WorldWideScience

Sample records for elastic excitation ionization

  1. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  2. Excitation mechanisms in singly ionized krypton laser

    International Nuclear Information System (INIS)

    El-Sherbini, Th.M.

    1982-01-01

    Lifetimes for the low lying 4p 4 4d and 4p 4 5s levels of singly ionized krypton laser are calculated, taking into account configuration interaction effects. The results show that some of these levels are metastable. They also suggest a two step excitation from the ground state of the ion (or the atom) to the upper 4p 4 5p laser levels involving some intermediate metastable states as a possible excitation mechanism. (author)

  3. An analytical excitation for an ionizing plasma

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sijde, van der B.; Schram, D.C.

    1983-01-01

    From an analytical model for the population of high-lying excited levels in ionizing plasmas it appears that the distribution is a superposition of the equilibrium (Saha) value and an overpopulation. This overpopulation takes the form of a Maxwell distribution for free electrons. Experiments for He

  4. Calculations of coincident ionization plus excitation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1986-01-01

    For Li- and Be-like ions, K x-ray yields, together with detection that the ionic charge has increased, give the cross section for ionization plus excitation (IE), a process which can exhibit electron-electron correlations. Measurements of IE for 14 Si 11+ + He stimulated our coupled-channels calculations in the independent-Fermi-particle model (IFPM), which includes Pauli correlations. We discuss how the IFPM expressions, generalized here to include an open shell, differ from those for distinguishable electrons. The sensitivity of σ/sub IE/ to correlations is shown. Recent additional measurements and future ones giving excitation functions for resolved configurations and complementary Auger data will provide even more sensitive tests of collisional correlation theory. 15 refs., 3 figs., 1 tab

  5. Electron Impact Excitation-Ionization of Molecules

    Science.gov (United States)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  6. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  7. Electron impact ionization-excitation of Helium

    Science.gov (United States)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  8. Elastic wave excitation in centrosymmetric strontium titanate crystals

    International Nuclear Information System (INIS)

    Yushin, N.K.; Sotnikov, A.V.

    1980-01-01

    The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers

  9. New excitation and ionization mechanism of ions in dense plasmas

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Kato, Takako.

    1981-10-01

    It is shown that, in dense plasmas, dielectronic capture into doubly excited ionic states followed by the ladder-like excitation-ionization chain becomes important in the excitation-ionization process of ions. For an example of a hydrogen-like ion, its contribution to the excitation 1s → 2s, 2p and also to the ionization has been evaluated by the method of the quasi-steady-state solution to the rate equations. The increase is found to be substantial, i.e., by more than a factor of two both for the excitation and ionization rate coefficients. PACS classification: 52.25., 32.80.D sub(z), 34.80.D. (author)

  10. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  11. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  12. Associative ionization of two laser excited Na atoms

    International Nuclear Information System (INIS)

    Meijer, H.A.J.

    1988-01-01

    An investigation into the associative ionization of two sodium atoms excited by polarized laser beams is described. It was possible to excite the Na atoms in a velocity-selective way by exploiting the Doppler effect. The excitation of Na to the 3 2 P 3/2 , F=3 level is discussed on the basis of so-called saturation curves. Experiments with seven different combinations of polarization of the two exciting laser beams are described and the results discussed. 86 refs.; 53 figs.; 6 tabs

  13. An analytical excitation model for an ionizing plasma

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sijde, van der B.; Schram, D.C.

    1983-01-01

    From an analytical model for the population of high-lying excited levels in ionizing plasmas it appears that the distribution is a superposition of the equilibrium (Saha) value and an overpopulation. This overpopulation takes the form of a Maxwell distribution for free electrons. Experiments for He

  14. Microwave ionization and excitation of Ba Rydberg atoms

    International Nuclear Information System (INIS)

    Eichmann, U.; Dexter, J.L.; Xu, E.Y.; Gallagher, T.F.

    1989-01-01

    We have investigated ionization and excitation of the Ba 6sn s 1 S 0 and 6snd 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28 n -5 , and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpret the data. In particular multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values. (orig.)

  15. An annular ionization detector for quasi-elastic and transfer reaction studies

    CERN Document Server

    Dinesh, B V; Nayak, B K; Biswas, D C; Saxena, A; Pant, L M; Sahu, P K; Choudhury, R K

    2000-01-01

    An annular ionization chamber detector has been developed to study quasi-elastic and transfer reactions in heavy-ion collisions at near-barrier and sub-barrier energies. The important feature of the detector is that it has a near 2 pi coverage in the azimuthal angle phi for the particles entering in the detector at a given theta direction. This feature makes the detector very useful for measurement of the differential cross-sections at backward angles with respect to the beam direction, involving low cross-section reaction channels. The split anode configuration of the detector makes it capable of both particle identification and energy measurement for heavy ions and fission fragments. The detector has been tested using heavy-ion beams from the 14 MV-pelletron accelerator at Mumbai. Results on quasi-elastic excitation function measurements and barrier distribution studies in many heavy-ion reactions using this detector setup are discussed.

  16. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  17. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  18. [Electron transfer, ionization and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1991-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  19. Development of laser excited atomic fluorescence and ionization methods

    International Nuclear Information System (INIS)

    Winefordner, J.D.

    1991-01-01

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies

  20. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  1. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  2. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  3. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  4. Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas

    Science.gov (United States)

    Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.

    2017-09-01

    Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas have been investigated by employing the exterior complex scaling method. The interactions between charged particles in the plasmas have been represented by Debye-Hückel potentials. The 1 s -1 s elastic collision strengths below the n =2 excitation threshold of He+ dominated by resonance structures are calculated for different screening lengths. As the screening strength increases, the resonance peaks studied [2(1,0) 2 +1Se,3Po,1De , and 2(0,1) 2 +1Po] exhibit blueshifts and then redshifts with a further increase of the screening strength, which results in dramatic changes of the collision strengths. It is found that these dynamic variation features of the resonances are related to the changes of energy levels of He+ in the screened potential and geometric configurations of resonances. Triple-differential-ionization cross sections in coplanar geometries at 6-Ry incident electron energy are also reported, significant changes are observed with varying screening length.

  5. Data on ionization, excitation, dissociation and dissociative ionization of targets by helium ion bombardments, (1)

    International Nuclear Information System (INIS)

    Oda, Nobuo; Urakawa, Junji

    1984-03-01

    This report presents a compilation of the experimental data on cross sections for the ionization, excitation, dissociation and dissociative ionization processes of targets in helium ion impacts on atoms and molecules under a single collision condition. These measurements were carried out in the energy range from several keV to 3.5 MeV. A systematic survey has been made on the literatures from 1975 to the end of 1982. A list of references is also given, including relevant papers published before 1975. (author)

  6. Elastic scattering of electrons from singly ionized argon

    International Nuclear Information System (INIS)

    Griffin, D.C.; Pindzola, M.S.

    1996-01-01

    Recently, Greenwood et al. [Phys. Rev. Lett. 75, 1062 (1995)] reported measurements of large-angle elastic scattering of electrons from singly ionized argon at an energy of 3.3 eV. They compared their results for the differential cross section with cross sections determined using phase shifts obtained from two different scattering potentials and found large discrepancies between theory and experiment at large angles. They state that these differences may be due to the effects of polarization of the target, which are not included in their calculations, as well as inaccurate representations of electron exchange in the local scattering potentials that are employed to determine the phase shifts. In order to test these proposed explanations of the discrepancies, we have carried out calculations of elastic scattering from Ar + using the R-matrix method. We compare both a single-state calculation, which does not include polarization, and a 17-state calculation, in which the effects of dipole polarizability are included through the use of polarization pseudostates within the close-coupling expansion, to each other and with the measurements. We find some differences between the two calculations at intermediate scattering angles, but very close agreement at angles above 100 degree. Although the calculated cross sections agree with experiment between 120 degree and 135 degree, large discrepancies persist at angles above 135 degree. We conclude that the differences between the measurements and theory cannot be explained on the basis of an inaccurate representation of electron exchange or polarization of the target. copyright 1996 The American Physical Society

  7. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  8. Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    Winter, T.G.; Alston, S.G.

    1992-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom (and ion-ion) collisions. The focus is on intermediate- and higher-energy collisions, corresponding to proton energies of about 25 kilo-electron-volts (keV) or larger. At intermediate energies, where the transition probabilities are not small, many states must be coupled in a large calculation, while at higher energies, perturbative approaches may be used. Several studies have been carried out in the current three-year period; most of these treat systems with only one or two electrons, so that fewer approximations need be made and the basic collisional mechanisms can be more clearly described

  9. [Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1992-01-01

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He + collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential

  10. Impulse approximation treatment of electron-electron excitation and ionization in energetic ion-atom collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Lee, D.H.; Sanders, J.M.; Richard, P.

    1993-01-01

    The effect of electron-electron interactions between projectile and target electrons observed in recent measurements of projectile K-shell excitation and ionization using 0 projectile Auger electron spectroscopy are analysed within the framework of the impulse approximation (IA). The IA formulation is seen to give a good account of the threshold behavior of both ionization and excitation, while providing a remarkably simple intuitive picture of such electron-electron interactions in ion-atom collisions in general. Thus, the applicability of the IA treatment is extended to cover most known processes involving such interactions including resonance transfer excitation, binary encounter electron production, electron-electron excitation and ionization. (orig.)

  11. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  12. Effects of previous ionization and excitation on the ionization wave propagation along the dielectric tube

    International Nuclear Information System (INIS)

    Xia, Yang; Liu, Dongping; Bi, Zhenhua; Wang, Xueyang; Niu, Jinhai; Ji, Longfei; Song, Ying; Qi, Zhihua; Wang, Wenchun

    2016-01-01

    In this paper, by using a high precision synchronization system, the ignition time, velocity, and propagation properties of the ionization waves (IWs) have been investigated in detail from the 1st high voltage (HV) pulse to the sequential ones over a large range of the pulse-off time. In order to clarify the effects of previous ionization and excitation on the IW propagation, the density of the residual charges are controlled by varying the pulse-off time from 199 μs to 15 μs. The results show that the formation and propagation of IWs can be strongly affected by previous discharge. For a longer pulse-off time (100 μs–190 μs), the propagation velocity of plasma bullets are decreased from the 1st to the 10th HV pulse, then increased after the 10th pulse, and finally become stable after about 500 pulses. When the pulse-off time is reduced to 15 μs, the propagation velocity of plasma bullets will rapidly increase and become stable after the 1st HV pulse. The ignition voltage is significantly reduced after the 1st HV pulse with the decrease in pulse-off time. Consequently, the generation and propagation of IWs in the tube are strongly affected by the accumulation of long-lived metastable helium (He) species and residual charges from previous discharges, which is important for understanding the plasma bullet behavior. (paper)

  13. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1989-01-01

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s 1/2 , 2p 1/2 and 2p 3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s 1/2 , 3p 3/2 , 3d 3/2 and 3d 5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s 1/2 , 4p 1/2 , 4p 3/2 , 4d 3/2 , 4d 5/2 , 4f 5/2 and 4f 7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  14. Excitation of waves in elastic waveguides by piezoelectric patch actuators

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...

  15. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  16. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  17. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  18. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  19. Use of VUK-170 elastic vibration exciter to free instrument from landslide and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Akopov, E A; Dublenich, Y V; Leskovskii, G A

    1981-01-01

    The mechanical institute of Moscow State Univ. and VNIIBT have developed a mechanical long stroke drilling jar named VUK-170M elastic vibration exciter. It is able to function in two modes: percussion and wave-impulse. Tests have established that the VUK-1/0 elastic vibration exciter is an effective means for eliminating tool sticking, such as drill bit wedging, use in permeable deposits, or rockburst in the annulary space after walls of well collapse. In the latter case a number of measures should be undertaken: use of the device in a wave-impulse or percussion mode; oil slug; turn the drilling string by section.

  20. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  1. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  2. Examination of excited state populations in sputtering using Multiphoton Resonance Ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed

  3. Examination of excited state populations in sputtering using multiphoton resonance ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs

  4. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-01-01

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections σ n and asymmetry parameters β n are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n -3 dependence of the partial ionization cross sections. However, the β ∞ =-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold

  5. Calculation of the differential cross sections of excitation and ionization of a helium atom by electrons

    International Nuclear Information System (INIS)

    Demkin, V.P.; Pecheritsyn, A.A.

    1995-01-01

    Equations for the amplitudes and differential cross sections of electronic excitation and ionization of a helium atom are derived in the approximation of a open-quotes frozenclose quotes ion core. The wave functions of the discrete states are chosen in the form of generalized hydrogenlike orbitals. The radial wave functions of the continuous spectrum are determined by solving the equation of motion numerically. The differential excitation cross sections of excitation of the 2p, 3p, and 4p levels and ionization of a helium atom by electrons are calculated in the energy range up to 50 eV. Estimates are obtained for the nonorthogonal wave functions in the amplitudes of the excitation and ionization processes. It is shown that the given method is more compatible with experiment than the Born method

  6. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  7. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  8. Structure of high excited nuclear states and elastic scattering

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  9. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  10. Dissociative ionization of liquid water induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H + and OH - ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H 2 O, the quantum yield at 283 +- 1 K varies from 2 x 10 -9 to 4 x 10 -5 for wave numbers between 7605 and 18140 cm -1 . In D 2 O, the dependence of quantum yield on wavelength has the same qualitative shape as for H 2 O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D 2 O than for excitation of D 2 O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H 2 O and with isotopic composition at 25 +- 1 0 C

  11. Dissociative ionization of liquid water induced by vibrational overtone excitation

    Energy Technology Data Exchange (ETDEWEB)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  12. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  13. Ionization and excitation of uranium in a hollow-cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Pianarosa, P.; Larin, G.; Saint-Dizier, J.P.; Bouchard, P.

    1981-01-01

    The influence of different carrier gases (Ne,Ar,Kr,Xe) their pressure, and discharge current on the excitation and ionization of uranium atoms in a vapor generator of hollow-cathode design has been investigated by monitoring emission line intensities. From our measurements of line intensities as a function of the carrier gas we obtain an indication of the role of Penning collisions on the excitation of radiative levels in U II

  14. Calculations of elastic, ionization and total cross sections for inert gases upon electron impact: threshold to 2 keV

    Energy Technology Data Exchange (ETDEWEB)

    Vinodkumar, Minaxi [V P and R P T P Science College, Vallabh Vidyanagar 388 120, Gujarat (India); Limbachiya, Chetan [P S Science College, Kadi 382 715, Gujarat (India); Antony, Bobby [Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell, 265 Riverside Street, Lowell, MA 01854-5045 (United States); Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat (India)

    2007-08-28

    In this paper we report comprehensive calculations of total elastic (Q{sub el}), total ionization (Q{sub ion}) and total (complete) cross sections (Q{sub T}) for the impact of electrons on inert gases (He, Ne, Ar, Kr and Xe) at energies from about threshold to 2000 eV. We have employed the spherical complex optical potential (SCOP) formalism to evaluate Q{sub el} and Q{sub T} and used the complex spherical potential-ionization contribution (CSP-ic) method to derive Q{sub ion}. The dependence of Q{sub T} on polarizability and incident energy is presented for these targets through an analytical formula. Mutual comparison of various cross sections is provided to show their relative contribution to the total cross sections Q{sub T}. Comparison of Q{sub T} for all these targets is carried out to present a general theoretical picture of collision processes. The present calculations also provide information, hitherto sparse, on the excitation processes of these atomic targets. These results are compared with available experimental and other theoretical data and overall good agreement is observed.

  15. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)

    2007-06-15

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.

  16. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    International Nuclear Information System (INIS)

    Hemmen, J. Leo van; Leibold, Christian

    2007-01-01

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level

  17. Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model

    CERN Document Server

    Nemes, F.; Csanád, M.

    2015-01-01

    The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...

  18. Single photon core ionization with core excitation: a new spectroscopic tool

    International Nuclear Information System (INIS)

    Penent, F; Carniato, S; Lablanquie, P; Selles, P; Palaudoux, J; Andric, L; Žitnik, M; Bučar, K; Shigemasa, E; Nakano, M; Ito, K; Hikosaka, Y

    2015-01-01

    The simultaneous core ionization and core excitation process (or K -2 V process) induced by absorption of a single photon provides the basis of a new spectroscopy that offers both advantages of X-ray Photoelectron Spectroscopy (XPS) and near-edge x-ray absorption fine structures (NEXAFS) spectroscopy (paper)

  19. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  20. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  1. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  2. Characteristics of the self-excited ionization waves in a magnetized positive column

    International Nuclear Information System (INIS)

    Maruyama, Takeo; Yamamura, Yasuhiro; Takano, Saburo; Miura, Kosuke; Imazu, Shingo.

    1979-01-01

    In the past, metastable atoms were not considered in the investigations of ionization waves generated in a positive column weakly ionized. However, metastable atoms seem to be important for the generation of ionization waves, and there are many unknown factors. In this paper, the fundamental equations and dispersion relation are explained under the assumption of axi-symmetrical positive column plasma placed in a uniform magnetic field, and the direct ionization frequency and excitation frequency, cumulative ionization coefficient, electron density and metastable atom density, the energy loss factor for electrons, the dependence of plasma quantities on magnetic field and dispersion characteristics are calculated. Experiments have been conducted using Ne gas in a discharge tube of 80 cm long and 1 cm radius with heated oxide cathode. Magnetic field was obtained with a solenoid coil of 75 cm long, 9 cm I.D. and 27 cm O.D. The axially uniform magnetic field was in the range of 35 to 40 cm. As the results, the following points have become clear. (1) The number of waves, angular frequency and phase velocity of ionization waves decrease with the increase of magnetic field. (2) By the consideration of the presence of metastable atoms, the theoretical values were improved pretty well and agreed with the experimental values qualitatively and quantitatively. (3) Longitudinal magnetic field has the effect of suppressing the growth of ionization waves because of the reduction of time and spatial growth rates with the increase of magnetic field. (Wakatsuki, Y.)

  3. Excitation function of elastic scattering on 12C + 4He system, at low energies

    International Nuclear Information System (INIS)

    Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.

    2011-01-01

    Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)

  4. Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons

    Science.gov (United States)

    Onda, K.; Truhlar, D. G.

