Flexible time domain averaging technique
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Kocsis, E; Trus, B L; Steer, C J; Bisher, M E; Steven, A C
1991-08-01
We have developed computational techniques that allow image averaging to be applied to electron micrographs of filamentous molecules that exhibit tight and variable curvature. These techniques, which involve straightening by cubic-spline interpolation, image classification, and statistical analysis of the molecules' curvature properties, have been applied to purified brain clathrin. This trimeric filamentous protein polymerizes, both in vivo and in vitro, into a wide range of polyhedral structures. Contrasted by low-angle rotary shadowing, dissociated clathrin molecules appear as distinctive three-legged structures, called "triskelions" (E. Ungewickell and D. Branton (1981) Nature 289, 420). We find triskelion legs to vary from 35 to 62 nm in total length, according to an approximately bell-shaped distribution (mu = 51.6 nm). Peaks in averaged curvature profiles mark hinges or sites of enhanced flexibility. Such profiles, calculated for each length class, show that triskelion legs are flexible over their entire lengths. However, three curvature peaks are observed in every case: their locations define a proximal segment of systematically increasing length (14.0-19.0 nm), a mid-segment of fixed length (approximately 12 nm), and a rather variable end-segment (11.6-19.5 nm), terminating in a hinge just before the globular terminal domain (approximately 7.3 nm diameter). Thus, two major factors contribute to the overall variability in leg length: (1) stretching of the proximal segment and (2) stretching of the end-segment and/or scrolling of the terminal domain. The observed elasticity of the proximal segment may reflect phosphorylation of the clathrin light chains.
Time-dependence and averaging techniques in atomic photoionization calculations
International Nuclear Information System (INIS)
Scheibner, K.F.
1984-01-01
Two distinct problems in the development and application of averaging techniques to photoionization calculations are considered. The first part of the thesis is concerned with the specific problem of near-resonant three-photon ionization in hydrogen, a process for which no cross section exists. Effects of the inclusion of the laser pulse characteristics (both temporal and spatial) on the dynamics of the ionization probability and of the metastable state probability are examined. It is found, for example, that the ionization probability can decrease with increasing field intensity. The temporal profile of the laser pulse is found to affect the dynamics very little, whereas the spatial character of the pulse can affect the results drastically. In the second part of the thesis techniques are developed for calculating averaged cross sections directly without first calculating a detailed cross section. Techniques are developed whereby the detailed cross section never has to be calculated as an intermediate step, but rather, the averaged cross section is calculated directly. A variation of the moment technique and a new method based on the stabilization technique are applied successfully to atomic hydrogen and helium
Exploring JLA supernova data with improved flux-averaging technique
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuang; Wen, Sixiang; Li, Miao, E-mail: wangshuang@mail.sysu.edu.cn, E-mail: wensx@mail2.sysu.edu.cn, E-mail: limiao9@mail.sysu.edu.cn [School of Physics and Astronomy, Sun Yat-Sen University, University Road (No. 2), Zhuhai (China)
2017-03-01
In this work, we explore the cosmological consequences of the ''Joint Light-curve Analysis'' (JLA) supernova (SN) data by using an improved flux-averaging (FA) technique, in which only the type Ia supernovae (SNe Ia) at high redshift are flux-averaged. Adopting the criterion of figure of Merit (FoM) and considering six dark energy (DE) parameterizations, we search the best FA recipe that gives the tightest DE constraints in the ( z {sub cut}, Δ z ) plane, where z {sub cut} and Δ z are redshift cut-off and redshift interval of FA, respectively. Then, based on the best FA recipe obtained, we discuss the impacts of varying z {sub cut} and varying Δ z , revisit the evolution of SN color luminosity parameter β, and study the effects of adopting different FA recipe on parameter estimation. We find that: (1) The best FA recipe is ( z {sub cut} = 0.6, Δ z =0.06), which is insensitive to a specific DE parameterization. (2) Flux-averaging JLA samples at z {sub cut} ≥ 0.4 will yield tighter DE constraints than the case without using FA. (3) Using FA can significantly reduce the redshift-evolution of β. (4) The best FA recipe favors a larger fractional matter density Ω {sub m} . In summary, we present an alternative method of dealing with JLA data, which can reduce the systematic uncertainties of SNe Ia and give the tighter DE constraints at the same time. Our method will be useful in the use of SNe Ia data for precision cosmology.
Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.
2016-05-01
Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.
An application of commercial data averaging techniques in pulsed photothermal experiments
International Nuclear Information System (INIS)
Grozescu, I.V.; Moksin, M.M.; Wahab, Z.A.; Yunus, W.M.M.
1997-01-01
We present an application of data averaging technique commonly implemented in many commercial digital oscilloscopes or waveform digitizers. The technique was used for transient data averaging in the pulsed photothermal radiometry experiments. Photothermal signals are surrounded by an important amount of noise which affect the precision of the measurements. The effect of the noise level on photothermal signal parameters in our particular case, fitted decay time, is shown. The results of the analysis can be used in choosing the most effective averaging technique and estimating the averaging parameter values. This would help to reduce the data acquisition time while improving the signal-to-noise ratio
Technique for determination of elastic limit of micron band-thick amorphous
International Nuclear Information System (INIS)
Zakharov, E.K.; Pol'dyaeva, G.P.; Tret'yakov, B.N.
1984-01-01
A method is suggested to determine the elastic limit of micron-thick amorphous band under bending. The elastic limit is determined by bending an amorphous band sample around a series of cylindrical mandrels of gradually decreasing radius. Experimental data on measuring the elastic limit of some amorphous iron base alloys according to the suggested technique are presented. The elastic limit of amorphous alloys is shown to lie in the 3140-4110 MPa range depending on chemical composition, which is about 2-2.5 times higher as compared to high-strength crystal alloys
A Hybrid Islanding Detection Technique Using Average Rate of Voltage Change and Real Power Shift
DEFF Research Database (Denmark)
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2009-01-01
The mainly used islanding detection techniques may be classified as active and passive techniques. Passive techniques don't perturb the system but they have larger nondetection znes, whereas active techniques have smaller nondetection zones but they perturb the system. In this paper, a new hybrid...... technique is proposed to solve this problem. An average rate of voltage change (passive technique) has been used to initiate a real power shift (active technique), which changes the eal power of distributed generation (DG), when the passive technique cannot have a clear discrimination between islanding...
International Nuclear Information System (INIS)
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-01-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs
PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM
Bahubali K. Shiragapur; Uday Wali
2016-01-01
In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR) quantity. The Golay Code (24, 12), Reed-Muller code (16, 11), Hamming code (7, 4) and Hybrid technique (Combination of Signal Scrambling and Signal Distortion) proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conve...
Asymptotic techniques in elastic-plastic analysis of structures
International Nuclear Information System (INIS)
Sayir, M.
1983-01-01
Elastic-plastic structures can nowadays be analyzed with the powerful numerical procedures of the finite element method. Nevertheless, in many engineering applications, analytical expressions capable of predicting with sufficient accuracy the stress distributions, the extent of the plastic zones and the load displacement behaviour could be of great practical value. For simple structures and loading stages not too far from the elastic limit, such analytical expressions may be obtained by using perturbation methods and asymptotic expansions. A small dimensionless parameter epsilon is defined as the ratio of a length characterizing the extent of the narrow plastic zone, to a conveniently chosen typical dimension of the structure. Stresses and displacements are formally expanded as asymptotic series in terms of powers of epsilon. For each order of magnitude, the exact basic relations lead to a separate set of simplified differential equations which can be integrated analytically or numerically by using standard procedures. The method is very general and can be applied to several classes of plastic behaviour and of structural problems. Three examples of very simple structures are chosen in particular to illustrate the applicability of the perturbation method to engineering problems. (orig./RW)
Huopana, J
2010-01-01
The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...
Large-signal analysis of DC motor drive system using state-space averaging technique
International Nuclear Information System (INIS)
Bekir Yildiz, Ali
2008-01-01
The analysis of a separately excited DC motor driven by DC-DC converter is realized by using state-space averaging technique. Firstly, a general and unified large-signal averaged circuit model for DC-DC converters is given. The method converts power electronic systems, which are periodic time-variant because of their switching operation, to unified and time independent systems. Using the averaged circuit model enables us to combine the different topologies of converters. Thus, all analysis and design processes about DC motor can be easily realized by using the unified averaged model which is valid during whole period. Some large-signal variations such as speed and current relating to DC motor, steady-state analysis, large-signal and small-signal transfer functions are easily obtained by using the averaged circuit model
PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM
Directory of Open Access Journals (Sweden)
Bahubali K. Shiragapur
2016-03-01
Full Text Available In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR quantity. The Golay Code (24, 12, Reed-Muller code (16, 11, Hamming code (7, 4 and Hybrid technique (Combination of Signal Scrambling and Signal Distortion proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conventional and Modified Selective mapping techniques. The simulation results are validated through statistical properties, for proposed technique’s autocorrelation value is maximum shows reduction in PAPR. The symbol preference is the key idea to reduce PAPR based on Hamming distance. The simulation results are discussed in detail, in this article.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
International Nuclear Information System (INIS)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young
2010-01-01
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Proposal for Ultrasonic Technique for evaluation elastic constants in UO2 pellets
International Nuclear Information System (INIS)
Lopes, Alessandra Susanne Viana Ragone; Baroni, Douglas Brandao; Bittencourt, Marcelo de Siqueira Queiroz; Souza, Mauro Carlos Lopes
2015-01-01
Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO 2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application. (author)
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter
2014-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.
1987-01-01
An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.
Davit, Yohan
2013-12-01
A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works. © 2013 Elsevier Ltd.
Zhang, Shengli; Tang, Jiong
2016-04-01
Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.
Measurement of cross sections of threshold detectors with spectrum average technique
International Nuclear Information System (INIS)
Agus, Y.; Celenk, I.; Oezmen, A.
2004-01-01
Cross sections of the reactions 103 Rh(n, n') 103m Rh, 115 In(n, n') 115m In, 232 Th(n, f), 47 Ti(n, p) 47 Sc, 64 Zn(n, p) 64 Cu, 58 Ni(n, p) 58 Co, 54 Fe(n, p) 54 Mn, 46 Ti(n, p) 46 Sc, 27 Al(n, p) 27 Mg, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na, 59 Co(n, α) 56 Mn, 27 Al(n, α) 24 Na and 48 Ti(n, p) 48 Sc were measured with average neutron energies above effective threshold by using the activation method through usage of spectrum average technique in an irradiation system where there are three equivalent Am/Be sources, each of which has 592 GBq activity. The cross sections were determined with reference to the fast neutron fission cross section of 238 U. The measured values and published values are generally in agreement. (orig.)
Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja
2018-03-01
The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.
Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique
International Nuclear Information System (INIS)
Wiedlocher, D.E.; Kinser, D.L.
1992-01-01
Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic
Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames
Directory of Open Access Journals (Sweden)
Jaroon Rungamornrat
2014-01-01
Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.
Navarrete, M.; Vera-Graziano, R.; Maciel-Cerda, A.; Sánchez-Arévalo, F. M.; Godínez, F. A.
2017-08-01
Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions ( L, T). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (EL, ET, GL, GT, vL, ν T) are obtained through velocity waves related to the stress-strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.
International Nuclear Information System (INIS)
Garcia, R.D.M.
1984-01-01
A new technique for generating the isotropic and linearly anisotropic componets of elastic and discrete inelastic transfer matrices is proposed. The technique allows certain angular integrals to be expressed in terms of functions that can be computed by recursion relations or series expansions alternatively to the use of numerical quadratures. (Author) [pt
Tu, Kai-Kai; Zhou, Xian-Ting; Tao, Zhou-Shan; Chen, Wei-Kai; Huang, Zheng-Liang; Sun, Tao; Zhou, Qiang; Yang, Lei
2015-12-01
Several techniques have been described to treat tibial fractures, which respectively remains defects. This article presents a novel intra- and extramedullary fixation technique: percutaneous external fixator combined with titanium elastic nails (EF-TENs system). The purpose of this study is to introduce this new minimally invasive surgical technique and selective treatment of tibial fractures, particularly in segmental fractures, diaphysis fractures accompanied with distal or proximal bone subfissure, or fractures with poor soft-tissue problems. Following ethical approval, thirty-two patients with tibial fractures were treated by the EF-TENs system between January 2010 and December 2012. The follow-up studies included clinical and radiographic examinations. All relevant outcomes were recorded during follow-up. All thirty-two patients were achieved follow-ups. According to the AO classification, 3 Type A, 9 Type B and 20 Type C fractures were included respectively. According to the Anderson-Gustilo classification, there were 5 Type Grade II, 3 Type Grade IIIA and 2 Type Grade IIIB. Among 32 patients, 8 of them were segmental fractures. 12 fractures accompanied with bone subfissure. Results showed no nonunion case, with an average time of 23.7 weeks (range, 14-32 weeks). Among them, there were 3/32 delayed union patients and 0/32 malunion case. 4/32 patients developed a pin track infection and no patient suffered deep infection. The external fixator was removed with a mean time of 16.7 weeks (range, 10-26 weeks). Moreover, only 1/32 patient suffered with the restricted ROM of ankle, none with the restricted ROM of knee. This preliminary study indicated that the EF-TENs system, as a novel intra- and extramedullary fixation technique, had substantial effects on selective treatment of tibial fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-05-10
Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.
Zhang, Shengli; Tang, J.
2018-01-01
Gear fault diagnosis relies heavily on the scrutiny of vibration responses measured. In reality, gear vibration signals are noisy and dominated by meshing frequencies as well as their harmonics, which oftentimes overlay the fault related components. Moreover, many gear transmission systems, e.g., those in wind turbines, constantly operate under non-stationary conditions. To reduce the influences of non-synchronous components and noise, a fault signature enhancement method that is built upon angle-frequency domain synchronous averaging is developed in this paper. Instead of being averaged in the time domain, the signals are processed in the angle-frequency domain to solve the issue of phase shifts between signal segments due to uncertainties caused by clearances, input disturbances, and sampling errors, etc. The enhanced results are then analyzed through feature extraction algorithms to identify the most distinct features for fault classification and identification. Specifically, Kernel Principal Component Analysis (KPCA) targeting at nonlinearity, Multilinear Principal Component Analysis (MPCA) targeting at high dimensionality, and Locally Linear Embedding (LLE) targeting at local similarity among the enhanced data are employed and compared to yield insights. Numerical and experimental investigations are performed, and the results reveal the effectiveness of angle-frequency domain synchronous averaging in enabling feature extraction and classification.
International Nuclear Information System (INIS)
Faggiano, Elena; Cattaneo, Giovanni M; Ciavarro, Cristina; Dell'Oca, Italo; Persano, Diego; Calandrino, Riccardo; Rizzo, Giovanna
2011-01-01
The study of lung parenchyma anatomical modification is useful to estimate dose discrepancies during the radiation treatment of Non-Small-Cell Lung Cancer (NSCLC) patients. We propose and validate a method, based on free-form deformation and mutual information, to elastically register planning kVCT with daily MVCT images, to estimate lung parenchyma modification during Tomotherapy. We analyzed 15 registrations between the planning kVCT and 3 MVCT images for each of the 5 NSCLC patients. Image registration accuracy was evaluated by visual inspection and, quantitatively, by Correlation Coefficients (CC) and Target Registration Errors (TRE). Finally, a lung volume correspondence analysis was performed to specifically evaluate registration accuracy in lungs. Results showed that elastic registration was always satisfactory, both qualitatively and quantitatively: TRE after elastic registration (average value of 3.6 mm) remained comparable and often smaller than voxel resolution. Lung volume variations were well estimated by elastic registration (average volume and centroid errors of 1.78% and 0.87 mm, respectively). Our results demonstrate that this method is able to estimate lung deformations in thorax MVCT, with an accuracy within 3.6 mm comparable or smaller than the voxel dimension of the kVCT and MVCT images. It could be used to estimate lung parenchyma dose variations in thoracic Tomotherapy
ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA
Energy Technology Data Exchange (ETDEWEB)
Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.; Smith, Curtis L.
2017-06-01
In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. This often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.
Measurement of elasticity of normal placenta using the Virtual Touch quantification technique
Energy Technology Data Exchange (ETDEWEB)
Wu, Size; Nan, Ruixia; Cui, Xiao Jing; Liang, Xian; Zhao, Yanan [Dept. of Ultrasound, Affiliated Hospital of Hainan Medical College, Haikou (China); Li, Yueping [Dept. of Obstetrics and Gynecology, Affiliated Hospital of Hainan Medical College, Haikou (China)
2016-07-15
The aim of this study was to measure the elasticity of normal placentas using the Virtual Touch quantification (VTQ) technique. This study was approved by the Institutional Ethics Committee. Fifty randomly selected, healthy pregnant women in their second trimester and 50 randomly selected, healthy pregnant women in their third trimester with a single fetus were included, and their placentas underwent VTQ through shear wave velocity (SWV) measurements. The measurements were performed at different locations to sample different areas of the placenta. Measurements were performed 3-4 times in each location, the mean shear wave velocities were calculated without the highest and lowest values of measurements in each region, and the results were compared. The SWV of the placenta was 0.983±0.260 m/sec, and the minimal and maximal speed was 0.63 m/sec and 1.84 m/sec, respectively. There was no significant difference between the second and third trimester of VTQ of the placenta in terms of SWV (0.978±0.255 m/sec vs. 0.987±0.266 m/sec, P=0.711). The maternal age between second and third trimester was 27.9±4.3 years and 29.2±4.4 years, respectively; there was no significant difference between them (P=0.159). The results of this study show that the SWV of normal placenta tissue is 0.983±0.260 m/sec, it has little variation between the second and third trimesters, and the VTQ technique may potentially play an additional role in placenta evaluation.
Measurement of elasticity of normal placenta using the Virtual Touch quantification technique
International Nuclear Information System (INIS)
Wu, Size; Nan, Ruixia; Cui, Xiao Jing; Liang, Xian; Zhao, Yanan; Li, Yueping
2016-01-01
The aim of this study was to measure the elasticity of normal placentas using the Virtual Touch quantification (VTQ) technique. This study was approved by the Institutional Ethics Committee. Fifty randomly selected, healthy pregnant women in their second trimester and 50 randomly selected, healthy pregnant women in their third trimester with a single fetus were included, and their placentas underwent VTQ through shear wave velocity (SWV) measurements. The measurements were performed at different locations to sample different areas of the placenta. Measurements were performed 3-4 times in each location, the mean shear wave velocities were calculated without the highest and lowest values of measurements in each region, and the results were compared. The SWV of the placenta was 0.983±0.260 m/sec, and the minimal and maximal speed was 0.63 m/sec and 1.84 m/sec, respectively. There was no significant difference between the second and third trimester of VTQ of the placenta in terms of SWV (0.978±0.255 m/sec vs. 0.987±0.266 m/sec, P=0.711). The maternal age between second and third trimester was 27.9±4.3 years and 29.2±4.4 years, respectively; there was no significant difference between them (P=0.159). The results of this study show that the SWV of normal placenta tissue is 0.983±0.260 m/sec, it has little variation between the second and third trimesters, and the VTQ technique may potentially play an additional role in placenta evaluation
Measurement of elasticity of normal placenta using the Virtual Touch quantification technique
Directory of Open Access Journals (Sweden)
Size Wu
2016-07-01
Full Text Available Purpose: The aim of this study was to measure the elasticity of normal placentas using the Virtual Touch quantification (VTQ technique. Methods: This study was approved by the Institutional Ethics Committee. Fifty randomly selected, healthy pregnant women in their second trimester and 50 randomly selected, healthy pregnant women in their third trimester with a single fetus were included, and their placentas underwent VTQ through shear wave velocity (SWV measurements. The measurements were performed at different locations to sample different areas of the placenta. Measurements were performed 3-4 times in each location, the mean shear wave velocities were calculated without the highest and lowest values of measurements in each region, and the results were compared. Results: The SWV of the placenta was 0.983±0.260 m/sec, and the minimal and maximal speed was 0.63 m/sec and 1.84 m/sec, respectively. There was no significant difference between the second and third trimester of VTQ of the placenta in terms of SWV (0.978±0.255 m/sec vs. 0.987±0.266 m/sec, P=0.711. The maternal age between second and third trimester was 27.9±4.3 years and 29.2±4.4 years, respectively; there was no significant difference between them (P=0.159. Conclusion: The results of this study show that the SWV of normal placenta tissue is 0.983±0.260 m/sec, it has little variation between the second and third trimesters, and the VTQ technique may potentially play an additional role in placenta evaluation.
Liu, H H; Weng, S E; Chen, R J
1995-12-01
In the treatment of growing bimaxillary protrusion patients,Edgewise technique auxillary with extra oral anchorage and class III elastic help to improve the patient's chin shape,recover his beauty of lower facial part and get a good occlusion along with the growing of mandible.The purpose of this study is:analysis the force system in the treatment and evaluate the result of the treatment with some typical cases.
International Nuclear Information System (INIS)
Samani, Abbas; Zubovits, Judit; Plewes, Donald
2007-01-01
Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed
Energy Technology Data Exchange (ETDEWEB)
Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)
2007-03-21
Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.
Samani, Abbas; Zubovits, Judit; Plewes, Donald
2007-03-01
Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.
Directory of Open Access Journals (Sweden)
Hwa Kian Chai
2016-04-01
Full Text Available Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.
Directory of Open Access Journals (Sweden)
Meng Fanlin
2017-01-01
Full Text Available A portable impedance analyzer (PIA was developed based on a TiePie-HS3 device to provide the comparable impedance measurement accuracy of the Agilent 4294a impedance analyzer in the frequency range of 0~250 kHz. Then the PIA was applied to monitor the tensile stress-induced variation of the eddy current sensor’s impedance in a medium-carbon steel sample. A model of equivalent magnetic field induced by the elastic stress and the number of pinning sites indicated that the inductance of the eddy current loop firstly increased with the increase in the tensile stress and then decreased at the yield point of the material. The experimental results testified that the variation of impedance amplitude, the variation of phase angle, and the shift of two featured frequencies demonstrated opposite variation trends before and after the yield point, as predicated by the model. A new parameter, which combined the impedance variation information of the selected two frequencies, was found to exhibit nearly monotonous dependency on the tensile stress in elastic and plastic stages. The new parameter together with the developed portable impedance analyzer provided the solution to identify the elastic and plastic behaviors in ferromagnetic materials in practical applications with an eddy current technique.
