarenite.
Coupled spin, elastic and charge dynamics in magnetic nanostructures
Kamra, A.
2015-01-01
In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In
Elastic properties of some transition metal arsenides
Nayak, Vikas; Verma, U. P.; Bisht, P. S.
2018-05-01
The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.
International Nuclear Information System (INIS)
Fillat, Ursula; Pepio, Montserrat; Vidal, Teresa; Roncero, M. Blanca
2010-01-01
Fiber crops constitute a good alternative to wood fiber for manufacturing pulp and paper. In fact, fiber plants like flax surpass wood fiber in some technical respects and also in the environmental benignity of their processing. In this work, flax fiber was subjected to environmentally friendly bleaching sequences in order to obtain a high-quality pulp. The totally chlorine-free sequences (TCF) used for this purpose (LE and LRE) included an enzyme treatment with laccase in the presence of HBT as mediator (L stage), an alkaline extraction (E stage) and a reductive treatment with NaBH 4 (R stage). The operating conditions for the L stage (laccase and HBT doses, reaction time and oxygen pressure) were optimised by using a sequential statistical plan to assess their influence on pulp properties after the E stage. Mathematical models accurately predicting brightness and kappa number in terms of the previous four variables were developed based on which the most influential factors were the laccase and HBT rates, and treatment time. By contrast, oxygen pressures of 0.2-0.6 MPa in the reactor had no effect on brightness or kappa number. The flax pulp obtained contained some oxidized cellulose that was partially degraded in the alkaline extraction step and reduced viscosity as a result. The viscosity loss associated with the presence of oxidized cellulose in the control and enzyme-treated pulp samples was efficiently recovered by using a reductive stage with sodium borohydride. Effluent was also analysed in order to assess the environmental impact of the process.
International Nuclear Information System (INIS)
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
Indentation of elastically soft and plastically compressible solids
DEFF Research Database (Denmark)
Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.
2015-01-01
rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...
Directory of Open Access Journals (Sweden)
Izabela Dutra Alvim
2010-12-01
Full Text Available Microparticles obtained by complex coacervation were crosslinked with glutaraldehyde or with transglutaminase and dried using freeze drying or spray drying. Moist samples presented Encapsulation Efficiency (%EE higher than 96%. The mean diameters ranged from 43.7 ± 3.4 to 96.4 ± 10.3 µm for moist samples, from 38.1 ± 5.36 to 65.2 ± 16.1 µm for dried samples, and from 62.5 ± 7.5 to 106.9 ± 26.1 µm for rehydrated microparticles. The integrity of the particles without crosslinking was maintained when freeze drying was used. After spray drying, only crosslinked samples were able to maintain the wall integrity. Microparticles had a round shape and in the case of dried samples rugged walls apparently without cracks were observed. Core distribution inside the particles was multinuclear and homogeneous and core release was evaluated using anhydrous ethanol. Moist particles crosslinked with glutaraldehyde at the concentration of 1.0 mM.g-1 protein (ptn, were more efficient with respect to the core retention compared to 0.1 mM.g-1 ptn or those crosslinked with transglutaminase (10 U.g-1 ptn. The drying processes had a strong influence on the core release profile reducing the amount released to all dry samples
Elastic properties of Cs2HgBr4 and Cs2CdBr4 crystals
International Nuclear Information System (INIS)
Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G.
1998-01-01
Using ultrasonic velocity measurements, all components of the elastic constant matrix C ij , elastic compliances matrix S ij , and linear compressibility constants matrix K ij of orthorhombic Cs 2 HgBr 4 and Cs 2 CdBr 4 crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia
Lai, Yun
2011-06-26
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing
2011-01-01
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Directory of Open Access Journals (Sweden)
Sergio Cesare Masin
2010-01-01
Full Text Available Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight-a cognitive law analogous to Hooke¿s law of elasticity. Participants also estimated the total imagined elongation of springs joined either in series or in parallel. This total elongation was longer for serial than for parallel springs, and increased proportionally to the number of serial springs and inversely proportionally to the number of parallel springs. The results suggest that participants integrated load weight with imagined elasticity rather than with spring length.
Rogozinski, Marek
2014-01-01
This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.