    1980-01-01

    Coupling calculations of differential, integral, and momentum transfer cross sections for pure elastic scattering and rotational excitation of CO by electron impact are reported. The calculations are based on a static charge distribution that has correct dipole and quadrupole moments, has cusps at the nuclei, and is augmented by an SCF treatment of charge polarization and a local approximation for exchange. The rotationally summed cross sections, with no adjustable parameters in the scattering calculation, are in reasonably good agreement with the experimental cross sections but are somewhat larger at small scattering angles.

  5. Ultrashort optical waveguide excitations in uniaxial silica fibers: elastic collision scenarios.

    Science.gov (United States)

    Kuetche, Victor K; Youssoufa, Saliou; Kofane, Timoleon C

    2014-12-01

    In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions. Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.

  6. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  7. Capture, excitation and ionization in H++He+(1s) collisions

    International Nuclear Information System (INIS)

    Harel, C.; Mendez, L.; Riera, A.

    1995-01-01

    Capture, excitation and ionization cross sections have been calculated for the H + +He + (1s) reaction up to v=3 a.u. in a sole theoretical formalism. An extension to the intermediate energy range of the molecular method including distorded molecular orbitals to discretize the continuum is used. Our results for the three inelastic processes are in very good agreement with both experimental and previous theoretical data. (orig.)

  8. Decay, excitation, and ionization of lithium Rydberg states by blackbody radiation

    Science.gov (United States)

    Ovsiannikov, V. D.; Glukhov, I. L.

    2010-09-01

    Details of interaction between the blackbody radiation and neutral lithium atoms were studied in the temperature ranges T = 100-2000 K. The rates of thermally induced decays, excitations and ionization were calculated for S-, P- and D-series of Rydberg states in the Fues' model potential approach. The quantitative regularities for the states of the maximal rates of blackbody-radiation-induced processes were determined. Approximation formulas were proposed for analytical representation of the depopulation rates.

  9. (e, 2e) ionization-excitation experiment with fixed-in-space H2 molecules

    International Nuclear Information System (INIS)

    Takahashi, M.; Watanabe, N.; Khajuria, Y.; Udagawa, Y.; Eland, J.H.D.

    2005-01-01

    This report will introduce an electron-electron-fragment ion triple coincidence spectrometer to the readers with our recent collision dynamics study on ionization-excitation processes of the hydrogen molecule. Following a description of the working principle of the spectrometer, results of the study will be discussed; this includes molecular frame (e, 2e) cross sections that have been observed for the first time. (author)

  10. Optical methods for the evaluation of lanthanide excited state thermal ionization barrier in luminescent materials

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Vedda, A.; Mihóková, Eva; Nikl, Martin

    2012-01-01

    Roč. 85, č. 8 (2012), "085127-1"-"085127-8" ISSN 1098-0121 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Lu 2 Si 2 O 7 * Pr-doped * luminescence * scintillator * excited state ionization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  11. Calculating constants of the rates of the reactions of excitation, ionization, and atomic exchange: A model of a shock oscillator with a change of the Hamiltonian of the system

    Science.gov (United States)

    Tsyganov, D. L.

    2017-11-01

    A new model for calculating the rates of reactions of excitation, ionization, and atomic exchange is proposed. Diatomic molecule AB is an unstructured particle M upon the exchange of elastic-vibrational (VT) energy, i.e., a model of a shock forceful oscillator with a change in Hamiltonian (SFOH). The SFOH model is based on the quantum theory of strong perturbations. The SFOH model allows generalization in simulating the rates of the reactions of excitation, ionization, and atomic exchange in the vibrational-vibrational (VV) energy exchange of diatomic molecules, and the exchange of VV- and VT-energy of polyatomic molecules. The rate constants of the excitation of metastables A 3Σ u +, B 3Π g , W 3Δ u , B'3Σ u -, a'3Σ u -, and the ionization of a nitrogen molecules from ground state X2Σ g + upon a collision with a heavy structureless particle (a nitrogen molecule), are found as examples.

  12. Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.

    2000-01-01

    Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)

  13. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  14. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  15. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  16. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  17. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  18. The instability of the spiral wave induced by the deformation of elastic excitable media

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Wang Chunni; Li Shirong

    2008-01-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with L x x L y = N x ΔxN x Δy = L' x L' y = N x Δx'N x Δy'. In our studies, elastic media are decentralized into N x N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients D x and D y with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ε and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  19. The instability of the spiral wave induced by the deformation of elastic excitable media

    Science.gov (United States)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  20. Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold

    International Nuclear Information System (INIS)

    Shaaran, T.; Figueira de Morisson Faria, C.; Nygren, M. T.

    2010-01-01

    We perform a rigorous, semianalytic study of the recollision excitation with subsequent tunneling ionization (RESI) mechanism in laser-induced nonsequential double ionization (NSDI), based on the strong-field approximation. We show that the shapes of the electron momentum distributions carry information about the bound state with which the first electron collides, the bound state to which the second electron is excited, and the type of electron-electron interaction. Furthermore, one may define a driving-field intensity threshold for the RESI physical mechanism. At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the second electron. We compute the distributions for helium and argon in the threshold and above-threshold intensity regimes. In the latter case, we relate our findings to existing experiments. The electron momentum distributions encountered are symmetric with respect to all quadrants of the plane spanned by the momentum components parallel to the laser-field polarization, instead of concentrating on only the second and fourth quadrants. The above-mentioned momentum constraints, together with the strong dependence of the distributions on the bound states involved, may be important for singling out the RESI mechanism in actual physical situations and using NSDI in ultrafast imaging.

  1. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  2. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  3. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    Science.gov (United States)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  4. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    Science.gov (United States)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  5. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  6. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  7. Excitation of an instability by neutral particle ionization induced fluxes in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Bachmann, P.; Sunder, D.

    1991-01-01

    Strong density and potential fluctuations in the edge plasma of toroidal nuclear fusion devices can lead to anomalously fast particle and energy transport. There are some reasons to assume the level of these fluctuations to be connected with neutral particles which enter the plasma by gas puffing or recycling processes. The influence of neutral particles on the behaviour of electrostatic drift modes was investigated. Using the ballooning transformation the excitation of dissipative drift waves in tokamak was studied taking ionization and charge exchange into consideration. Ionization driven drift wave turbulence was analyzed. The higher the neutral particle density is the more important the plasma-wall interaction and the less important the action of the limiter becomes. Instabilities localized in the edge plasma and far from the limiter can be one of the reasons of such a phenomenon. In the present paper we show that such an instability may exist. Usually the neutral particle density is large in the vicinity of the limiter and decreases rapidly with the distance from it. Plasma particles generated by ionization of these neutrals outside the limiter shadow, move along the magnetic field lines into a region without neutrals and diffuse slowly across the magnetic field. We solve the stability problem for modes with a perpendicular wave length that is much larger than the ion Larmor radius with electron temperature, and much smaller than the minor plasma radius. The excitation of such modes localized far from the limiter is investigated. A one-dimensional differential equation is derived in the cold ion approximation without taking shear and toroidal effects into consideration. In the case of low flow velocities a nearly aperiodic instability is found analytically. Its growth rate is proportional to the equilibrium plasma velocity at the boundary of the neutral particle's free region and to the inverse of the extension of this zone. This mode is localized in the edge

  8. Absolute cross sections for the ionization-excitation of helium by electron impact

    Science.gov (United States)

    Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.

    2008-09-01

    In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.

  9. The estimation of the G-values for ionization and excitation of ten-electron molecules

    International Nuclear Information System (INIS)

    Okazaki, Kiyoshi; Sato, Shin; Ohno, Shin-ichi.

    1976-01-01

    The binary-encounter collision theory is applied to calculate the G-values for the ionization and excitation of methane, ammonia, and water irradiated by 100 keV electrons. Double collision of the incident electron in a molecule is also taken into account. On the assumption of the occurrence of certain reactions in the systems, the G-values for electrons, various radicals, and several final products were estimated. Some of the results are as follows: the G-values for electrons were 3.60 for methane, 3.56 for ammonia, and 3.00 for water. These values are in fair agreement with the experimental values: 3.6 for methane, 3.8 for ammonia, and 3.3 for water. The calculated G-value for hot hydrogen atoms was about 1.0 for all three compounds. The ratios of the G-value for excitation to that for electons are 1.1 for methane, 1.5 for ammonia, and 1.7 for water. An estimation was also made of the G-value for the emission of highly-excited hydrogen atoms using reported cross sections. The G-values are 0.1 for methane and ammonia, and 0.2 for water. (auth.)

  10. Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen collisions in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s→2s,2p,3s,3p,3d and 2s→2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  11. Use of a 3-MV proton accelerator for study of noble gases, including laser ionization of excited states

    International Nuclear Information System (INIS)

    Hurst, G.S.; Judish, J.P.; Nayfeh, M.H.; Parks, J.E.; Payne, M.G.; Wagner, E.B.

    1974-01-01

    The use of a pulsed 3-MV accelerator to study energy pathways in the noble gases is described. The objectives of pathways research are to obtain (1) information on the spectrum of excited states produced by a charged particle in a noble gas, (2) the rate of decay of the various states through various channels as a function of gas pressure, and (3) the modification of the decay channels due to the introduction of foreign species. A new energy pathways model is presented for helium as a general illustration. A method for the study of excited states, using a laser ionization technique is reported. Use is made of a laser which is tuned to a resonance transition between the desired excited state and some higher excited state. Photons in the same pulse photoionize the higher excited state; thus the ionization current vs photon wavelength has a resonance structure. Absolute yields of selected excited states can be obtained whenever the photon fluence per pulse is large enough to saturate the ionization current. A general summary is given of experimental facilities which include a 3-MV Van de Graaff accelerator, electronics for measuring radiation lifetimes, vacuum ultraviolet spectrometers, and a pulsed laser facility for direct study of excited states. Finally, the relevance of pathways research to (1) the interaction of radiation with matter, (2) the development of gas lasers, and (3) methods of ultrasensitive elemental analysis is pointed out

  12. Non-perturbative treatment of excitation and ionization in U92++U91+ collisions at 1 GeV/amu

    International Nuclear Information System (INIS)

    Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1986-01-01

    Inner shell excitation and ionization processes in relativistic collisions of very heavy ions are treated by a non-perturbative method for the first time. The time-dependent Dirac equation is solved by a finite difference method for the scattering of U 92+ on U 91+ at Esub(lab) = 1 GeV/amu and zero impact parameter. The K-shell ionization probabilities are compared with those resulting from first-order perturbation theory. (orig.)

  13. Associative ionization of neon and helium atoms by collisions of excited helium (31p) atoms of thermal energies

    International Nuclear Information System (INIS)

    Runge, Serge.

    1980-12-01

    The relative cross-sections of ionizing collisions between He + He and He + Ne atoms, have been studied, the helium being excited in a state (3 1 p) by a laser beam. The results obtained made it possible (a) to reveal in a direct manner the production of molecular ions He 2 + and He Ne + and (b) to determine the relative change in the associative ionizing cross-section in the area (0.035 - 0.17 eV) in the He (3 1 P) + Ne collision, despite the very short life of the He (3 1 P) excited state (1.7 ns). The production of He 2 + ions from an He (3 1 P) + He collision sets an upper limit to the appearance potential of these ions. The experimental study of the associative ionization in the He (3 1 P) + Ne system made it possible to extend the utilization of the GAMMA(R) self ionization model, already tested for the metastable states, to the radiative states. The GAMMA(R) model seems well suited for the description of collisions of the A excited + B type, where the excitation energy of A is greater than the ionization potential of B [fr

  14. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  15. The role of projectile interactions in triply differential cross sections for excitation-ionization of helium

    Energy Technology Data Exchange (ETDEWEB)

    Dey, R., E-mail: ritud@ipp.mpg.d [Max-Planck Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Roy, A.C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711 202, West Bengal (India)

    2011-02-01

    We report triply differential cross section (TDCS) for the simultaneous excitation-ionization of helium by electron impact for both coplanar and non-coplanar geometry. In the coplanar case, calculations have been performed for an incident energy of 500 eV and low ejection energies (3 and 10 eV), whereas in the noncoplanar case we have considered impact energies in the range 1240-4260 eV for a symmetric geometry. The present calculation is based on the eikonal approximation due to Glauber. We have incorporated the effect of post-collision interaction in the Glauber approximation. A comparison is made of the present calculations with the results of other theoretical methods and recent experiments. The Glauber results are in reasonably good agreement with the experiment for small scattering angles.

  16. Cross sections and coherence terms for associative ionization of two differently excited Na(3p) atoms

    International Nuclear Information System (INIS)

    Meijer, H.A.J.; Pelgrim, T.J.C.; Heideman, H.G.M.; Morgenstern, R.; Andersen, N.

    1988-01-01

    The associative ionization process in thermal Na(3p)-Na(3p) encounters has been studied in a series of crossed-beam experiments where the light polarization of the two laser beams preparing the excited atoms before collision was varied independently. It is shown how in this way maximum possible information for our geometry is extracted about the dependence of the ion formation process on the shape and spatial orientation of the electron clouds of the two approaching atoms, including all coherence terms. The experimental findings are discussed in the light of recent theoretical results for the states of the Na 2 molecule. It is concluded that just a few of the possible geometrical approaches are favourable for molecular-ion formation. (orig.)

  17. Excitation and ionization of ions by electron impact. Technical progress report, September 1, 1974--May 31, 1975

    International Nuclear Information System (INIS)

    Feeney, R.K.; Divine, T.F.; Kovac, R.M.; McPherson, D.; Sayle, W.E.

    1975-01-01

    This effort is devoted to experimental measurements of electron impact excitation and ionization cross sections of ions. The cross sections of interest are those of importance in the diagnostics of CTR plasmas. Current tasks include: the completion of absolute measurements of the electron impact cross sections for Rb + , Cs + , and Tl + ions; and determination of the absolute electron impact excitation cross sections for selected transitions in Li + and other He-, Li-, and Be-like ions. (U.S.)

  18. Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front

    International Nuclear Information System (INIS)

    Kostin, V A; Vvedenskii, N V

    2015-01-01

    We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned. (paper)

  19. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  20. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon

    2017-12-05

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  1. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    Guichard, R.

    2007-12-01

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  2. Lifetime measurement of the cesium 6P3/2 state using ultrafast laser-pulse excitation and ionization

    International Nuclear Information System (INIS)

    Sell, J. F.; Patterson, B. M.; Ehrenreich, T.; Brooke, G.; Scoville, J.; Knize, R. J.

    2011-01-01

    We report a precision measurement of the cesium 6P 3/2 excited-state lifetime. Two collimated, counterpropagating thermal Cs beams cross perpendicularly to femtosecond pulsed laser beams. High timing accuracy is achieved from having excitation and ionization laser pulses which originate from the same mode-locked laser. Using pulse selection we vary the separation in time between excitation and ionization laser pulses while counting the ions produced. We obtain a Cs 6P 3/2 lifetime of 30.460(38) ns, which is a factor of two improvement from previous measurements and with an uncertainty of 0.12%, is one of the most accurate lifetime measurements on record.

  3. (e, 2e) triple differential cross sections for the simultaneous ionization and excitation of helium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre, C.; Lahmam-Bennani, A.; Duguet, A. (Paris-11 Univ., 91-Orsay (France). Lab. des Collisions Atomiques et Moleculaires (France)); Mota-Furtado, F. (Univ. Nova de Lisboa (Portugal). Dept. de Fisica); O' Mahoney, P.F. (Royal Holloway and Bedford New College, Egham (United Kingdom). Dept. of Mathematics); Dal Cappello, C. (Inst. de Physique, Metz (France). Lab. de Physique Moleculaire et des Collisions)

    1992-01-14

    We present absolute triple differential cross sections (TDCS) measurements for ionization of helium leaving the ion in both n = 1 and n = 2 final states, obtained under asymmetric geometry at an incident energy {approx}5.5 keV and ejected electron energies of 5, 10 and 75 eV. The kinematics are chosen to correspond either to a constant ejection energy, or to a constant energy transfer to the target. Angular distributions are measured at both constant ejection angle ({theta}{sub a}mode) and at constant scattering angle ({theta}{sub b} mode). In the {theta}{sub a} mode experiments, the momentum transfer dependence of the n = 2 triple differential generalized oscillator strength is investigated here for the first time. In both modes, the n = 2 angular distributions show several new features which are not present for the n = 1 ones, and which tend to vanish as the ejected energy is increased. They are attributed to final state interactions between the ejected electron and the excited ion. Comparison with first-order theoretical models shows the inadequacy of a Coulomb wave representation of the ejected electron, while in the R-matrix formalism it is found that a five-state multichannel calculation qualitatively describes the shape (but not the amplitude) of the TDCS measured in the {theta}{sub b}mode. Comparison is also made with the photoionization in the dipolar limit where the momentum transfer approaches zero. When integrated over the ejection direction, the double differential generalized oscillator strength ratio for ionization to the n = 1 and n = 2 states in found to agree with a recent first Born close coupling prediction. (author).

  4. Electronically excited and ionized states in condensed phase: Theory and applications

    Science.gov (United States)

    Sadybekov, Arman

    benzene and discussed the impact of these differences on the formation of the excimer state. In chapter 3, we present a theoretical approach for calculating core-level states in condensed phase. The approach is based on EOM-CC and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we addressed poor convergence issues that are encountered for the core-level states and significantly reduced computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to the reference systems, are reproduced reasonably well. By using different protonation forms of solvated glycine as a benchmark system, we showed that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy. In chapter 4, we outline future directions and discuss possible applications of the developed computational protocol for prediction of core chemical shifts in larger systems.

  5. Electron scattering by CO2: Elastic scattering, rotational excitation, and excitation of the asymmetric stretch at 10 eV impact energy

    International Nuclear Information System (INIS)

    Thirumalai, D.; Onda, K.; Truhlar, D.G.

    1981-01-01

    Coupled-channels calculations based on an effective potential are presented for electron scattering by CO 2 at 10 eV impact energy. The processes studied are pure elastic scattering, rotational excitation, and vibrational excitation of the asymmetric stretch; the vibrational excitation is always accompanied by rotational excitation. The quantities calculated are differential, partial, integral, and momentum transfer cross sections, both state to state and summed over final rotational states for a given final vibrational level. The effective potential is based on the INDOX2/1s method for the static and polarization potentials and the semiclassical exchange approximation for the exchange potential. There are no empirical parameters. The present calculations are compared to experiment and to previous calculations where available, and we also perform calculations with an altered polarization potential to further elucidate the reasons for the differences from one of the previous calculations. The agreement of the present results with the experimental rotationally summed, vibrationally inelastic differential cross section is excellent

  6. Ab initio R-matrix/Multi-channel Quantum Defect Theory applied to Molecular Core Excitation and Ionization

    International Nuclear Information System (INIS)

    Hiyama, M.; Kosugi, N.