Kitamura, Aya; Kawai, Yasuhiko
2015-01-01
Laminated alginate impression for edentulous is simple and time efficient compared to border molding technique. The purpose of this study was to examine clinical applicability of the laminated alginate impression, by measuring the effects of different Water/Powder (W/P) and mixing methods, and different bonding methods in the secondary impression of alginate impression. Three W/P: manufacturer-designated mixing water amount (standard), 1.5-fold (1.5×) and 1.75-fold (1.75×) water amount were mixed by manual and automatic mixing methods. Initial and complete setting time, permanent and elastic deformation, and consistency of the secondary impression were investigated (n=10). Additionally, tensile bond strength between the primary and secondary impression were measured in the following surface treatment; air blow only (A), surface baking (B), and alginate impression material bonding agent (ALGI-BOND: AB) (n=12). Initial setting times significantly shortened with automatic mixing for all W/P (p<0.05). The permanent deformation decreased and elastic deformation increased as high W/P, regardless of the mixing method. Elastic deformation significantly reduced in 1.5× and 1.75× with automatic mixing (p<0.05). All of these properties resulted within JIS standards. For all W/P, AB showed a significantly high bonding strength as compared to A and B (p<0.01). The increase of mixing water, 1.5× and 1.75×, resulted within JIS standards in setting time, suggesting its applicability in clinical setting. The use of automatic mixing device decreased elastic strain and shortening of the curing time. For the secondary impression application of adhesives on the primary impression gives secure adhesion. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Amjad Ali
2015-01-01
Full Text Available A new simple moving voltage average (SMVA technique with fixed step direct control incremental conductance method is introduced to reduce solar photovoltaic voltage (VPV oscillation under nonuniform solar irradiation conditions. To evaluate and validate the performance of the proposed SMVA method in comparison with the conventional fixed step direct control incremental conductance method under extreme conditions, different scenarios were simulated. Simulation results show that in most cases SMVA gives better results with more stability as compared to traditional fixed step direct control INC with faster tracking system along with reduction in sustained oscillations and possesses fast steady state response and robustness. The steady state oscillations are almost eliminated because of extremely small dP/dV around maximum power (MP, which verify that the proposed method is suitable for standalone PV system under extreme weather conditions not only in terms of bus voltage stability but also in overall system efficiency.
Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio
2018-03-01
In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed
Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E
2013-10-01
A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.
Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid
Titarenko, Sofya; Hildyard, Mark
2017-07-01
In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.
International Nuclear Information System (INIS)
Vizkelethy, G.; Revesz, P.
1993-01-01
The quantification of oxygen and carbon in high-temperature (T c ) superconducting oxide thin films was made by employing elastic resonance in He backscattering analysis. A method combining the oxygen resonance technique and channeling was presented for measuring the nature of the oxygen disorder near the surface and the interface in a YBCO superconducting film grown on an MgO substrate. The oxygen resonance technique was used to quantify the oxygen profiling in the metal/YBCO contacts, showing that Zr and Nb act as sinks to oxygen from YBCO films and are oxidized in the forms Zr/ZrO 2 /YBCO/MgO and Nb 0.2 O/YBCO/MgO after annealing in a vacuum at 350 o C. We combined the carbon and oxygen resonances to determine the carbon contamination and oxygen concentration changes on the YBCO surface after coating and baking the photoresist. Residual carbon on the surface and a thin layer of oxygen depletion near the YBCO surface have been observed. The residual carbon in Bi 2 Sr 2 CaCu 2 O 8 films made by the decomposition of metallo-organic precursors was quantified using carbon resonance. (author)
Averaging operations on matrices
Indian Academy of Sciences (India)
2014-07-03
Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...
International Nuclear Information System (INIS)
Cen, Z.; Du, Q.
1987-01-01
The tube junction structures have been widely adopted for nuclear engineering usages, so have been for many other technologies. In application of the finite element method to stress analysis for such a three dimensional complex structures, it is necessary to subdivide the regions of stress concentration into very refined meshes. In this paper, schemes for incoporating the finite element equation as a natural boundary condition into boundary integral equation have been employed. The relevant formulae and some of the details of treatments have been given. For the nozzle junction: The 3D isoparametric finite elements with 8-20 nodes containing additional internal degrees of freedom have been employed for the cylindrical shell parts which remain at elastic stage and with less stress gradients, while for the junction part with high stress gradients, the boundary integration technique of 8 nodes 2D isoparametric boundary elements has been used and the volumetric integral elements of 8 nodes have been used for the elastoplastic incremental computations. (orig./GL)
Duran, Sean Patrick Hynes
A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to
U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...
International Nuclear Information System (INIS)
Vasil'ev, Yu.A.; Barashkov, Yu.A.; Golovanov, O.A.; Sidorov, L.V.
1977-01-01
A method for determining the average number of secondary neutrons anti ν produced in nuclear fission by the neutrons of the 252 Cf fission spectra by means of a 4π time-of-flight spectrometer is described. Layers of 252 Cf and an isotope studied are placed close to each other; if the isotope layer density is 1 mg/cm 2 probability of its fission is about 10 -5 per one spontaneous fission of californium. Fission fragments of 252 Cf and the isotope investigated have been detected by two surface-barrier counters with an efficiency close to 100%. The layers and the counters are situated in a measuring chamber placed in the center of the 4π time-of-flight spectrometer. The latter is utilized as a neutron counter because of its fast response. The method has been verified by carrying out measurements for 235 U and 239 Pu. A comparison of the experimental and calculated results shows that the method suggested can apply to determine the number of secondary neutrons in fission of isotopes that have not been investigated yet
Edwards, Jack R.; Mcrae, D. S.
1993-01-01
An efficient implicit method for the computation of steady, three-dimensional, compressible Navier-Stokes flowfields is presented. A nonlinear iteration strategy based on planar Gauss-Seidel sweeps is used to drive the solution toward a steady state, with approximate factorization errors within a crossflow plane reduced by the application of a quasi-Newton technique. A hybrid discretization approach is employed, with flux-vector splitting utilized in the streamwise direction and central differences with artificial dissipation used for the transverse fluxes. Convergence histories and comparisons with experimental data are presented for several 3-D shock-boundary layer interactions. Both laminar and turbulent cases are considered, with turbulent closure provided by a modification of the Baldwin-Barth one-equation model. For the problems considered (175,000-325,000 mesh points), the algorithm provides steady-state convergence in 900-2000 CPU seconds on a single processor of a Cray Y-MP.
Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering
Moteabbed, M.; Niroula, M.; Raue, B. A.; Weinstein, L. B.; Adikaram, D.; Arrington, J.; Brooks, W. K.; Lachniet, J.; Rimal, Dipak; Ungaro, M.; Afanasev, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-08-01
Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections.Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles.Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton.Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable
Sinikumpu, J-J; Keränen, J; Haltia, A-M; Serlo, W; Merikanto, J
2013-01-01
Operative treatment is often indicated in unstable pediatric diaphyseal forearm fractures. Recently minimally invasive reduction and elastic stable intramedullary nailing have been of increasing interest, instead of open reduction and internal fixation with plates. There are several disadvantages of metallic intramedullary implants, such as soft-tissue irritation and a risk of disturbing later imaging. Thus, they are generally removed in later operations. We aimed to develop a new technique to stabilize pediatric forearm fractures by the bioabsorbable intramedullary nailing. We developed a new, two-stage mini-invasive surgical technique to stabilize the unstable diaphyseal fractures in children. The procedure is bioabsorbable elastic stable intramedullary nailing. Ultra-high-strength bioabsorbable intramedullary nails of poly(lactide-co-glycolide) were manufactured for our purpose. The material has been widely proven to be biocompatible and stable enough for fracture treatment as screws and pins. We have used the new technique in the unstable both-bone diaphyseal forearm fractures in children between the ages of 5 and 15 years. We report the technique and our clinical experience in the series of those three cases that have been followed up for at least 12 months. The present series has been randomized for the procedure instead for titanium elastic stable intramedullary nailing, and the series represents a part of ongoing randomized trial. The reported cases operated by the new technique referred good union in the fractured bones and acceptable alignment in the follow-up. Removal of the implants was not required. No troubles with the procedure or implant per se were noticed, indicating good feasibility. One high-energy refracture occurred half year after the primary trauma. Traditional titanium implants were used to control the refracture. We report our preliminary experience of a new surgical mini-invasive procedure to stabilize the unstable pediatric forearm shaft
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J
2017-11-01
The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Dutta, B.K.; Kakodkar, A.; Maiti, S.K.
1986-01-01
The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)
Directory of Open Access Journals (Sweden)
Jia-Horng Lin
2017-12-01
Full Text Available Conventional sportswear fabrics are functional textiles that can mitigate the impaired muscles caused by exercises for the wearers, but they can also cause discomfort and skin allergy. This study proposes combining two yarns to form functional composite yarns, by using a twisting or wrapping process. Moreover, a different twist number is used in order to adjust the performance of functional composite yarns. A crochet machine is used to make the functional composite yarns into functional elastic knits that are suitable for use in sportswear. The test results show that, in comparison to the non-processed yarns, using the twisted or wrapped yarns can considerably decrease the water vapor transmission rate of functional elastic knits by 38%, while also improving their far infrared emissivity by 13%, water absorption rate by 39%, and air permeability by 136%. In particular, the functional elastic knits that are made of B-wrapped yarns (bamboo charcoal- wrapped yarns, composed of 20 twists per inch, have the optimal diverse functions.
Energy Technology Data Exchange (ETDEWEB)
Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.
2008-07-01
Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.
International Nuclear Information System (INIS)
Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.
2009-01-01
Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Directory of Open Access Journals (Sweden)
S. P. Arunachalam
2018-01-01
Full Text Available Analysis of biomedical signals can yield invaluable information for prognosis, diagnosis, therapy evaluation, risk assessment, and disease prevention which is often recorded as short time series data that challenges existing complexity classification algorithms such as Shannon entropy (SE and other techniques. The purpose of this study was to improve previously developed multiscale entropy (MSE technique by incorporating nearest-neighbor moving-average kernel, which can be used for analysis of nonlinear and non-stationary short time series physiological data. The approach was tested for robustness with respect to noise analysis using simulated sinusoidal and ECG waveforms. Feasibility of MSE to discriminate between normal sinus rhythm (NSR and atrial fibrillation (AF was tested on a single-lead ECG. In addition, the MSE algorithm was applied to identify pivot points of rotors that were induced in ex vivo isolated rabbit hearts. The improved MSE technique robustly estimated the complexity of the signal compared to that of SE with various noises, discriminated NSR and AF on single-lead ECG, and precisely identified the pivot points of ex vivo rotors by providing better contrast between the rotor core and the peripheral region. The improved MSE technique can provide efficient complexity analysis of variety of nonlinear and nonstationary short-time biomedical signals.
International Nuclear Information System (INIS)
Yang, D.S.; Nguyen Minh, D.; Chanchole, S.; Gharbi, H.; Valli, P.; Bornert, M.
2010-01-01
Document available in extended abstract form only. The construction of underground nuclear waste repositories will strongly disturb the initial thermo-hydro-chemo-mechanical equilibrium of the site. In addition to direct mechanical perturbations during excavation, which induce redistribution of the stresses and possible damage of the surrounding rock mass, the ventilation of the galleries will also modify the moisture content of the rock, resulting in shrinking or swelling, and more generally modifying the physical-chemical properties of the material. Safety concerns about preservation of confining properties of rock mass at short and long time scales require a deep understanding of the hydro-mechanical behavior of the host rock. In particular the dependence of elastic, possibly anisotropic, moduli and nonlinear properties (plasticity, damage, creep...) as a function of the moisture level, need to be quantified. In addition, in order to construct physically based micromechanical models of these dependencies, the various micro-mechanisms at their origin and their characteristic scales need to be identified. Various independent studies agree on the decrease of overall rigidity and failure stress of argillite with increasing humidity. A recent study making use of optical full-field strain measurement techniques on centi-metric samples under uniaxial compression suggests that this apparent decrease of elastic properties on wet samples can be essentially explained by the presence of a millimetric network of 'meso-cracks', induced by the preliminary unconfined hydration process. Indeed, thanks to the full-field measurement technique, it was possible to show that the mechanical response of undamaged areas, in-between cracks, was very similar at all moisture contents, both in terms of average strains and strain fluctuations at the micrometric scale of the composite structure of the rock (matrix clay + other mineral inclusions). The preliminary hydro
Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia
2017-10-01
Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Majander, E.O.J.; Manninen, M.T. [VTT Energy, Espoo (Finland)
1996-12-31
The flow induced by a pitched blade turbine was simulated using the sliding mesh technique. The detailed geometry of the turbine was modelled in a computational mesh rotating with the turbine and the geometry of the reactor including baffles was modelled in a stationary co-ordinate system. Effects of grid density were investigated. Turbulence was modelled by using the standard k-{epsilon} model. Results were compared to experimental observations. Velocity components were found to be in good agreement with the measured values throughout the tank. Averaged source terms were calculated from the sliding mesh simulations in order to investigate the reliability of the source term approach. The flow field in the tank was then simulated in a simple grid using these source terms. Agreement with the results of the sliding mesh simulations was good. Commercial CFD-code FLUENT was used in all simulations. (author)
Energy Technology Data Exchange (ETDEWEB)
Majander, E O.J.; Manninen, M T [VTT Energy, Espoo (Finland)
1997-12-31
The flow induced by a pitched blade turbine was simulated using the sliding mesh technique. The detailed geometry of the turbine was modelled in a computational mesh rotating with the turbine and the geometry of the reactor including baffles was modelled in a stationary co-ordinate system. Effects of grid density were investigated. Turbulence was modelled by using the standard k-{epsilon} model. Results were compared to experimental observations. Velocity components were found to be in good agreement with the measured values throughout the tank. Averaged source terms were calculated from the sliding mesh simulations in order to investigate the reliability of the source term approach. The flow field in the tank was then simulated in a simple grid using these source terms. Agreement with the results of the sliding mesh simulations was good. Commercial CFD-code FLUENT was used in all simulations. (author)
Energy Technology Data Exchange (ETDEWEB)
Tatsugami, Fuminari; Higaki, Toru; Nakamura, Yuko; Yamagami, Takuji; Date, Shuji; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Minami-ku, Hiroshima (Japan); Fujioka, Chikako; Kiguchi, Masao [Hiroshima University, Department of Radiology, Minami-ku, Hiroshima (Japan); Kihara, Yasuki [Hiroshima University, Department of Cardiovascular Medicine, Minami-ku, Hiroshima (Japan)
2015-01-15
To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration. Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70-80 % of the R-R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R-R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent). On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01). Our method reduces image noise and improves image quality at coronary CTA. (orig.)
Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa
2017-04-01
International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Mossetti, Stefano; Bartolo, Daniela de; Nava, Elisa; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina
2017-01-01
International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. (authors)
International Nuclear Information System (INIS)
Ledbetter, H.M.
1983-01-01
This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites
Directory of Open Access Journals (Sweden)
Yu-Chia Chang
2008-01-01
Full Text Available Three cruises with shipboard Acoustic Doppler Current Profiler (ADCP were performed along a transect across the Peng-hu Channel (PHC in the Taiwan Strait during 2003 - 2004 in order to investigate the feasibility and accuracy of the phase-averaging method to eliminate tidal components from shipboard ADCP measurement of currents. In each cruise measurement was repeated a number of times along the transect with a specified time lag of either 5, 6.21, or 8 hr, and the repeated data at the same location were averaged to eliminate the tidal currents; this is the so-called ¡§phase-averaging method¡¨. We employed 5-phase-averaging, 4-phase-averaging, 3-phase-averaging, and 2-phase-averaging methods in this study. The residual currents and volume transport of the PHC derived from various phase-averaging methods were intercompared and were also compared with results of the least-square harmonic reduction method proposed by Simpson et al. (1990 and the least-square interpolation method using Gaussian function (Wang et al. 2004. The estimated uncertainty of the residual flow through the PHC derived from the 5-phase-averaging, 4-phase-averaging, 3-phase-averaging, and 2-phase-averaging methods is 0.3, 0.3, 1.3, and 4.6 cm s-1, respectively. Procedures for choosing a best phase average method to remove tidal currents in any particular region are also suggested.
International Nuclear Information System (INIS)
Berns, Eric A.; Hendrick, R. Edward; Cutter, Gary R.
2003-01-01
Contrast-detail experiments were performed to optimize technique factors for the detection of low-contrast lesions using a silicon diode array full-field digital mammography (FFDM) system under the conditions of a matched average glandular dose (AGD) for different techniques. Optimization was performed for compressed breast thickness from 2 to 8 cm. FFDM results were compared to screen-film mammography (SFM) at each breast thickness. Four contrast-detail (CD) images were acquired on a SFM unit with optimal techniques at 2, 4, 6, and 8 cm breast thicknesses. The AGD for each breast thickness was calculated based on half-value layer (HVL) and entrance exposure measurements on the SFM unit. A computer algorithm was developed and used to determine FFDM beam current (mAs) that matched AGD between FFDM and SFM at each thickness, while varying target, filter, and peak kilovoltage (kVp) across the full range available for the FFDM unit. CD images were then acquired on FFDM for kVp values from 23-35 for a molybdenum-molybdenum (Mo-Mo), 23-40 for a molybdenum-rhodium (Mo-Rh), and 25-49 for a rhodium-rhodium (Rh-Rh) target-filter under the constraint of matching the AGD from screen-film for each breast thickness (2, 4, 6, and 8 cm). CD images were scored independently for SFM and each FFDM technique by six readers. CD scores were analyzed to assess trends as a function of target-filter and kVp and were compared to SFM at each breast thickness. For 2 cm thick breasts, optimal FFDM CD scores occurred at the lowest possible kVp setting for each target-filter, with significant decreases in FFDM CD scores as kVp was increased under the constraint of matched AGD. For 2 cm breasts, optimal FFDM CD scores were not significantly different from SFM CD scores. For 4-8 cm breasts, optimum FFDM CD scores were superior to SFM CD scores. For 4 cm breasts, FFDM CD scores decreased as kVp increased for each target-filter combination. For 6 cm breasts, CD scores decreased slightly as k
Elasticity in Elastics-An in-vitro study.
Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha
2014-04-01
analyzed with student independent - t test, analysis of variance and the Tukey - HSD test at p elastics had greater cross sectional area than latex elastics in all types of elastics. Forestadent heavy elastics had grater cross sectional area than GAC and Glenroe. There was no statistically significant difference in the internal diameter in between all type of elastics. Forestadent non latex elastics had greater breaking force compared to GAC and Glenroe elastics. Forces generated by the elastics decreased over 48 hours to an average load approximating 65-75% of the manufacturer's values. Force degradation was greater in non latex elastics compared to latex elastics. The results of the study demonstrated that the clinical choice of elastics should be based on the patient's medical history and the specific mechanical properties of the type of elastic. How to cite the article: Kamisetty SK, Nimagadda C, Begam MP, Nalamotu R, Srivastav T, Shwetha GS. Elasticity in Elastics-An in-vitro study. J Int Oral Health 2014;6(2):96-105.
International Nuclear Information System (INIS)
Ramanathan, R.
1999-01-01
In developing countries like India, consumption of petroleum products has implications on its balance of payments, economic growth and fiscal deficit. Gasoline is one of the prime petroleum products. In this paper, the relationship between gasoline demand, national income and price of gasoline is empirically examined using cointegration and error correction techniques. The time frame of the analysis is from 1972-1973 to 1993-1994. It has been found that gasoline demand is likely to increase significantly for a given increase in the gross domestic product. The increase will be larger in the long-run (2.682) than in the short-run (1.178). Gasoline demand is relatively inelastic to price changes, both in the long and short terms. The error correction model has shown that gasoline demand adjusts to their respective long-run equilibrium at a relatively slow rate, with about 28% of adjustment taking place in the first year. 23 refs
Passive retrieval of Rayleigh waves in disordered elastic media
International Nuclear Information System (INIS)
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-01-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime
Elastic plastic fracture mechanics
International Nuclear Information System (INIS)
Simpson, L.A.
1978-07-01
The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
Li, Tao; Zeng, Kaiyang
2014-01-01
The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3H(d,n)4He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration. 1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma ray spectroscopy. 1.3 The measurement of reaction products in their metastable states is not covered. If the metastable state decays to the ground state, the ground state reaction may be used. 1.4 The values stated in SI units are to be regarded as standard. No oth...
International Nuclear Information System (INIS)
Zhao, W.H.; Cox, S.F.J.
1980-07-01
In the NMR measurement of dynamic nuclear polarization, a volume average is obtained where the contribution from different parts of the sample is weighted according to the local intensity of the RF field component perpendicular to the large static field. A method of mapping this quantity is described. A small metallic object whose geometry is chosen to perturb the appropriate RF component is scanned through the region to be occupied by the sample. The response of the phase angle of the impedance of a tuned circuit comprising the NMR coil gives a direct measurement of the local weighting factor. The correlation between theory and experiment was obtained by using a circular coil. The measuring method, checked in this way, was then used to investigate the field profiles of practical coils which are required to be rectangular for a proposed experimental neutron polarizing filter. This method can be used to evaluate other practical RF coils. (author)
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
Elastic constants from microscopic strain fluctuations
Sengupta; Nielaba; Rao; Binder
2000-02-01
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Zhao, Xin
2013-01-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects
Brazilian sawn wood price and income elasticity
Directory of Open Access Journals (Sweden)
Rommel Noce
2010-09-01
Full Text Available This study estimated the sawn wood demand price and income elasticity. Specifically it was estimated the priceelasticity of sawn wood, the cross price elasticity of wood panels and the income elasticity of Brazilian GDP. A log-log model withcorrection through outline of the mobile average (MA(1 was used, adjusted for the period of 1971 to 2006, which showed to bestable, with satisfactory significance levels. It was observed that sawn wood demand is inelastic in relation to price and elastic inrelation to income.
Elastic properties of spherically anisotropic piezoelectric composites
International Nuclear Information System (INIS)
En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon
2010-01-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)
International Nuclear Information System (INIS)
Chrien, R.E.