Mimicking the effect of gravity using an elastic membrane
International Nuclear Information System (INIS)
Wu, Yecun; Zhu, Changqing; Wang, Yijun; Shi, Qingfan
2014-01-01
Comparing astrospace with an elastic membrane is an interesting analogy but it lacks a theoretical basis and experimental support. We develop a theoretical model that brings to light the relationship between the conceptual model of a gravity well and an elastic deformation equation of a membrane supporting a heavy ball, and further derive the ‘gravitational constant’ for such a small ‘elastic space’. The experimental data obtained are consistent with the prediction of our model, in mimicking the revolution of a small planet. Teaching practice shows that using an elastic membrane is a simple, intuitive and reliable method to enhance the quality of learning about the effect of gravity. (paper)
International Nuclear Information System (INIS)
Faurie, D.; Djemia, P.; Le Bourhis, E.; Renault, P.-O.; Roussigne, Y.; Cherif, S.M.; Brenner, R.; Castelnau, O.; Patriarche, G.; Goudeau, Ph.
2010-01-01
Elastic properties of non-textured and {1 1 1}-fiber-textured gold thin films were investigated experimentally by several complementary techniques, namely in situ tensile testing under X-ray diffraction (XRD), nanoindentation and Brillouin light scattering (BLS). Specimens were probed along different directions to reveal the strong effects of elastic anisotropy at the (local) grain and (global) film scales. XRD allows the investigation of both local and global anisotropies, while BLS and nanoindentation are limited to global analyses. A micromechanical model, based on the self-consistent scheme, and accounting for the actual microstructure of the films, is applied to interpret experimental data. Although different types of elastic constants can be determined with the used experimental techniques (static/dynamic, local/global), a good agreement is obtained, showing that comparison of these techniques is feasible when carried out carefully. In particular, the use of a micromechanical model to estimate the effects of the local elastic anisotropy at the film scale is unavoidable. The presented results show that XRD, BLS and nanoindentation should capture anisotropic texture effects on elastic constants measurements for materials with a Zener anisotropy index larger than 2. Conversely, the actual texture of a given specimen should be taken into account for a proper analysis of elastic constants measurements using those three experimental techniques.
Non-linear theory of elasticity
Lurie, AI
2012-01-01
This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.
Directory of Open Access Journals (Sweden)
Cabanas-Polo, S.
2014-12-01
Full Text Available Ni/Al₂O₃ composites have been fabricated by slip casting of concentrated Ni(OH₂/Al₂O₃ suspensions and subsequent in situ reduction to metallic nickel during sintering. For that, the synthesis assisted by ultrasound of both α- and β-Ni(OH₂ polymorphs, as well as their colloidal stability, have been studied. The structural differences between both polymorphs have been thoroughly studied by means of XRD, FTIR, DTA-TG, SSA, SEM and TEM, in order to optimize the starting suspensions. This way, the IEP of both polymorphs have been established (9.7 y 12 for β- and α-Ni(OH₂, respectively, as well as the optimal content of an anionic dispersant (PAA to stabilize the particles (0.8 wt. % for beta phase and 3.0 wt. % for alpha phase. Three different Ni/Al₂O₃ composites, with a high dispersion degree of the metallic phase, have been obtained considering the potential vs. particles distance curve of the Ni(OH₂, and their structure has been discussed in terms of the strength of the agglomerates and/or aggregates of the Ni(OH₂.La obtención de materiales compuestos Ni/Al₂O₃ se ha llevado a cabo mediante colaje en molde de escayola de suspensiones concentradas de Ni(OH₂/Al₂O₃ y su posterior reducción in situ para obtener la fase metálica. Para ello, se ha estudiado la síntesis asistida por ultrasonido de los polimorfos α- y β-Ni(OH₂, así como su comportamiento coloidal en medio acuoso. Las diferencias estructurales entre ambos polimorfos han sido estudiadas en detalle mediante XRD, FTIR, ATD-TG, SSA, MEB y MET, para poder optimizar las suspensiones de partida. De esta manera, se ha establecido el PIE de ambos polimorfos (9.7 y 12 para las fases β- y α-Ni(OH₂, respectivamente, así como el contenido óptimo de un dispersante aniónico (PAA para la estabilización de las partículas (0.8 % p/p para la fase beta y 3.0 % p/p para la fase alfa. Tres materiales compuestos Ni/Al₂O₃ diferentes, con un alto grado de
Torsion of a Cosserat elastic bar with square cross section: theory and experiment
Drugan, W. J.; Lakes, R. S.
2018-04-01
An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.
Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology
Allen, P. A.; Wells, D. N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Diffraction stress analysis of thin films; investigating elastic grain interaction
International Nuclear Information System (INIS)
Kumar, A.
2005-12-01
This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Autonomic Vertical Elasticity of Docker Containers with ElasticDocker
Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe
2017-01-01
International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...
Alumina strength degradation in the elastic regime
International Nuclear Information System (INIS)
Furnish, Michael D.; Chhabildas, Lalit C.
1998-01-01
Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime
Elastic interaction energies of defect structures
International Nuclear Information System (INIS)
Seitz, E.; de Fontaine, D.
1976-01-01
The elastic strain energy between point defects and small disk-shaped clusters of defects are calculated to determine stable configurations. A distortion tensor of tetragonal symmetry is assigned to each impurity atom. The tetragonality ratio t is varied to cover needle-type (t greater than 1), spherical (t = 1) and disk-type (t less than 0) strain fields. To vary the elastic properties of the host material, Fe, Cu, Al, and V were chosen as examples. Computer calculations are based on the microscopic theory of elasticity which emphasizes calculations in discrete Fourier space. Pairs of point defects order along [001] for t less than 1 and along (001) for t = 1 for all host elements. For t greater than 1 fcc lattices and bcc lattices behave differently. It is shown that only certain three dimensional periodic arrangements of parallel and perpendicular disk-like defect clusters are realized for given tetragonality ratio t and host element
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Directory of Open Access Journals (Sweden)
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Directory of Open Access Journals (Sweden)
Mohammad Hadi Jalali
2018-01-01
Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.
The study of the elasticity of spider dragline silk with liquid crystal model
International Nuclear Information System (INIS)
Cui Linying; Liu Fei; Ouyang Zhongcan
2009-01-01
Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.
Mathematical theory of elasticity of quasicrystals and its applications
Fan, Tianyou
2011-01-01
This book presents a clear-cut, strict and systematic mathematical overview of the continuum mechanics of novel materials, condensed matter physics and partial differential equations, and explores the mathematical theory of elasticity of quasicrystals.
Modeling Pseudo-elastic Behavior of Springback
International Nuclear Information System (INIS)
Xia, Z. Cedric
2005-01-01
One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be
On the concept of elasticity used in some fast reactor accident analysis codes
International Nuclear Information System (INIS)
Malmberg, T.
1975-01-01
The analysis to be presented will restrict attention to the elastic part of the elastic-plastic constitutive equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several simple deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed
On the concept of elasticity used in some fast reactor accident analysis codes
International Nuclear Information System (INIS)
Malmberg, T.
1975-01-01
The analysis presented restricts attention to the elastic part of the elastic-plastic equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed. (Auth.)
Buckling of a stiff thin film on an elastic graded compliant substrate
Chen, Zhou; Chen, Weiqiu; Song, Jizhou
2017-12-01
The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.
Designing interactively with elastic splines
DEFF Research Database (Denmark)
Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie
2018-01-01
We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....
Elastic properties of fly ash-stabilized mixes
Directory of Open Access Journals (Sweden)
Sanja Dimter
2015-12-01
Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].
Energy Technology Data Exchange (ETDEWEB)
Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil)
2015-07-01
Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)
Energy Technology Data Exchange (ETDEWEB)
Fernandes, Henrique; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica de; Azevedo, Eduardo R. de [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica
2013-07-01
Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Biotechnology of humified materials obtained from vermicomposts ...
African Journals Online (AJOL)
PERSON
2013-02-13
Feb 13, 2013 ... Techniques for determining the structure of HS have been particularly useful for .... Step 6: Attempted introduction of the technologies into agro- industrial and .... rice plants stimulated several enzymatic mechanisms associated with the ... ammonia-lyase (PAL) were stimulated, resulting in increased proline ...
Surface effects on static bending of nanowires based on non-local elasticity theory
Directory of Open Access Journals (Sweden)
Quan Wu
2015-10-01
Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
Energy Technology Data Exchange (ETDEWEB)
Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.
2004-07-01
The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO{sub 2}-MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs.