    2004-01-01

    Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states

  7. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  8. Measurement of excitation, ionization, and electron temperatures and positive ion concentrations in a 144 MHz inductively coupled radiofrequency plasma

    International Nuclear Information System (INIS)

    Walters, P.E.; Chester, T.L.; Winefordner, J.D.

    1977-01-01

    Diagnostic measurements of 144 MHz radiofrequency inductively coupled plasmas at pressures between 0.5 and 14 Torr have been made. Other variables studied included the gas type (Ar or Ne) and material in plasma (Ti or Tl). Parameters measured included excitation temperatures via the atomic Boltzmann plot and the two-line method, ionization electric probes. Excitation temperatures increased as the pressure of Ar or Ne plasmas decreased and reached a maximum of approx.9000 degreeK in the latter case and approx.6700 degreeK in the former case; Tl in the Ar plasma resulted in in a smaller rate of decrease of excitation temperature with increase of pressure of Ar. The ionization temperatures were lower than the excitation temperatures and were similar for both the Ar and Ne plasmas. Electron temperatures were about 10 times higher than the excitation temperatures indicating non-LTE behavior. Again, the electron temperatures indicating in Ne were considerably higher than in Ar. With the presence of metals, the electron temperatures with a metal in the Ar plasma were higher than in the absence. Positive ion concentrations were also measured for the various plasmas and were found to be similar (approx.10 18 m -3 ) in both the Ar and Ne plasmas. The presence of metals caused significant increase in the positive ion concentrations. From the results obtained, the optimum Ar pressure for Tl electrodeless discharge lamps operated at 144 MHz would be between 2 and 4 Torr

  9. Testing an excited-state energy density functional and the associated potential with the ionization potential theorem

    International Nuclear Information System (INIS)

    Hemanadhan, M; Shamim, Md; Harbola, Manoj K

    2014-01-01

    The modified local spin density (MLSD) functional and the related local potential for excited states is tested by employing the ionization potential theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange potential is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ϵ max accurately, the potential is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ϵ max so obtained is then compared with the ΔSCF ionization energy calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it. (paper)

  10. Influence of excitation and ionization of the atoms on the velocity of nuclear processes at low energies

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; Ratis, Yu.L.

    2004-01-01

    We have concluded that cold transmutation of nuclei is possible in the framework of the modern physical theory - excitation and ionization of atoms and the universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. (author)

  11. The Vibration Analysis of Tube Bundles Induced by Fluid Elastic Excitation in Shell Side of Heat Exchanger

    Science.gov (United States)

    Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze

    2017-09-01

    Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.

  12. Coupled-channels calculations of excitation and ionization in ion-atom collisions

    International Nuclear Information System (INIS)

    Martir, M.H.

    1981-01-01

    A numerical method has been used to compute excitation and ionization cross sections for ion-atom collisions. The projectile is treated classically and follows a straight line, constant velocity path (unless indicated otherwise). The wave function that describes the atom is expanded about the target in a truncated Hilbert space. The interaction between the projectile and the target atom is treated as a time dependent perturbation. A unitary time development operator, U, propagates the wave function from a time prior to the collision to a time after the collision in small time steps. Contrary to first-order theories, coupling between states is allowed. This method has been improved so that any number of partial waves can be included in the wave function expansion. This method has been applied to study negatively charged projectiles. Cross sections are obtained for collisions of antiprotons on atomic hydrogen (30 keV to 372 keV) and compared with cross sections of protons on atomic hydrogen to explore the Z/sub P/ dependence. The antiproton-hydrogen results were converted into electron-hydrogen values with E/sub e/ = E/sub P/(m/sub e//m/sub P/) (15 eV to 200 eV) and compared to experimental values. The method is then applied to study vacancy production from the L-shell. The partial wave convergence of the cross sections was carefully studied for s through g waves. Collisions between protons (and alpha-particles) and argon are studied to explore the Z/sub P/ dependence of the cross sections. The cross section ratio sigma(α)/(4sigma(p)) is compared to experiment

  13. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K −2 and core ionization-core excitation K −2 V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K −2 V spectrum is assigned to a K −2 π ∗ state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K −1 V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K −2 threshold Rydberg resonances have been also identified, and among them a K −2 σ ∗ resonance characterized by a large amount of 2s/2p hybridization, and double K −2 (2σ ∗ /1π/3σ) −1 1π ∗2 shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ ∗ shape resonance and double excitation K −1 (2σ ∗ /1π/3σ) −1 1π ∗2 resonances, all being positioned above the threshold

  14. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon

    2017-08-17

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  15. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  16. The 90deg excitation function for elastic 12C+12C scattering. The importance of Airy elephants

    International Nuclear Information System (INIS)

    McVoy, K.W.; Brandan, M.E.

    1992-01-01

    The 90deg excitation function for elastic 12 C+ 12 C scattering, at laboratory energies between the Coulomb barrier and 130 MeV, exhibits a complex structure of peaks and valleys whose nature has remained an unsolved mystery for more than 20 years. The problem has primarily been caused by the difficulty of choosing from a plethora of discretely ambiguous optical potentials. However, data accumulated above 150 MeV over the last decade have determined unique potentials at these higher energies, and the requirement of continuity downward in energy has recently permitted the determination of a unique set of potentials for angular distributions at energies below 130 MeV, where the excitation-function data exist. These new potentials are used to provide a mean-field (i.e., nonresonant) interpretation of the structure in the 12 C+ 12 C 90deg excitation function between 70 and 130 MeV. Its most prominent minima are found to be Airy minima from nuclear rainbows, with the remaining structure arising primarily from more elementary optical phenomena related to Fraunhofer diffraction. These same potentials are also successful in explaining the details of excitation functions measured very recently at other angles by Morsad. (orig.)

  17. Effect of multiple plasmon excitation on single, double and multiple ionizations of C{sub 60} in collisions with fast highly charged Si ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-06-28

    We have investigated the single and multiple ionizations of the C{sub 60} molecule in collisions with fast Si{sup q+} projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  18. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  19. Excitation and ionization of ions by electron impact. Technical progress report, September 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    Feeney, R.K.; Baggett, D.W.; Hughes, D.W.; Rivers, G.W.; Sayle, W.E.

    1977-01-01

    This effort is devoted to experimental measurements of electron impact excitation and ionization cross sections of ions. The cross sections of interest are those of importance in the diagnostics of CTR plasmas. Current tasks include: the completion of absolute measurements of the electron impact double ionization cross sections for Na + , K + , Rb + , Cs + , and Tl + ions; the development of a laboratory-size ion source of multiply-charged ions to be used in the measurement of electron impact excitation and ionization cross sections; and the completion of absolute measurements of the electron impact excitation of Li + ions. Preliminary measurements of the electron impact double ionization cross sections of Na + , K + , Rb + , Cs + , and Tl + ions were completed. Measurements were made over the range of electron energies from the respective threshold values to approximately 1000 eV. Peak cross sections were found to vary from 7.2 x 10 -19 cm 2 for Na + to 3.5 x 10 -17 cm 2 for Cs + . The data were obtained with a crossed beam apparatus operating with modulated beams. A PIG-type source of multiply charged ions is undergoing final development. The source is of laboratory size and is compatible with existing collision apparatus. The previous problem with inadequate magnetic field has been solved. Spectroscopic techniques verified the production of ions of charge state C 4+ when CO 2 was used as the source gas. Some difficulty has been encountered in extracting adequate ion currents. Also under investigation is the optimum technique for the production of metal ions with the PIG-type ion source. A list of publications is included

  20. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  1. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  2. Excitation two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    International Nuclear Information System (INIS)

    Shaaran, T.; Augstein, B. B.; Figueira de Morisson Faria, C.

    2011-01-01

    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N 2 and Li 2 . We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We assume that both electrons are initially in the highest occupied molecular orbital (HOMO) and that the second electron is excited to the lowest unoccupied molecular orbital (LUMO). We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account s-p mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the LUMO, which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wave function, or as an overall decrease in the RESI yield due to the presence of nodal planes.

  3. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  4. Excitation and ionization of highly charged ions by electron impact: Progress report for period May 1, 1986-April 30, 1987

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1987-01-01

    (1) Cross sections and rate coefficients with inclusion of mixing effects have been obtained for innershell ionization of Na-like ions. This is an important mechanism for populating the excited levels of Neon-like ions and the importance increases with Z. (2) Cross sections and rate coefficients with inclusion of mixing effects have been obtained for innershell ionization of Li-like ions. This appears to be an important mechanism for populating the excited levels of He-like ions and its importance also increases with Z. (3) The collision strengths have been calculated for all 1171 innershell excitation transitions from the five lower levels of the form 1s 2 2s 2 2p 6 3l 2 L/sub J/ to the doubly excited upper levels of kinds 1s 2 2s 2 2p 5 (3l'3l''/sup 2S''+1/L''/sub J'/ and 1s 2 2s2p 6 (3l'3l''/sup 2S''+1/L'')/sup 2S'+1/L'/sub J'/ in 22 Na-like ions. These upper levels can radiatively decay, which produces satellite lines to those due to n = 3 to n = 2 transitions in neon-like ions, or they can autoionize, which populates the 1s 2 2s 2 2p 6 1 S 0 ground level of neon-like ions. Considerable progress has also been made on our new quasirelativistic code development. After checking the accuracy for hydrogenic ions with Z values up to 90, we have now obtained preliminary quasirelativistic results for both structure and collision strengths for neon-like ions. These generally agree well with fully relativistic calculations. 41 refs

  5. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    Science.gov (United States)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on

  6. Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect

    International Nuclear Information System (INIS)

    Tang Dedong; Huang Shanglian; Chen Weimin; Jiang Jianshan

    2008-01-01

    With many steel strands used in various important machines and architectural structures, health monitoring of strand tension becomes more and more important to ensure the equipment or structures' safety. Contrasted with the method of vibration frequency and strain gages, the method of measuring the steel strand tension based on the magneto-elastic effect is more capable of meeting the requirements of health monitoring. Yet the structure of the sensor is mainly a sleeve structure, and the steel strand to be measured serves as the core of primary and secondary solenoids. This structure is very difficult to fix and maintain. On the other hand, a change of temperature will strongly affect measurement results, and experiments prove that temperature error compensation by using a temperature compensation curve is not effective enough. Therefore in this paper the principle of a cable tension sensor based on the magneto-elastic effect is expounded, the theory of temperature influence is explored, a difference structure by single bypass excitation is devised, its magnetic loop is analyzed, an experiment is designed, and experiments on temperature compensation and pulling tension are carried out. The experiment results indicated that the structure of the sensor is feasible, temperature errors can be compensated for automatically, after which temperature errors become less than 0.012 MPa °C −1 , and repeating errors of tension are less than 0.15%, which meet the measurement requirements

  7. Studies on ionization and excitation processes in Ps–Li scattering

    Indian Academy of Sciences (India)

    function and the complex atomic system makes the problem more complicated. Li is the ... where γ = −Z /k, Z is the charge of the parent nucleus after ionization. 2. .... Author likes to thank DST, India for the financial support through project Grant.

  8. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  9. Excitation and ionization of ions by electron impact. Final report, September 1, 1969-March 31, 1980

    International Nuclear Information System (INIS)

    Feeney, R.K.; Hughes, D.W.; Hooper, J.W.

    1980-01-01

    This report presents a brief summary of the technical accomplishments of a research program active from September 1, 1969, through March 31, 1980. All of the work was related to the atomic collision process of importance in magnetic confinement fusion. A chronological tabulation of technical accomplishments, a list of publications, and a summary of progress in the measurement of electron impact ionization cross sections are given

  10. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB080310

    DEFF Research Database (Denmark)

    Vreeswijk, P.M.; De Cia, A.; Jakobsson, P.

    2013-01-01

    .42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied...

  11. Excitation and ionization of highly charged ions by electron impact. Progress report, January 1, 1978-July 31, 1979

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1979-07-01

    Reduced ionization cross sections Q/sub R//sup H/(nl,u) were obtained for the nl = 3p and 3d sublevels, as well as for more energy points for the lower sublevels considered in our earlier work. Thus, results are now available for the eight impact electron energies in threshold units u = 1.125, 1.25, 1.5, 2.25, 3.0, 4.0, 5.0, and 6.0 for each of the sublevels 1s, 2s, 2p, 3s, 3p, and 3d. From these results for Q/sub R//sup H/(nl,u) one can readily obtain the cross section for ionization from any of these sublevels in any highly charged complex ion using the simple procedures given in our earlier work. The theory and computer programs developed in our previous work on excitation were used to calculate intermediate coupling collision strengths for all fine structure transitions from the 2P levels to the nP and nD levels with 3 less than or equal to n less than or equal to 5 in He-like ions. Similar calculations have also been made for inner shell excitation of Li-like ions with nuclear charge number Z in the range 10 less than or equal to Z less than or equal to 74. The theory and programs were also extended to treat Δn = 0 transitions and were used to obtain intermediate coupling collision strengths for all Δn = 0 fine structure transitions with n = 2 in 10 He-like ions with Z in the range 6 less than or equal to Z less than or equal to 74 and 10 Be-like ions with Z in the range 14 less than or equal to Z less than or equal to 74. For excitation the results appear to be accurate to within approx. 30% for 3N less than or equal to Z less than or equal to 74, where N is the number of bound electrons per ion, and more accurate for most of this range. For ionization the results appear to be accurate down to Z/N approx. = 2. 21 references

  12. Electric field dependence of the total excimer luminescence of xenon excited below the atomic ionization limit

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In the spectral region of interest (i.e., 11.1 eV ≤ h nu ≤ 11.9 eV), the photoionization yield of electrons from excited-state dimers of xenon, increases monotonically to relatively high values (e.g., Y(11.7 eV) = 0.43 electrons/absorbed photon). It is also known however, that the luminescence intensity excited by photons in this region is quite high, even at low pressures. These two observations can be reconciled only by assuming that one of the processes leading to excimer luminescence involves dimer-ion + electron recombination. If this assumption is correct, application of an electric field, with concomitant collection of the free charges generated by the incident photons, should lead to a decrease in luminescence intensity; moreover, this decrease should follow the energy dependence of the photoionization yield function. The present report demonstrates experimentally that this is indeed the case. Such experiments combining luminescence and electric fields were made, until now, only by high-energy excitation. In this case the deconvolution of the various decay channels is hardly possible

  13. Direct evidence for radiative charge transfer after inner-shell excitation and ionization of large clusters

    Science.gov (United States)

    Hans, Andreas; Stumpf, Vasili; Holzapfel, Xaver; Wiegandt, Florian; Schmidt, Philipp; Ozga, Christian; Reiß, Philipp; Ben Ltaief, Ltaief; Küstner-Wetekam, Catmarna; Jahnke, Till; Ehresmann, Arno; Demekhin, Philipp V.; Gokhberg, Kirill; Knie, André

    2018-01-01

    We directly observe radiative charge transfer (RCT) in Ne clusters by dispersed vacuum-ultraviolet photon detection. The doubly ionized Ne2+-{{{N}}{{e}}}n-1 initial states of RCT are populated after resonant 1s-3p photoexcitation or 1s photoionization of Ne n clusters with ≈ 2800. These states relax further producing Ne+-Ne+-{{{N}}{{e}}}n-2 final states, and the RCT photon is emitted. Ab initio calculations assign the observed RCT signal to the{}{{{N}}{{e}}}2+(2{{{p}}}-2{[}1{{D}}]){--}{{{N}}{{e}}}n-1 initial state, while transitions from other possible initial states are proposed to be quenched by competing relaxation processes. The present results are in agreement with the commonly discussed scenario, where the doubly ionized atom in a noble gas cluster forms a dimer which dissipates its vibrational energy on a picosecond timescale. Our study complements the picture of the RCT process in weakly bound clusters, providing information which is inaccessible by charged particle detection techniques.

  14. Study of ionizing collisions involving excited states in a potassium-rubidium mixture at thermal energy

    International Nuclear Information System (INIS)

    Djerad, M.T.

    1987-01-01

    This study concerns mainly ionising collisions involving excited states in a saturated mixture of K-Rb vapours, at thermal energy. The experimental method consists into continuous resonant two steps laser excitation of the atoms (n ≤ 10) and mass spectrometry of ion currents. Radiative and collisional relaxation of the atoms create a complex medium. The most efficient collisional processes are Penning ionisation and Hornbeck-Molnar ionisation. In the heteronuclear system Rb(n1) + K(4P), the following exit channels may be operative: Rb(n1) + K(4P) → Rb + + e - + K Rb(n1) + K(4p) → K + + e - + Rb Rb(n1) + K(4P) → KRb + + e - . The measurements show that the first channel has an average cross section ∼ 10 -13 cm 2 . Those of the other channels are at least three orders of magnitude smaller and thus comparatively negligible. The data obtained from 5D to 10S allow to conclude that the flux in the entrance channel ionises at large separation between Rb(n1) and K(4P). The process of ionisation is dominated by polarisation forces, exchange forces being negligible. In the present mixture, Hornbeck-Molnar ionisation leads to homonuclear molecular ions K 2 + , Rb 2 + as well as the heteronuclear one KRb + . We have measured the rate coefficients for the systems: K(n1) + Rb → KRb + + e - Rb(n1) + K → KRb + + e - . The rate coefficients increase with the excitation energy of the level n1; they do not exhibit fundamental differences with those measured in pure alkali vapours [fr

  15. Proof of shock-excited H2 in low-ionization structure of PNe

    International Nuclear Information System (INIS)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo

    2016-01-01

    We report the detection of near-IR H 2 line emission from the low-ionization structures (LISs) in planetary nebulae. The deepest, high-angular resolution H 2 1-0 S(1) at 2.122 μm, and H 2 2-1 S(1) at 2.248 μm images of K 4-47 and NGC 7662, obtained using NIRI@Gemini-North, are presented here. K 4-47 reveals a remarkable high-collimated bipolar structure, with the H 2 emission emanating from the walls of the outflows and a pair of knots at the tips of these outflows. The H 2 1-0 S(1)/2-1 S(1) line ratio is ∼⃒7-8 which indicates shock interaction due to both the lateral expansion of the gas and the high-velocity knots. The strongest line, H 2 v=1-0 S(1), is also detected in several LISs located at the periphery of the outer shell of the elliptical PN NGC 7662, whereas only four knots are detected in the H 2 v = 2-1 S(1) line. These knots have H 2 v = 1-0 S(1)/v = 2-1 S(1) values between 3 and 5. These data confirm the presence of molecular gas in both highly (K 4-47) and slowly moving LISs (NGC 7662). The H 2 emission in K 4-47 is powered by shocks, whereas in NGC 7662 is due to photo-ionization by the central star. Moreover, a likely correlation is found between the H 2 v = 1-0 S(1)/H 2 v = 2-1 S(1) and [N II]/Hα line ratios. (paper)

  16. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  17. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    International Nuclear Information System (INIS)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr + , HeNe + , NaAr, and Ar 2 and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar( 3 P 2 ) + Ca + h nu → Ar + Ca + (5p 2 P/sub J/) + e - occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar( 3 P 2 ) + Ca → Ar + Ca + (4p 2 P/sub J/) + e - a surprisingly large cross section of 6.7 x 10 3 A 2 is estimated

  18. The fluorescence action spectra of some saturated hydrocarbon liquids for excitation energies above and below their ionization thresholds

    International Nuclear Information System (INIS)

    Ostafin, A.E.; Lipsky, S.