1986-10-01
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
High average power supercontinuum sources
Indian Academy of Sciences (India)
The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.
Price and Income Elasticities of Russian Exports
Directory of Open Access Journals (Sweden)
Bernardina Algieri
2004-12-01
Full Text Available The paper gauges export demand elasticities for Russia using an Error Correction technique within a cointegration framework. An extended version of the Imperfect Substitutes Model has been implemented to estimate the sensitivity of Russian exports without oil components to price and to Russian and world income. Our results suggest a robust and negative long run cointegration relationship between the real effective exchange rate, defined as the weighted average of the rouble’s exchange rates versus a basket of the three currencies with the largest share in the trade turnover adjusted to incorporate inflation rate differences (the ratio of the domestic price indices to the foreign price indices, and Russian exports. An increase in exports by 24% is caused by a real depreciation by 10%. Furthermore, a 10% growth in world income leads to a 33% rise in exports. Finally, exports drop by 14% whenever a 10% increase in domestic income occurs
An expert fitness diagnosis system based on elastic cloud computing.
Tseng, Kevin C; Wu, Chia-Chuan
2014-01-01
This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.
An Expert Fitness Diagnosis System Based on Elastic Cloud Computing
Directory of Open Access Journals (Sweden)
Kevin C. Tseng
2014-01-01
Full Text Available This paper presents an expert diagnosis system based on cloud computing. It classifies a user’s fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user’s physiological data, such as age, gender, and body mass index (BMI. In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8% and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.
Forest biomass and Armington elasticities in Europe
International Nuclear Information System (INIS)
Lundmark, Robert; Shahrammehr, Shima
2011-01-01
The purpose of this paper is to provide estimated Armington elasticities for selected European countries and for three forest biomass commodities of main interest in many energy models: roundwood, chips and particles and wood residues. The Armington elasticity is based on the assumption that a specific forest biomass commodity is differentiated by its origin. The statistically significant estimated Armington elasticities range from 0.52 for roundwood in Hungary to approximately 4.53 for roundwood in Estonia. On average, the statistically significant Armington elasticity for chips and particles over all countries is 1.7 and for wood residues and roundwood 1.3 and 1.5, respectively. These elasticities can provide benchmark values for simulation models trying to assess trade patterns of forest biomass commodities and energy policy effects for European countries or for the EU as a whole.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
Muhlestein, Michael B; Haberman, Michael R
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.
2007-01-01
This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data
Elastic scattering and quasi-elastic transfers
International Nuclear Information System (INIS)
Mermaz, M.C.
1978-01-01
Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr
International Nuclear Information System (INIS)
Ichiguchi, Katsuji
1998-01-01
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)
Determining average yarding distance.
Roger H. Twito; Charles N. Mann
1979-01-01
Emphasis on environmental and esthetic quality in timber harvesting has brought about increased use of complex boundaries of cutting units and a consequent need for a rapid and accurate method of determining the average yarding distance and area of these units. These values, needed for evaluation of road and landing locations in planning timber harvests, are easily and...
Watson, Jane; Chick, Helen
2012-01-01
This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…
Directory of Open Access Journals (Sweden)
Patricia Bouyer
2015-09-01
Full Text Available Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.
Sabatelli, Lorenzo
2016-01-01
Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.
Directory of Open Access Journals (Sweden)
Lorenzo Sabatelli
Full Text Available Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences, mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.
DEFF Research Database (Denmark)
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Energy Technology Data Exchange (ETDEWEB)
Lee, Sung Tae [Sungkyunkwan University, Seoul (Korea); Lee, Myunghun [Keimyung University, Taegu (Korea)
2001-03-01
This paper estimates the gasoline price elasticities of demand for automobile fuel efficiency in Korea to examine indirectly whether the government policy of raising fuel prices is effective in inducing less consumption of fuel, relying on a hedonic technique developed by Atkinson and Halvorsen (1984). One of the advantages of this technique is that the data for a single year, without involving variation in the price of gasoline, is sufficient in implementing this study. Moreover, this technique enables us to circumvent the multicollinearity problem, which had reduced reliability of the results in previous hedonic studies. The estimated elasticities of demand for fuel efficiency with respect to the price of gasoline, on average, is 0.42. (author). 30 refs., 3 tabs.
Consumer brand choice: individual and group analyses of demand elasticity.
Oliveira-Castro, Jorge M; Foxall, Gordon R; Schrezenmaier, Teresa C
2006-03-01
Following the behavior-analytic tradition of analyzing individual behavior, the present research investigated demand elasticity of individual consumers purchasing supermarket products, and compared individual and group analyses of elasticity. Panel data from 80 UK consumers purchasing 9 product categories (i.e., baked beans, biscuits, breakfast cereals, butter, cheese, fruit juice, instant coffee, margarine and tea) during a 16-week period were used. Elasticity coefficients were calculated for individual consumers with data from all or only 1 product category (intra-consumer elasticities), and for each product category using all data points from all consumers (overall product elasticity) or 1 average data point per consumer (interconsumer elasticity). In addition to this, split-sample elasticity coefficients were obtained for each individual with data from all product categories purchased during weeks 1 to 8 and 9 to 16. The results suggest that: 1) demand elasticity coefficients calculated for individual consumers purchasing supermarket food products are compatible with predictions from economic theory and behavioral economics; 2) overall product elasticities, typically employed in marketing and econometric research, include effects of interconsumer and intraconsumer elasticities; 3) when comparing demand elasticities of different product categories, group and individual analyses yield similar trends; and 4) individual differences in demand elasticity are relatively consistent across time, but do not seem to be consistent across products. These results demonstrate the theoretical, methodological, and managerial relevance of investigating the behavior of individual consumers.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
Eliazar, Iddo
2018-02-01
The popular perception of statistical distributions is depicted by the iconic bell curve which comprises of a massive bulk of 'middle-class' values, and two thin tails - one of small left-wing values, and one of large right-wing values. The shape of the bell curve is unimodal, and its peak represents both the mode and the mean. Thomas Friedman, the famous New York Times columnist, recently asserted that we have entered a human era in which "Average is Over" . In this paper we present mathematical models for the phenomenon that Friedman highlighted. While the models are derived via different modeling approaches, they share a common foundation. Inherent tipping points cause the models to phase-shift from a 'normal' bell-shape statistical behavior to an 'anomalous' statistical behavior: the unimodal shape changes to an unbounded monotone shape, the mode vanishes, and the mean diverges. Hence: (i) there is an explosion of small values; (ii) large values become super-large; (iii) 'middle-class' values are wiped out, leaving an infinite rift between the small and the super large values; and (iv) "Average is Over" indeed.
Average nuclear surface properties
International Nuclear Information System (INIS)
Groote, H. von.
1979-01-01
The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)
Americans' Average Radiation Exposure
International Nuclear Information System (INIS)
2000-01-01
We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body
Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids
International Nuclear Information System (INIS)
Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T
2014-01-01
Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.
Paro, Alberto
2015-01-01
If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.
2017-05-26
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali
2017-01-01
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Elasticity theory and applications
Saada, Adel S; Hartnett, James P; Hughes, William F
2013-01-01
Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...
Averaging for solitons with nonlinearity management
International Nuclear Information System (INIS)
Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.
2003-01-01
We develop an averaging method for solitons of the nonlinear Schroedinger equation with a periodically varying nonlinearity coefficient, which is used to effectively describe solitons in Bose-Einstein condensates, in the context of the recently proposed technique of Feshbach resonance management. Using the derived local averaged equation, we study matter-wave bright and dark solitons and demonstrate a very good agreement between solutions of the averaged and full equations
Magma flow through elastic-walled dikes
Bokhove, Onno; Woods, A.W.; de Boer, A
2005-01-01
A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the
Kaspar, Jan; Deile, M
The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
Statistical mechanics of elasticity
Weiner, JH
2012-01-01
Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.
Elasticity of energy consumption
International Nuclear Information System (INIS)
Stam, M.
2004-01-01
Insight is given into the price elasticities of several energy carriers. Next, attention is paid to the impact of the discussion on changes of the Regulating Energy Levy (REB, abbreviated in Dutch) in the Netherlands [nl
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Elastic modulus and fracture of boron carbide
International Nuclear Information System (INIS)
Hollenberg, G.W.; Walther, G.
1978-12-01
The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Population and energy elasticity of tornado casualties
Fricker, Tyler; Elsner, James B.; Jagger, Thomas H.
2017-04-01
Tornadoes are capable of catastrophic destruction and mass casualties, but there are yet no estimates of how sensitive the number of casualties are to changes in the number of people in harm's way or to changes in tornado energy. Here the relationship between tornado casualties (deaths and injuries), population, and energy dissipation is quantified using the economic concept of "elasticity." Records of casualties from individual tornadoes over the period 2007-2015 are fit to a regression model. The coefficient on the population term (population elasticity) indicates that a doubling in population increases the casualty rate by 21% [(17, 24)%, 95% credible interval]. The coefficient on the energy term (energy elasticity) indicates that a doubling in energy dissipation leads to a 33% [(30, 35)%, 95% credible interval] increase in the casualty rate. The difference in elasticity values show that on average, changes in energy dissipation have been relatively more important in explaining tornado casualties than changes in population. Assuming no changes in warning effectiveness or mitigation efforts, these elasticity estimates can be used to project changes in casualties given the known population trends and possible trends in tornado activity.
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
International Nuclear Information System (INIS)
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
Hydrogen depth profiling using elastic recoil detection
International Nuclear Information System (INIS)
Doyle, B.L.; Peercy, P.S.
1979-01-01
The elastic recoil detection (ERD) analysis technique for H profiling in the near surface regions of solids is described. ERD is shown to have the capability of detecting H and its isotopes down to concentrations of approx. 0.01 at. % with a depth resolution of a few hundred angstroms. Is is demonstrated that 2.4-MeV He ions can be used successfully to profile 1 H and 2 D using this technique. 12 figures
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Lai, Yun
2011-06-26
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing
2011-01-01
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Directory of Open Access Journals (Sweden)
Sergio Cesare Masin
2010-01-01
Full Text Available Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight-a cognitive law analogous to Hooke¿s law of elasticity. Participants also estimated the total imagined elongation of springs joined either in series or in parallel. This total elongation was longer for serial than for parallel springs, and increased proportionally to the number of serial springs and inversely proportionally to the number of parallel springs. The results suggest that participants integrated load weight with imagined elasticity rather than with spring length.
Rogozinski, Marek
2014-01-01
This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.
The effective Schroedinger equation of the optical model of composite nuclei elastic collisions
International Nuclear Information System (INIS)
Mondragon, A.; Hernandez, E.
1980-01-01
An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)
WE-E-9A-01: Ultrasound Elasticity
Energy Technology Data Exchange (ETDEWEB)
Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)
2014-06-15
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement
WE-E-9A-01: Ultrasound Elasticity
International Nuclear Information System (INIS)
Emelianov, S; Hall, T; Bouchard, R
2014-01-01
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement
Shoepe, Todd C; Ramirez, David A; Rovetti, Robert J; Kohler, David R; Almstedt, Hawley C
2011-09-01
The purpose of this investigation was to assess the effectiveness of variable resistance as provided through elastic plus free weight techniques in college aged males and females. Twenty novice lifters were randomly assigned to a traditional free weight only (6 males and 5 females) or elastic band plus free weight group (5 males and 5 females) and 9 more normally active controls (5 males and 4 females), were recruited to maintain normal activity for the duration of the study. No differences existed between control, free weight and elastic band at baseline for age, body height, body mass, body mass index, and body fat percentage. One-repetition maximums were performed for squat and bench press while both strength and power were assessed using isokinetic dynamometry. Elastic groups and free-weight groups completed 24 weeks of whole body, periodized, high intensity resistance (65-95% of one-repetition maximum) training three times/week. Training programs were identical except that the elastic group trained the barbell squat, bench press and stiff-legged deadlift with 20-35% of their total prescribed training loads coming from band resistance (assessed at the top of the range of motion) with the remainder from free weight resistance. A mixed-model analysis revealed that peak torque, average power and one-repetition maximums for squat were significantly greater after training for the elastic group compared to the control (pfree weight group also showed significantly greater improvements over the control in peak torque and one-repetition maximums for squat and bench press. No significant differences were observed between the elastic band and free weight groups. Combined variable elastic band plus free weight exercises are effective at increasing strength and power similar to free-weights alone in novice college aged males and females. However, due to complexity in set-up and load assignment elastic adoption by novice lifters in an unsupervised situation is not advised.
A Note on Comparing the Elasticities of Demand Curves.
Nieswiadomy, Michael
1986-01-01
Demonstrates a simple and useful way to compare the elasticity of demand at each price (or quantity) for different demand curves. The technique is particularly useful for the intermediate microeconomic course. (Author)
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Autonomic Vertical Elasticity of Docker Containers with ElasticDocker
Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe
2017-01-01
International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...
Vascular elastic photoacoustic tomography in humans
Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.
2016-03-01
Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.
The difference between alternative averages
Directory of Open Access Journals (Sweden)
James Vaupel
2012-09-01
Full Text Available BACKGROUND Demographers have long been interested in how compositional change, e.g., change in age structure, affects population averages. OBJECTIVE We want to deepen understanding of how compositional change affects population averages. RESULTS The difference between two averages of a variable, calculated using alternative weighting functions, equals the covariance between the variable and the ratio of the weighting functions, divided by the average of the ratio. We compare weighted and unweighted averages and also provide examples of use of the relationship in analyses of fertility and mortality. COMMENTS Other uses of covariances in formal demography are worth exploring.
Improving consensus structure by eliminating averaging artifacts
Directory of Open Access Journals (Sweden)
KC Dukka B
2009-03-01
Full Text Available Abstract Background Common structural biology methods (i.e., NMR and molecular dynamics often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles. Results Herein, we describe a method to derive representative structures while limiting the number of artifacts. Our approach is based on a Monte Carlo simulation technique that drives a starting structure (an extended or a 'close-by' structure towards the 'averaged structure' using a harmonic pseudo energy function. To assess the performance of the algorithm, we applied our approach to Cα models of 1364 proteins generated by the TASSER structure prediction algorithm. The average RMSD of the refined model from the native structure for the set becomes worse by a mere 0.08 Å compared to the average RMSD of the averaged structures from the native structure (3.28 Å for refined structures and 3.36 A for the averaged structures. However, the percentage of atoms involved in clashes is greatly reduced (from 63% to 1%; in fact, the majority of the refined proteins had zero clashes. Moreover, a small number (38 of refined structures resulted in lower RMSD to the native protein versus the averaged structure. Finally, compared to PULCHRA 1, our approach produces representative structure of similar RMSD quality, but with much fewer clashes. Conclusion The benchmarking results demonstrate that our approach for removing averaging artifacts can be very beneficial for the structural biology community. Furthermore, the same approach can be applied to almost any problem where averaging of 3D coordinates is performed. Namely, structure averaging is also commonly performed in RNA secondary prediction 2, which
Elastic properties of fly ash-stabilized mixes
Directory of Open Access Journals (Sweden)
Sanja Dimter
2015-12-01
Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].
US energy product supply elasticities. A survey and application to the US oil market
International Nuclear Information System (INIS)
Dahl, Carol; Duggan, Thomas E.
1996-01-01
We survey studies of simple energy supply models to find the most promising technique for developing supply elasticities in the U.S. crude oil market. The two dozen studies located include direct estimates of energy supply elasticities or cost studies from which supply or reserve elasticities can be inferred. We include all available studies for all forms of energy both primary and secondary. We find direct estimates of oil supply to obtain weak results unless depletion and price expectations are included. Oil product supply elasticities vary widely across studies but appear to be elastic. Studies that estimate reserve price elasticities by computing reserve costs appear to be the most promising for estimating reserve elasticities for fossil fuel supply. Hence we apply this technique to US oil reserves and find a reserve elasticity of 1.27
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Designing interactively with elastic splines
DEFF Research Database (Denmark)
Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie
2018-01-01
We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Elastic Property Simulation of Nano-particle Reinforced Composites
Directory of Open Access Journals (Sweden)
He Jiawei
2016-01-01
Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
Comparison of Interpolation Methods as Applied to Time Synchronous Averaging
National Research Council Canada - National Science Library
Decker, Harry
1999-01-01
Several interpolation techniques were investigated to determine their effect on time synchronous averaging of gear vibration signals and also the effects on standard health monitoring diagnostic parameters...
International Nuclear Information System (INIS)
Vavra, G.
1978-01-01
Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
International Nuclear Information System (INIS)
Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.
2011-01-01
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi
Energy Technology Data Exchange (ETDEWEB)
Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)
2011-08-15
A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.
Identification of elastic properties of composite plate
International Nuclear Information System (INIS)
Kovalovs, A; Rucevskis, S
2011-01-01
Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima
Energy Technology Data Exchange (ETDEWEB)
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
Directory of Open Access Journals (Sweden)
Kevin Richard Butt
2009-08-01
Full Text Available Visual implant elastomer (VIE has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years, the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments.O implante visual de elastômeros (VIE tem sido recentemente utilizado para estudar diferentes aspectos da ecologia de minhocas. Entretanto, questões fundamentais relacionadas à detecção e posicionamento da etiqueta, sua persistência e efeitos potenciais nas minhocas permanecem desconhecidos. Sete espécies de minhocas, pertencentes a três grupos ecológicos, com diferentes pigmentações e comportamentos de escavação de galerias, foram etiquetadas com VIE de diferentes cores. Procedeu-se à inspeção externa depois de dois dias, uma semana e 1, 10 e 27 meses, seguida de preservação, dissecação e inspeção interna. As etiquetas
Elastic properties of Gum Metal
International Nuclear Information System (INIS)
Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi
2006-01-01
In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation
Remarks on some reference materials for applications in elastic peak electron spectroscopy
International Nuclear Information System (INIS)
Jablonski, A.; Zemek, J.
2010-01-01
The quantification of results of electron spectroscopies, AES and XPS, requires knowledge of the inelastic mean free path (IMFP) of signal electrons in solids. This parameter determines the surface sensitivity of both techniques. There are two methods of determining the IMFPs that provide these parameters in agreement with the definition: (1) calculations based on the experimental optical data, and (2) calculations based on measurements of the electron elastic backscattering intensity. The latter method requires the use of some reference material for which the IMFP is known. In 1999, an extensive analysis of the published IMFPs has been performed; the results indicated that there is a very good agreement between the calculated and measured IMFPs for four elemental solids: Ni, Cu, Ag and Au. The averaged IMFPs for these elements are known under the name of the recommended IMFPs. However, no preference among these four elements has been established. In the present work, an attempt is made to select an element for which the recommended IMFPs result in the best agreement between the calculated and measured intensities of elastic electron backscattering. For this purpose, the elastic backscattering intensity has been measured at eight electron energies varying from 200 to 1500 eV. At each energy, the intensity was measured over a wide range of emission angles from 35deg to 74deg. The experiments were accompanied with Monte Carlo calculations of the elastic backscattering probability for the same energies and experimental configurations. It has been found, from comparison, that the best agreement is observed for Au, and this element is thus recommended as the reference material. It has been shown that the shape of the emission angle dependence of the elastic backscattering intensity is noticeably influenced by the surface energy losses. (author)
How to average logarithmic retrievals?
Directory of Open Access Journals (Sweden)
B. Funke
2012-04-01
Full Text Available Calculation of mean trace gas contributions from profiles obtained by retrievals of the logarithm of the abundance rather than retrievals of the abundance itself are prone to biases. By means of a system simulator, biases of linear versus logarithmic averaging were evaluated for both maximum likelihood and maximum a priori retrievals, for various signal to noise ratios and atmospheric variabilities. These biases can easily reach ten percent or more. As a rule of thumb we found for maximum likelihood retrievals that linear averaging better represents the true mean value in cases of large local natural variability and high signal to noise ratios, while for small local natural variability logarithmic averaging often is superior. In the case of maximum a posteriori retrievals, the mean is dominated by the a priori information used in the retrievals and the method of averaging is of minor concern. For larger natural variabilities, the appropriateness of the one or the other method of averaging depends on the particular case because the various biasing mechanisms partly compensate in an unpredictable manner. This complication arises mainly because of the fact that in logarithmic retrievals the weight of the prior information depends on abundance of the gas itself. No simple rule was found on which kind of averaging is superior, and instead of suggesting simple recipes we cannot do much more than to create awareness of the traps related with averaging of mixing ratios obtained from logarithmic retrievals.
Lagrangian averaging with geodesic mean.
Oliver, Marcel
2017-11-01
This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS
Directory of Open Access Journals (Sweden)
JING CHEN
2013-07-01
Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.
Averaging models: parameters estimation with the R-Average procedure
Directory of Open Access Journals (Sweden)
S. Noventa
2010-01-01
Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.
Form finding in elastic gridshells
Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.
2018-01-01
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Books Average Previous Decade of Economic Misery
Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Elastic and viscoplastic properties
International Nuclear Information System (INIS)
Lebensohn, R.A.
2015-01-01
In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)
Model-Based Reconstructive Elasticity Imaging Using Ultrasound
Directory of Open Access Journals (Sweden)
Salavat R. Aglyamov
2007-01-01
Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.
Umov-Mandelshtam radiation conditions in elastic periodic waveguides
Energy Technology Data Exchange (ETDEWEB)
Nazarov, S. A., E-mail: srgnazarov@yahoo.co.uk [St. Petersburg State University, Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg (Russian Federation)
2014-07-31
We study settings of the problem of elasticity theory on wave propagation in an elastic periodic waveguide with radiation conditions at infinity. We present a mathematical theory for energy radiation conditions based on Mandelshtam's energy principle and the Umov-Poynting vector, as well as using the technique of weighted spaces with detached asymptotics and the energy transfer symplectic form. We establish that in a threshold situation, that is, when standing and polynomial elastic Floquet waves appear, the well-known limiting absorption principle, in contrast to the energy principle that is being applied, cannot identify the direction of the wave's motion. Bibliography: 37 titles. (paper)
Dynamic elastic moduli of rocks under pressure
Energy Technology Data Exchange (ETDEWEB)
Schock, R N [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1970-05-01
Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)
Dynamic elastic moduli of rocks under pressure
International Nuclear Information System (INIS)
Schock, R.N.