Prediction of fretting fatigue behavior under elastic-plastic conditions
International Nuclear Information System (INIS)
Shin, Ki Su
2009-01-01
Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations
Energy Technology Data Exchange (ETDEWEB)
NONE
1988-03-01
This research and development is intended to establish a basic technology related to high crystalline polymeric material that has dynamic properties comparable to metallic materials by single polymeric material as a structural material. Thick and large high-elasticity molded forms were obtained by searching poly-arylate material, and by developing such processing technologies as high-pressure injection molding, composite injection molding, and elongation fluidity molding. High-elasticity molded forms with uniform internal orientation were obtained by heating and molding liquid crystal polymers under high magnetic field. Solution molding was performed on a molecular composite consisting of rigid chains and soft chains, which was laminated and bonded to have obtained an isotropic form with as high elasticity as 54 GPa. In addition, high pressure powder formation of cross-linked polymers of di-acetylene system provided an isotropic form with sound wave elasticity of 23 GPa.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Vieira, Camilla Ivini Viana [UNESP; Oliveira, Cibele Braga de [UNESP; Ribeiro, Alexandre Antonio [UNESP; Caldas, Sergei Godeiro Fernandes Rabelo [UNESP; Martins, Lídia Parsekian [UNESP; Gandini Júnior, Luiz Gonzaga [UNESP; Santos-Pinto, Ary dos [UNESP
2013-01-01
Introduction and Objective: The synthetic intermaxillary elastic emerged as an alternative for clinical use in patients with latex sensitivity. However, there are disagreements about this elastic protocol use according to the force degradation. The aim of this study was to evaluate, in vitro, the forces generated by latex and synthetic elastics over time. Material and methods: Sample size of 840 elastics were used (420 latex and 420 synthetic), delivering medium strength (Dental Morelli®) wit...
Vieira, Camila Ivini Viana [UNESP; Oliveira, Cibele Braga [UNESP; Ribeiro, Alexandre Antonio [UNESP; Caldas, Sergei Godeiro Fernandes Rabelo [UNESP; Martins, Lídia Parsekian [UNESP; Gandini Júnior, Luiz Gonzaga [UNESP; Santos-Pinto, Ary dos [UNESP
2013-01-01
Introduction and Objective: The synthetic intermaxillary elastic emerged as an alternative for clinical use in patients with latex sensitivity. However, there are disagreements about this elastic protocol use according to the force degradation. The aim of this study was to evaluate, in vitro, the forces generated by latex and synthetic elastics over time. Material and methods: Sample size of 840 elastics were used (420 latex and 420 synthetic), delivering medium strength (Dental Morelli®) wi...
Price elasticity estimation of electricity demand in France
International Nuclear Information System (INIS)
Bourbonnais, Regis; Keppler, Jan Horst
2013-10-01
On request of the French Union of Electricity (UFE), the authors have carried out a series of econometric statistical tests in order to determine the price elasticity of electricity demand in France. The results obtained are all solid and realistic
Directory of Open Access Journals (Sweden)
M. Nabishahyakitash
2015-05-01
Full Text Available In this paper, we investigate Conjectural Variations elasticity in Iranians Food and Beverage industry using Iwata approach, The conjectural variation function is extracted from demand and supply information also optimization process on producers’ behavior. The experimental estimates of conjectural variation elasticities were obtained based on price elasticity of demand, cost elasticity and marginal cost elasticity for the selected industries. In this research demand function AIDS was used to obtain the price elasticity. The AIDS function was estimated using SUR and the demand price elasticity is calculated by calfent. The results show that "Vegetable oils and animal" industry with 19.37 have the most conjectural variation elasticity among the selected industries (The more divergent the conjectural variation elasticity is from zero the more likely the monopoly exists. In addition, dairy, sugar and malt industries have the most conjectural variation elasticity with 18.01, 17.18, and 10.51 respectively.
Melnyk, Andrew
2012-05-01
Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Fischer, K.O.P.
1981-11-26
The object of the invention is a process for preparing root stocks, roots, bark and branches and twigs carrying needles or scales and seed capsules of conifers, where fuel and raw materials for hydrotherapy are obtained. The material used is reduced in size by beating and rubbing in pulverisers to a coarse grained mixture, which is reduced in size in further grinding processes in a mill to a mean grain size of 0.5 to 1 mm. The material dried during grinding by waste heat can be used directly as a powdery or fine-grained fuel, made into briquettes or non-wearing shapes or can be taken to a hydrocarbon conversion process or made into a bath extract.
Energy Technology Data Exchange (ETDEWEB)
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
Elastic constants of diamond from molecular dynamics simulations
International Nuclear Information System (INIS)
Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A
2006-01-01
The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined
International Nuclear Information System (INIS)
Elsner, B.A.M.; Müller, S.; Bargmann, S.; Weissmüller, J.