    1993-01-01

    Fluorescence action spectra have been obtained for the neat liquids, cis-decalin, trans-decalin, bicyclohexyl, cyclohexane, methylcyclohexane, isobutylcyclohexane, 2,3,4-trimethylpentane, 2,3-dimethylbutane, 3-methylhexane, 3-methylpentane, n-decane, n-dodecane, and n-pentadecane at excitation energies, ε, ranging from their absorption onsets (at ca. 7 eV) to 10.3 eV. For all compounds, with the exception of cis-decalin, the fluorescence quantum yield is observed to monotonically decline with increasing ε, reaching a minimum value at an energy, ε m (a few tenths of an eV above the liquid phase ionization threshold, ε l ) followed by a slow increase. In the case of cis-decalin, the fluorescence quantum yield remains constant over the entire range of excitation energies studied, permitting its use as a quantum counter replacing the standard sodium salicylate, at least over a spectral range from 185 to 120 nm. The recovery of the fluorescence quantum yield for ε>ε m is attributed to an increasing probability for electron ejection followed by e - +RH + geminate recombination, to produce an excited state of RH with energy less than ε l . From a simple analysis of the action spectrum, a lower bound estimate of the electron ejection probability, φ ± , is obtained as a function of ε. In the case of cyclohexane, where φ ± has been obtained by other techniques at ε congruent 10 eV, the lower bound estimate agrees with the experimental value. From this agreement, arguments are presented to make plausible the conjecture that in all these liquids, the initially produced e - +RH + geminate ion pair first rapidly internally converts to an ion-pair state ca

  19. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  20. New coherent cancellation effect involving four-photon excitation and the related ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; McCann, M.P.

    1988-11-01

    We describe here an effect which occurs when a first laser is tuned near a dipole allowed three-photon resonance and a second laser is used to complete a dipole allowed four-photon resonance between the ground state 0 > and an excited state 2 >. In this process three photons are absorbed from the first laser and one photon from the second; so that if the 0 >--2 > transition is two-photon allowed the transition is also pumped resonantly by the third harmonic field due to the first laser and the second laser field. When the second laser is strong enough to cause strong absorption of the third harmonic light, and the phase mismatch, /DELTA/κ is large and dominated by the nearby resonance, a destructive interference occurs between the pumping of the 0 >--2 > transition by two- and four-photon process. 7 refs

  1. Analysis of Data on the Cross Sections for Electron-Impact Ionization and Excitation of Electronic States of Atomic Hydrogen (Review)

    Science.gov (United States)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2018-01-01

    A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.

  2. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    International Nuclear Information System (INIS)

    Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-01-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination

  3. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  4. Measurement and calculation of excitation cross sections and level ionization by electron impact

    International Nuclear Information System (INIS)

    Blanco Rames, F.

    1990-01-01

    The experimental and theoretical study of the atomic structure in neutral noble gases is studied in this work. It mainly deals with the determination of total cross sections by electron impact and transition probabilities, including: Chapter 1: Theoretical introduction and the intermediate coupling description obtained for 420 levels of s, p and d configurations in neutral noble gases. Chapter 2: Experimental and theoretical values for electron collision cross sections are obtained for several levels of He, Ne, Ar and Kr. Our results as well as those available from existing bibliography are sumarized and compared. By means of an intermediate coupling treatment a number of regularities is found that provides us with some useful approximate semi empirical expressions. Chapter 3: Determination of lifetime and transition probabilities. Lifetime measurements are carried out by means of laser excitation and multichannel delayed coincidences technique. The experimental setup and electronics are also described. Chapter 4: Details the experimental setup developed for electron cross sections measurement by the optical method. The difficulties of this method and their treatment are also shown. (Author)

  5. [Electron transfer, ionization, and excitation in atomic collisions]. Final technical report, June 15, 1986 - June 14, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The research on theoretical atomic collisions that was funded at The Pennsylvania State University's Wilkes-Barre Campus by DOE from 1986 to 1998 was carried out by Winger from 1986 to 1989 and by Winter and Alston from 1989 to 1998. The fundamental processes of electron transfer, ionization, and excitation in ion-ion, ion-atom, and, more recently, ion-molecule collisions were addressed. These collision processes were treated in the context of simple one-electron, quasi-one-electron, or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. Winter's work generally focused on the intermediate projectile-energy range corresponding to proton energies from about ten to a few hundred keV. In this velocity-matching energy range, the electron-transfer cross section reaches a peak, and many states, including electron-transfer and ionization states, contribute to the overall electron-cloud distribution and transition probabilities; a large number of states are coupled, and therefore perturbative approaches are generally inappropriate. These coupled-state calculations were sometimes also extended to higher energies to join with perturbative results. Alston concentrated on intermediate-energy asymmetric collision systems, for which coupling with the projectile is weaker, but many target states are included, and on high energies (MeV energies). Thus, while perturbation theory for electron transfer is valid, it is not adequate to first order. The studies by Winter and Alston described were often done in parallel. Alston also developed formal perturbative approaches not tied to any particular system. Materials studied included He + , Li 2+ , Be 3+ , B 4+ , C 5+ , and the H + + Na system

  6. KINEMATICS AND EXCITATION OF THE RAM PRESSURE STRIPPED IONIZED GAS FILAMENTS IN THE COMA CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Furusawa, Hisanori [Astronomical Data Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Hattori, Takashi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' Ohoku Place, Hilo, HI 96720 (United States); Okamura, Sadanori, E-mail: yoshidam@hiroshima-u.ac.jp [Department of Astronomy, University of Tokyo, Tokyo 113-0033 (Japan)

    2012-04-10

    We present the results of deep imaging and spectroscopic observations of very extended ionized gas (EIG) around four member galaxies of the Coma Cluster of galaxies: RB 199, IC 4040, GMP 2923, and GMP 3071. The EIGs were serendipitously found in an H{alpha} narrowband imaging survey of the central region of the Coma Cluster. The relative radial velocities of the EIGs with respect to the systemic velocities of the parent galaxies from which they emanate increase almost monotonically with the distance from the nucleus of the respective galaxies, reaching {approx} - 400 to - 800 km s{sup -1} at around 40-80 kpc from the galaxies. The one-sided morphologies and the velocity fields of the EIGs are consistent with the predictions of numerical simulations of ram pressure stripping. We found a very low velocity filament (v{sub rel} {approx} -1300 km s{sup -1}) at the southeastern edge of the disk of IC 4040. Some bright compact knots in the EIGs of RB 199 and IC 4040 exhibit blue continuum and strong H{alpha} emission. The equivalent widths of the H{alpha} emission exceed 200 A and are greater than 1000 Angstrom-Sign for some knots. The emission-line intensity ratios of the knots are basically consistent with those of sub-solar abundance H II regions. These facts indicate that intensive star formation occurs in the knots. Some filaments, including the low-velocity filament of the IC 4040 EIG, exhibit shock-like emission-line spectra, suggesting that shock heating plays an important role in ionization and excitation of the EIGs.

  7. Multiple ionization of C{sub 60} in collisions with 2.33MeV/u O-ions and giant plasmon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A.H. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)]. E-mail: lokesh@tifr.res.in; Kadhane, U. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Misra, D. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Kumar, Ajay [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)

    2007-03-15

    Single and multiple ionization of C{sub 60} in collisions with fast (v=9.7a.u.) O{sup q+} ions have been studied. Relative cross sections for production of C{sub 60}{sup 1+} to C{sub 60}{sup 4+} have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  8. Effect of ionizing radiation on visco-elastic properties of polymethyl-methacrylate and poly-4-methylpentene-1

    International Nuclear Information System (INIS)

    Perepechko, I.I.; Mar'yasin, B.Ya.

    1978-01-01

    The effect of γ radiation on visco-elastic properties of polymethylmethacrylate (PMMA) and poly-4-methylpentene-1 (P4MPI) has been investigated by the method of the forced resonance oscillations of a cantilevered specimen. It has been shown, that the variation of the dynamic elasticity modulus of amorphous polymer when the irradiation dose increases, considerable depends on the polymer physical state during the measurement. The irradiated polymer is a binary mixture of radiolysis low-molecular products and polymer itself. The value of elasticity modulus in such a mixture is defined by the modules of different components. More complex than in PMMA in the effect of γ-radiation upon the P4MPI visco-elastic behaviour. During the P4MPI irradiation, the rebuilding of polymer supermolecular structure takes place, which results in the variation of the dynamic elasticity modulus values and in the intensity of peaks of mechanical losses

  9. Giant plasmon excitation in single and double ionization of C{sub 60} by fast highly charged Si and O ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai-5 (India)

    2007-09-15

    Se have investigated single and double ionization of C{sub 60} molecule in collisions with 2.33 MeV/u Si{sup q+} (q=6-14) and 3.125 MeV/u O{sup q+} (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C{sub 60} are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  10. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  11. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  12. Excited states of virtual clusters in a nucleus and the processes of quasi-elastic cluster knock-out at high energies

    International Nuclear Information System (INIS)

    Golovanova, N.F.; Il'in, I.M.; Neudatchin, V.G.; Smirnov, Yu.F.; Tchuvil'sky, Yu.M.

    1976-01-01

    The quasi-elastic knock-out of nucleon clusters from nuclei by an incident high-energy hadron is considered within the framework of the Glauber-Sitenko multiple scattering theory. It is shown that the significant contribution to the cross section for the process comes not only from the hadron elastic scattering by a nonexcited virtual cluster but also from collisions with an excited virtual cluster, accompanied by de-excitation of this cluster. This necessitates modification of the usual theory of quasi-elastic cluster knock-out. First, the angular correlations of the knocked-out cluster and scattered hadron are no longer determined by the momentum distribution of the cluster in the nucleus. They are determined by another form factor F(q) which can be called the modified momentum distribution. Secondly, the meaning and values of the effective numbers of clusters Nsup(eff) have been changed. Thirdly, the characteristics of the processes depend not only on the modulus of momentum q, which the cluster had in the nucleus, but also on its direction relative to an incident beam. A method has been developed for the calculation of the fractional parentage coefficients, which are necessary for the calculation of the cluster knock-out from the p-shell nuclei. (Auth.)

  13. Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H2O

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    We present in detail a theoretical model that provides absolute cross sections for simultaneous core-ionization core-excitation (K −2 V ) and compare its predictions with experimental results obtained on the water molecule after photoionization by synchrotron radiation. Two resonances of different symmetries are assigned in the main K −2 V peak and comparable contributions from monopolar (direct shake-up) and dipolar (conjugate shake-up) core-valence excitations are identified. The main peak is observed with a much greater width than the total experimental resolution. This broadening is the signature of nuclear dynamics

  14. Laser-Excited Atomic Fluorescence and Ionization in a Graphite Furnace for the Determination of Metals and Nonmetals

    Science.gov (United States)

    Butcher, David James

    1990-01-01

    Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium

  15. Energy dependence phase shift analysis of PI4He elastic scattering and the possibility of the (PI4He) excited states existence

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Sapozhnikov, M.G.; Shcherbakov, Yu.A.; Piragino, G.

    1981-06-01

    In the 24 MeV-260 MeV kinetic energy interval, the energy dependent phase shift analysis of π 4 He elastic scattering is done. The eneray dependence is given by the rational fraction approximants of the partial S matrix. The search for the stable S matrix zero-pole pairs in the k and √s complex plane give some proofs for the existence of the (π 4 He) excited states in the S, P and probably D partial waves. (authors)

  16. Fusion barrier distributions from capture and quasi-elastic excitation functions measured in reaction 36S, 48Ca, 64Ni+238U

    International Nuclear Information System (INIS)

    Kozulin, E. M.

    2009-01-01

    The subbarrier fusion enhancement in reactions with heavy ions were explained by taking into account coupling between relative motion and intrinsic degrees of freedom of interacting nuclei. The coupling of reaction channels manifests itself in the potential barrier between interacting nuclei giving rise to a distribution of fusion barrier instead of single barrier.Capture and quasi-elastic scattering excitation functions at backward angles were measured for 3 6S , 4 8C a, 6 4N i+2 38U reactions systems at energies close and below the Coulomb barrier (i.e. when the influence of the shell effects on the fusion and characteristics of the decay of the composite system is considerable). Representations of the barrier distributions were extracted from both capture and quasi-elastic data. The experimental representations of barrier distributions were compared with coupled-channel calculations using CCFULL code. The major part of these experiments has been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Dubna); at the TANDEM-ALPI accelerator of the LNL (INFN, Legnaro, Italy) and at the Accelerator Laboratory of University of Jyvaeskylae (JYFL, Finland) using a time-of-flight spectrometer of fission fragments CORSET (CORrelation SET-up.) The extraction of the masses and Total Kinetic Energy (TKE) of the binary reaction products is based upon the analysis of the two-body velocity In the case of the fusion-fission and quasi-fission processes, the observed peculiarities of mass and energy distributions of the fragments, the ratio between the fusion-fission and quasi-fission cross sections are determined deformations of interaction nuclei and angular momentum carried in the di-nuclear system and the shell structure of the formed fragments. In this work, the high-precision capture and quasi-elastic scattering excitation function data are presented.The influence of projectile and target excitations and nucleon transfer on fusion barrier

  17. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  18. Calculation of ionization within the close-coupling formalism

    International Nuclear Information System (INIS)

    Bray, I.; Fursa, D.V.

    1996-05-01

    A method for calculation of differential ionization cross sections from theories that use the close-coupling expansions for the total wave functions is presented. It is shown how from a single such calculation elastic, excitation, and ionization cross sections may be extracted using solely the T-matrix elements arising from solution of the coupled equations. To demonstrate the applicability of this formalism, the convergent close-coupling (CCC) theory is systematically applied at incident energies of 150-600 eV to the calculation of e-He ionization. Comparison with available measurements is generally very good. 50 refs., 17 figs

  19. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

    International Nuclear Information System (INIS)

    Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

    2010-12-01

    We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

  20. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.

    Science.gov (United States)

    Mitri, Farid G

    2012-08-01

    This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.

  1. Associative Ionization of Excited Sodium Species with Various Ligands: Assessing Relative Bonding Strengths of Ion-ligand Interactions

    Czech Academy of Sciences Publication Activity Database

    Gilligan, J. J.; McCunn, L. R.; Leskiw, B. D.; Herman, Zdeněk; Castleman Jr., A. W.

    2001-01-01

    Roč. 204, 1/3 (2001), s. 247-253 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z4040901 Keywords : associative ionization * cluster ions * sodium bonding energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.176, year: 2001

  2. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  3. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  4. Excitation and ionization of ions by electron impact. Technical progress report, September 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Feeney, R.K.; Hughes, D.W.; Hoak, G.B.; Priester, D.C.; Sayle, W.E.

    1978-01-01

    This effort is devoted to the measurement of electron impact collision processes of importance in controlled thermonuclear research. Electron impact, single and multiple ionization of ions and charge exchange processes are being studied. A program to develop ion sources for future collision experiments is also included. Preliminary measurements of the electron impact triple and quadruple ionization cross sections of Pb + ions have been completed. Measurements were made over the range of electron energies from the respective thresholds to 1000 eV. A hollow-cathode discharge type ion source and associated m/e analyzer has been constructed. A charge exchange apparatus suitable for the measurement of electron capture and stripping cross sections of selected singly charged metallic ions and neutrals is being designed. This apparatus will be employed with the hollow-cathode ion source module. A Penning Ion Gauge (PIG) type ion source of multiply charge ions is in continuing development

  5. Continuous emission, lowering of the ionization potential and total excitation cross-sections of an atmospheric thermal plasma

    NARCIS (Netherlands)

    Rosado, R.J.; Schram, D.C.; Leclair, J.

    1979-01-01

    The authors present a Partial LTE (PLTE) model in which the ground state is overpopulated with respect to the other excited states. The relative overpopulation of the ground state as a function of the electron temperature, T/sub e/, is fairly sensitive to small variations in both the transition

  6. Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects

    Science.gov (United States)

    Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.

    2018-05-01

    The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.

  7. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  8. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  9. Determination of electron impact ionization and excitation coefficients in He-Xe gas mixtures. He-Xe kongo gas ni okeru denshi shototsu denri keisu oyobi reiki keisu no sokutei to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Tachibana, K. (Kyoto Inst. of Technology, Kyoto (Japan))

    1991-03-20

    The rare gas discharge gives a stable discharge and light emission characteristics at low temperature in comparison with the discharge of the vapor of such a metal as Hg. The present barrier for the commercialization of the color PDP lies in the lower level of its emission intensity and efficiency in comparison with that of CRT. In this report, an electron impact ionization coefficient in a gas mixture and an electron impact excitation coefficient for a XeIs {sub 4} level were analyzed using a Boltzmann equation by means of a steady state Townsend method using a drift tube. By comparing both, the elementary process in the gas mixture is investiagted to discuss the respective contributions for the effective ionization coefficient and the excitation coefficient. As a result, it was found that the ionization process in the He-Xe gas mixture could be described by the processes of direct ionization of Xe and He, and an indirect ionization (Penning effect) by an active helium. 37 refs., 12 figs.