1970-01-01
Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)
The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application
International Nuclear Information System (INIS)
Inglesi-Lotz, R.
2011-01-01
In South Africa, the electricity mismatch of supply and demand has been of major concern. Additional to past problems, the 2008 electricity crisis made the solution crucial after its damaging consequences to the economy. The disagreement on the need and consequences of the continuous electricity price hikes worsens the situation. To contribute to the recent electricity debate, this paper proposes a time-varying price elasticity of demand for electricity; the sensitivity of electricity consumption to price fluctuations changes throughout the years. The main purpose of this study is the estimation of the price elasticity of electricity in South Africa during the period 1980-2005 by employing an advanced econometric technique, the Kalman filter. Apart from the decreasing effect of electricity prices to consumption (-71.8% in the 1990s and -94.5% in the 2000s in average), our results conclude to an important finding: the higher the prices (for example in the 1980s) the higher the sensitivity of consumers to price fluctuations. Thus, further increases of the electricity prices may lead to changes in the behaviour of electricity consumers, focusing their efforts on improving their efficiency levels by introducing demand-side management techniques or even turning to other sources of - cheaper - energy. - Highlights: → The price elasticity of South Africa's electricity demand (1980-2005) is examined. → The Kalman filter methodology is used to show elasticity changes over time. → Decreasing effect of electricity prices to consumption over the years is found. → The higher the prices of electricity were, the higher the sensitivity of consumption. → If electricity prices increase, consumers will choose to consume more efficiently.
The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application
Energy Technology Data Exchange (ETDEWEB)
Inglesi-Lotz, R., E-mail: roula.inglesi@up.ac.za [Department of Economics, EMS Building, University of Pretoria, Gauteng 0002 (South Africa)
2011-06-15
In South Africa, the electricity mismatch of supply and demand has been of major concern. Additional to past problems, the 2008 electricity crisis made the solution crucial after its damaging consequences to the economy. The disagreement on the need and consequences of the continuous electricity price hikes worsens the situation. To contribute to the recent electricity debate, this paper proposes a time-varying price elasticity of demand for electricity; the sensitivity of electricity consumption to price fluctuations changes throughout the years. The main purpose of this study is the estimation of the price elasticity of electricity in South Africa during the period 1980-2005 by employing an advanced econometric technique, the Kalman filter. Apart from the decreasing effect of electricity prices to consumption (-71.8% in the 1990s and -94.5% in the 2000s in average), our results conclude to an important finding: the higher the prices (for example in the 1980s) the higher the sensitivity of consumers to price fluctuations. Thus, further increases of the electricity prices may lead to changes in the behaviour of electricity consumers, focusing their efforts on improving their efficiency levels by introducing demand-side management techniques or even turning to other sources of - cheaper - energy. - Highlights: > The price elasticity of South Africa's electricity demand (1980-2005) is examined. > The Kalman filter methodology is used to show elasticity changes over time. > Decreasing effect of electricity prices to consumption over the years is found. > The higher the prices of electricity were, the higher the sensitivity of consumption. > If electricity prices increase, consumers will choose to consume more efficiently.
Mathematical methods in elasticity imaging
Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
2015-01-01
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...
Energy Technology Data Exchange (ETDEWEB)
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
International Nuclear Information System (INIS)
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Ultrasound elasticity imaging of human posterior tibial tendon
Gao, Liang
Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA
Evaluations of average level spacings
International Nuclear Information System (INIS)
Liou, H.I.
1980-01-01
The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of 168 Er data. 19 figures, 2 tables
Design guidance for elastic followup
International Nuclear Information System (INIS)
Naugle, F.V.
1983-01-01
The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed
Income Elasticity of Environmental Amenities
Daniel Miles; Andrés Pereyra; Máximo Rossi
2000-01-01
In this paper we are concerned with the estimation of income elasticities of environmental amenities. The novelty is the application of econometric methods that take into account the problem of measurement errors when estimating these elasticities, which are common in microeconomic data and are not usually considered in the applied literature related with this issue. Our aim is to discuss whether the measurement error has signi…cant e¤ects on the elasticities. Data from the Expenditure Budget...
Ergodic averages via dominating processes
DEFF Research Database (Denmark)
Møller, Jesper; Mengersen, Kerrie
2006-01-01
We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary...... Markov chain and we eliminate the problem of whether an appropriate burn-in is determined or not. Moreover, when a central limit theorem applies, we show how confidence intervals for the mean can be estimated by bounding the asymptotic variance of the ergodic average based on the equilibrium chain....
Elastic/Inelastic Measurement Project
International Nuclear Information System (INIS)
Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey; McEllistrem, Marcus
2015-12-01
The work scope involves the measurement of neutron scattering from natural sodium ( 23 Na) and two isotopes of iron, 56 Fe and 54 Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23 Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-@@energy (few MeV) fast-@@neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-@@region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., @@ 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.
Elastic/Inelastic Measurement Project
Energy Technology Data Exchange (ETDEWEB)
Yates, Steven [Univ. of Kentucky, Lexington, KY (United States); Hicks, Sally [Univ. of Dallas, TX (United States); Vanhoy, Jeffrey [U.S. Naval Academy, Annapolis, MD (United States); McEllistrem, Marcus [Univ. of Kentucky, Lexington, KY (United States)
2016-03-01
The work scope involves the measurement of neutron scattering from natural sodium (^{23}Na) and two isotopes of iron, ^{56}Fe and ^{54}Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on ^{23}Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-energy (few MeV) fast-neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β_{2} must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.
Elastic properties of uniaxial-fiber reinforced composites - General features
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
Elasticity problems in domains with nonsmooth boundaries
International Nuclear Information System (INIS)
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Generation of discrete inelastic and elastic transfer matrix
International Nuclear Information System (INIS)
Garcia, R.D.M.; Santina, M.D.
1985-01-01
A technique developed for the calculation of the isotropic and linearly anisotropic components components of elastic and discrete inelastic transfer matrices is presented in this work. The implementation of the technique is discussed in detail and numerical results obtained for some examples are compared with results reported in the literature or generated with the use of several processing codes. (author) [pt
Elastic recoil detection (ERD) with extremely heavy ions
International Nuclear Information System (INIS)
Forster, J.S.; Davies, J.A.; Siegele, R.; Wallace, S.G.; Zelenitsky, D.
1996-01-01
Extremely heavy-ion beams such as 209 Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.)
Elastic constants of a Laves phase compound: C15 NbCr2
International Nuclear Information System (INIS)
Ormeci, A.; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.
1997-01-01
The single-crystal elastic constants of C15 NbCr 2 have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson's ratio and the direction dependence of Young's modulus
DEFF Research Database (Denmark)
Jakobsen, Bo; Poulsen, Henning Friis; Lienert, U.
2007-01-01
A novel synchrotron-based technique "high angular resolution 3DXRD" is presented in detail, and applied to the characterization of oxygen-free, high-conductivity copper at a tensile deformation of 2%. The position and shape in reciprocal space of 14 peaks originating from deeply embedded individual...... subgrains is reported. From this dataset the density of redundant dislocations in the individual subgrains is inferred to be below 12 × 1012 m-2 on average. It is found that the subgrains on average experience a reduction in strain of 0.9 × 10-4 with respect to the mean elastic strain of the full grain...
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Estimating Price Elasticity using Market-Level Appliance Data
Energy Technology Data Exchange (ETDEWEB)
Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-08-04
This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focused on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.
When good = better than average
Directory of Open Access Journals (Sweden)
Don A. Moore
2007-10-01
Full Text Available People report themselves to be above average on simple tasks and below average on difficult tasks. This paper proposes an explanation for this effect that is simpler than prior explanations. The new explanation is that people conflate relative with absolute evaluation, especially on subjective measures. The paper then presents a series of four studies that test this conflation explanation. These tests distinguish conflation from other explanations, such as differential weighting and selecting the wrong referent. The results suggest that conflation occurs at the response stage during which people attempt to disambiguate subjective response scales in order to choose an answer. This is because conflation has little effect on objective measures, which would be equally affected if the conflation occurred at encoding.
Elasticity of semiflexible polymers in two dimensions
Prasad, Ashok; Hori, Yuko; Kondev, Jané
2005-10-01
We study theoretically the entropic elasticity of a semiflexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semiflexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Nonlinear Elasticity of Doped Semiconductors
2017-02-01
AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Elasticity theory of ultrathin nanofilms
International Nuclear Information System (INIS)
Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan
2015-01-01
A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)
Averaging Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Brown, Iain A.; Robbers, Georg; Behrend, Juliane
2009-01-01
The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ω eff 0 ≈ 4 × 10 −6 , with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10 −8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w eff < −1/3 can be found for strongly phantom models
Automatic estimation of elasticity parameters in breast tissue
Skerl, Katrin; Cochran, Sandy; Evans, Andrew
2014-03-01
Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.
Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity
Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.
2012-12-01
In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.
Cell Elasticity Determines Macrophage Function
Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry
2012-01-01
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423
Cell elasticity determines macrophage function.
Directory of Open Access Journals (Sweden)
Naimish R Patel
Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.
Multipurpose hooks for elastic attachment
Directory of Open Access Journals (Sweden)
Siddharth Shashidhar Revankar
2014-01-01
Full Text Available As certain bracket systems do not include hooks on premolar brackets for elastic attachment, Kobayashi or custom made ligature hooks have proven as an alternative. However, these hooks tend to bend labially when used with heavy elastics and these elastics can even pop loose from the hooks on mouth opening. The following article describes an innovative multipurpose hook which is simple, stiff and inexpensive and can be used for engagement of class II elastics on premolars in case of missing molars as well as engagement of intermaxillary elastics for settling of occlusion in finishing stages. As the hooks can be prefabricated, this saves a lot of chair side time and is more practical for use in day-to-day orthodontic practice.
Averaging in the presence of sliding errors
International Nuclear Information System (INIS)
Yost, G.P.
1991-08-01
In many cases the precision with which an experiment can measure a physical quantity depends on the value of that quantity. Not having access to the true value, experimental groups are forced to assign their errors based on their own measured value. Procedures which attempt to derive an improved estimate of the true value by a suitable average of such measurements usually weight each experiment's measurement according to the reported variance. However, one is in a position to derive improved error estimates for each experiment from the average itself, provided an approximate idea of the functional dependence of the error on the central value is known. Failing to do so can lead to substantial biases. Techniques which avoid these biases without loss of precision are proposed and their performance is analyzed with examples. These techniques are quite general and can bring about an improvement even when the behavior of the errors is not well understood. Perhaps the most important application of the technique is in fitting curves to histograms
SIMULATION OFTHERMO-ELASTICS PROPERTIESOFTHERMALBARRIERCOATINGS
Directory of Open Access Journals (Sweden)
A.M.Ferouani M. Ferouani
2015-07-01
Full Text Available Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray results in a lamellar structure granting a low thermal conductivity, but with a low thermal expansion compliance. Electron Beam Physical Vapour Deposition generates a columnar structure allowing a better accommodation of the thermal expansion stresses, entailing improved lifetime of the coating, but with a higher thermal conductivity. The aim of the paper presented here is to develop a procedure of analysis based on the micro structural observation for the prediction of the properties of new coatings in court of industrial development and to predict the effect of the posterior thermal treatment on the properties of the coatings carried out. For a given coating, one has to calculate linear elasticity and its evolution with the temperature as well as thermal expansion, aiming at predicting different parameters related to the in service deterioration.
Blocky inversion of multichannel elastic impedance for elastic parameters
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Graphene nanoribbon as an elastic damper
Evazzade, Iman; Lobzenko, Ivan P.; Saadatmand, Danial; Korznikova, Elena A.; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V.
2018-05-01
Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading–unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading–unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.
Directory of Open Access Journals (Sweden)
T. S. Ozsahin
2013-01-01
Full Text Available The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in direction are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, λ, is less than a critical value, . In this case, initial separation loads, and initial separation points, are determined. Also the required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile tractions are not allowed on the interface, for the layer separates from the interface along a certain finite region. Numerical results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along the interface between elastic layer and half plane are given for this discontinuous contact case.
Elastic response of thermal spray deposits under indentation tests
International Nuclear Information System (INIS)
Leigh, S.H.; Lin, C.K.; Berndt, C.C.
1997-01-01
The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data
Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete
Directory of Open Access Journals (Sweden)
Alireza Mohammadi Bayazidi
2014-01-01
Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.
Directory of Open Access Journals (Sweden)
Muhammad Ridwan
2017-01-01
Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
Meta-Analysis of Price Elasticity for Urban Domestic Water Consumption in Iran
Directory of Open Access Journals (Sweden)
Mina Tajabadi
2018-03-01
Full Text Available Price elasticity plays a critical role in determining water tariff and its system. Many economic decision makers and researchers have estimated demand function for different cities in order to predict the associated income and price elasticity. In this research we reviewed 20 studies on urban domestic water demand function from which 63 price elasticity values were obtained. Since the price elasticity values obtained from these studies had significant statistical differences, the aim of this research is to determine the effective factors in price elasticity values as well as to analyze differences in such values using meta-analysis technique. The meta-analysis technique focuses on variation in water price elasticity results. The statistical meta-analysis technique focuses on two main objectives of publication bias or publication heterogeneity in reported results. The results indicated that publication bias is negligible while publication heterogeneity is significant. The major factors affecting price elasticity values are classified into 4 categories including theoretical, model, data and socio-geographical specifications. The result indicated that variables such as income, time-series datasets, natural logarithm function and use of stone-geary theory which is the basis for predicting many domestic water demand functions, significantly overestimate the price elasticity values. Also the geographical condition of the region, population density and use of OLS technique to estimate the demand parameters underestimates the price elasticity values.
Consequences of elastic anisotropy in patterned substrate heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2018-06-13
The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.
Correlations between elastic moduli and properties in bulk metallic glasses
International Nuclear Information System (INIS)
Wang Weihua
2006-01-01
A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties
Directory of Open Access Journals (Sweden)
Natália B. Sanches
2006-01-01
Full Text Available A técnica de pirólise gasosa, em bico de Bunsen, para análise por espectroscopia no infravermelho com transformada de Fourier (PIR-G/FT-IR foi aplicada a diferentes borrachas, incluindo algumas misturas. Foi observado que é possível diferenciar os tipos de elastômeros por meio de análise de produtos gasosos de pirólise, inclusive aqueles que apresentam espectros IR de pirolisados líquidos similares, como é o caso de CIIR e BIIR, NR/SBR e EPDM/SBR, SBR/BR e SBR.Pyrolysis and infrared spectroscopy (PIR-G/FT-IR were used for investigating gaseous products of rubber. The results show that this method was suitable to identify different elastomers and elastomer blends, including rubbers that present similar IR spectra of pyrolysed liquid products such as CIIR and BIIR, NR/SBR and EPDM/SBR, SBR/BR and SBR.
bessel functions for axisymmetric elasticity problems of the elastic
African Journals Online (AJOL)
HOD
2, 3DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ENUGU STATE. ... theory of elasticity and in the case of vertical applied loads, was first ... partial differential equations in bodies having cylindrical symmetry.
High energy elastic hadron scattering
International Nuclear Information System (INIS)
Fearnly, T.A.
1986-04-01
The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES
Tadeu Mascia,Nilson
2003-01-01
Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...
Spectral dimension of elastic Sierpinski gaskets with general elastic forces
International Nuclear Information System (INIS)
Liu, S.H.; Liu, A.J.
1985-01-01
The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class
Topological quantization of ensemble averages
International Nuclear Information System (INIS)
Prodan, Emil
2009-01-01
We define the current of a quantum observable and, under well-defined conditions, we connect its ensemble average to the index of a Fredholm operator. The present work builds on a formalism developed by Kellendonk and Schulz-Baldes (2004 J. Funct. Anal. 209 388) to study the quantization of edge currents for continuous magnetic Schroedinger operators. The generalization given here may be a useful tool to scientists looking for novel manifestations of the topological quantization. As a new application, we show that the differential conductance of atomic wires is given by the index of a certain operator. We also comment on how the formalism can be used to probe the existence of edge states
Hayashi, Takahiro; Ishihara, Ken
2017-05-01
Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Elastic layer under axisymmetric indentation and surface energy effects
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Ultrafast imaging of cell elasticity with optical microelastography.
Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan; Cloutier, Guy
2018-01-30
Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. Copyright © 2018 the Author(s). Published by PNAS.
Hydrogen analysis by elastic recoil spectrometry
International Nuclear Information System (INIS)
Tirira, J.; Trocellier, P.
1989-01-01
An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs
Astronomical optics and elasticity theory
Lemaitre, Gerard Rene
2008-01-01
Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.
Uniqueness theorems in linear elasticity
Knops, Robin John
1971-01-01
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...
Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-01-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells
Directory of Open Access Journals (Sweden)
M. Kalyan Phani
2015-03-01
Full Text Available The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V measured by using atomic force acoustic microscopy (AFAM is reported in the present study. The real and imaginary parts of the contact stiffness k* are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD and electron back-scatter diffraction (EBSD studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.
Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Arnold, Walter; Samwer, Konrad
2015-01-01
The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k (*) are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α'- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.
Armington elasticities for energy policy modeling: Evidence from four European countries
International Nuclear Information System (INIS)
Welsch, Heinz
2008-01-01
Elasticities of substitution among imports and competing domestic production (Armington elasticities) play an important role in computable general equilibrium (CGE) assessments of energy and climate policy. This paper provides estimates of Armington elasticities for 15 commodity groups in four European countries. Since Armington elasticities are found to be rather low on average, researchers may want to reconsider the device of using high values of Armington elasticities in CGE models to avoid unrealistic competitiveness effects or emission leakage rates associated with energy or carbon taxes or other forms of energy-related regulation. Estimated elasticities tend to be higher in the case of machinery and other investment goods than in the case of primary products, ores and chemicals, as well as consumer goods
CONFERENCE: Elastic and diffractive scattering
Energy Technology Data Exchange (ETDEWEB)
White, Alan
1989-09-15
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.
A Labor Supply Elasticity Accord?
Lars Ljungqvist; Thomas J. Sargent
2011-01-01
A dispute about the size of the aggregate labor supply elasticity has been fortified by a contentious aggregation theory used by real business cycle theorists. The replacement of that aggregation theory with one more congenial to microeconomic observations opens possibilities for an accord about the aggregate labor supply elasticity. The new aggregation theory drops features to which empirical microeconomists objected and replaces them with life-cycle choices. Whether the new aggregation theo...
The average Indian female nose.
Patil, Surendra B; Kale, Satish M; Jaiswal, Sumeet; Khare, Nishant; Math, Mahantesh
2011-12-01
This study aimed to delineate the anthropometric measurements of the noses of young women of an Indian population and to compare them with the published ideals and average measurements for white women. This anthropometric survey included a volunteer sample of 100 young Indian women ages 18 to 35 years with Indian parents and no history of previous surgery or trauma to the nose. Standardized frontal, lateral, oblique, and basal photographs of the subjects' noses were taken, and 12 standard anthropometric measurements of the nose were determined. The results were compared with published standards for North American white women. In addition, nine nasal indices were calculated and compared with the standards for North American white women. The nose of Indian women differs significantly from the white nose. All the nasal measurements for the Indian women were found to be significantly different from those for North American white women. Seven of the nine nasal indices also differed significantly. Anthropometric analysis suggests differences between the Indian female nose and the North American white nose. Thus, a single aesthetic ideal is inadequate. Noses of Indian women are smaller and wider, with a less projected and rounded tip than the noses of white women. This study established the nasal anthropometric norms for nasal parameters, which will serve as a guide for cosmetic and reconstructive surgery in Indian women.
In Situ elastic property sensors
International Nuclear Information System (INIS)
Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.
1987-01-01
Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples
Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal
International Nuclear Information System (INIS)
Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.
1981-01-01
Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru
Temperature dependence of elastic properties of paratellurite
International Nuclear Information System (INIS)
Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.
1987-01-01
New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)
Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.
2014-08-01
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
Energy Technology Data Exchange (ETDEWEB)
Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
THE WAVE INTERACTION OF HEAVY BREAKS IN THE WATER WITH ELASTIC BARRIER
Directory of Open Access Journals (Sweden)
Ivanchenko G.M.
2014-06-01
Full Text Available Transformation of underwater shock wave spherical front geometry and chauge of impulse carried by it at interaction witu elastic shield is numerically investigated witu the use of zero approximation of ray technique. It is established, that in the vicinity of spots of total internal reflection in the plane interface between water and elastic body the additional internal stresses tend to infinity.
Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
Rietbergen, van B.; Odgaard, A.; Kabel, J.; Huiskes, H.W.J.
1996-01-01
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric
How to keep your pants on: historic metamaterials and elasticity before the invention of elastic
Matsumoto, Elisabetta A.; Mahadevan, L.
2015-03-01
How do you create stretching from an inextensible material? Remarkably, the centuries-old embroidery technique known as smocking accomplishes just this. With the recent explosion of origami-based engineering, the search is on for a set of design principles to generate materials with prescribed mechanical properties. This quickly becomes a complex mathematical question due to the strict constraints of rigid origami imposed by the inextensibility of paper. Softening these constraints by considering woven fabrics, which have two orthogonal inextensible directions and a skewed soft shear mode, opens up a zoo of possible configurations. We explore the emergence of elastic properties in smocked fabrics as functions of both fabric elasticity and smocking pattern.
The Morishima Gross elasticity of substitution
Blackorby, Charles; Primont, Daniel; Russell, R. Robert
2007-01-01
We show that the Hotelling-Lau elasticity of substitution, an extension of the Allen-Uzawa elasticity to allow for optimal output-quantity (or utility) responses to changes in factor prices, inherits all of the failings of the Allen-Uzawa elasticity identified by Blackorby and Russell [1989 AER]. An analogous extension of the Morishima elasticity of substitution to allow for output quantity changes preserves the salient properties of the original Hicksian notion of elasticity of substitution.
Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction
International Nuclear Information System (INIS)
Cynn, H; Yoo, C S
1999-01-01
Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties
Measurement of membrane elasticity by micro-pipette aspiration
DEFF Research Database (Denmark)
Henriksen, Jonas Rosager; Ipsen, John H.