2017-01-01
Predicting the influence of the surface on the effective elastic properties of nanoscale structures and nanomaterials remains a challenge, which we here address on both levels, continuum and atomic. Density Functional Theory (DFT) computation at the atomic level yields the first reliable surface excess elastic parameters for the (111) and (001) surfaces of gold. At the continuum level, we derive closed-form expressions for the effective elastic behavior that can be combined with the DFT-derived excess elastic parameters to obtain the effective axial, torsion, and bending stiffness of circular nanowires with surface excess elasticity. The two approaches use different reference frames, and we emphasize the need for consistent stress definitions and for conversion between the separate stress measures when transferring results between the approaches. We present excess elastic parameters separately for Cauchy and 2 nd Piola-Kirchhoff stresses, demonstrating that the conversion substantially modifies their numerical value and may even invert their sign. The results afford an assessment of the contribution of the surface excess elastic parameters to the effective elastic response of nanoscale beams or wires. This assessment sheds doubt on earlier suggestions relating experimental observations of an effective stiffening or softening at small size to the excess elasticity of clean surfaces.
Elastic properties of Gum Metal
International Nuclear Information System (INIS)
Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi
2006-01-01
In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation
Orthodontic Elastic Embedded in Gingiva for 7 Years
Directory of Open Access Journals (Sweden)
Shruti Tandon
2013-01-01
Full Text Available Dental materials especially orthodontic elastics often get embedded in gingival tissues due to iatrogenic factors. If retained for a long time, inflammatory response starts as asymptomatic crestal bone loss and may progress to severe periodontal abscess. Unsupported orthodontic elastics used for diastema closure may result in exfoliation of teeth, while elastic separators may get embedded in interdental gingiva if banding is performed without removing it. These cases of negligence are detrimental for survival of affected teeth. This paper highlights a case of orthodontic elastic embedded in interproximal gingiva of a 23-year-old healthy female for 7 years after completion of fixed orthodontic treatment. Surprisingly, there was no clinical sign of inflammation around elastic band and it was removed easily without any local anaesthesia. However, mild crestal bone loss was observed on periapical radiograph. The gingiva healed completely after sub gingival debridement.
Study on elastic-plastic fracture toughness test in high temperature water
International Nuclear Information System (INIS)
Miura, Yasufumi
2016-01-01
Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)
Plutonium Elastic Moduli, Electron Localization, and Temperature
International Nuclear Information System (INIS)
Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.
2008-01-01
In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)
Anticavitation and Differential Growth in Elastic Shells
Moulton, Derek E.
2010-07-22
Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.
Application of elasticity theory at Sandia Labortories
International Nuclear Information System (INIS)
Davison, L.
1975-01-01
Examples are given of the application of linear elasticity theory to the solution of practical problems encountered at Sandia Laboratories. It is being applied to a very broad range of problems: those in one, two, and three spatial dimensions, some involving static and some dynamic response, to materials having isotropic and anisotropic symmetry, to homogeneous and inhomogeneous bodies, etc. Various extensions of the theory to include electric, magnetic and thermal effects, to account for material microstructure, for radiation and spall damage, chemical reactions, and other phenomena have been developed and/or applied. In some applications linear elasticity represents the physics of a problem well and is the theory of choice. In others the theory was used because it lent insight into a larger problem that was also attacked by means of other theories and/or experiment, and in some cases it serves as a part of a more encompassing theory
Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2017-04-15
The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.
Moon, Juhyuk
2012-06-04
The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.
Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.
2012-01-01
The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.
Yang, Zheng; Bahar, Ivet; Widom, Michael
2009-06-03
Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine synthase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on collective motions that are otherwise obtained by detailed elastic network models. A major utility of the continuum models is the possibility of estimating macroscopic material properties such as the Young's modulus or Poisson's ratio for different types of viruses.
Use of an ultrasonic device for the determination of elastic modulus of dentin.
Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo
2002-03-01
The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.
Negative stiffness honeycombs as tunable elastic metamaterials
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
International Nuclear Information System (INIS)
Thiede, R.
1980-01-01
In the treatment of elastically embeded shells by finite element methods, a calculation of the rigid body deformations before each iteration essentially improves the convergence of the method. This is also the case when calculating with fictitions densities instead of the real material densities. Some evidence has been obtained for the choice of a damping factor by empirical evaluation of several model calculations. (GL) [de
Form finding in elastic gridshells
Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.
2018-01-01
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.