  10. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Kawakami, Kazuki; Fujimoto, Takasi

    2001-01-01

    We treat classically the n-, l- and m r -changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m 1 =0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  11. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  12. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity

    International Nuclear Information System (INIS)

    Rangama, J.

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34 + and Ar18 + ) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is preferentially

  13. Differential cross sections for elastic and inelastic n=2 excitation of ground-state helium at 29.6 and 40.1 eV

    International Nuclear Information System (INIS)

    Brunger, M.J.

    1989-11-01

    Differential cross sections have been measured for elastic and inelastic scattering of electrons by ground-state helium at 29.6 and 40.1eV. The normalisation of the cross sections is discussed. Theoretical cross sections have been obtained using a 10-state coupled-channels-optical calculation. In general, there is good agreement between theory and experiment for singlet states but not for triplet. 20 refs., 5 tabs., 6 figs

  14. Measurement of the analysing power T20 in the backward elastic scattering d-vector.p in the region of Δ-excitation and theoretical analysis of this reaction

    International Nuclear Information System (INIS)

    Boudard, A.

    1984-03-01

    We have measured the analysing power T 20 in the backward elastic scattering d.p for 16 energies of the deuteron from 300 MeV to 2300 MeV. This is the region of the observed bump in the backward excitation function of the cross section. This bump is usually thought to be a signature of a Δ(3/2,3/2 + ) dynamically excited in the intermediate state. We have also measured Ay and Ayy from 70 0 to 180 0 for Tsub(d) = 1200 MeV. We have compared both T 20 and the backward cross section with a coherent sum between direct neutron exchange (ONT) and Δ excitation by intermediate exchange of π and rho mesons (TME). The overall shape of the cross section is reproduced. Unlike the earlier measurement from Argonne, there is a deep minimum in T 20 at Tsub(d) = 600 MeV, in agreement with the predictions of direct exchange models. However, an additional structure producing a second minimum at Tsub(d) = 1400 MeV (√S = 3240 MeV) is never reproduced by our calculations. This suggests either that refinements in the Δ treatment are needed or that a new reaction mechanism (resonance) takes place in that region [fr

  15. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    KAUST Repository

    Levko, Dmitry

    2017-09-08

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  16. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  17. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  18. Examination of the limits of accuracy of the extended Koopmans' theorem ionization potentials into excited states of ions of LiH, He2, and Li2

    International Nuclear Information System (INIS)

    Morrison, R.C.; Dixon, C.M.; Mizell, J.R. Jr.

    1994-01-01

    A comparison is made between the ionization potentials (IPS) calculated by the extended Koopmans' theorem (EKT) and by taking energy differences (ΔCI) from configuration interaction calculations in the same basis. Several ionization potentials were calculated for LiH, He 2 , and Li 2 . The best ΔIP, the difference between the EKT IP and the corresponding ΔCI value, was 0.05 meV for the 2σ orbital for LiH and 83.5 meV for the 3σ orbital. The ΔIPs for He 2 were 0.7 meV for the 1σ u orbital, 6 eV for the 2σ u orbital, 5 meV for the 2σ g orbital, and 3 eV for the 3σ g orbital. The ΔIPs for Li 2 are 0.1 meV for 2σ g , 53 meV for 3σ g , 0.6 meV for 2σ u , and 1.73 eV for 3σ u

  19. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  20. Atom and molecule projectile and fast aggregate excitation, ionization and dissociation in thin targets in the out-of-charge equilibrium field

    International Nuclear Information System (INIS)

    Clouvas, A.

    1985-12-01

    The aim of this experimental study is to confirm the possible existence of bound states for light atomic and molecular projectiles inside solid targets, in the MeV energy range. For this purpose we have used, various experimental methods such as charge state distribution measurements, energy loss measurements, beam foil spectroscopy and electron spectroscopy. It was confirmed that bound states of light atomic and molecular projectiles can exist in a solid medium. The various cross sections (charge exchange, excitation, ionisation, dissociation) relative to these bound states have been measured [fr

  1. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  2. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  3. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  4. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  5. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  6. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  7. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  8. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  9. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  10. Electron transfer, ionization, and excitation atomic collisions

    International Nuclear Information System (INIS)

    Winter, T.G.; Alston, S.G.

    1990-01-01

    Basic atomic-collision processes at intermediate and high energies are being studied theoretically at Penn State by Alston and Winter. In the high velocity regime, single-electron capture is treated using a high order multiple-scattering approach; extensive comparison with experiment and analysis of mechanisms have been made. Fitting the calculated amplitude with a simple analytic form, the asymptotic velocity dependence of the cross section is obtained. The effect on the capture amplitude of altering the inner part of the internuclear potential has also been explored. In the intermediate velocity regime, earlier work on collisions between protons and hydrogenic-ion targets using a coupled-state approach is being extended to the two-electron helium target. 29 refs

  11. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  12. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  13. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  14. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  15. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  16. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  17. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  18. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  19. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  20. Trends in resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig

  1. Pipeline robots with elastic elements

    Directory of Open Access Journals (Sweden)

    A. Matuliauskas

    2002-10-01

    Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.

  2. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  3. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  4. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  5. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  6. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  7. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    Science.gov (United States)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  8. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  9. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  10. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  11. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  12. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  13. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  14. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  15. Elastic metamaterial beam with remotely tunable stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  16. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  17. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  18. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  19. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  20. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  1. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  2. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  3. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  4. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  5. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  6. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  7. Penetration of electronic beams in ionizing media

    International Nuclear Information System (INIS)

    Martiarena, M.L.; Zanete, D.H.; Garibotti, C.R.

    1988-01-01

    It is studied the penetration of an electron beam in an ionizable medium by means of a generalized kinetic equation. This equation is related to elastic collisions, processes of creation and destruction of particles. By integrating numerically the transport equation, it can be evaluated the relative effects of all the processes involved in the evolution of the system. (A.C.A.S.) [pt

  8. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  9. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  10. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  11. Electron-impact ionization of atomic ions: Theoretical results

    Energy Technology Data Exchange (ETDEWEB)

    Loch, S D; Burgos, J M Munoz; Ballance, C P; Ludlow, J; Lee, T-G; Fogle, M; Pindzola, M S [Auburn University, Auburn, AL 36849 (United States); Griffin, D C [Rollins College, Winter Park, FL 32789 (United States); Yumak, A; Yavuz, I; Altun, Z, E-mail: loch@physics.auburn.ed [Marmara University, Istanbul (Turkey)

    2009-11-15

    A brief overview is given of theoretical results for electron-impact ionization of atoms and ions. A description is given of the main theoretical methods, along with the databases where the data are archived. It is shown that for light species, ground and metastable ionization cross sections are in reasonable agreement with experiment when non-perturbative data are used for the near neutrals and distorted wave data are used for ions greater than a few times ionized. Some discrepancies between theory and experiment still remain for systems with open d and open p subshells. The sensitivity of ionization rate coefficients to the near threshold part of the ionization cross section is shown. The role of excited states in effective ionization rate coefficients is demonstrated and recent excited state ionization cross section results for H, He, He{sup +}, B{sup 2+} and Ne are presented.

  12. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  13. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  14. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  15. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  16. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  17. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  18. Cross section determination for the higher ionization of rare gas ions by electron collisions

    International Nuclear Information System (INIS)

    Becker, R.; Frodl, R.; Klein, H.; Schmidt, W.; Clausnitzer, G.; Klinger, H.; Mueller, A.; Salzborn, E.; Fuchs, G.; Viehboeck, F.

    1975-01-01

    The higher ionization of rare gas ions is reported on, which were excited by an electron beam using a crossed-beam technique. A detector for the identification of metastable excited rare gas ions was developed. (WL) [de

  19. Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures

    International Nuclear Information System (INIS)

    Phelps, A.V.; Van Brunt, R.J.

    1988-01-01

    An improved set of electron-collision cross sections is derived for SF 6 and used to calculate transport, ionization, attachment, and dissociation coefficients for pure SF 6 and mixtures of SF 6 with N 2 , O 2 , and Ne. The SF 6 cross sections differ from previously published sets primarily at very low and high electron energies. At energies below 0.03 eV the attachment cross section is adjusted to fit recent electron swarm experiments, while the elastic momentum transfer cross section is increased to the theoretical limit. At high energies an allowance is made for the excitation of highly excited levels as observed in electron beam experiments. The cross-section sets used for the admixed gases have previously been published. Electron kinetic energy distributions computed from numerical solutions of the electron-transport (Boltzmann) equation using the two-term, spherical harmonic expansion approximation were used to obtain electron-transport and reaction coefficients as functions of E/N and the fractional concentration of SF 6 . Here E is the electric field strength and N is the gas number density. Attachment rate data for low concentrations of SF 6 in N 2 are used to test the attachment cross sections. Particular attention is given to the calculation of transport and reaction coefficients at the critical E/N = (E/N)/sub c/ at which the ionization and attachment rates are equal

  20. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  1. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  2. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  3. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  4. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  5. Single and multiple ionization of sulfur atoms by electron impact

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1982-01-01

    Laboratory measurements of the cross sections for single, double, triple, and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV. The cross sections for single ionization of sulfur are measured relative to those of several elements whose absolute cross sections for single ionization are known. Cross sections for each multiple ionization process are then measured relative to those for single ionization. The configuration and operation of the apparatus for these measurements are described. The possible effects of excited sulfur reactants are examined, and the reported cross sections are felt to be characteristic of ground state sulfur atoms

  6. Forward elastic scattering of electrons by hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Instituto de Fisica Teorica, R. Pamplona 145, Sao Paulo (Brazil)); Massaro, P.A. (Bari Univ. (Italy). Ist. di Fisica)

    1978-01-11

    The available theoretical and experimental values for the elastic, inelastic and ionization cross-sections of electrons by hydrogen atoms are used to obtain the total cross-section. The optical theorem and a dispersion relation are used to calculate the forward e-H scattering amplitude for medium and high energies. Using this quantity the reliability of the Born expansion for elastic e-H scattering is tested.

  7. Wave propagation in elastic layers with damping

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Darula, Radoslav

    2016-01-01

    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....

  8. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  9. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  10. Electron-impact single and double ionization of W

    International Nuclear Information System (INIS)

    Pindzola, M S; Loch, S D; Foster, A R

    2017-01-01

    Electron-impact single and double ionization cross sections for the W atom are calculated using a semi-relativistic distorted-wave method. The cross sections include contributions from single direct ionization, double direct ionization and excitation-autoionization. Branching ratio calculations are made to determine whether an excitation may contribute to single or double ionization. We check the accuracy of the semi-relativistic distorted-wave calculations for direct ionization of various subshells by comparison with fully-relativistic distorted-wave calculations. We also check the accuracy of the perturbative distorted-wave calculations for direct ionization of the outer most subshells by comparison with non-perturbative time-dependent close-coupling calculations. (paper)

  11. Fast heavy ion collisions with C60: Collective excitation

    International Nuclear Information System (INIS)

    Kadhane, Umesh; Kelkar, A.H.; Misra, D.; Kumar, Ajay; Tribedi, L.C.

    2006-01-01

    Ionization and fragmentation of C 60 in collision with 5 MeV/μm O 6+ ions are studied using recoil ion ToF method. Relative ionization cross sections up to C 60 4+ are determined. The qualitative trend for different C 60 charge states was compared against simple plasmon excitation model

  12. Theory of multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs

  13. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  14. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  15. Excitation equilibria in plasmas: a classification

    International Nuclear Information System (INIS)

    Mullen, J.-J.A.M. van der.

    1986-01-01

    In this thesis the author presents a classification of plasmas based on the atomic state distribution function. The study is based on the relation between the distribution function and the underlying processes and starts with the proper understanding of thermodynamic equilibrium (TE). Four types of proper balances are relevant: The 'Maxwell balance' of kinetic energy transfer, the 'Boltzmann balance' of excitation/deexcitation, the 'Saha balance' of ionization/recombination and the 'Planck balance' for interaction of atoms with radiation. Special attention is paid to the distribution function of the ionizing excitation saturation balance. The classification theory of the distribution functions in relation with underlying balances is supported by experimental evidence in an ionizing argon plasma. The AR I system provides a pertinent support of the theory. Experimental facts found in the AR II system can be interpreted in global terms. (Auth.)

  16. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  17. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  18. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  19. Experiments on how photo- and background ionization affect positive streamers: oxygen concentration, repetition and radioactivity

    NARCIS (Netherlands)

    Nijdam, S.; Veldhuizen, van E.M.; Ebert, U.

    2011-01-01

    Positive streamers in air and other oxygen-nitrogen mixtures are generally believed to propagate against the electron drift direction due to photo-ionization. Photo-ionization is the non-local ionization of O2-molecules by UV radiation from excited N2-molecules. This facilitates the streamer

  20. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  1. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  2. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  3. Kinetic theory of transport processes in weakly ionized gases

    International Nuclear Information System (INIS)

    Odenhoven, F.J.F. van

    1984-01-01

    A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)

  4. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2015-01-01

    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  5. Elasticity theory and applications

    CERN Document Server

    Saada, Adel S; Hartnett, James P; Hughes, William F

    2013-01-01

    Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...

  6. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  7. Electron-impact ionization of Mo+

    International Nuclear Information System (INIS)

    Ludlow, J.A.; Loch, S.D.; Pindzola, M.S.

    2005-01-01

    The electron-impact direct ionization cross section for Mo + is calculated using both nonperturbative close-coupling and perturbative distorted-wave methods. When distorted-wave calculations for 4d 5 →4d 4 direct ionization are added to distorted-wave calculations for 4p→nl excitation-autoionization, the experimental measurements are found to be 60% lower than the theoretical predictions. Inclusion of nonperturbative three-body Coulomb effects, present in time-dependent close-coupling calculations, are found to reduce the distorted-wave 4d 5 →4d 4 direct ionization cross section by 25%. This is by far the largest reduction yet seen when comparing the two methods for direct subshell ionization of an atomic positive ion in the ground state. However, when the close-coupling calculations for 4d 5 →4d 4 direct ionization are added to distorted-wave calculations for 4p→nl excitation-autoionization, the experimental measurements are still 45% lower than the theoretical predictions. Although we further investigate correlation effects in the initial target state and term-dependent potential effects in the ejected electron state in an attempt to understand the small magnitude of the experimental measurements, the discrepancy between theory and experiment remains unexplained

  8. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  9. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  10. Hadron elastic scattering at small angles

    CERN Multimedia

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  11. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  12. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  13. Ionization of food products

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1991-01-01

    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments [fr

  14. Statistical mechanics of elasticity

    CERN Document Server

    Weiner, JH

    2012-01-01

    Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.

  15. Elasticity of energy consumption

    International Nuclear Information System (INIS)

    Stam, M.

    2004-01-01

    Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl

  16. Foodstuffs preservation by ionization

    International Nuclear Information System (INIS)

    1991-12-01

    This document contains all the papers presented at the meeting on foodstuffs preservation by ionization. These papers deal especially with the food ionization process, its development and the view of the food industry on ionization. Refs and figs (F.M.)

  17. Mastering ElasticSearch

    CERN Document Server

    Kuc, Rafal

    2013-01-01

    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  18. Characterization of weakly excited final states by shakedown spectroscopy of laser-excited potassium

    International Nuclear Information System (INIS)

    Schulz, J.; Heinaesmaeki, S.; Aksela, S.; Aksela, H.; Sankari, R.; Rander, T.; Lindblad, A.; Bergersen, H.; Oehrwall, G.; Svensson, S.; Kukk, E.

    2006-01-01

    3p shakedown spectra of laser excited potassium atoms as well as direct 3p photoemission of ground state potassium have been studied. These two excitation schemes lead to the same final states and thereby provide a good basis for a detailed study of the 3p 5 (4s3d) 1 configurations of singly ionized potassium and the photoemission processes leading to these configurations. The comparison of direct photoemission from the ground state and conjugate shakedown spectra from 4p 1/2 laser excited potassium made it possible to experimentally determine the character of final states that are only weakly excited in the direct photoemission but have a much higher relative intensity in the shakedown spectrum. Based on considerations of angular momentum and parity conservation the excitation scheme of the final states can be understood

  19. A dynamic elastic and inelastic scattering theory of high-energy electrons

    International Nuclear Information System (INIS)

    Wang Zhonglin

    1990-01-01

    A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory

  20. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  1. Response of multiphase magneto-electro-elastic sensors under ...

    African Journals Online (AJOL)

    The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress assumption is presented in this paper. The beam is subjected to harmonic excitation with a point load at tip and a uniformly distributed load along the bottom surface of the mild steel beam. Numerical ...

  2. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  3. An experimental and theoretical investigation into the excited electronic states of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  4. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  5. Elastic fiber-mediated enthesis in the human middle ear.

    Science.gov (United States)

    Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko

    2012-10-01

    Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  6. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  7. Multiphoton ionization/dissociation of osmium tetroxide

    International Nuclear Information System (INIS)

    Ding, D.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO 4 ) have been investigated from measurements of the kinetic energies of product ions (Os + , Os 2+ , OsO + , O 2 + , O + ) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os + ionization channel, such as OsO 4 →OsO 4-n +nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os + ion signal suggests that one or more of the steps leading to Os + ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow ( 2+ is shown to result primarily from REMPI of Os +

  8. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  9. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    International Nuclear Information System (INIS)

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-01-01

    This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  10. Electrostatic perturbations in partially ionized plasma with the effects of ionization and recombination

    International Nuclear Information System (INIS)

    Vranjes, J.; Tanaka, M.Y.; Kono, M.; Poedts, S.

    2004-01-01

    The behavior of the electrostatic ion acoustic mode in a partially ionized plasma is studied in the presence of collisions which involve processes of ionization and recombination, taking into account the dynamics of the neutrals caused by elastic and inelastic collisions with ions. The application of the model to space plasmas, which are usually subject to gravity, is discussed in detail. A dispersion equation which includes the effects of ionization and recombination is derived and the stability/instability conditions are discussed. Parameters applicable to a region of the upper solar chromosphere are used and the increment of the ion sound wave is calculated yielding an unstable ion sound wave for wavelengths larger than 20 km

  11. Consideration on excitation mechanisms in a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.; Gerasimov, Vladimir A.