2004-01-01
The classical micro-pipette aspiration technique, applied for measuring the membrane bending elasticity, is in the present work reviewed and extended to span the range of pipette aspiration pressures going through the °accid (low pressures) to tense (high pressures) membrane regime. The quality...
Visco-piezo-elastic parameter estimation in laminated plate structures
DEFF Research Database (Denmark)
Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.
2009-01-01
A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...
The elasticity of drugs demand in Colombia’s pharmaceutical market
Directory of Open Access Journals (Sweden)
Johanna Vásquez Velásquez
2013-06-01
Full Text Available Based on a dynamic specification of the AIDS model arisen from cointegration techniques, this research estimated the elasticity of the intra-molecular, brand and generic demand for three tracer conditions: essential hypertension, diabetes and hyperlipidemia both in the non-profit and private Colombian market. The estimate of the intra-molecular demand elasticity allows us to conclude that both brand-name and generic drugs are inelastic to price changes, they are luxury goods according to expenditure elasticity and intra-molecular replacement seems to exist due to the elasticity of substitution.
High average power linear induction accelerator development
International Nuclear Information System (INIS)
Bayless, J.R.; Adler, R.J.
1987-07-01
There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs
Permeability and elastic properties of cracked glass under pressure
Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.
2011-07-01
Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.
International Nuclear Information System (INIS)
Jablonskiz, A.; Salvatz, F.; Powellz, C.J.
2004-01-01
Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)
Directory of Open Access Journals (Sweden)
Eryi Hu
2016-01-01
Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.
Elastic properties of magnetostrictive rare-earth-iron alloys
International Nuclear Information System (INIS)
Cullen, J.R.; Blessing, G.; Rinaldi, S.
1978-01-01
The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)
Health care demand elasticities by type of service.
Ellis, Randall P; Martins, Bruno; Zhu, Wenjia
2017-09-01
We estimate within-year price elasticities of demand for detailed health care services using an instrumental variable strategy, in which individual monthly cost shares are instrumented by employer-year-plan-month average cost shares. A specification using backward myopic prices gives more plausible and stable results than using forward myopic prices. Using 171 million person-months spanning 73 employers from 2008 to 2014, we estimate that the overall demand elasticity by backward myopic consumers is -0.44, with higher elasticities of demand for pharmaceuticals (-0.44), specialists visits (-0.32), MRIs (-0.29) and mental health/substance abuse (-0.26), and lower elasticities for prevention visits (-0.02) and emergency rooms (-0.04). Demand response is lower for children, in larger firms, among hourly waged employees, and for sicker people. Overall the method appears promising for estimating elasticities for highly disaggregated services although the approach does not work well on services that are very expensive or persistent. Copyright © 2017 Elsevier B.V. All rights reserved.
varying elastic parameters distributions
Moussawi, Ali
2014-12-01
The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.
Elastic metamaterials and dynamic homogenization: a review
Directory of Open Access Journals (Sweden)
Ankit Srivastava
2015-01-01
Full Text Available In this paper, we review the recent advances which have taken place in the understanding and applications of acoustic/elastic metamaterials. Metamaterials are artificially created composite materials which exhibit unusual properties that are not found in nature. We begin with presenting arguments from discrete systems which support the case for the existence of unusual material properties such as tensorial and/or negative density. The arguments are then extended to elastic continuums through coherent averaging principles. The resulting coupled and nonlocal homogenized relations, called the Willis relations, are presented as the natural description of inhomogeneous elastodynamics. They are specialized to Bloch waves propagating in periodic composites and we show that the Willis properties display the unusual behavior which is often required in metamaterial applications such as the Veselago lens. We finally present the recent advances in the area of transformation elastodynamics, charting its inspirations from transformation optics, clarifying its particular challenges, and identifying its connection with the constitutive relations of the Willis and the Cosserat types.
Phason elasticity and surface roughening
International Nuclear Information System (INIS)
Tang Leihan; Jaric, M.V.
1990-01-01
The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs
Appraisal of elastic follow up
International Nuclear Information System (INIS)
Roche, R.L.
1981-08-01
The aim of this paper is to provide indications to choose what fraction of a self limiting stress can be considered as secondary. At first, considerations are given to a simple structure which could be called ''creep relaxation tensile test''. A bar (with constant cross section) is loaded by an elastic spring in order to obtain a given elongation of the assembly. The stress evolution is studied. Then the creep damage is computed, and compared to the damage corresponding to the elastic computed stress. This comparison gives the fraction of the self limiting stress which must be considered as primary. This involve the structural parameter 0 which is the initial value of the ratio of elastic energy to dissipating power. Extension of the rule is made with the help of KACHANOV approximation. As a conclusion a procedure is described which determines what fraction of a self limiting stress must be considered as primary
Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds
Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.
2018-06-01
First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.
Investor response to consumer elasticity
International Nuclear Information System (INIS)
Grenaa Jensen, Stine; Meibom, Peter; Ravn, H.F.; Straarup, Sarah
2004-01-01
In the Nordic electricity system there is considerable uncertainty with respect to the long-term development in production capacity. The process towards liberalisation of the electricity sector started in a situation with a large reserve margin, but this margin is gradually vanishing. Since the potential investors in new production capacity are unaccustomed with investments under the new regime it is unknown if and when investments will take place. The electricity price is the key market signal to potential investors. The price is settled as a balance between supply and demand, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used. The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity for investments in a base load and a peak load plant are investigated. The main result of the analysis is that peak load investments can be made unprofitable by the development in consumer price elasticity, such that an investor will tend to wait with his peak load investment, until the development in consumer price elasticity has been revealed. (au)
Manufacture of conical springs with elastic medium technology improvement
Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.
2018-01-01
This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.
CONFERENCE: Elastic and diffractive scattering
International Nuclear Information System (INIS)
White, Alan
1989-01-01
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago
International Nuclear Information System (INIS)
Gale, J.; Tiselj, I.
2002-01-01
One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)
Elastic Properties of Synthetic Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C
Gwanmesia, G. D.; Zhang, J.; Li, B.; Darling, K.; Kung, J.; Neuville, D.; Raterron, P.; Sullivan, S.; Liebermann, R. C.
2003-04-01
We have measured the elastic wave velocities of polycrystalline pyrope (Mg_3Al_2Si_3O12) to 9 GPa and 1000^oC by ultrasonic interferometry, combined with in-situ synchrotron x-ray diffraction and imaging techniques. Fine-grained polycrystalline specimens (99.5% of theoretical density) were hot-pressed from a homogeneous glass starting material in the USSA-2000 apparatus at Stony Brook; the physical properties of the recovered specimens were characterized with density measurements, x-ray diffraction and transmission electron microscopy. Bench-top elastic wave velocities were in excellent agreement with the isotropic averages calculated from single-crystal elastic moduli of Leitner et al. (1980) by the Hashin-Shtrikman method. Travel times of acoustic compressional (P) and shear (S) waves, specimen lengths and PVT equations of state for the specimen and a NaCl standard were measured to 9 GPa and 1000^oC in a DIA-type high pressure apparatus (SAM-85), installed on the superconducting wiggler beamline (X17B) at the National Synchrotron Light Source of the Brookhaven National Laboratory. These data enabled us to determine the pressure and temperature derivatives of the elastic wave velocities and moduli for isotropic pyrope. We compare our new values with those of previous investigators and discuss the implications of these data for interpreting the seismic velocity gradients in the transition zone of the Earth's mantle.
Elastic constants of stressed and unstressed materials in the phase-field crystal model
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Comparison of elastic and inelastic analyses
International Nuclear Information System (INIS)
Ammerman, D.J.; Heinstein, M.W.; Wellman, G.W.
1992-01-01
The use of inelastic analysis methods instead of the traditional elastic analysis methods in the design of radioactive material (RAM) transport packagings leads to a better understanding of the response of the package to mechanical loadings. Thus, better assessment of the containment, thermal protection, and shielding integrity of the package after a structure accident event can be made. A more accurate prediction of the package response can lead to enhanced safety and also allow for a more efficient use of materials, possibly leading to a package with higher capacity or lower weight. This paper discusses the advantages and disadvantages of using inelastic analysis in the design of RAM shipping packages. The use of inelastic analysis presents several problems to the package designer. When using inelastic analysis the entire nonlinear response of the material must be known, including the effects of temperature changes and strain rate. Another problem is that there currently is not an acceptance criteria for this type of analysis that is approved by regulatory agencies. Inelastic analysis acceptance criteria based on failure stress, failure strain , or plastic energy density could be developed. For both elastic and inelastic analyses it is also important to include other sources of stress in the analyses, such as fabrication stresses, thermal stresses, stresses from bolt preloading, and contact stresses at material interfaces. Offsetting these added difficulties is the improved knowledge of the package behavior. This allows for incorporation of a more uniform margin of safety, which can result in weight savings and a higher level of confidence in the post-accident configuration of the package. In this paper, comparisons between elastic and inelastic analyses are made for a simple ring structure and for a package to transport a large quantity of RAM by rail (rail cask) with lead gamma shielding to illustrate the differences in the two analysis techniques
Substrate-dependent cell elasticity measured by optical tweezers indentation
Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan
2016-01-01
In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).
Improved measurements of elastic properties at acoustic resonant frequencies
International Nuclear Information System (INIS)
Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.
1976-01-01
The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)
Progress in elastic-plastic fracture mechanics and its applications
International Nuclear Information System (INIS)
Paris, P.C.; Zahalak, G.I.
1980-01-01
This paper surveys recent developments in the application of J-Integral methods to problems of elastic-plastic fracture. The analytical and experimental development of the J-Integral concept over the last ten years is reviewed briefly. Tearing instability theory is presented in general terms, and specific applications of the theory are discussed. Principles of fracture-proof design are shown to follow naturally from the tearing instability theory. These principles are illustrated first for simple structures, and then generalized to more complex configurations and loading conditions. Examples include multiple member tension structures, beams, frames, nuclear reactor pressure vessel nozzles and piping, and beams on elastic foundations. It is concluded that J-integral based methods offer the best immediate opportunity for the development of sound analytical techniques for treating important practical problems of elastic-plastic fracture
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
Averaging of nonlinearity-managed pulses
International Nuclear Information System (INIS)
Zharnitsky, Vadim; Pelinovsky, Dmitry
2005-01-01
We consider the nonlinear Schroedinger equation with the nonlinearity management which describes Bose-Einstein condensates under Feshbach resonance. By using an averaging theory, we derive the Hamiltonian averaged equation and compare it with other averaging methods developed for this problem. The averaged equation is used for analytical approximations of nonlinearity-managed solitons
Exactly averaged equations for flow and transport in random media
International Nuclear Information System (INIS)
Shvidler, Mark; Karasaki, Kenzi
2001-01-01
It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)
Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G
1983-10-01
The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and
Nonlinear theory of elastic shells
International Nuclear Information System (INIS)
Costa Junior, J.A.
1979-08-01
Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt
Elastic properties of synthetic materials for soft tissue modeling
International Nuclear Information System (INIS)
Mansy, H A; Grahe, J R; Sandler, R H
2008-01-01
Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed
Algorithm of constructing hybrid effective modules for elastic isotropic composites
Svetashkov, A. A.; Miciński, J.; Kupriyanov, N. A.; Barashkov, V. N.; Lushnikov, A. V.
2017-02-01
The algorithm of constructing of new effective elastic characteristics of two-component composites based on the superposition of the models of Reiss and Voigt, Hashin and Strikman, as well as models of the geometric average for effective modules. These effective characteristics are inside forks Voigt and Reiss. Additionally, the calculations of the stress-strain state of composite structures with new effective characteristics give more accurate prediction than classical models do.
Elastic scattering crossovers from 50 to 175 GeV
International Nuclear Information System (INIS)
Anderson, R.L.; Ayres, D.S.; Barton, D.S.; Brenner, A.E.; Butler, J.; Cutts, D.; DeMarzo, C.; Diebold, R.; Elias, J.E.; Fines, J.; Friedman, J.I.; Gittelman, B.; Gottschalk, B.; Guerriero, L.; Gustavson, D.; Kendall, H.W.; Lanou, R.E.; Lavopa, P.; Levinson, L.J.; Litt, J.; Loh, E.; Maclay, G.J.; Maggi, G.; Massimo, J.T.; Meunier, R.; Mikenberg, G.; Nelson, B.; Posa, F.; Rich, K.; Ritson, D.M.; Rosenson, L.; Selvaggi, G.; Sogard, M.; Spinelli, P.; Verdier, R.; Waldner, F.; Weitsch, G.A.
1976-01-01
A comparison of K/sup plus-or-minus/p and p/sup plus-or-minus/p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19 +- 0.04 and 0.11 +- 0.02 GeV 2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively
Heart transplantation and arterial elasticity
Directory of Open Access Journals (Sweden)
Colvin-Adams M
2013-12-01
Full Text Available Monica Colvin-Adams,1 Nonyelum Harcourt,1 Robert LeDuc,2 Ganesh Raveendran,1 Yassir Sonbol,3 Robert Wilson,1 Daniel Duprez11Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA; 2Division of Biostatistics University of Minnesota, Minneapolis, MN, USA; 3Cardiovascular Division, St Luke's Hospital System, Sugar Land, TX, USAObjective: Arterial elasticity is a functional biomarker that has predictive value for cardiovascular morbidity and mortality in nontransplant populations. There is little information regarding arterial elasticity in heart transplant recipients. This study aimed to characterize small (SAE and large (LAE artery elasticity in heart transplant recipients in comparison with an asymptomatic population free of overt cardiovascular disease. A second goal was to identify demographic and clinical factors associated with arterial elasticity in this unique population.Methods: Arterial pulse waveform was registered noninvasively at the radial artery in 71 heart transplant recipients between 2008 and 2010. SAEs and LAEs were derived from diastolic pulse contour analysis. Comparisons were made to a healthy cohort of 1,808 participants selected from our prevention clinic database. Multiple regression analyses were performed to evaluate associations between risk factors and SAE and LAE within the heart transplant recipients.Results: LAE and SAE were significantly lower in heart transplant recipients than in the normal cohort (P <0.01 and P < 0.0001, respectively. Female sex and history of ischemic cardiomyopathy were significantly associated with reduced LAE and SAE. Older age and the presence of moderate cardiac allograft vasculopathy were also significantly associated with reduced SAE. Transplant duration was associated with increased SAE.Conclusion: Heart transplants are associated with peripheral endothelial dysfunction and arterial stiffness, as demonstrated by a significant reduction in SAE and LAE when compared with a
International Nuclear Information System (INIS)
Goel, L.; Wu, Qiuwei; Wang, Peng
2008-01-01
With the development of restructured power systems, the conventional 'same for all customers' electricity price is getting replaced by nodal prices. Electricity prices will fluctuate with time and nodes. In restructured power systems, electricity demands will interact mutually with prices. Customers may shift some of their electricity consumption from time slots of high electricity prices to those of low electricity prices if there is a commensurate price incentive. The demand side load shift will influence nodal prices in return. This interaction between demand and price can be depicted using demand-price elasticity. This paper proposes an evaluation technique incorporating the impact of the demand-price elasticity on nodal prices, system reliability and nodal reliabilities of restructured power systems. In this technique, demand and price correlations are represented using the demand-price elasticity matrix which consists of self/cross-elasticity coefficients. Nodal prices are determined using optimal power flow (OPF). The OPF and customer damage functions (CDFs) are combined in the proposed reliability evaluation technique to assess the reliability enhancement of restructured power systems considering demand-price elasticity. The IEEE reliability test system (RTS) is simulated to illustrate the developed techniques. The simulation results show that demand-price elasticity reduces the nodal price volatility and improves both the system reliability and nodal reliabilities of restructured power systems. Demand-price elasticity can therefore be utilized as a possible efficient tool to reduce price volatility and to enhance the reliability of restructured power systems. (author)
Applications of super elasticity in vibrational control
International Nuclear Information System (INIS)
Soul, H
2005-01-01
In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work
Stress Distribution in Layered Elastic Creeping Array with a Vertical Cylindrical Shaft
Directory of Open Access Journals (Sweden)
Bobyleva Tatiana
2017-01-01
Full Text Available Construction should be taking into account the influence of time factor on the stability of the structures. In the paper hereditary creep and homogenization theories are used to determine stresses in the layered elastic creeping array with a vertical shaft. Volterra correspondence principle was applied. As a result, the reduction of a time-dependent elastic creeping problem to a corresponding elastic problem became possible. The method proposes a way to determine average (effective elastic creeping properties and homogenized stress field from known properties of the layers’ components. Creep kernels are of a convolution type and are taken in the exponential form. The problem of heterogeneous elastic creeping environment is reduced to a problem of homogeneous transversely isotropic medium. Different boundary conditions on the cylindrical shaft’s surface were considered. An analytical solution was obtained. These explicit expressions can be useful for the necessary calculations in the construction practice.
Directory of Open Access Journals (Sweden)
Behar E.
2006-12-01
Full Text Available This article is divided into two parts. In the first part, the authors present a comparison of the major techniques for the measurement of the molecular weight of macromolecules. The bibliographic results are gathered in several tables. In the second part, a comparative ebulliometer for the measurement of the number average molecular weight (Mn of heavy crude oil fractions is described. The high efficiency of the apparatus is demonstrated with a preliminary study of atmospheric distillation residues and resins. The measurement of molecular weights up to 2000 g/mol is possible in less than 4 hours with an uncertainty of about 2%. Cet article comprend deux parties. Dans la première, les auteurs présentent une comparaison entre les principales techniques de détermination de la masse molaire de macromolécules. Les résultats de l'étude bibliographique sont rassemblés dans plusieurs tableaux. La seconde partie décrit un ébulliomètre comparatif conçu pour la mesure de la masse molaire moyenne en nombre (Mn des fractions lourdes des bruts. Une illustration de l'efficacité de cet appareil est indiquée avec l'étude préliminaire de résidus de distillation atmosphérique et de résines. En particulier, la mesure de masses molaires pouvant atteindre 2000 g/mol est possible en moins de 4 heures avec une incertitude expérimentale de l'ordre de 2 %.
Average geodesic distance of skeleton networks of Sierpinski tetrahedron
Yang, Jinjin; Wang, Songjing; Xi, Lifeng; Ye, Yongchao
2018-04-01
The average distance is concerned in the research of complex networks and is related to Wiener sum which is a topological invariant in chemical graph theory. In this paper, we study the skeleton networks of the Sierpinski tetrahedron, an important self-similar fractal, and obtain their asymptotic formula for average distances. To provide the formula, we develop some technique named finite patterns of integral of geodesic distance on self-similar measure for the Sierpinski tetrahedron.
Collusion and the elasticity of demand
David Collie
2004-01-01
The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.
Mechanical behaviour of nanoparticles: Elasticity and plastic ...
Indian Academy of Sciences (India)
2015-06-03
Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.
Modeling of a light elastic beam by a system of rigid bodies
Directory of Open Access Journals (Sweden)
Šalinić Slaviša
2004-01-01
Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2016-01-01
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
Elastic least-squares reverse time migration
Feng, Zongcai
2016-09-06
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
[Study on elasticity of medical service demand at the township level in China].
Shi, Hong-xing; Lv, Jun; Xie, Yi-ping; Wang, Ying; Jia, Jin-zhong; Chang, Feng-shui; Duan, Lin; Sun, Mei; Wang, Zhi-feng; Hao, Mo
2010-06-18
To find out the economic laws regulating medical service demand in accordance with influencing factors at the township level, thus to provide references for further adjusting the medical service demand reasonably in the future. The model of medical service demand was established to measure the elasticity of demand in 49 township health clinics in 1995, 1999, 2003 and 2007. The price elasticity of outpatient and inpatient demand was stable during the four periods, and the average value was -0.029 and -0.132 respectively; the average value of income elasticity was 0.973 and 0.977, registering a downward trend in general. The medical service demand at the township level is price inelastic, indicating that it is a necessity for rural residents. The downward trend of income elasticity under the influence of some health policies illustrates a lightening in economic burden for medical service demand among rural residents in township health clinics.
Time average vibration fringe analysis using Hilbert transformation
International Nuclear Information System (INIS)
Kumar, Upputuri Paul; Mohan, Nandigana Krishna; Kothiyal, Mahendra Prasad
2010-01-01
Quantitative phase information from a single interferogram can be obtained using the Hilbert transform (HT). We have applied the HT method for quantitative evaluation of Bessel fringes obtained in time average TV holography. The method requires only one fringe pattern for the extraction of vibration amplitude and reduces the complexity in quantifying the data experienced in the time average reference bias modulation method, which uses multiple fringe frames. The technique is demonstrated for the measurement of out-of-plane vibration amplitude on a small scale specimen using a time average microscopic TV holography system.
Thermodynamic parameters of elasticity and electrical conductivity ...
African Journals Online (AJOL)
The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...
On Elasticity Measurement in Cloud Computing
Directory of Open Access Journals (Sweden)
Wei Ai
2016-01-01
Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.
Quasi-Elastic Light Scattering in Ophthalmology
Ansari, Rafat R.
The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.
2011-01-01
Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...
Localization of elastic layers by correlated disorder
International Nuclear Information System (INIS)
Balents, L.
1993-01-01
The equilibrium behavior of a system of elastic layers under tension in the presence of correlated disorder is studied using functional renormalization group techniques. The model exhibits many of the features of the Bose-glass phase of type-II superconductors induced by columnar defects, but may be more directly applicable to charge density waves, incommensurate striped magnetic phases, stacked membranes under tension, vicinal crystal surfaces, or superconducting ''vortex-chains''. Below five dimensions, an epsilon expansion for the stable zero-temperature fixed point yields the properties of the glassy phase. Transverse to the direction of correlation, the randomness induces logarithmic growth of displacements. The absence of a response to a weak applied transverse field (transverse Meissner effect) is demonstrated analytically. In this simple model, the localized phase is stable to point disorder, in contrast to the behavior in the presence of dislocations, in which the converse is believed to be true. (orig.)
Self-folding miniature elastic electric devices
International Nuclear Information System (INIS)
Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J
2014-01-01
Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)
Directory of Open Access Journals (Sweden)
Mustafa Bayram
2017-01-01
Full Text Available In this study, we have applied a generalized successive numerical technique to solve the elasticity problem of based on the elastic ground with variable coefficient. In the first stage, we have calculated the generalized successive approximation of being given BVP and in the second stage we have transformed it into Padé series. At the end of study a test problem has been given to clarify the method.
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy.
Spedden, Elise; White, James D; Naumova, Elena N; Kaplan, David L; Staii, Cristian
2012-09-05
Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
DEFF Research Database (Denmark)
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
DEFF Research Database (Denmark)
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Elastic constants of a Laves phase compound: C15 NbCr{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Ormeci, A. [Koc Univ., Istanbul (Turkey)]|[Los Alamos National Lab., NM (United States); Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E. [Los Alamos National Lab., NM (United States)
1997-04-01
The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.
Energy Technology Data Exchange (ETDEWEB)
Guechi, A., E-mail: ab_guechi@yahoo.fr [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Merabet, A. [Institute of Optics and Precision Mechanics, Setif-1 University, 19000 Setif (Algeria); Laboratory of Physics and Mechanics of Metallic Materials, Setif-1 University, 19000 Setif (Algeria); Chegaar, M. [Laboratory of Optoelectronics and Components, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, Setif-1 University, 19000 Setif (Algeria)
2015-02-25
Highlights: • KAsSn is interesting in the materials community due to its complex structure and narrow gap. • Physical properties of KAsSn have not taken much attention in previous studies. • The KAsSn structure is shown to be mechanically stable. • KAsSn is predicted to be brittleness and characterized by a weak elastic anisotropy. • Its high absorption in the U.V. energy range shows its use in the optoelectronic devices. - Abstract: In this work, a first-principles study of ternary Zintl phase KAsSn compound using density-functional theory (DFT) method within the generalized gradient approximation developed by Wu–Cohen (GGA-Wc) has been performed. Based on the optimized structural parameter, the electronic structure, elastic and optical properties have been investigated. The calculated lattice constants agree reasonably with the previous results. The effect of high pressure on the structural parameters has been shown. The elastic constants were calculated and satisfy the stability conditions for hexagonal crystal. These indicate that this compound is stable in the studied pressure regime. The single crystal elastic constants (C{sub ij}) and related properties are calculated using the static finite strain technique, moreover the polycrystalline elastic moduli such as bulk modulus, shear modulus, micro-hardness parameter H{sub ν}, Young’s modulus and Poisson’s ratio were estimated using Voigt, Reuss and Hill’s (VRH) approximations. The elastic anisotropy of the KAsSn was also analyzed. On another hand the Debye temperature was obtained from the average sound velocity. Electronic properties have been studied throughout the calculation of band structure, density of states and charge densities. It is shown that this crystal belongs to the semiconductors with a pseudo gap of about 0.34 eV. Furthermore, in order to clarify the optical transitions of this compound, linear optical functions including the complex dielectric function, refractive index
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Elasticity of Long Distance Travelling
DEFF Research Database (Denmark)
Knudsen, Mette Aagaard
2011-01-01
With data from the Danish expenditure survey for 12 years 1996 through 2007, this study analyses household expenditures for long distance travelling. Household expenditures are examined at two levels of aggregation having the general expenditures on transportation and leisure relative to five other...... aggregated commodities at the highest level, and the specific expenditures on plane tickets and travel packages at the lowest level. The Almost Ideal Demand System is applied to determine the relationship between expenditures on transportation and leisure and all other purchased non-durables within...... packages has higher income elasticity of demand than plane tickets but also higher than transportation and leisure in general. The findings within price sensitiveness are not as sufficient estimated, but the model results indicate that travel packages is far more price elastic than plane tickets which...
The average size of ordered binary subgraphs
van Leeuwen, J.; Hartel, Pieter H.
To analyse the demands made on the garbage collector in a graph reduction system, the change in size of an average graph is studied when an arbitrary edge is removed. In ordered binary trees the average number of deleted nodes as a result of cutting a single edge is equal to the average size of a
Pipeline robots with elastic elements
Directory of Open Access Journals (Sweden)
A. Matuliauskas
2002-10-01
Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.
The poverty elasticity of growth
Heltberg, Rasmus
2002-01-01
How much does economic growth contribute to poverty reduction? I discuss analytical and empirical approches to assess the poverty elasticity of growth, and emphasize that the relationship between growth and poverty change is non-constant. For a given poverty measure, it depends on initial inequality and on the location of the poverty line relative to mean income. In most cases, growth is more important for poverty reduction than changes in inequality, but this does not tender inequality unimp...
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Teaching nonlinear dynamics through elastic cords
International Nuclear Information System (INIS)
Chacon, R; Galan, C A; Sanchez-Bajo, F
2011-01-01
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Elastic interaction between surface and spherical pore
International Nuclear Information System (INIS)
Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.
2000-01-01
The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)
Biomimetic heterogenous elastic tissue development.
Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala
2017-01-01
There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.
Quasi-elastic Charm Production In Neutrino-nucleon Scattering
Bischofberger, M
2005-01-01
A study of quasi elastic charm production in charged current neutrino-nucleon scattering is presented. A sample of about 1.3 million interactions recorded with the NOMAD detector in the CERN SPS wide band neutrino beam has been searched for quasi elastically produced charmed baryons ( L+c,Sc and S*c ). The search has been performed in two exclusive decay channels of the L+c, both including a L . Also, the semi-inclusive decay channels L+c,Sc,S *c→L+X have been studied. Kinematic selection criteria have been chosen in order to obtain samples enriched with quasi elastic charm events. Signal efficiencies and background expectations have been estimated by Monte Carlo simulations. The observed number of events in each searched channel has been found to agree with the background expectation from charged and neutral current reactions and an upper limit for the cross section has been derived. For the quasi elastic charm production cross section averaged over the neutrino energy spectrum (&lan...
Elasticity of Hard-Spheres-And-Tether Systems
International Nuclear Information System (INIS)
Farago, O.; Kantor, Y.
1999-01-01
Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems
Delineation of facial archetypes by 3d averaging.
Shaweesh, Ashraf I; Thomas, C David L; Bankier, Agnes; Clement, John G
2004-10-01
The objective of this study was to investigate the feasibility of creating archetypal 3D faces through computerized 3D facial averaging. A 3D surface scanner Fiore and its software were used to acquire the 3D scans of the faces while 3D Rugle3 and locally-developed software generated the holistic facial averages. 3D facial averages were created from two ethnic groups; European and Japanese and from children with three previous genetic disorders; Williams syndrome, achondroplasia and Sotos syndrome as well as the normal control group. The method included averaging the corresponding depth (z) coordinates of the 3D facial scans. Compared with other face averaging techniques there was not any warping or filling in the spaces by interpolation; however, this facial average lacked colour information. The results showed that as few as 14 faces were sufficient to create an archetypal facial average. In turn this would make it practical to use face averaging as an identification tool in cases where it would be difficult to recruit a larger number of participants. In generating the average, correcting for size differences among faces was shown to adjust the average outlines of the facial features. It is assumed that 3D facial averaging would help in the identification of the ethnic status of persons whose identity may not be known with certainty. In clinical medicine, it would have a great potential for the diagnosis of syndromes with distinctive facial features. The system would also assist in the education of clinicians in the recognition and identification of such syndromes.
Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au
2016-01-15
Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.
Motivation and compliance with intraoral elastics.
Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C
2014-07-01
Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Bulk solitary waves in elastic solids
Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.
2015-10-01
A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the
Reducing Noise by Repetition: Introduction to Signal Averaging
Hassan, Umer; Anwar, Muhammad Sabieh
2010-01-01
This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…
Absolute elastic cross sections for electron scattering from SF6
International Nuclear Information System (INIS)
Gulley, R.J.; Uhlmann, L.J.; Dedman, C.J.; Buckman, S.J.; Cho, H.; Trantham, K.W.
2000-01-01
Full text: Absolute differential cross sections for vibrationally elastic scattering of electrons from sulphur hexafluoride (SF 6 ) have been measured at fixed angles of 60 deg, 90 deg and 120 deg over the energy range of 5 to 15 eV, and also at 11 fixed energies between 2.7 and 75 eV for scattering angles between 10 deg and 180 deg. These measurements employ the magnetic angle-changing technique of Read and Channing in combination with the relative flow technique to obtain absolute elastic scattering cross sections at backward angles (135 deg to 180 deg) for incident energies below 15 eV. The results reveal some substantial differences with several previous determinations and a reasonably good level of agreement with a recent close coupling calculation
Fast Neutron Elastic and Inelastic Scattering of Vanadium
Energy Technology Data Exchange (ETDEWEB)
Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T
1969-11-15
Fast neutron scattering interactions with vanadium were studied using time-of-flight techniques at several energies in the interval 1.5 to 8.1 MeV. The experimental differential elastic scattering cross sections have been fitted to optical model calculations and the inelastic scattering cross sections have been compared with Hauser-Feshbach calculations, corrected for the fluctuation of compound-nuclear level widths.
Total cross sections and elastic scattering at the SSC
Energy Technology Data Exchange (ETDEWEB)
Foley, K.J.
1985-12-05
The need is discussed of a special purpose detector for the measurement of elastic scattering at the SSC. The detector would cover as small a solid angle as is practical. Two techniques are described briefly to measure total cross sections at hadron storage rings. The direct method is to measure the interaction rate in an IR of known luminosity - a method that gets more difficult increasing energy. A second method is to use the optical theorem. 6 refs., 1 fig. (LEW)
Petrov-Galerkin mixed formulations for bidimensional elasticity
International Nuclear Information System (INIS)
Toledo, E.M.; Loula, A.F.D.; Guerreiro, J.N.C.
1989-10-01
A new formulation for two-dimensional elasticity in stress and displacements is presented. Consistently adding to the Galerkin classical formulation residuals forms of constitutive and equilibrium equations, the original saddle point is transformed into a minimization problem without any restrictions. We also propose a stress post processing technique using both equilibrium and constitutive equations. Numerical analysis error estimates and numerical results are presented confirming the predicted rates of convergence. (A.C.A.S.) [pt
The B-dot Earth Average Magnetic Field
Capo-Lugo, Pedro A.; Rakoczy, John; Sanders, Devon
2013-01-01
The average Earth's magnetic field is solved with complex mathematical models based on mean square integral. Depending on the selection of the Earth magnetic model, the average Earth's magnetic field can have different solutions. This paper presents a simple technique that takes advantage of the damping effects of the b-dot controller and is not dependent of the Earth magnetic model; but it is dependent on the magnetic torquers of the satellite which is not taken into consideration in the known mathematical models. Also the solution of this new technique can be implemented so easily that the flight software can be updated during flight, and the control system can have current gains for the magnetic torquers. Finally, this technique is verified and validated using flight data from a satellite that it has been in orbit for three years.
DSCOVR Magnetometer Level 2 One Minute Averages
National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-minute average of Level 1 data
DSCOVR Magnetometer Level 2 One Second Averages
National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-second average of Level 1 data
Spacetime averaging of exotic singularity universes
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2011-01-01
Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.
NOAA Average Annual Salinity (3-Zone)
California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...
Stresses and elastic constants of crystalline sodium, from molecular dynamics
International Nuclear Information System (INIS)
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs
Elastic Coulomb breakup of 34Na
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Single-crystal elastic constants of natural ettringite
Speziale, Sergio
2008-07-01
The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.
Single-crystal elastic constants of natural ettringite
Speziale, Sergio; Jiang, Fuming; Mao, Zhu; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf; Duffy, Thomas S.; Schilling, Frank R.
2008-01-01
The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young's modulus and Poisson's ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.
Price elasticity estimates for tobacco products in India.
John, Rijo M
2008-05-01
The tax base of tobacco in India is heavily dependent on about 14% of tobacco users, who smoke cigarettes. Non-cigarette tobacco products accounting for 85% of the tobacco consumption contributes only 15% of the total tobacco taxes. Though taxation is an important tool to regulate consumption of tobacco, there have been no estimates of price elasticities for different tobacco products in India to date, which can guide tax policy on tobacco. This paper, for the first time in India, examines the price elasticity of demand for bidis, cigarettes and leaf tobacco at the national level using a representative cross-section of households. This study found that own-price elasticity estimates of different tobacco products in India ranged between -0.4 to -0.9, with bidis (an indigenous hand-rolled smoked tobacco preparation in India) and leaf tobacco having elasticities close to unity. Cigarettes were the least price elastic of all. With some assumptions, it is shown that the tax on bidis can be increased to Rs. 100 per 1000 sticks compared with the current Rs. 14 and the tax on an average cigarette can be increased to Rs. 3.5 per stick without any fear of losing revenue. The paper argues that the current system of taxing cigarettes in India based on the presence of filters and the length of cigarettes has no justification on health grounds, and should be abolished, if reducing tobacco consumption and the consequent disease burden is one of the objectives of tobacco taxation policy. It also argues that attempts to regulate tobacco use without effecting significant tax increases on bidis may not produce desired results.
Time series forecasting using ERNN and QR based on Bayesian model averaging
Pwasong, Augustine; Sathasivam, Saratha
2017-08-01
The Bayesian model averaging technique is a multi-model combination technique. The technique was employed to amalgamate the Elman recurrent neural network (ERNN) technique with the quadratic regression (QR) technique. The amalgamation produced a hybrid technique known as the hybrid ERNN-QR technique. The potentials of forecasting with the hybrid technique are compared with the forecasting capabilities of individual techniques of ERNN and QR. The outcome revealed that the hybrid technique is superior to the individual techniques in the mean square error sense.
Soft-matter composites with electrically tunable elastic rigidity
International Nuclear Information System (INIS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-01-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium–indium–tin (Galinstan ® ) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy. (paper)
Soft-matter composites with electrically tunable elastic rigidity
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-08-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.
Determination of corneal elasticity coefficient using the ORA database.
Avetisov, Sergei E; Novikov, Ivan A; Bubnova, Irina A; Antonov, Alexei A; Siplivyi, Vladimir I
2010-07-01
To propose a new approach for the study of corneal biomechanics using the Reichert Ocular Response Analyzer (ORA) database, which is based on changes in velocity retardation in the central cornea at the peak of flattening. The ORA applanation curve was analyzed using a mathematical technique, which allowed calculation of the elasticity coefficient (Ke), which is primarily characteristic of the elastic properties of the cornea. Elasticity coefficient values were obtained in patients with presumably different biomechanical properties of the cornea: "normal" cornea (71 eyes, normal group), keratoconus (34 eyes, keratoconus group), LASIK (36 eyes, LASIK group), and glaucoma with elevated and compensated intraocular pressure (lOP) (38 eyes, glaucoma group). The mean Ke value in the normal group was 11.05 +/- 1.6, and the corneal thickness correlation coefficient r2 was 0.48. In the keratoconus group, the mean Ke value was 4.91 +/- 1.87 and the corneal thickness correlation coefficient r2 was 0.47. In the LASIK group, Ke and r2 were 5.99 +/- 1.18 and 0.39, respectively. In the glaucoma group, the same eyes that experienced a two-fold reduction in lOP developed a statistically significant reduction in the Ke (1.06 times lower), whereas their corneal hysteresis value increased 1.25 times. The elasticity coefficient calculated using the ORA applanation curve can be used in the evaluation of corneal biomechanical properties.
A micromechanics model of the elastic properties of human dentine
Energy Technology Data Exchange (ETDEWEB)
Kinney, J. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Balooch, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, G. W. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry; Marshall, S. J. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry
1999-10-01
A generalized self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentin. Closed form expressions for the five independent elastic constants of dentin were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentin. An atomic force microscope (AFM) indentation technique determined the Young's moduli of the peri- and intertubular dentin as approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density found in dentin, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. We conclude that tubule orientation has no appreciable effect on the elastic behavior of normal dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic continuum with a Young's modulus of approximately 16 GPa and a shear modulus of 6.2 GPa.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Elastic Moduli of Carbon Nanohorns
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2011-01-01
Full Text Available Carbon nanotube is a special case of carbon nanohorns or carbon nanocones with zero apex angle. Research into carbon nanohorns started almost at the same time as the discovery of nanotubes in 1991. Most researchers focused on the investigation of nanotubes, and the exploration of nanohorns attracted little attention. To model the carbon nanohorns, we make use of a more reliable second-generation reactive empirical bond-order potential by Brenner and coworkers. We investigate the elastic moduli and conclude that these nanohorns are equally strong and require in-depth investigation. The values of Young's and Shear moduli decrease with apex angle.
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede
2016-01-01
Magnetically coupled Y-source impedance network is a newly proposed structure with versatile features intended for various power converter applications e.g. in the renewable energy technologies. The voltage gain of the Y-source impedance network rises exponentially as a function of turns ratio, w...
Variation of the energy release rate as a crack approaches and passes through an elastic inclusion
Li, Rongshun; Chudnovsky, A.
1993-01-01
The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.
Improved elastic collision modeling in DEGAS 2 for low-temperature plasmas
International Nuclear Information System (INIS)
Kanzleiter, Randall J.; Stotler, Daren P.; Karney, Charles F. F.; Steiner, Don
2000-01-01
Recent emphasis on low-temperature divertor operations has focused attention on proper treatment of neutral-elastic collisions in low-temperature environments. For like species collisions, as in D + +D, quantum mechanical indistinguishability precludes differentiation of small-angle elastic scattering from resonant charge exchange for collision energies + +D 2 are included for the first time. An integration technique is utilized that reduces the total collision cross section while keeping the other transport cross sections invariant. The inclusion of ion-molecular elastic collisions results in significant increases in energy exchange between background ions and neutral test species
Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.
Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix
2016-07-05
We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.
Self-consistent Modeling of Elastic Anisotropy in Shale
Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.
2012-12-01
Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.
40 CFR 76.11 - Emissions averaging.
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Emissions averaging. 76.11 Section 76.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General...
Determinants of College Grade Point Averages
Bailey, Paul Dean
2012-01-01
Chapter 2: The Role of Class Difficulty in College Grade Point Averages. Grade Point Averages (GPAs) are widely used as a measure of college students' ability. Low GPAs can remove a students from eligibility for scholarships, and even continued enrollment at a university. However, GPAs are determined not only by student ability but also by the…
Surface elastic properties in silicon nanoparticles
Melis, Claudio; Giordano, Stefano; Colombo, Luciano
2017-09-01
The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.
Effective elastic properties of damaged isotropic solids
International Nuclear Information System (INIS)
Lee, U Sik
1998-01-01
In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids
Braybrook, Siobhan A
2017-01-01
Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.
Anomalous elasticity, fluctuations and disorder in elastic membranes
Le Doussal, Pierre; Radzihovsky, Leo
2018-05-01
Motivated by freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an extensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky, 1992; 1993). The experimental realization atom-thin graphene sheets (Novoselov et al., 2004) have driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic "membrane" embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: (i) d → ∞, (ii) D → 4, and (iii) D = d. Focusing on the critical "flat" phase, for a homogeneous two-dimensional (D = 2) membrane embedded in three dimensions (d = 3), we predict its universal roughness exponent ζ = 0 . 590, length-scale dependent elastic moduli exponents η = 0 . 821 and ηu = 0 . 358, and an anomalous Poisson ratio, σ = - 1 / 3. In the presence of random uncorrelated heterogeneity the membrane exhibits a glassy wrinkled ground state, characterized by ζ‧ = 0 . 775 ,η‧ = 0 . 449, ηu‧ = 1 . 101 and a Poisson ratio σ‧ = - 1 / 3. Motivated by a number of physical realizations (charged impurities, disclinations and dislocations) we also study power-law correlated quenched disorder that leads to a variety of distinct glassy wrinkled phases. Finally, neglecting self-avoiding interaction we demonstrate that at high temperature a "phantom" sheet undergoes a continuous crumpling transition, characterized by a radius of gyration exponent, ν = 0 . 732 and η = 0
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Hummingbird tongues are elastic micropumps
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A.
2015-01-01
Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074
Elastic properties of graphite and interstitial defects
International Nuclear Information System (INIS)
Ayasse, J.-B.
1977-01-01
The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr
Elastic properties of icosahedral and decagonal quasicrystals
International Nuclear Information System (INIS)
Chernikov, Mikhail A
2005-01-01
Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Resonant frequency and elastic modulus measurements on hardened cement pastes
International Nuclear Information System (INIS)
Lee, D.J.
1982-12-01
A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)
Elastic moduli and elastic anisotropy of cold sprayed metallic coatings
Czech Academy of Sciences Publication Activity Database
Seiner, Hanuš; Cizek, J.; Sedlák, Petr; Huang, R.; Cupera, J.; Dlouhý, I.; Landa, Michal
2016-01-01
Roč. 291, April (2016), s. 342-347 ISSN 0257-8972 R&D Projects: GA ČR GA13-13616S; GA ČR(CZ) GA13-35890S Grant - others:NETME Centre Plus - národní program udržitelnosti(CZ) LO1202 Institutional support: RVO:61388998 Keywords : kinetic spray * CGDS * elastic properties * metals and alloys * deposition * resonant ultrasound spectroscopy Subject RIV: JG - Metallurgy Impact factor: 2.589, year: 2016 http://ac.els-cdn.com/S0257897216301165/1-s2.0-S0257897216301165-main.pdf?_tid=1083617a-017f-11e6-92e7-00000aacb361&acdnat=1460555773_2e80d3df20843f3af649bf3ac71c8844
Finite element prediction of elastic strains in beryllium compact tension specimens
International Nuclear Information System (INIS)
Guerra, F.; Varma, R.; Bourke, M.
1997-01-01
Three-dimensional finite element (FE) calculations using ABAQUS version 5.5.9 were compared to neutron diffraction measurements of a loaded, pre-cracked beryllium compact tension (CT) specimens. The objective was to validate the FE results with the experimental open-quotes elastic strainclose quotes measurements. Then the FE calculations could be used to study residual stress and other aspects of these problems in the unloaded state and the crack tip stress in the loaded state which is hard to measure experimentally. A graded FE mesh was focused on the regions containing high strain gradients, the smallest elements were approximately 0.5 mm x 0.5 mm x 0.4 mm. A standard 20-node brick element model was complemented by a model with 1/4-point elements at the crack tip. Since the neutron diffraction measurements provided a volume average of approximately a cube of edge 3.0 mm, various averaging (or integrating) techniques were used on the FE results. Several integration schemes showed good agreement with the experimental results
Computation of the bounce-average code
International Nuclear Information System (INIS)
Cutler, T.A.; Pearlstein, L.D.; Rensink, M.E.