    2013-01-01

    The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures. - Highlights: • Excitation mechanisms were investigated in a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Argon covering was used to study the argon effect on line intensities. • Participation of metastable argon in atom ionization was shown

  12. Ionization of H2O molecules through second order collisions in an argon-filled flow ionization chamber

    International Nuclear Information System (INIS)

    Leonhardt, J.

    1976-01-01

    In an argon-filled ionization chamber with a constant radionuclide radiation source, the ionization of H 2 O through second order collisions with 3sub(p) 2 states of argon excited by field-accelerated electrons is considered within the range of discharge caused by external potentials under atmospheric pressure. It is found that the logarithm of the change of ionization current is proportional to power 3/2 of the electric field strength. Possible formation mechanisms are discussed. Most probable is the ionization of H 2 O through collision with Ar 2 argon dimers originating from excited metastable atoms as a result of triple collision. The production cross section for H 2 O + has been estimated to be sigmasub(H 2 O) approximately 5x10 -15 . (author)

  13. Ionizing wave via high-power HF acceleration

    OpenAIRE

    Mishin, Evgeny; Pedersen, Todd

    2010-01-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60 km. This paper presents a physical model of an ionizing wavefront created by suprathermal electrons accelerated by the HF-excited plasma turbulence.

  14. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  15. Luminiscent emission of molecular levels excited by ionizant radiations

    International Nuclear Information System (INIS)

    Ortiz Ramis, M.

    1977-01-01

    The emission spectra and the time dependence of scintillations produced by alpha particles, gamma rays and ultraviolet light in some organic compounds crystals and liquids solutions normally used as radiation detectors has been studied. (author) [es

  16. Suppression of multiphoton excitation in resonance ionization measurements

    International Nuclear Information System (INIS)

    Garrett, W.R.; Moore, M.A.; Wunderlich, R.K.; Payne, M.G.

    1988-04-01

    We describe experimental confirmation of strong suppressions of laser-driven nonlinear absorption processes by electromagnetic fields through other nonlinear processes within a given atomic or molecular medium. (AR)

  17. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  18. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  19. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  20. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  1. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  2. Hybrid elastic solids

    KAUST Repository

    Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing

    2011-01-01

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  3. The law of elasticity

    Directory of Open Access Journals (Sweden)

    Sergio Cesare Masin

    2010-01-01

    Full Text Available Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight-a cognitive law analogous to Hooke¿s law of elasticity. Participants also estimated the total imagined elongation of springs joined either in series or in parallel. This total elongation was longer for serial than for parallel springs, and increased proportionally to the number of serial springs and inversely proportionally to the number of parallel springs. The results suggest that participants integrated load weight with imagined elasticity rather than with spring length.

  4. ElasticSearch server

    CERN Document Server

    Rogozinski, Marek

    2014-01-01

    This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.

  5. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  6. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  7. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...

  8. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  9. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  10. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  11. H II regions ionized by sigma and tau Sco

    Energy Technology Data Exchange (ETDEWEB)

    Gaylard, M J [Council for Scientific and Industrial Research, Pretoria (South Africa). National Inst. for Telecommunications Research

    1984-11-15

    The H142..cap alpha.. line has been detected in Sharpless 9, which is ionized by sigmaSco, and in RCW 129, ionized by tau Sco. The electron temperatures in the two H II regions are 5700 +- 340 K and 4200 +- 600 K respectively. The thermal radio emission from S9 is asymmetric with respect to the stellar position, and the emission peak coincides with the position of the optical red emission features to the north and west of the star. There is no evidence for collisional excitation. S9 is a density-bounded H II region in the champagne phase, the bright rims and radio peak marking the ionization front.

  12. Fracton-Elasticity Duality

    Science.gov (United States)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  13. The Law of Elasticity

    Science.gov (United States)

    Cocco, Alberto; Masin, Sergio Cesare

    2010-01-01

    Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…

  14. Dissociative Excitation of Acetylene Induced by Electron Impact: Excitation-emission Cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Országh, Juraj; Danko, Marián; Čechvala, Peter; Matejčík, Štefan, E-mail: matejcik@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F-2, 842 48 Bratislava (Slovakia)

    2017-05-20

    The optical emission spectrum of acetylene excited by monoenergetic electrons was studied in the range of 190–660 nm. The dissociative excitation and dissociative ionization associated with excitation of the ions initiated by electron impact were dominant processes contributing to the spectrum. The spectrum was dominated by the atomic lines (hydrogen Balmer series, carbon) and molecular bands (CH(A–X), CH(B–X), CH{sup +}(B–A), and C{sub 2}). Besides the discrete transitions, we have detected the continuum emission radiation of ethynyl radical C{sub 2}H(A–X). For most important lines and bands of the spectrum we have measured absolute excitation-emission cross sections and determined the energy thresholds of the particular dissociative channels.

  15. Elastic/Inelastic Measurement Project

    International Nuclear Information System (INIS)

    Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey; McEllistrem, Marcus

    2015-12-01

    The work scope involves the measurement of neutron scattering from natural sodium ( 23 Na) and two isotopes of iron, 56 Fe and 54 Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23 Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-@@energy (few MeV) fast-@@neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-@@region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., @@ 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.

  16. Elastic/Inelastic Measurement Project

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Steven [Univ. of Kentucky, Lexington, KY (United States); Hicks, Sally [Univ. of Dallas, TX (United States); Vanhoy, Jeffrey [U.S. Naval Academy, Annapolis, MD (United States); McEllistrem, Marcus [Univ. of Kentucky, Lexington, KY (United States)

    2016-03-01

    The work scope involves the measurement of neutron scattering from natural sodium (23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-­energy (few MeV) fast-­neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-­region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.

  17. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  18. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  20. Endoergic chemi-ionization in N-O collisions

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dahler, J.S.

    1979-01-01

    A semiclassical theory of endoergic chemi-ionization is developed and applied to the ionizing events that occur when ground state oxygen atoms collide with nitrogen atoms in the ground and first excited states. The approach used is an adaptation and extension of earlier theories due to Bardsley, Nakamura, and Miller. The theory relates the experimental associative (AI) and Penning ionization (PI) cross sections to the following events: formation of a stable diatomic ion (AI), neutral and ionized atomic fragments (PI), or of a metastable diatomic rotational resonance (DI, delayed ionization). The heavy particle motions are treated classically in terms of adiabatic potential energy functions, while localized nonadiabatic transitions also are taken into account by using the Landau-Zener approximation. Finally, the theoretical predictions compare well with the results of Ringer and Gentry's (1978) merged beam experiments

  1. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  2. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  3. Excitation of higher lying energy states in a rubidium DPAL

    Science.gov (United States)

    Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.

    2018-02-01

    The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.

  4. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  5. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  6. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  7. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  8. Ionization photophysics and spectroscopy of cyanoacetylene

    International Nuclear Information System (INIS)

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-01-01

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC 3 N involves new aspects and new assignments of the vibrational components to excitation of the A 2 Σ + and B 2 Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B 2 Π state of HC 3 N + . A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C 2 Σ + state of HC 3 N + at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised

  9. Ionization photophysics and spectroscopy of cyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192, Gif-sur-Yvette Cedex (France); Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin [LISA UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France)

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  10. Investigating the contamination of accelerated radioactive beams with an ionization chamber at MINIBALL

    CERN Document Server

    Zidarova, Radostina

    2017-01-01

    My summer student project involved the operation and calibration of an ionization chamber, which was used at MINIBALL for investigating and determining the contamination in post-accelerated radioactive beams used for Coulomb excitation and transfer reaction experiments.

  11. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    International Nuclear Information System (INIS)

    Guan, Xiaoxu; Bartschat, Klaus; Koesterke, Lars; Schneider, Barry I

    2014-01-01

    We report angle-resolved and angle-integrated cross sections for two-photon double-ionization of H by a strong laser pulse. The effect of doubly excited states on the predicted cross sections is addressed.

  12. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1987-06-01

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  13. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  14. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  15. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  16. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  17. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  18. Designing interactively with elastic splines

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie

    2018-01-01

    We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....

  19. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  20. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    Science.gov (United States)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  1. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  2. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  3. Effects of configuration mixing in heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Cappuzzello, F.; Bondi, M.; Nicoloso, D.; Tropea, S.; Lubian, J.; Gomes, P.R.S.; Linares, R.; Oliveira, J.R.B.; Chamon, L.C.; Gasques, L.R.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Nunes Garcia, V.; Paes, B.; Foti, A.

    2014-01-01

    A theoretical study of the influence of configuration mixing on elastic scattering cross section is performed for the system 16 O + 27 Al at 100 MeV. A simple two-state model space, including the 27 Al 5/2 + ground and 5/2 + excited state at 2.73 MeV, is used in the coupled channel equations. The results indicate that even a weak degree of mixing is able to sizeably affect the elastic cross section, determining mainly a damping of Fraunhofer oscillations, as observed in the experiments. (authors)

  4. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  5. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  6. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  7. Introduction to linear elasticity

    CERN Document Server

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  8. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  9. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  10. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  11. Indirect processes in electron impact ionization of Kr24+ and Kr25+

    International Nuclear Information System (INIS)

    Chen, M.H.; Reed, K.J.

    1992-09-01

    Electron-impact ionization cross sections have been calculated for magnesiumlike Kr 24+ and sodiumlike Kr 25+ . Electron-impact ionization is an important atomic process in hot dense plasmas. It can affect the ionization balance, electron temperature, electron density, and level population in the plasma. In the past decade, theoretical and experimental studies have revealed that indirect processes can make significant contributions to the cross sections for electron impact ionization of positive ions. The most important indirect process is excitation of an inner-shell electron followed by Auger emission. Higher-order processes such as resonant excitation followed by sequential double Auger emission, can also contribute significantly. The contributions of excitation-autoionization and resonant excitation double autoionization (REDA) were included, in addition to the cross sections for direct ionization of a 3s electron. The calculations were carried out using the relativistic distorted wave methods and the multiconfiguration Dirac-Fock model. For Kr 25+ , the total cross section is about 5 times the direct ionization cross section. For the Kr 24+ , the indirect contribution is about 2.5 times the direct ionization cross section. The REDA process produces many strong resonances and contributes about 20% to the average ionization cross section

  12. Ionization photophysics and spectroscopy of dicyanoacetylene

    International Nuclear Information System (INIS)

    Leach, Sydney; Champion, Norbert; Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Garcia, Gustavo A.; Gaie-Levrel, François; Guillemin, Jean-Claude

    2013-01-01

    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A 2 Π g , B 2 Σ g + states as well as the C 2 Σ u + and D 2 Π u states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D 2 Π u state of C 4 N 2 + . The appearance energies of the fragment ions C 4 N + , C 3 N + , C 4 + , C 2 N + , and C 2 + were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways

  13. pp-elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  14. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  15. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-01-01

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists

  16. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  17. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  18. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  19. Ionization in positron- and positronium- collisions with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laricchia, G; Brawley, S; Cooke, D A; Murtagh, D J; Williams, A I [UCL Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Koever, A [permanent address: ATOMKI, Institute for Nuclear Research, Debrecen (Hungary)

    2009-11-15

    Recent progress in the experimental study of positron- and positronium-induced ionization of atoms and molecules is outlined. Investigations include integral and differential cross-sections, as well as formation of positronium in the first excited state. Future prospects are discussed.

  20. Polarization dependence of Na* + Na* associative ionization revisited

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. v.d.; Morgenstern, R.; Hertel, I.V.; Meyer, E.; Witte, R.

    1986-01-01

    The dependence of the associative ionization process Na 3 2P3/2 + Na 3 2P3/2 → Na2+ + e- on the polarization of the laser light used for Na excitation was independently investigated in Utrecht and Berlin. The purpose of this paper is to clarify discrepancies between two other earlier experimental

  1. Laser ionization and dissociation of hydrogen

    International Nuclear Information System (INIS)

    Buck, J.D.

    1987-01-01

    Experiments undertaken to further characterize the spectroscopic and photophysical properties of some important excited singlet states of molecular hydrogen and its deuterium isotopes are described. Attention was centered on high vibrational levels of the B, C, and B' states within about 1000 cm -1 of the second dissociation limit. A double-resonance excitation scheme was needed to access levels with a large average bond distance from the ground state. Two-photon absorption of tunable uv-laser radiation-pumped ground-state hydrogen molecules into selected rovibronic levels of the metastable EF double-minimum electronic state. A second tunable near-IR probe laser was scanned to generate ions by resonant multiphoton ionization, where the resonant levels were provided by B, C, B', and other levels near the dissociation limit. New information was obtained regarding line shapes and intensities. Time-of-flight ion mass selection permitted observation of additional excitation channels with dissociation superimposed on the ionization process to produce protons

  2. Non-adiabatic rotational excitation of dipolar molecule under the ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1213–1221. c Indian Academy of Sciences. ... The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse. (HCP) is .... pared to the intensities required for the ionization of ..... out and with delayed ultrashort HCP at different initial pulse dura-.

  3. Modeling strong-field above-threshold ionization

    International Nuclear Information System (INIS)

    Sundaram, B.; Armstrong, L. Jr.

    1990-01-01

    Above-threshold ionization (ATI) by intense, short-pulse lasers is studied numerically, using the stretched hydrogen atom Hamiltonian. Within our model system, we isolate several mechanisms that contribute to the ATI process. These mechanisms, which involve both excited bound states and continuum states, all invoke intermediate, off-energy shell transitions. In particular, the importance of excited bound states and off-energy shell bound-free processes to the ionization mechanism are shown to relate to a simple physical criterion. These processes point to importance differences in the interpretation of ionization characteristics for short pulses from that for longer pulses. Our analysis concludes that although components of ATI admit of simple, few-state modeling, the ultimate synthesis points to a highly complex mechanism

  4. Applications of resonance ionization spectroscopy in neutron dosimetry

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Hurst, G.S.

    1982-01-01

    Resonance Ionization Spectroscopy (RIS) is a new analytical technique which is orders of magnitude more sensitive than previous methods of atomic analysis. In this method, lasers are used to selectively excite specific electronic transitions in the element being analyzed. A second laser photon can then ionize the excited atoms. Commercial lasers have sufficient intensity to assure that every atom located in the central portion of the laser beam will be ionized, and therefore can be detected. In this paper the concept of a xenon-containing matrix (XCM) which would release xenon atoms when exposed to neutrons is explored. Accumulated xenon would be measured using RIS to determine total dose. The total dosimeter would consist of an XCM, a radiator, and an encapsulation around both to contain released xenon atoms

  5. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  6. What is ''ionizing radiation''?

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1997-01-01

    The scientific background of radiation protection and hence ''ionizing radiation'' is undergoing substantial regress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term ''ionizing radiation'' in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as ''ionizing'' is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of ''ionizing radiation''. (author)

  7. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  8. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  9. Form finding in elastic gridshells

    Science.gov (United States)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  10. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  11. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  12. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  13. Mathematical foundations of elasticity

    CERN Document Server

    Marsden, Jerrold E

    1994-01-01

    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  14. Elastic and viscoplastic properties

    International Nuclear Information System (INIS)

    Lebensohn, R.A.

    2015-01-01

    In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)

  15. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  16. Multiply excited molecules produced by photon and electron interactions

    International Nuclear Information System (INIS)

    Odagiri, T.; Kouchi, N.

    2006-01-01

    The photon and electron interactions with molecules resulting in the formation of multiply excited molecules and the subsequent decay are subjects of great interest because the independent electron model and Born-Oppenheimer approximation are much less reliable for the multiply excited states of molecules than for the ground and lower excited electronic states. We have three methods to observe and investigate multiply excited molecules: 1) Measurements of the cross sections for the emission of fluorescence emitted by neutral fragments in the photoexcitation of molecules as a function of incident photon energy [1-3], 2) Measurements of the electron energy-loss spectra tagged with the fluorescence photons emitted by neutral fragments [4], 3) Measurements of the cross sections for generating a pair of photons in absorption of a single photon by a molecule as a function of incident photon energy [5-7]. Multiply excited states degenerate with ionization continua, which make a large contribution in the cross section curve involving ionization processes. The key point of our methods is hence that we measure cross sections free from ionization. The feature of multiply excited states is noticeable in such a cross section curve. Recently we have measured: i) the cross sections for the emission of the Lyman- fluorescence in the photoexcitation of CH 4 as a function of incident photon energy in the range 18-51 eV, ii) the electron energy-loss spectrum of CH 4 tagged with the Lyman-photons at 80 eV incident electron energy and 10 electron scattering angle in the range of the energy loss 20-45 eV, in order to understand the formation and decay of the doubly excited methane in photon and electron interactions. [8] The results are summarized in this paper and the simultaneous excitation of two electrons by electron interaction is compared with that by photon interaction in terms of the oscillator strength. (authors)

  17. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  18. Impact-ionization autosolitons in compensated silicon

    International Nuclear Information System (INIS)

    Musaev, A.M.

    2004-01-01

    The results of the experimental identification and study on the autosolitons with the charge carriers self-production by the impact ionization of the indium deep acceptor levels in silicon in the strong electric fields at the temperature of 77 K are presented. The role of the activator in the considered autosolitons excitation model is played by the free charge carriers concentration and the role of the inhibitor by the carriers temperature. The solitons existence is determined by the fact, that the area of the carriers high concentration in the autosolitons center does not spread, while the diffusion flow from the autosolitons center is counterbalanced by the thermodiffusion flow [ru

  19. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  20. Elastic emission polishing

    Energy Technology Data Exchange (ETDEWEB)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  1. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  2. Design guidance for elastic followup

    International Nuclear Information System (INIS)

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed

  3. Income Elasticity of Environmental Amenities

    OpenAIRE

    Daniel Miles; Andrés Pereyra; Máximo Rossi

    2000-01-01

    In this paper we are concerned with the estimation of income elasticities of environmental amenities. The novelty is the application of econometric methods that take into account the problem of measurement errors when estimating these elasticities, which are common in microeconomic data and are not usually considered in the applied literature related with this issue. Our aim is to discuss whether the measurement error has signi…cant e¤ects on the elasticities. Data from the Expenditure Budget...

  4. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  5. Many-electron phenomena in the ionization of ions

    International Nuclear Information System (INIS)

    Mueller, A.