1977-01-01
The bounce-average computer code simulates the two-dimensional velocity transport of ions in a mirror machine. The code evaluates and bounce-averages the collision operator and sources along the field line. A self-consistent equilibrium magnetic field is also computed using the long-thin approximation. Optionally included are terms that maintain μ, J invariance as the magnetic field changes in time. The assumptions and analysis that form the foundation of the bounce-average code are described. When references can be cited, the required results are merely stated and explained briefly. A listing of the code is appended
Generalized multiscale finite element method for elasticity equations
Chung, Eric T.
2014-10-05
In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.
A hybrid algorithm for solving inverse problems in elasticity
Directory of Open Access Journals (Sweden)
Barabasz Barbara
2014-12-01
Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
Rotational averaging of multiphoton absorption cross sections
Energy Technology Data Exchange (ETDEWEB)
Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)
2014-11-28
Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.
Sea Surface Temperature Average_SST_Master
National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-01-01
to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic
Should the average tax rate be marginalized?
Czech Academy of Sciences Publication Activity Database
Feldman, N. E.; Katuščák, Peter
-, č. 304 (2006), s. 1-65 ISSN 1211-3298 Institutional research plan: CEZ:MSM0021620846 Keywords : tax * labor supply * average tax Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp304.pdf
A practical guide to averaging functions
Beliakov, Gleb; Calvo Sánchez, Tomasa
2016-01-01
This book offers an easy-to-use and practice-oriented reference guide to mathematical averages. It presents different ways of aggregating input values given on a numerical scale, and of choosing and/or constructing aggregating functions for specific applications. Building on a previous monograph by Beliakov et al. published by Springer in 2007, it outlines new aggregation methods developed in the interim, with a special focus on the topic of averaging aggregation functions. It examines recent advances in the field, such as aggregation on lattices, penalty-based aggregation and weakly monotone averaging, and extends many of the already existing methods, such as: ordered weighted averaging (OWA), fuzzy integrals and mixture functions. A substantial mathematical background is not called for, as all the relevant mathematical notions are explained here and reported on together with a wealth of graphical illustrations of distinct families of aggregation functions. The authors mainly focus on practical applications ...
MN Temperature Average (1961-1990) - Line
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
MN Temperature Average (1961-1990) - Polygon
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
Average Bandwidth Allocation Model of WFQ
Directory of Open Access Journals (Sweden)
Tomáš Balogh
2012-01-01
Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.
Nonequilibrium statistical averages and thermo field dynamics
International Nuclear Information System (INIS)
Marinaro, A.; Scarpetta, Q.
1984-01-01
An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles
An approximate analytical approach to resampling averages
DEFF Research Database (Denmark)
Malzahn, Dorthe; Opper, M.
2004-01-01
Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr...... for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method achieves good accuracy....
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
International Nuclear Information System (INIS)
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-01-01
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.
American Society for Testing and Materials. Philadelphia
1998-01-01
1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...
Quasi-experimental taxation elasticities of US gasoline demand
International Nuclear Information System (INIS)
Goel, R.K.
1994-01-01
Taxation elasticities provide inputs in public policy aimed at raising revenues. Using the quasi-experimental method, this paper calculates gasoline taxation elasticities for the USA over 1952-86. The medium (mean) elasticity over this period is found to be -0.075 (-0.122). However, the elasticity following the oil shock of 1973 is found to be statistically different from the pre-shock elasticity. Reasons for this change in elasticity are discussed. The implication of this analysis is that tax policies based on price elasticities, rather than on tax elasticities, might be using an inappropriate elasticity estimate and consequently misinterpreting the government's ability to raise tax revenues. (author)
Image compression using moving average histogram and RBF network
International Nuclear Information System (INIS)
Khowaja, S.; Ismaili, I.A.
2015-01-01
Modernization and Globalization have made the multimedia technology as one of the fastest growing field in recent times but optimal use of bandwidth and storage has been one of the topics which attract the research community to work on. Considering that images have a lion share in multimedia communication, efficient image compression technique has become the basic need for optimal use of bandwidth and space. This paper proposes a novel method for image compression based on fusion of moving average histogram and RBF (Radial Basis Function). Proposed technique employs the concept of reducing color intensity levels using moving average histogram technique followed by the correction of color intensity levels using RBF networks at reconstruction phase. Existing methods have used low resolution images for the testing purpose but the proposed method has been tested on various image resolutions to have a clear assessment of the said technique. The proposed method have been tested on 35 images with varying resolution and have been compared with the existing algorithms in terms of CR (Compression Ratio), MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), computational complexity. The outcome shows that the proposed methodology is a better trade off technique in terms of compression ratio, PSNR which determines the quality of the image and computational complexity. (author)
Multidiscipline simulation of elastic manipulators
Directory of Open Access Journals (Sweden)
T. Rølvåg
1992-10-01
Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Measurement of neutrino flux from neutrino-electron elastic scattering
Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration
2016-06-01
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.
The elastic scattering of 14N by 10B
International Nuclear Information System (INIS)
Takai, H.
1986-01-01
The elastic scattering 10 B( 14 N, 14 N) 10 B was studied for four incident energies: 38.1, 42.0, 46.0 and 50.0 MeV. The angular distributions for these energies were determined in the center of mass frame from 16 0 to 176 0 with the introduction of target nucleus recoil detection techniques in a magnetic spectrograph with gas position sensitive detectors and in a scattering chamber with an Σ-ΔΣ detection system. For the forward angles, the angular distributions are well described by the optical model. For the backward angles, up to 160 0 , a satisfactory description is obtained by the elastic transfer analysis; for larger angles an accentuated deviation id observed. (author) [pt
Strain gradient elasticity within the symmetric BEM formulation
Directory of Open Access Journals (Sweden)
S. Terravecchia,
2014-07-01
Full Text Available The symmetric Galerkin Boundary Element Method is used to address a class of strain gradient elastic materials featured by a free energy function of the (classical strain and of its (first gradient. With respect to the classical elasticity, additional response variables intervene, such as the normal derivative of the displacements on the boundary, and the work-coniugate double tractions. The fundamental solutions - featuring a fourth order partial differential equations (PDEs system - exhibit singularities which in 2D may be of the order 1/ r 4 . New techniques are developed, which allow the elimination of most of the latter singularities. The present paper has to be intended as a research communication wherein some results, being elaborated within a more general paper [1], are reported.
Testing averaged cosmology with type Ia supernovae and BAO data
Energy Technology Data Exchange (ETDEWEB)
Santos, B.; Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Coley, A.A. [Department of Mathematics and Statistics, Dalhousie University, Halifax, B3H 3J5 Canada (Canada); Devi, N. Chandrachani, E-mail: thoven@on.br, E-mail: aac@mathstat.dal.ca, E-mail: chandrachaniningombam@astro.unam.mx, E-mail: alcaniz@on.br [Instituto de Astronomía, Universidad Nacional Autónoma de México, Box 70-264, México City, México (Mexico)
2017-02-01
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Testing averaged cosmology with type Ia supernovae and BAO data
International Nuclear Information System (INIS)
Santos, B.; Alcaniz, J.S.; Coley, A.A.; Devi, N. Chandrachani
2017-01-01
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Spin asymmetry in resonant electron-hydrogen elastic scattering
International Nuclear Information System (INIS)
McCarthy, I.E.; Shang, Bo.
1993-02-01
Differential cross sections and asymmetries at 90 deg. and 30 deg are calculated for electron-hydrogen elastic scattering over the energies of the lowest 1 S and 3 P resonances using a nine-state coupled-channels calculation with and without continuum effects, which are represented by an equivalent-local polarization potential. The polarization potential improves agreement with experiment in general for the spin-averaged cross sections. It is suggested that continuum effects would be critically tested by asymmetry measurement at 30 deg over the 1 S resonance. 7 refs., 4 figs
The visco-elastic multilayer program VEROAD
Hopman, P.C.
1996-01-01
The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of
Heavy ion elastic scattering of code : OPTHI
International Nuclear Information System (INIS)
Ismail, M.; Divatia, A.S.
1982-01-01
A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)
Thermo-elastic optical coherence tomography
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, A.F.W.; Huber, Robert; Van Soest, Gijs
2017-01-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
2010-01-01
...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2515 Elasticity. The flexible, springy... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2515 Section 29.2515 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...
2010-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3516 Elasticity. The flexible, springy nature of the tobacco leaf to recover... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.3516 Section 29.3516 Agriculture...
2010-01-01
... INSPECTION Standards Official Standard Grades for Flue-Cured Tobacco (u.s. Types 11, 12, 13, 14 and Foreign Type 92) § 29.1014 Elasticity. The flexible, springy nature of the tobacco leaf to recover... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.1014 Section 29.1014 Agriculture...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Elasticity. 29.2265 Section 29.2265 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2265 Elasticity. The flexible, springy nature of the tobacco leaf to recover approximately its original size and...
Elastic least-squares reverse time migration
Feng, Zongcai
2017-03-08
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Modelling the elastic properties of cellulose nanopaper
DEFF Research Database (Denmark)
Mao, Rui; Goutianos, Stergios; Tu, Wei
2017-01-01
The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...
Elastic least-squares reverse time migration
Feng, Zongcai; Schuster, Gerard T.
2017-01-01
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Improved averaging for non-null interferometry
Fleig, Jon F.; Murphy, Paul E.
2013-09-01
Arithmetic averaging of interferometric phase measurements is a well-established method for reducing the effects of time varying disturbances, such as air turbulence and vibration. Calculating a map of the standard deviation for each pixel in the average map can provide a useful estimate of its variability. However, phase maps of complex and/or high density fringe fields frequently contain defects that severely impair the effectiveness of simple phase averaging and bias the variability estimate. These defects include large or small-area phase unwrapping artifacts, large alignment components, and voids that change in number, location, or size. Inclusion of a single phase map with a large area defect into the average is usually sufficient to spoil the entire result. Small-area phase unwrapping and void defects may not render the average map metrologically useless, but they pessimistically bias the variance estimate for the overwhelming majority of the data. We present an algorithm that obtains phase average and variance estimates that are robust against both large and small-area phase defects. It identifies and rejects phase maps containing large area voids or unwrapping artifacts. It also identifies and prunes the unreliable areas of otherwise useful phase maps, and removes the effect of alignment drift from the variance estimate. The algorithm has several run-time adjustable parameters to adjust the rejection criteria for bad data. However, a single nominal setting has been effective over a wide range of conditions. This enhanced averaging algorithm can be efficiently integrated with the phase map acquisition process to minimize the number of phase samples required to approach the practical noise floor of the metrology environment.
Buckling of an Elastic Ridge: Competition between Wrinkles and Creases
Lestringant, C.; Maurini, C.; Lazarus, A.; Audoly, B.
2017-04-01
We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes which are localized along the free ridge. For ridge angles ϕ below a critical value ϕ⋆≈9 0 ° , experiments reveal an extended sinusoidal mode, while for ϕ above ϕ⋆, we observe a series of creases progressively invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the finite-element method and correctly predicts the sinusoidal mode for ϕ ≤ϕ⋆, as well as the associated critical strain ɛc(ϕ ). The experimental transition at ϕ⋆ is found to occur when this critical strain ɛc(ϕ ) attains the value ɛc(ϕ⋆)=0.44 corresponding to the threshold of the subcritical surface creasing instability. Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of scale invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and reveals that scale invariance is not a sufficient condition for localization.
International Nuclear Information System (INIS)
Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.
2009-01-01
Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
Elasticity of Substitution and Antidumping Measures
DEFF Research Database (Denmark)
Drud Hansen, Jørgen; Meinen, Philipp; Nielsen, Jørgen Ulff-Møller
Abstract This paper analyzes the role of the elasticity of substitution for anti-dumping decisions across countries. In monopolistic competition models with cost heterogeneous firms across countries, price differences vary inversely with the elasticity of substitution. Anti-dumping duties should...... therefore also vary inversely with the elasticity of substitution at least for countries which have a strong focus on prices in the determination of their anti-dumping measures. We test this for ten countries from 1990 to 2009 using data on anti-dumping from Chad Bown (2010) and US-data at 8-digit level...... in our empirical investigation support the predicted role of the elasticity of substitution as we find a significant negative relation between the elasticity of substitution and the final anti-dumping duties for the ‘lesser duty rule’ group of countries. The countries which do not follow the ‘lesser duty...
Elastic recoil detection analysis of ferroelectric films
Energy Technology Data Exchange (ETDEWEB)
Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)
1996-12-31
There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.
Elastic properties of superconducting bulk metallic glasses
International Nuclear Information System (INIS)
Hempel, Marius
2015-01-01
Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.
Elastic recoil detection analysis of ferroelectric films
Energy Technology Data Exchange (ETDEWEB)
Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)
1997-12-31
There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.
Energy Technology Data Exchange (ETDEWEB)
Gaafar, M.S., E-mail: m.gaafar@mu.edu.sa [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Ultrasonic Laboratory, National Institute for Standards, Tersa Str., P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Shaarany, I. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Alharbi, T. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia)
2014-12-15
Highlights: • 50B{sub 2}O{sub 3}–(50 – x)TeO{sub 2}–xCdO glass system has been prepared by melt quenching technique. • Both sound velocities decrease with increase in x. • Studies on the structure of these glasses, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}. - Abstract: Glasses in the system 50B{sub 2}O{sub 3}–(50 − x)TeO{sub 2}–xCdO with different CdO contents (0, 10, 20, 30, 40 and 50 mol%), have been prepared by melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of CdO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increase and the molar volume decrease while both sound velocities decrease with increase in x. Elastic properties, FT-IR and X-ray diffraction studies on the network structure of these glass structures, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}, decreasing the molar volume and compensate for the decrease in the average coordination number of tellurium atoms which was the reason for the increase in elastic moduli.
Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses
International Nuclear Information System (INIS)
Sauer, G.
1998-01-01
Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)
Asynchronous Gossip for Averaging and Spectral Ranking
Borkar, Vivek S.; Makhijani, Rahul; Sundaresan, Rajesh
2014-08-01
We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.
Benchmarking statistical averaging of spectra with HULLAC
Klapisch, Marcel; Busquet, Michel
2008-11-01
Knowledge of radiative properties of hot plasmas is important for ICF, astrophysics, etc When mid-Z or high-Z elements are present, the spectra are so complex that one commonly uses statistically averaged description of atomic systems [1]. In a recent experiment on Fe[2], performed under controlled conditions, high resolution transmission spectra were obtained. The new version of HULLAC [3] allows the use of the same model with different levels of details/averaging. We will take advantage of this feature to check the effect of averaging with comparison with experiment. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Quant. Spectros. Rad. Transf. 65, 43 (2000). [2] J. E. Bailey, G. A. Rochau, C. A. Iglesias et al., Phys. Rev. Lett. 99, 265002-4 (2007). [3]. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conference Proceedings 926, 206-15 (2007).
An approach to averaging digitized plantagram curves.
Hawes, M R; Heinemeyer, R; Sovak, D; Tory, B
1994-07-01
The averaging of outline shapes of the human foot for the purposes of determining information concerning foot shape and dimension within the context of comfort of fit of sport shoes is approached as a mathematical problem. An outline of the human footprint is obtained by standard procedures and the curvature is traced with a Hewlett Packard Digitizer. The paper describes the determination of an alignment axis, the identification of two ray centres and the division of the total curve into two overlapping arcs. Each arc is divided by equiangular rays which intersect chords between digitized points describing the arc. The radial distance of each ray is averaged within groups of foot lengths which vary by +/- 2.25 mm (approximately equal to 1/2 shoe size). The method has been used to determine average plantar curves in a study of 1197 North American males (Hawes and Sovak 1993).
Exploiting scale dependence in cosmological averaging
International Nuclear Information System (INIS)
Mattsson, Teppo; Ronkainen, Maria
2008-01-01
We study the role of scale dependence in the Buchert averaging method, using the flat Lemaitre–Tolman–Bondi model as a testing ground. Within this model, a single averaging scale gives predictions that are too coarse, but by replacing it with the distance of the objects R(z) for each redshift z, we find an O(1%) precision at z<2 in the averaged luminosity and angular diameter distances compared to their exact expressions. At low redshifts, we show the improvement for generic inhomogeneity profiles, and our numerical computations further verify it up to redshifts z∼2. At higher redshifts, the method breaks down due to its inability to capture the time evolution of the inhomogeneities. We also demonstrate that the running smoothing scale R(z) can mimic acceleration, suggesting that it could be at least as important as the backreaction in explaining dark energy as an inhomogeneity induced illusion
Estimating average glandular dose by measuring glandular rate in mammograms
International Nuclear Information System (INIS)
Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru
2003-01-01
The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)
Intensity-based hierarchical elastic registration using approximating splines.
Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C
2014-01-01
We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS
Regional averaging and scaling in relativistic cosmology
International Nuclear Information System (INIS)
Buchert, Thomas; Carfora, Mauro
2002-01-01
Averaged inhomogeneous cosmologies lie at the forefront of interest, since cosmological parameters such as the rate of expansion or the mass density are to be considered as volume-averaged quantities and only these can be compared with observations. For this reason the relevant parameters are intrinsically scale-dependent and one wishes to control this dependence without restricting the cosmological model by unphysical assumptions. In the latter respect we contrast our way to approach the averaging problem in relativistic cosmology with shortcomings of averaged Newtonian models. Explicitly, we investigate the scale-dependence of Eulerian volume averages of scalar functions on Riemannian three-manifolds. We propose a complementary view of a Lagrangian smoothing of (tensorial) variables as opposed to their Eulerian averaging on spatial domains. This programme is realized with the help of a global Ricci deformation flow for the metric. We explain rigorously the origin of the Ricci flow which, on heuristic grounds, has already been suggested as a possible candidate for smoothing the initial dataset for cosmological spacetimes. The smoothing of geometry implies a renormalization of averaged spatial variables. We discuss the results in terms of effective cosmological parameters that would be assigned to the smoothed cosmological spacetime. In particular, we find that on the smoothed spatial domain B-bar evaluated cosmological parameters obey Ω-bar B-bar m + Ω-bar B-bar R + Ω-bar B-bar A + Ω-bar B-bar Q 1, where Ω-bar B-bar m , Ω-bar B-bar R and Ω-bar B-bar A correspond to the standard Friedmannian parameters, while Ω-bar B-bar Q is a remnant of cosmic variance of expansion and shear fluctuations on the averaging domain. All these parameters are 'dressed' after smoothing out the geometrical fluctuations, and we give the relations of the 'dressed' to the 'bare' parameters. While the former provide the framework of interpreting observations with a 'Friedmannian bias
Average: the juxtaposition of procedure and context
Watson, Jane; Chick, Helen; Callingham, Rosemary
2014-09-01
This paper presents recent data on the performance of 247 middle school students on questions concerning average in three contexts. Analysis includes considering levels of understanding linking definition and context, performance across contexts, the relative difficulty of tasks, and difference in performance for male and female students. The outcomes lead to a discussion of the expectations of the curriculum and its implementation, as well as assessment, in relation to students' skills in carrying out procedures and their understanding about the meaning of average in context.
Average-case analysis of numerical problems
2000-01-01
The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.
Grassmann Averages for Scalable Robust PCA
DEFF Research Database (Denmark)
Hauberg, Søren; Feragen, Aasa; Black, Michael J.
2014-01-01
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can...... to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements...
QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS
International Nuclear Information System (INIS)
Yeheskel, O.
2008-01-01
The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals
Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.
2012-01-01
We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...
Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements
Qu, Fenglong; Yang, Jiaqing; Zhang, Bo
2018-01-01
Consider the inverse scattering problem of time-harmonic acoustic waves by a 3D bounded elastic obstacle which may contain embedded impenetrable obstacles inside. We propose a novel and simple technique to show that the elastic obstacle can be uniquely recovered by the acoustic far-field pattern at a fixed frequency, disregarding its contents. Our method is based on constructing a well-posed modified interior transmission problem on a small domain and makes use of an a priori estimate for both the acoustic and elastic wave fields in the usual H 1-norm. In the case when there is no obstacle embedded inside the elastic body, our method gives a much simpler proof for the uniqueness result obtained previously in the literature (Natroshvili et al 2000 Rend. Mat. Serie VII 20 57-92 Monk and Selgas 2009 Inverse Problems Imaging 3 173-98).
Elasticity and physico-chemical properties during drinking water biofilm formation.
Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory
2011-08-01
Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.
New empirical generalizations on the determinants of price elasticity
Bijmolt, THA; Van Heerde, HJ; Pieters, RGM
The importance of pricing decisions for firms has fueled an extensive stream of research on price elasticities. In an influential meta-analytical study, Tellis (1988) summarized price elasticity research findings until 1986. However, empirical generalizations on price elasticity require
Contact area calculation between elastic solids bounded by mound rough surfaces
Palasantzas, G
In this work, we investigate the influence of mound roughness on the contact area between elastic bodies. The mound roughness is described by the r.m.s. roughness amplitude w, the average mound separation Lambda, and the system correlation length xi. In general, the real contact area has a complex
A summary of modulus of elasticity and knot size surveys for laminating grades of lumber
R. W. Wolfe; R. C. Moody
1981-01-01
A summary of modulus of elasticity (MOE) and knot data is presented for grades of lumber commonly used to manufacture glued-laminated (glulam) timber by the laminating Industry. Tabulated values represent 30 different studies covering a time span of over 16 years. Statistical estimates of average and near-maximum knot sizes as well as mean and coefficient of variation...
Elastic wave scattering from multiple voids (porosity)
International Nuclear Information System (INIS)
Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.
1983-01-01
This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given
Model averaging, optimal inference and habit formation
Directory of Open Access Journals (Sweden)
Thomas H B FitzGerald
2014-06-01
Full Text Available Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function – the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge – that of determining which model or models of their environment are the best for guiding behaviour. Bayesian model averaging – which says that an agent should weight the predictions of different models according to their evidence – provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent’s behaviour should show an equivalent balance. We hypothesise that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realisable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behaviour. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded Bayesian inference, focussing particularly upon the relationship between goal-directed and habitual behaviour.
Generalized Jackknife Estimators of Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
With the aim of improving the quality of asymptotic distributional approximations for nonlinear functionals of nonparametric estimators, this paper revisits the large-sample properties of an important member of that class, namely a kernel-based weighted average derivative estimator. Asymptotic...
Average beta measurement in EXTRAP T1
International Nuclear Information System (INIS)
Hedin, E.R.
1988-12-01
Beginning with the ideal MHD pressure balance equation, an expression for the average poloidal beta, Β Θ , is derived. A method for unobtrusively measuring the quantities used to evaluate Β Θ in Extrap T1 is described. The results if a series of measurements yielding Β Θ as a function of externally applied toroidal field are presented. (author)
HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS
International Nuclear Information System (INIS)
2005-01-01
Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department
Bayesian Averaging is Well-Temperated
DEFF Research Database (Denmark)
Hansen, Lars Kai
2000-01-01
Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation is l...
Gibbs equilibrium averages and Bogolyubov measure
International Nuclear Information System (INIS)
Sankovich, D.P.
2011-01-01
Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems related to integration with respect to this measure
High average-power induction linacs
International Nuclear Information System (INIS)
Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.
1989-01-01
Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs
Function reconstruction from noisy local averages
International Nuclear Information System (INIS)
Chen Yu; Huang Jianguo; Han Weimin
2008-01-01
A regularization method is proposed for the function reconstruction from noisy local averages in any dimension. Error bounds for the approximate solution in L 2 -norm are derived. A number of numerical examples are provided to show computational performance of the method, with the regularization parameters selected by different strategies
A singularity theorem based on spatial averages
Indian Academy of Sciences (India)
journal of. July 2007 physics pp. 31–47. A singularity theorem based on spatial ... In this paper I would like to present a result which confirms – at least partially – ... A detailed analysis of how the model fits in with the .... Further, the statement that the spatial average ...... Financial support under grants FIS2004-01626 and no.
Multiphase averaging of periodic soliton equations
International Nuclear Information System (INIS)
Forest, M.G.
1979-01-01
The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations
A dynamic analysis of moving average rules
Chiarella, C.; He, X.Z.; Hommes, C.H.
2006-01-01
The use of various moving average (MA) rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules of the type
Essays on model averaging and political economics
Wang, W.
2013-01-01
This thesis first investigates various issues related with model averaging, and then evaluates two policies, i.e. West Development Drive in China and fiscal decentralization in U.S, using econometric tools. Chapter 2 proposes a hierarchical weighted least squares (HWALS) method to address multiple
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false On average. 1209.12 Section 1209.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... CONSUMER INFORMATION ORDER Mushroom Promotion, Research, and Consumer Information Order Definitions § 1209...
High average-power induction linacs
International Nuclear Information System (INIS)
Prono, D.S.; Barrett, D.; Bowles, E.
1989-01-01
Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs
Average Costs versus Net Present Value
E.A. van der Laan (Erwin); R.H. Teunter (Ruud)
2000-01-01
textabstractWhile the net present value (NPV) approach is widely accepted as the right framework for studying production and inventory control systems, average cost (AC) models are more widely used. For the well known EOQ model it can be verified that (under certain conditions) the AC approach gives
Average beta-beating from random errors
Tomas Garcia, Rogelio; Langner, Andy Sven; Malina, Lukas; Franchi, Andrea; CERN. Geneva. ATS Department
2018-01-01
The impact of random errors on average β-beating is studied via analytical derivations and simulations. A systematic positive β-beating is expected from random errors quadratic with the sources or, equivalently, with the rms β-beating. However, random errors do not have a systematic eﬀect on the tune.
Reliability Estimates for Undergraduate Grade Point Average
Westrick, Paul A.
2017-01-01
Undergraduate grade point average (GPA) is a commonly employed measure in educational research, serving as a criterion or as a predictor depending on the research question. Over the decades, researchers have used a variety of reliability coefficients to estimate the reliability of undergraduate GPA, which suggests that there has been no consensus…
Tendon surveillance requirements - average tendon force
International Nuclear Information System (INIS)
Fulton, J.F.
1982-01-01
Proposed Rev. 3 to USNRC Reg. Guide 1.35 discusses the need for comparing, for individual tendons, the measured and predicted lift-off forces. Such a comparison is intended to detect any abnormal tendon force loss which might occur. Recognizing that there are uncertainties in the prediction of tendon losses, proposed Guide 1.35.1 has allowed specific tolerances on the fundamental losses. Thus, the lift-off force acceptance criteria for individual tendons appearing in Reg. Guide 1.35, Proposed Rev. 3, is stated relative to a lower bound predicted tendon force, which is obtained using the 'plus' tolerances on the fundamental losses. There is an additional acceptance criterion for the lift-off forces which is not specifically addressed in these two Reg. Guides; however, it is included in a proposed Subsection IWX to ASME Code Section XI. This criterion is based on the overriding requirement that the magnitude of prestress in the containment structure be sufficeint to meet the minimum prestress design requirements. This design requirement can be expressed as an average tendon force for each group of vertical hoop, or dome tendons. For the purpose of comparing the actual tendon forces with the required average tendon force, the lift-off forces measured for a sample of tendons within each group can be averaged to construct the average force for the entire group. However, the individual lift-off forces must be 'corrected' (normalized) prior to obtaining the sample average. This paper derives the correction factor to be used for this purpose. (orig./RW)
Elastic metamaterial beam with remotely tunable stiffness
Energy Technology Data Exchange (ETDEWEB)
Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)
2016-02-07
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Microstructural evolution in inhomogeneous elastic media
International Nuclear Information System (INIS)
Jou, H.J.; Leo, P.H.; Lowengrub, J.S.
1997-01-01
We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
International Nuclear Information System (INIS)
Li, Ning; Guo, Lijun; Sun, Haitao; Gao, Fei; Liu, Cheng; Beck, Thomas; Chen, Jiuhong; Biermann, Christina
2011-01-01
To gain a new insight into the elastic properties of the thoracic aorta in patients without aortic diseases using electrocardiographically (ECG)-gated dual-source (DS) CT. 56 subjects with no cardiovascular disease, selected from 2,700 people undergoing ECG-gated DSCT examination, were divided into three groups according to their age. CT data were reconstructed in 5% step throughout the RR interval. Diameter and area were measured at the curve of the ascending aorta (AA) and at the same level of the descending aorta (DA). The pulsation and elasticity of the aorta were evaluated. Aortic diameter changes were noted throughout the cardiac cycle. The maximum average diameter was seen at an RR interval of 24.02 ± 4.99% for the AA and 25.63 ± 4.77% for the DA. The minimum was at 93.5 ± 4.04% for the AA and 96.6 ± 4.58% for the DA. There was an age-dependent decrease in elasticity, while different correlation coefficients were found between various age groups and different elastic parameters. The properties of aortic pulsation and wall elasticity could be well shown by ECG-gated DSCT. The new findings regarding segment difference and age relevance were significant and should be taken into account in clinical trials and treatments for the elasticity related cardiovascular diseases. (orig.)
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Directory of Open Access Journals (Sweden)
Francesco Cordero
2015-12-01
Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.
Interaction of Droplets Separated by an Elastic Film.
Liu, Tianshu; Xu, Xuejuan; Nadermann, Nichole; He, Zhenping; Jagota, Anand; Hui, Chung-Yuen
2017-01-10
The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.
Characterization of the elastic displacement demand: Case study - Sofia city
International Nuclear Information System (INIS)
Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.
2008-02-01
The results of the study on the seismic site response in a part of the metropolitan Sofia are discussed. The neo-deterministic seismic hazard assessment procedure has been used to compute realistic synthetic waveforms considering four earthquake scenarios, with magnitudes M = 3.7, M = 6.3 and M = 7.0. Source and site specific ground motion time histories are computed along three investigated cross sections, making use of the hybrid approach, combining the modal summation technique and the finite differences scheme. Displacement and acceleration response spectra are considered. These results are validated against the design elastic displacement response spectra and displacement demand, recommended in Eurocode 8. The elastic response design spectrum from the standard pseudo-acceleration, versus natural period, Tn, format is converted to the Sa - Sd format. The elastic displacement response spectra and displacement demand are discussed with respect to the earthquake magnitude, the seismic source-to-site distance, seismic source mechanism, and the local geological site conditions. (author)
Modelling and Intelligent Control of an Elastic Link Robot Manipulator
Directory of Open Access Journals (Sweden)
Malik Loudini
2013-01-01
Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
Marangoni elasticity of flowing soap films
Kim, Ildoo; Mandre, Shreyas
2016-01-01
We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...
Demand Elasticity on the Transport Market
Teodor Perić; Nada Štrumberger
2002-01-01
The elasticity of demand for traffic se1vices is the adaptationof traffic supply to traffic demand. The elasticity of suchdemand is low which is specific of the transport market, especiallyfrom the aspect of designing traffic demand.The essence of the problem of low elasticity can be noticedin three basic properties:First, in the change of place which determines the traffic demandor traffic relation.Second is the continuity of the need to transport goods andpassengers.Third, the needs for tra...
Application Service Program (ASP) Price Elasticities
Hong Jaeweon; Cho Wanwoo; Jang Ho; Kwak Youngsik
2010-01-01
Although the price elasticities for off-line industry are well documented in academic field, the report of price elasticities for on-line to a given brand or industry in practice have beenrelatively rare. The researcher aims to try to full this gap by applying a price response function to Home Trading System’s on-line transaction data for the first time in Korean securities market. The different price elasticities among seven brands were found from -0.819 to -1.811. These results suggested th...
Elastic and inelastic psi production by muons
International Nuclear Information System (INIS)
Loken, S.C.
1981-06-01
Results are presented on the elastic and inelastic production of psi (3.1). The elastic data are qualitative agreement with the predictions of photon-gluon fusion but have a steeper dependence on Q 2 than the model predicts. A QCD calculation accounts well for the shape of the inelastic data in inelasticity, Q 2 and E/sub γ/, but fails to account for the absolute cross section. At 209 GeV, the cross-section for elastic psi production is 0.36 +- 0.07 nb; for inelastic, 0.28 +- 0.06nb
Marangoni elasticity of flowing soap films
Kim, Ildoo; Mandre, Shreyas
2017-08-01
We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.
Directory of Open Access Journals (Sweden)
K. A. Pestka II
2011-09-01
Full Text Available The complete elastic tensors of SmScO3 and NdScO3 were measured using resonant ultrasound spectroscopy (RUS in combination with ab-initio calculations. Measurement of the elastic tensor of these recently synthesized single crystal RE scandates is essential for understanding dynamic lattice applications including phonon confinement, strain induced thin film growth and superlattice construction. On average, the experimental elastic constants differed by less than 5% of the theoretical values, further validating the accuracy of modern ab-initio calculations as a means of estimating the initial elastic constants used in RUS measurements.
Statistics on exponential averaging of periodograms
Energy Technology Data Exchange (ETDEWEB)
Peeters, T.T.J.M. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering
1994-11-01
The algorithm of exponential averaging applied to subsequent periodograms of a stochastic process is used to estimate the power spectral density (PSD). For an independent process, assuming the periodogram estimates to be distributed according to a {chi}{sup 2} distribution with 2 degrees of freedom, the probability density function (PDF) of the PSD estimate is derived. A closed expression is obtained for the moments of the distribution. Surprisingly, the proof of this expression features some new insights into the partitions and Eulers infinite product. For large values of the time constant of the averaging process, examination of the cumulant generating function shows that the PDF approximates the Gaussian distribution. Although restrictions for the statistics are seemingly tight, simulation of a real process indicates a wider applicability of the theory. (orig.).
Statistics on exponential averaging of periodograms
International Nuclear Information System (INIS)
Peeters, T.T.J.M.; Ciftcioglu, Oe.
1994-11-01
The algorithm of exponential averaging applied to subsequent periodograms of a stochastic process is used to estimate the power spectral density (PSD). For an independent process, assuming the periodogram estimates to be distributed according to a χ 2 distribution with 2 degrees of freedom, the probability density function (PDF) of the PSD estimate is derived. A closed expression is obtained for the moments of the distribution. Surprisingly, the proof of this expression features some new insights into the partitions and Eulers infinite product. For large values of the time constant of the averaging process, examination of the cumulant generating function shows that the PDF approximates the Gaussian distribution. Although restrictions for the statistics are seemingly tight, simulation of a real process indicates a wider applicability of the theory. (orig.)
ANALYSIS OF THE FACTORS AFFECTING THE AVERAGE
Directory of Open Access Journals (Sweden)
Carmen BOGHEAN
2013-12-01
Full Text Available Productivity in agriculture most relevantly and concisely expresses the economic efficiency of using the factors of production. Labour productivity is affected by a considerable number of variables (including the relationship system and interdependence between factors, which differ in each economic sector and influence it, giving rise to a series of technical, economic and organizational idiosyncrasies. The purpose of this paper is to analyse the underlying factors of the average work productivity in agriculture, forestry and fishing. The analysis will take into account the data concerning the economically active population and the gross added value in agriculture, forestry and fishing in Romania during 2008-2011. The distribution of the average work productivity per factors affecting it is conducted by means of the u-substitution method.
Weighted estimates for the averaging integral operator
Czech Academy of Sciences Publication Activity Database
Opic, Bohumír; Rákosník, Jiří
2010-01-01
Roč. 61, č. 3 (2010), s. 253-262 ISSN 0010-0757 R&D Projects: GA ČR GA201/05/2033; GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : averaging integral operator * weighted Lebesgue spaces * weights Subject RIV: BA - General Mathematics Impact factor: 0.474, year: 2010 http://link.springer.com/article/10.1007%2FBF03191231
Average Transverse Momentum Quantities Approaching the Lightfront
Boer, Daniel
2015-01-01
In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of su...
Time-averaged MSD of Brownian motion
Andreanov, Alexei; Grebenkov, Denis
2012-01-01
We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we de...
Average configuration of the geomagnetic tail
International Nuclear Information System (INIS)
Fairfield, D.H.
1979-01-01
Over 3000 hours of Imp 6 magnetic field data obtained between 20 and 33 R/sub E/ in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5-min averages of B/sub z/ as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks (B-bar/sub z/=3.γ) than near midnight (B-bar/sub z/=1.8γ). The tail field projected in the solar magnetospheric equatorial plane deviates from the x axis due to flaring and solar wind aberration by an angle α=-0.9 Y/sub SM/-2.7, where Y/sub SM/ is in earth radii and α is in degrees. After removing these effects, the B/sub y/ component of the tail field is found to depend on interplanetary sector structure. During an 'away' sector the B/sub y/ component of the tail field is on average 0.5γ greater than that during a 'toward' sector, a result that is true in both tail lobes and is independent of location across the tail. This effect means the average field reversal between northern and southern lobes of the tail is more often 178 0 rather than the 180 0 that is generally supposed
Unscrambling The "Average User" Of Habbo Hotel
Directory of Open Access Journals (Sweden)
Mikael Johnson
2007-01-01
Full Text Available The “user” is an ambiguous concept in human-computer interaction and information systems. Analyses of users as social actors, participants, or configured users delineate approaches to studying design-use relationships. Here, a developer’s reference to a figure of speech, termed the “average user,” is contrasted with design guidelines. The aim is to create an understanding about categorization practices in design through a case study about the virtual community, Habbo Hotel. A qualitative analysis highlighted not only the meaning of the “average user,” but also the work that both the developer and the category contribute to this meaning. The average user a represents the unknown, b influences the boundaries of the target user groups, c legitimizes the designer to disregard marginal user feedback, and d keeps the design space open, thus allowing for creativity. The analysis shows how design and use are intertwined and highlights the developers’ role in governing different users’ interests.
Changing mortality and average cohort life expectancy
Directory of Open Access Journals (Sweden)
Robert Schoen
2005-10-01
Full Text Available Period life expectancy varies with changes in mortality, and should not be confused with the life expectancy of those alive during that period. Given past and likely future mortality changes, a recent debate has arisen on the usefulness of the period life expectancy as the leading measure of survivorship. An alternative aggregate measure of period mortality which has been seen as less sensitive to period changes, the cross-sectional average length of life (CAL has been proposed as an alternative, but has received only limited empirical or analytical examination. Here, we introduce a new measure, the average cohort life expectancy (ACLE, to provide a precise measure of the average length of life of cohorts alive at a given time. To compare the performance of ACLE with CAL and with period and cohort life expectancy, we first use population models with changing mortality. Then the four aggregate measures of mortality are calculated for England and Wales, Norway, and Switzerland for the years 1880 to 2000. CAL is found to be sensitive to past and present changes in death rates. ACLE requires the most data, but gives the best representation of the survivorship of cohorts present at a given time.
Wingate, Kathryn; Bonani, Walter; Tan, Yan; Bryant, Stephanie J.; Tan, Wei
2012-01-01
The importance of mesenchymal stem cell (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. We utilized electrospinning and photopolymerization techniques to fabricate a 3D PEGdma nanofiber hydrogel matrix with a tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus ...
Microanalysis of solid surfaces by nuclear reactions and elastic scattering
International Nuclear Information System (INIS)
Agius, B.
1975-01-01
The principles involved in the use of monokinetic light ions beams, of about 1MeV, to the study of surface phenomena are presented. Two complementary techniques are described: the use of elastic scattering, which allows the analysis of impurity elements heavier than the substrate components and the use of nuclear reactions specific of light elements. Typical sensitivities are of the order of 10 11 at/cm 2 in good cases. The depth resolution varies, according to the cases, from about a hundred angstroems to a few thousand angstroems [fr
Monitoring elastic strain and damage by neutron and synchrotron beams
International Nuclear Information System (INIS)
Withers, P.J.
2001-01-01
Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)
Ye, Wei; Liu, Yifei
2018-04-01
This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.
Environmental stresses can alleviate the average deleterious effect of mutations
Directory of Open Access Journals (Sweden)
Leibler Stanislas
2003-05-01
Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.
Post-model selection inference and model averaging
Directory of Open Access Journals (Sweden)
Georges Nguefack-Tsague
2011-07-01
Full Text Available Although model selection is routinely used in practice nowadays, little is known about its precise effects on any subsequent inference that is carried out. The same goes for the effects induced by the closely related technique of model averaging. This paper is concerned with the use of the same data first to select a model and then to carry out inference, in particular point estimation and point prediction. The properties of the resulting estimator, called a post-model-selection estimator (PMSE, are hard to derive. Using selection criteria such as hypothesis testing, AIC, BIC, HQ and Cp, we illustrate that, in terms of risk function, no single PMSE dominates the others. The same conclusion holds more generally for any penalised likelihood information criterion. We also compare various model averaging schemes and show that no single one dominates the others in terms of risk function. Since PMSEs can be regarded as a special case of model averaging, with 0-1 random-weights, we propose a connection between the two theories, in the frequentist approach, by taking account of the selection procedure when performing model averaging. We illustrate the point by simulating a simple linear regression model.
ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD
Directory of Open Access Journals (Sweden)
Adriano Wagner Ballarin
2003-01-01
Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.
Demand Elasticity on the Transport Market
Directory of Open Access Journals (Sweden)
Teodor Perić
2002-09-01
Full Text Available The elasticity of demand for traffic se1vices is the adaptationof traffic supply to traffic demand. The elasticity of suchdemand is low which is specific of the transport market, especiallyfrom the aspect of designing traffic demand.The essence of the problem of low elasticity can be noticedin three basic properties:First, in the change of place which determines the traffic demandor traffic relation.Second is the continuity of the need to transport goods andpassengers.Third, the needs for transport may vmy according to thechanges in society and economy, and they also change thesources of traffic demand. Therefore, the elasticity of demandfor traffic se1vices is relatively low.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang
2017-01-01
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion
Thermo-elastic optical coherence tomography.
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van
2017-09-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.
Elastic scattering of slow positrons by helium
International Nuclear Information System (INIS)
Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.
1976-01-01
The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)
Elastic and Anelastic Structure Beneath Eurasia
National Research Council Canada - National Science Library
Ekstrom, Goran
1997-01-01
The primary objective of this work has been to map the variations of elastic mantle properties beneath Eurasia over horizontal length scales of approximately 1000-1500 kilometers and vertial length...
Elastic and inelastic heavy ion scattering
International Nuclear Information System (INIS)
Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.
1977-02-01
In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction betwe...... nonlinearity. The balance between dispersion and nonlinearity in the equation is investigated.......Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...... the solitary waves numerically. It is demonstrated that the waves behave almost like solitons in agreement with the fact that the improved Boussinesq equations are nearly integrable. Thus three conservation theorems can be derived from the equations. A new subsonic quasibreather is found in the case of a cubic...
Energy Technology Data Exchange (ETDEWEB)
Erba, A., E-mail: alessandro.erba@unito.it; Mahmoud, A.; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Belmonte, D. [DISTAV, Università di Genova, Corso Europa 26, 16132 Genoa (Italy)
2014-03-28
A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.
International Nuclear Information System (INIS)
Erba, A.; Mahmoud, A.; Dovesi, R.; Belmonte, D.
2014-01-01
A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed
Elastic form factors at higher CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Petratos, G.G. [Kent State Univ., OH (United States)
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1996-01-01
Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...... values.We show that the extremal overall elastic response is alwaysachieved by a configuration consisting of a single properlyoriented crystal. This result is compared to results for isotropicpolycrystals....
Laboratory Tests of Bitumen Samples Elasticity
Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.
2018-05-01
This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.
On the use of elastic-plastic material characteristics for linear-elastic component assessments
International Nuclear Information System (INIS)
Kussmaul, K.; Silcher, H.; Eisele, U.
1995-01-01
In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)
International Nuclear Information System (INIS)
Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco
2014-01-01
Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions
Multiple-level defect species evaluation from average carrier decay
Debuf, Didier
2003-10-01
An expression for the average decay is determined by solving the the carrier continuity equations, which include terms for multiple defect recombination. This expression is the decay measured by techniques such as the contactless photoconductance decay method, which determines the average or volume integrated decay. Implicit in the above is the requirement for good surface passivation such that only bulk properties are observed. A proposed experimental configuration is given to achieve the intended goal of an assessment of the type of defect in an n-type Czochralski-grown silicon semiconductor with an unusually high relative lifetime. The high lifetime is explained in terms of a ground excited state multiple-level defect system. Also, minority carrier trapping is investigated.