    2004-01-01

    Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed

  6. Development of an optical digital ionization chamber

    International Nuclear Information System (INIS)

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs

  7. Dispersion relation for elastic electron-hydrogen atom forward scattering amplitude

    International Nuclear Information System (INIS)

    Kuchiev, M.Yu.; Amusia, M.Ya.

    1978-01-01

    The elastic e+H forward scattering amplitude is an analytical function in the complex energy E plane and has two cuts on the real axis: 0 < E < infinity and -infinity < E < -B, B being the hydrogen ionization potential. The e+H dispersion relation contains two integrals over the right and left cuts. (Auth.)

  8. Non-equilibrium blunt body flows in ionized gases

    International Nuclear Information System (INIS)

    Nishida, Michio

    1981-01-01

    The behaviors of electrons and electronically excited atoms in non-equilibrium and partially ionized blunt-body-flows are described. Formulation has been made separately in a shock layer and in a free stream, and then the free stream solution has been connected with the shock layer solution by matching the two solutions at the shock layer edge. The method of this matching is described here. The partially ionized gas is considered to be composed of neutral atoms, ions and electrons. Furthermore, the neutral atoms are divided into atoms in excited levels. Therefore, it is considered that electron energy released due to excitation, and that gained due to de-excitation, contribute to electron energy. Thus, the electron energy equation including these contributions is solved, coupled with the continuity equations of the excited atoms and the electrons. An electron temperature distribution from a free stream to a blunt body wall has been investigated for a case when the electrons are in thermal non-equilibrium with heavy particles in the free stream. In addition, the distributions of the excited atom density are discussed in the present analysis. (author)

  9. Investigation of optimal photoionization schemes for Sm by multi-step resonance ionization

    International Nuclear Information System (INIS)

    Cha, H.; Song, K.; Lee, J.

    1997-01-01

    Excited states of Sm atoms are investigated by using multi-color resonance enhanced multiphoton ionization spectroscopy. Among the ionization signals one observed at 577.86 nm is regarded as the most efficient excited state if an 1-color 3-photon scheme is applied. Meanwhile an observed level located at 587.42 nm is regarded as the most efficient state if one uses a 2-color scheme. For 2-color scheme a level located at 573.50 nm from this first excited state is one of the best second excited state for the optimal photoionization scheme. Based on this ionization scheme various concentrations of standard solutions for samarium are determined. The minimum amount of sample which can be detected by a 2-color scheme is determined as 200 fg. The detection sensitivity is limited mainly due to the pollution of the graphite atomizer. copyright 1997 American Institute of Physics

  10. Shock velocity in weakly ionized nitrogen, air, and argon

    International Nuclear Information System (INIS)

    Siefert, Nicholas S.

    2007-01-01

    The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons

  11. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  12. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  13. Level-resolved distorted-wave cross-sections of electron impact ionization of Ar{sup 5+}

    Energy Technology Data Exchange (ETDEWEB)

    Yumak, A; Yavuz, I; Altun, Z, E-mail: zikalt@superonline.co [Department of Physics, Marmara University, Istanbul, 34722 (Turkey)

    2009-11-01

    Electron impact ionization cross sections of Ar{sup 5+} were calculated using configuration-average (CADW) and level-resolved (LRDW) distorted-wave methods. Direct ionization cross-sections of 2s, 2p, 3s and 3p subshells were calculated within a CADW approximation. The contributions from the excitation autoionization channels were evaluated assuming single excitations from the 2s, 2p, and 3s subshells and in both CADW and LRDW methods. The radiative stabilization of the excitation autoionization channels were found to reduce the excitation autoionization by a small amount.

  14. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  15. Line intensity ratios of helium atom in an ionizing plasma

    International Nuclear Information System (INIS)

    Sasaki, Satoshi; Goto, Motoshi; Kato, Takako; Takamura, Shuichi

    1998-10-01

    Effective emission rate coefficients C em eff (λ), line intensity ratios, C em eff (λ 1 )/C em eff (λ 2 ), and S eff /C em eff (λ), with S eff the ionization rate coefficient, are obtained by the collisional radiative model for an ionizing plasma using new excitation and ionization rate coefficients. In the plasma with electron density n e > 10 4 cm -3 , C em eff (λ) for various lines are enlarged, since the normalized population densities for the metastable states, n(2 1,3 S)/n He , becomes large, and the excitation rate coefficients from 2 1,3 S, C 21,3S→i , are large compared to that from the ground state C 11S→i . In high n e plasma (n e > 10 12 cm -3 ), with frequent electron impacts on the excited heliums, n(i)/n He become constant to n e , which results in the decrease of C em eff (λ). Hot electrons and resonance scattering, which are often important for the experimental applications, are included in this model. A small amount of hot electrons (several percents) can enhance the line emission and ionization rates for low electron temperature plasma with T e (T e 1 S - n 1 P) and enlarges n 1 P and 2 1 S populations when the column density of helium gas n He x L exceeds 2x10 13 [cm -2 ]. (author)

  16. The ionizing treatment of food

    International Nuclear Information System (INIS)

    1998-01-01

    This book of proceedings contains the talks given by the members of the Society of chemical experts of France (SECF) and by various specialists of the ionizing treatment during the scientific days of September 25-26, 1997. The aim of this meeting was to reconsider the effects of ionization from a scientific point of view and apart from the polemics generated by this domain. The following topics were discussed successively: source and characterization of a ionizing treatment, biological effects of ionization on food and the expected consequences, the ionizing treatment and the reduction of the vitamin C content of fruits and vegetables, is it safe to eat irradiated food?, the organoleptic modifications of food after ionization, quality assurance of dosimetry measurements in an industrial installation of food ionization, the French and European regulations in food ionization, the detection of irradiated foodstuffs, processed food and complex lipid matrices, sterilization of dishes for immuno-depressed patients using ionization. (J.S.)

  17. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  18. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  19. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  20. Two- and three-photon excitation of Gd3+ in CaAl12O19

    International Nuclear Information System (INIS)

    Heerdt, M.L.H. ter; Basun, S.A.; Imbusch, G.F.; Yen, W.M.

    2002-01-01

    We have employed two-photon excitation to study the higher energy levels of Gd 3+ ions in CaAl 12 O 19 and we compare the results with those obtained using conventional UV excitation techniques. Under two-photon excitation, the luminescence intensity exhibits an unusual temporal behavior, a very long build-up followed by a decrease by orders of magnitude, ascribed to a recombination-assisted luminescence excitation mechanism assuming photo-ionization of Gd 3+ ions and trapping of free electrons on deep traps. We also find that the two-photon excitation spectra contain an additional broadening contribution which can be attributed to homogeneous broadening of excitation levels caused by excited state absorption into the conduction band. We believe that this may be a general phenomenon whenever participating photons produce ionization of impurity ions from metastable excited states. The phenomenon can manifest itself also in two-photon ionization spectral hole burning and in up-conversion processes (in the latter case, the homogeneous broadening can be caused by an intra-ion excited-state absorption)

  1. Alignment creation by elastic electron scattering. A quantum treatment

    International Nuclear Information System (INIS)

    Csanak, G.; Kilcrease, D.P.; Fursa, D.V.; Bray, I.

    2004-01-01

    Alignment creation by elastic heavy particle scattering has been studied by many authors. A formula for the alignment creation cross section by elastic scattering is obtained by quantum-mechanical methods. The formula obtained differs from the analogous formula relevant for inelastic electron scattering. In the case of a J=1 to J=1 transition according to the inelastic formula, the alignment created is proportional to the quantity σ (1) - σ (0) where σ (M) is the excitation cross section of the M magnetic sublevel and thus σ (1) = (σ 1-1 + σ 10 + σ 11 )/3 and σ (0) = (σ 0-1 +σ 00 + σ 01 )/3 where σ MM' refers to the cross section of the electron impact induced M' to M transition. In the elastic scattering alignment creation formula obtained in the case of a J=1 to J=1 elastic scattering, the alignment created is proportional to the quantity q(1) - q(0) where q(1) σ (1) - σ 11 /3 and q(0) = σ 00 /3. Thus in obtaining q(M), the elastic scattering cross section by the M magnetic sublevel, σ MM' , is subtracted. This derivation considered only direct scattering, i.e. the incident electron was considered distinguishable from the target electrons. (Y.Kazumata)

  2. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  3. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  4. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  5. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  6. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  7. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  8. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  9. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  10. Alternative approach to the surface-excitation model

    International Nuclear Information System (INIS)

    Krohn, V.E.

    1981-01-01

    Although the development of the surface-excitation model of sputtered-ion emission involved a detailed description of the ionization process, one can arrive at the same result by assuming an equilibrium treatment, e.g. the Saha-Langmuir equation, with the temperature falling as the collision casade develops. This suggests that, even if situations are found where the surface-excitation model is successful, it does not follow that the original detailed description of the ionization process is correct. Nevertheless, the surface-excitation model does contain an interesting new idea which should not be overlooked, i.e. that atoms sputtered during the early stages of a collision cascade will be relatively energetic, and to the extent that the Saha-Langmuir equation has some applicability, will have a probability of positive ionization which will be low for atoms of low ionization potential (I phi), relative to lower-energy atoms emitted during the later stages of the collision cascade. The extended abstract will discuss recent experimental results

  11. Secondary ionization processes in laser induced breakdown of electronegative gases

    International Nuclear Information System (INIS)

    Gamal Yosr, E.E.D.; Shafik, M.S.; Abdel-Moneim, H.M.

    1990-08-01

    This paper presents an investigation of the stepwise ionization processes which occur during the interaction of laser radiation with electronegative gases. Calculations are carried out adopting a modified version of the electron cascade model previously developed by Evans and Gamal. The modifications of the model are performed for the case of molecular oxygen to account for electron attachment losses. Particular attention is devoted to molecular oxygen at a pressure of 2.8 x 10 4 Torr irradiated by 10 ns pulse of Nd:YAG laser (λ=1.064 μm) at a peak intensity of 1.7x10 11 Wcm -2 . The calculations consider the effect of the secondary ionization processes on the electron energy distribution function and its parameters (evolution of the density of the excited molecules, electrons density as well as the electron mean energy during the laser flash). This analysis shows how the removal of slow electrons by attachment to oxygen molecules creates a strong competition between the stepwise ionization processes. These processes namely photoionization and collisional ionization deplete the electronic excited states and contribute eventually to the ionization growth rate in laser induced breakdown of electronegative gases. (author). 7 refs, 6 figs, 1 tab

  12. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  13. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  14. Multipurpose hooks for elastic attachment

    Directory of Open Access Journals (Sweden)

    Siddharth Shashidhar Revankar

    2014-01-01

    Full Text Available As certain bracket systems do not include hooks on premolar brackets for elastic attachment, Kobayashi or custom made ligature hooks have proven as an alternative. However, these hooks tend to bend labially when used with heavy elastics and these elastics can even pop loose from the hooks on mouth opening. The following article describes an innovative multipurpose hook which is simple, stiff and inexpensive and can be used for engagement of class II elastics on premolars in case of missing molars as well as engagement of intermaxillary elastics for settling of occlusion in finishing stages. As the hooks can be prefabricated, this saves a lot of chair side time and is more practical for use in day-to-day orthodontic practice.

  15. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  16. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  17. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  18. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  19. Harmonic excitations in quasicrystals

    International Nuclear Information System (INIS)

    Luck, J.M.

    1986-03-01

    The harmonic excitations (phonons) of quasicrystals are studied in a simple one-dimensional model. The spectrum is a Cantor set, which exhibits selfsimilarity properties. The eigenstates are generically ''critical'', i.e. neither extended nor localized

  20. Radio frequency plasma excitation

    International Nuclear Information System (INIS)

    Burden, M.St.J.; Cross, K.B.

    1979-01-01

    An investigation into the use of rf sputtering for ion cleaning of insulating substrates before ion plating is reported. Initial experiments consisted of sputtering metals with rf power followed by the deposition of copper onto glass slides using rf plasma excitation and biasing supply. It was found that good quality films were obtained by rf ion plating onto plastics with excellent adhesion over a wide operating pressure range. A block schematic of the rf plasma excitation system is shown. (UK)

  1. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  2. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  3. Detection of ionized foods

    International Nuclear Information System (INIS)

    Beerens, H.

    1986-01-01

    Irradiated foods and feed might be identified with two kinds of tests: 1. biochemical: detection of specific products are not yet available 2. microbiological: when a microbial species dissapears from a sample of food i.e. it is not detectable after enrichment (for instance Coliforms in hamburgers) it is likely that the sample has been ionized [fr

  4. Ionization loss in BGO

    International Nuclear Information System (INIS)

    Bakken, J.A.; Denes, P.; Piroue, P.A.; Stickland, D.P.; Sumner, R.L.; Taylor, C.; Barone, L.; Borgia, B.; Diemoz, M.; Dionisi, C.; Falciano, S.; Ferroni, F.; Gratta, G.; Longo, E.; Luminari, L.; Morganti, S.; Valente, E.; Blaising, J.J.; Boutigny, D.; Coignet, G.; Karyotakis, Y.; Sauvage, G.; Schneegans, M.; Vivargent, M.; Extermann, P.; Morand, G.; Ossmann, J.; Ruckstuhl, W.; Schaad, T.P.; Lecoq, P.; Walk, W.; Li, P.J.; Micke, M.; Micke, U.; Schmitz, D.

    1988-01-01

    We report on a precise measurement of the energy loss through ionization by pions in bismuth germanate performed at several values of the incident particles momentum with a prototype of the L3 electromagnetic calorimeter. The experimental results are in good agreement with theoretical predictions showing the relativistic rise modified by density effect. (orig.)

  5. Ionizing radiation from tobacco

    International Nuclear Information System (INIS)

    Westin, J.B.

    1987-01-01

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed

  6. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  7. Basic ionizing radiation symbol

    International Nuclear Information System (INIS)

    1987-01-01

    A description is given of the standard symbol for ionizing radiation and of the conditions under which it should not be used. The Arabic equivalent of some English technical terms in this subject is given in one page. 1 ref., 1 fig

  8. Ionizing radiation and life.

    Science.gov (United States)

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  9. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  10. Pion elastic and inelastic scattering from 15N

    International Nuclear Information System (INIS)

    Saunders, D.P.

    1991-12-01

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15 N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm -1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π + )/σ(π - ) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm -1 excitation functions and the σ(π + )/σ(π - ) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  11. Time-dependent approach to electron scattering and ionization in the s-wave model

    International Nuclear Information System (INIS)

    Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.

    1995-01-01

    The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum

  12. Stokes-attenuated tunneling ionization of molecules

    Science.gov (United States)

    Kornev, Aleksei S.; Zon, Boris A.

    2018-03-01

    We set forth the quantum theory of ionic vibrational-level population by means of tunneling ionization of a molecule. Specific calculations are carried out for the H2 molecule. The results are in qualitative agreement with the experimental data [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004), 10.1103/PhysRevLett.92.163004]. Our account for the excited vibrational levels reveals an interplay of two tendencies which contribute to the ionization rate: (i) It decreases due to additional energy absorption needed to populate these states and (ii) it increases together with the Franck-Condon factors which are large for these states. We show that these two tendencies practically compensate each other. The average quantitative disagreement between the theory and experiment amounts to ˜30 %. The same disagreement takes place when using the frozen approximation for the description of the nuclei motion. We demonstrated that the light-dressing effect for H2 leads to the dependence of the ionization rate on the angle between the molecule axis and the polarization vector of the radiation.

  13. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  14. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  15. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  16. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  17. Ionization photophysics and spectroscopy of dicyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney, E-mail: Sydney.Leach@obspm.fr, E-mail: Martin.Schwell@lisa.u-pec.fr; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Schwell, Martin, E-mail: Sydney.Leach@obspm.fr, E-mail: Martin.Schwell@lisa.u-pec.fr; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire [LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Garcia, Gustavo A.; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France)

    2013-11-14

    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A{sup 2}Π{sub g}, B{sup 2}Σ{sub g}{sup +} states as well as the C{sup 2}Σ{sub u}{sup +} and D{sup 2}Π{sub u} states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D{sup 2}Π{sub u} state of C{sub 4}N{sub 2}{sup +}. The appearance energies of the fragment ions C{sub 4}N{sup +}, C{sub 3}N{sup +}, C{sub 4}{sup +}, C{sub 2}N{sup +}, and C{sub 2}{sup +} were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

  18. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed; Guenneau, Sé bastien; Bagci, Hakan

    2013-01-01

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  19. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  20. Coupling between the Magnetic Excitations and the Phonons in Praseodymium

    DEFF Research Database (Denmark)

    Jensen, J.

    1976-01-01

    of an external magnetic field applied along an a and a b direction. The magnetic excitations are approximated by pseudo-boson excitations of the spin sub-space, J=4, MJ=0 and +or-1, and the presence of the ions on the cubic sites is neglected. The selection rules deduced agree with experimental observations....... The experimental result for the strength of the exciton-phonon interaction is used in an estimate of the effects of an applied field on the elastic constants of Pr at zero temperature....

  1. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  2. bessel functions for axisymmetric elasticity problems of the elastic

    African Journals Online (AJOL)

    HOD

    2, 3DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ENUGU STATE. ... theory of elasticity and in the case of vertical applied loads, was first ... partial differential equations in bodies having cylindrical symmetry.

  3. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  4. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  5. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  6. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  7. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  8. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    International Nuclear Information System (INIS)

    Requate, A.

    2007-03-01

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  9. Statistical approach of inner-shell ionization in 0.1-1.625 MeV/u Cu + Bi collisions

    International Nuclear Information System (INIS)

    Piticu, I.; Ciortea, C.; Enulescu, A.; Fluerasu, D.; Szilagyi, S.Z.; Micu, M.; Dumitriu, D.

    1999-01-01

    Experimental data of inner-shell ionization cross sections and outer-shell ionization probabilities per electron, obtained for the collision system. Cu + Bi in the energy range of 0.1-1.625 MeV/u, are in good agreement with the predictions of the statistical model of Mittleman and Wilets. The found dependence of the diffusion constant determined for different final vacancy states on the excitation (ionization) energy is in fair agreement with the model prediction. (orig.)

  10. Statistical approach of inner-shell ionization in 0.1-1.625 MeV/u Cu + Bi collisions

    Energy Technology Data Exchange (ETDEWEB)

    Piticu, I.; Ciortea, C.; Enulescu, A.; Fluerasu, D.; Szilagyi, S.Z.; Micu, M.; Dumitriu, D. [Horia Hulubei National Inst. of Physics and Nuclear Engineering, Bucharest (Romania). Dept. of Experimental Physics

    1999-07-01

    Experimental data of inner-shell ionization cross sections and outer-shell ionization probabilities per electron, obtained for the collision system. Cu + Bi in the energy range of 0.1-1.625 MeV/u, are in good agreement with the predictions of the statistical model of Mittleman and Wilets. The found dependence of the diffusion constant determined for different final vacancy states on the excitation (ionization) energy is in fair agreement with the model prediction. (orig.)

  11. Multiphoton ionization for hydrogen plasma diagnostics

    International Nuclear Information System (INIS)

    Bonnie, J.H.M.

    1987-01-01

    In this thesis the processes leading to the formation of negative ions (H - ) in hydrogen discharges are studied. These ions enable efficient production of a beam of fast neutral particles. Such beams are applied in nuclear fusion research. A model has been generally accepted in which H - is formed by means of dissociative attachment (DA) of electrons to vibrationally excited hydrogen molecules [H 2 (υ'')] molecule: when υ'' is low, electron emission is most probable, but when υ'' is high, H - production dominates. A necessary preliminary to the DA process is the presence of sufficient [H 2 (υ'')] molecules with υ'' > 4. By determining the densities of hydrogen molecules in the various vibrational levels as a function of the various discharge parameters (scaling laws), insight can be gained into the extent to which the DA process contributes to H - formation. Since the de-excitation of [H 2 (υ'')] molecules by H atoms is expected to have a large cross section, it is also relevant to determine the scaling laws for atomic hydrogen. This thesis gives an account of the development of an experimental setup for obtaining such measurements, and reports the first results achieved. In view of the anticipated density of the vibrationally excited molecules and the detection limit considered feasible, the diagnostic chosen was resonance-enhanced multiphoton ionization (REMPI). The principle is based on state-selective ionization with REMPI of particles effusing from the discharge chamber through an aperture in the wall. The ions produced in the REMPI-process are then detected. The use of both an electric and a magnetic field makes it possible to distinguish the REMPI ions from those originating elsewhere, such as plasma ions or photodesorption ions. 145 refs.; 25 figs.; 6 tabs

  12. Slepian simulation of distributions of plastic displacements of earthquake excited shear frames with a large number of stories

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Ditlevsen, Ove

    2005-01-01

    The object of study is a stationary Gaussian white noise excited plane multistory shear frame with a large number of rigid traverses. All the traverse-connecting columns have finite symmetrical yield limits except the columns in one or more of the bottom floors. The columns behave linearly elastic...... within the yield limits and ideally plastic outside these without accumulating eigenstresses. Within the elastic domain the frame is modeled as a linearly damped oscillator. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground...

  13. Electronegative Plasma Equilibria with Spatially-Varying Ionization

    Science.gov (United States)

    Lieberman, M. A.; Kawamura, E.; Lichtenberg, A. J.

    2012-10-01

    Electronegative inductive discharges in higher pressure ranges typically exhibit localized ionization near the coil structure, with decay of the ionization into the central discharge. We use a two-dimensional fluid code [1] with chlorine feedstock to determine the spatial profiles of the plasma parameters in a cylindrical transformer-coupled plasma device excited by a planar coil. To compare with one-dimensional (1D) analytic modeling, the results are area-averaged. The ionization is found to decay roughly exponentially along the axial direction, allowing the ansatz of an exponentially decaying ionization to be used in a 1D computational model. The model captures the main features of the axial variations of the area-averaged fluid simulation, indicating that the main diffusion mechanisms act along the axial direction. A simple analytic global discharge model is developed, accounting for the asymmetric density and ionization profiles. The global model gives the scalings with power and pressure of volume-averaged densities, electron temperature, and ionization decay rate, also in reasonable agreement with the scalings obtained by averaging the simulation results. [4pt] [1] E. Kawamura, D.B. Graves, and M.A. Lieberman, Plasma Sources Sci. Technol. 20, 035009 (2012)

  14. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  15. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  16. Adsorption studies at ionized surface layers by means of hot atoms; Etude, a l'aide d'atomes excites, de l'adsorption dans des couches superficielles ionisees; Issledovanie pri pomoshchi goryachikh atomov adsorbtsii na ionizirovannykh poverkhnostnykh sloyakh; Estudios, con ayuda de atomos excitados, de la adsorcion en capas superficiales ionizadas

    Energy Technology Data Exchange (ETDEWEB)

    Avrahami, Menashe; Steiger, Naftali H [Department of Chemistry, Technion - Israel Institute of Technology, Haifa (Israel)

    1962-03-15

    Adsorption of ions at the surface of solutions of ionic surface-active substances can directly be studied using hot atoms. Extremely small amounts of suitable radioactive ions, or ions liable to undergo induced nuclear transformations in situ, are added to such solutions, replacing some of the normal counter ions coadsorbed at the primary-adsorbed organic ions. Hot atoms with energies from about 100 keV down to a few electron volts give ranges in water from about 1000 A down to monomoleeular layers. This makes them suitable for sensitive surface layer studies. The hot atoms ejected from the surface are collected and counted. Among {alpha}-disintegration recoils, the system Bi{sup 212}/Tl{sup 208} has proved to be suitable. Now, by refining the method, valuable information about adsorption conditions at sodium dodecyl sulphate surface layers could be found. The kinetics of adsorption was studied by following in time the collected recoil activity caused by Bi-ion adsorption. Adsorption isotherms of Bi-ions as a function of the bulk concentration of the surface-active substance under varying conditions of ionic strength, pH and Bi{sup 212} activity were measured. By comparing these isotherms with those obtained by measuring the surface tension of the solutions and calculating the surface excess with the aid of a suitably modified Gibbs' isotherm, the adsorption of Bi{sup +++} and Pb{sup ++} relative to that of Na{sup +} and H{sub 3}O{sup +}, and by this the extent of ion exchange in the adsorbed layer could be determined. As the method measures the adsorption of charged species, surface reactions transforming primary-adsorbed organic anions to a non-ionic state could be followed. Conclusions could be drawn about the formation of a non-ionized acid soap in the surface and about micelle formation in the bulk under various experimental conditions. (author) [French] L'adsorption d'ions a la surface de solutions de substances ioniques tensioactives peut etre etudiee

  17. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  18. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  19. Electron-impact excitation autoionization of Ga II

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Griffin, D.C.; Bottcher, C.

    1982-01-01

    The general-reaction theory of Feshbach is applied, within the framework of the distorted-wave approximation, to the calculation of excitation-autoionization resonances in the electron-impact ionization of Ga + . Although the spectrum of autoionizing levels for Ga + is quite complex, we focus our attention on the important 3d 10 4s 2 → 3d 9 4s 2 4p inner-shell excitations. For excitation of the 3d 9 4s 2 4p 1 P 1 autoionizing level we make a general-reaction-theory calculation for the dominant partial-wave cross section and compute a typical resonance profile in the ejected-electron differential cross section. We find that the quantum-mechanical interference between the direct and indirect processes has a small effect on the total ionization cross section. Employing an independent-processes approximation we calculate excitation-autoionization contributions to all twelve levels of the 3d 9 4s 2 4p configuration. Using the results of our calculations and their comparison with a recent crossed-beam experiment by Rogers et al., we discuss the accuracy of the distorted-wave method and the effects of configuration interaction on energy levels and excitation cross sections

  20. Application of RMS for damage detection by guided elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Radzienski, M; Dolinski, L; Krawczuk, M [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk (Poland); Zak, A; Ostachowicz, W, E-mail: Maciej.Radzienski@gmail.com [Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)

    2011-07-19

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  1. Application of RMS for damage detection by guided elastic waves

    Science.gov (United States)

    Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.

    2011-07-01

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  2. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  3. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  4. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  5. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  6. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  7. Epidemiology and ionizing radiations

    International Nuclear Information System (INIS)

    Bourguignon, M.; Masse, R.; Slama, R.; Spira, A.; Timarche, M.; Laurier, D.; Billon, S.; Rogel, A.; Telle Lamberton, M.; Catelinois, O.; Thierry, I.; Grosche, B.; Ron, E.; Vathaire, F. de; Cherie Challine, L.; Donadieu, J.; Pirard, Ph.; Bloch, J.; Setbon, M.

    2004-01-01

    The ionizing radiations have effects on living being. The determinist effects appear since a threshold of absorbed dose of radiation is reached. In return, the stochastic effects of ionizing radiations are these ones whom apparition cannot be described except in terms of probabilities. They are in one hand, cancers and leukemia, on the other hand, lesions of the genome potentially transmissible to the descendants. That is why epidemiology, defined by specialists as the science that studies the frequency and distribution of illness in time and space, the contribution of factors that determine this frequency and this distribution among human populations. This issue gathers and synthesizes the knowledge and examines the difficulties of methodologies. It allows to give its true place to epidemiology. (N.C.)

  8. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  9. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  10. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  11. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    Dijk, J.H. van.

    1984-01-01

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208 Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  12. Ultrafast quantum control of ionization dynamics in krypton.

    Science.gov (United States)

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  13. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  14. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  15. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  16. A Labor Supply Elasticity Accord?

    OpenAIRE

    Lars Ljungqvist; Thomas J. Sargent

    2011-01-01

    A dispute about the size of the aggregate labor supply elasticity has been fortified by a contentious aggregation theory used by real business cycle theorists. The replacement of that aggregation theory with one more congenial to microeconomic observations opens possibilities for an accord about the aggregate labor supply elasticity. The new aggregation theory drops features to which empirical microeconomists objected and replaces them with life-cycle choices. Whether the new aggregation theo...

  17. Integrodifferential relations in linear elasticity

    CERN Document Server

    Kostin, Georgy V

    2012-01-01

    This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.

  18. Sensor for ionizable elements

    International Nuclear Information System (INIS)

    Berkey, E.; Reed, W.A. III; Hickam, W.M.

    1977-01-01

    Sensor to detect thermally ionizable elements or molucules in air, water vapour or oxygen or to be used as alkali leak detector in vacuum systems, e.g. in the pipe system of a liquid-metal cooled FBR. The sensor consists of an filament made of thorium-containing iridium as cathode with a temperature upto 1000 0 C and an anode sheet of molybdenum, nickel or stainless steal. (ORU) [de

  19. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  20. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  1. Pregnancy and ionizing radiation

    International Nuclear Information System (INIS)

    Plataniotis, Th.N.; Nikolaou, K.I.; Syrgiamiotis, G.V.; Dousi, M.; Panou, Th.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In this report there will be presented the effects of ionizing radiation at the fetus and the necessary radioprotection. The biological results on the fetus, caused by the irradiation, depend on the dose of ionizing radiation that it receives and the phase of its evolution. The imminent effects of the irradiation can cause the fetus death, abnormalities and mental retardation, which are the result of overdose. The effects are carcinogenesis and leukemia, which are relative to the acceptable irradiating dose at the fetus and accounts about 0,015 % per 1 mSv. The effects of ionizing radiation depend on the phase of the fetus evolution: 1 st phase (1 st - 2 nd week): presence of low danger; 2 nd phase (3 rd - 8 th week): for doses >100 mSv there is the possibility of dysplasia; 3 rd phase (8 th week - birth): this phase concerns the results with a percentage 0,015 % per 1 mSv. We always must follow some rules of radioprotection and especially at Classical radiation use of necessary protocols (low dose), at Nuclear Medicine use of the right radioisotope and the relative field of irradiation for the protection of the adjacent healthy tissues and at Radiotherapy extreme caution is required regarding the dose and the treatment. In any case, it is forbidden to end a pregnancy when the pregnant undergoes medical exams, in which the uterus is in the beam of irradiation. The radiographer must always discuss the possibility of pregnancy. (author)

  2. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  3. In Situ elastic property sensors

    International Nuclear Information System (INIS)

    Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.

    1987-01-01

    Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples

  4. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  5. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  6. Excitation of autoionizing states of helium by 100 keV proton impact: II. Excitation cross sections and mechanisms of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)

    2000-03-14

    Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)

  7. Impact Ionization in Monoclinic $\\beta-Ga_2O_3$

    OpenAIRE

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-01-01

    We report a theoretical investigation of extremely high field transport in an emerging widebandgap material $\\beta-Ga_2O_3$ from first principles. The signature high-field effect explored here is impact ionization. Interaction between a ground-state electron and an excited electron is computed from the matrix elements of a screened Coulomb operator. Maximally localized Wannier functions (MLWF) are utilized in computing the electron-electron self-energy. A full-band Monte Carlo (FBMC) simulati...

  8. Analytical study of doubly excited ridge states

    International Nuclear Information System (INIS)

    Wong, H.Y.

    1988-01-01

    Two different non-separable problems are explored and analyzed. Non-perturbative methods need to be used to handle them, as the competing forces involved in these problems are equally strong and do not yield to a perturbative analysis. The first one is the study of doubly excited ridge states of atoms, in which two electrons are comparably excited. An analytical wavefunction for such states is introduced and is used to solve the two-electron Hamiltonian in the pair coordinates called hyperspherical coordinates variationally. The correlation between the electrons is built in analytically into the structure of the wavefunction. Sequences of ridge states out to very high excitation are computed and are organized as Rydberg series converging to the double ionization limit. Numerical results of such states in He and H - are compared with other theoretical calculations where available. The second problem is the analysis of the photodetachment of negative ions in an electric field via the frame transformation theory. The presence of the electron field requires a transformation from spherical to cylindrical symmetry for the outgoing photoelectron. This gives an oscillatory modulating factor as the effect of the electric field on cross-sections. All of this work is derived analytically in a general form applicable to the photodetachment of any negative ion. The expressions are applied to H - and S - for illustration

  9. Excitation equilibria in plasmas; a classification

    International Nuclear Information System (INIS)

    Mullen, J.A.M. van der

    1990-01-01

    This review gives a classification of the excitation kinetics ruled by electrons in plasmas. It is a study on the atomic state distribution function (ASDF) and its relation with underlying processes, which, for the case of an electron excitation kinetics (EEK) plasma, is merely a competition between free and bound electrons, the same particles in different circumstances. In a quasi steady state the population density of an atomic state results from production-destruction balances in equilibrium. If all balances are proper, i.e., consist of each other's inverse processes, then the ASDF is described by the Boltzmann-Saha relation. In other cases the balance will be denoted as improper, the ASDF will deviate from the equilibrium shape, but reflecting the underlying improper balances, it may give information about the plasma. Four improper balances and their impact on the ASDF are dealt with. An important feature is that improper balances are associated with particle transport. Special attention is paid to the distribution function of the excitation saturation balance in which the overpopulated bound electrons are subjected to frequent interactions with free electrons and the energy distribution of the free electrons is taken over. This distribution, denoted as the bound Maxwell distribution, is experimentally found in several ionizing plasmas. Its recombining counterpart, the deexcitation saturation balance, creates under certain conditions inversion in the ASDF, the basis for the recombination laser. (orig.)

  10. Dosimetry methods for the estimation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Lopez Bejarano, Gladys

    2012-01-01

    Ionizing radiations, by their nature, have required for their detection the use of suitable devices generically referred detecting systems. The detection of secondary particles arising during the processes of ionization and excitation to the passage of radiation in the environment, have constituted the basis of the measurement methods. A detector system is a device that converts the energy of the incident radiation on a signal (electrical, photochemical, etc.) that is easily processable from the technological point of view, but without distorting the original information. These devices have provided qualitative or quantitative information about the radiation of interest. The detector system is a set of a detector together with a processing system. This system has based its operation in methods of: gas ionization, scintillation, semiconductor, film, thermoluminescence, among others. (author) [es

  11. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  12. Electron impact ionization of heavy ions: some surprises

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    This paper reports the results of calculations of electron impact ionization cross sections for a variety of heavy ions using a distorted wave Born-exchange approximation. The target is described by a Hartree-Fock wavefunction. The scattering matrix element is represented by a triple partial wave expansion over incident, scattered, and ejected (originally bound) continuum states. These partial waves are computed in the potentials associated with the initial target (incident and scattered waves) and the residual ion (ejected waves). A Gauss integration was performed over the distribution of energy between the two final state continuum electrons. For ionization of closed d- and f-subshells, the ejected f-waves were computed in frozen-core term-dependent Hartree-Fock potentials, which include the strong repulsive contribution in singlet terms which arises from the interaction of an excited orbital with an almost closed shell. Ground state correlation was included in some calculations of ionization of d 10 subshells

  13. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  14. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  15. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  16. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  17. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  18. Simulation of plastic displacement distributions for multistory shear frames excited by Gaussian white noise

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Ditlevsen, Ove Dalager

    2003-01-01

    The object of study is a stationary Gaussian white noise excited MDOF linear elastic, ideal plastic, linearly damped, statically determinate oscillator with several potential elements of ideal plastic yielding. Specifically the study is exemplified for a plane multistory shear frame with rigid...... traverses where all the connecting columns except the columns in one or more of the bottom floors have finite symmetrical yield limits. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground motion that interacts with the structure...

  19. Analysis of white noise excited elasto-plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Randrup-Thomsen, Søren

    1997-01-01

    The response of the white noise excited multi-degree-of-freedom (MDOF) oscillator has been analyzed in order to describe the plastic displacements of the relative response. Three different types of structural systems have been considered. The first type is a shear-wall frame having elastic......-ideal plastic stiffness properties of the columns connecting the two top-most floors. The second type is a shear-wall frame having elastic-ideal plastic stiffness properties of all columns, while the third type is a single-degree-of-freedom (SDOF) oscillator excited by horizontal and vertical white noise ground...

  20. Simulation by Slepian method of plastic displacements of Gaussian process excited multistory shear frame

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Ditlevsen, Ove Dalager

    2004-01-01

    The object of study is a stationary Gaussian white noise excited multi-degree-of-freedom (MDOF) linear elastic, ideal plastic, linearly damped, statically determinate oscillator with several potential elements of ideal plastic yielding. Specifically the study is exemplified for a plane multistory...... shear frame with rigid traverses where all the connecting columns except the columns in one or more of the bottom floors have finite symmetrical yield limits. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground motion...