WorldWideScience

Sample records for ejections interchange reconnection

  1. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  2. Interchange Slip-Running Reconnection and Sweeping SEP-Beams

    Science.gov (United States)

    Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.

    2011-01-01

    We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.

  3. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  4. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  5. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2016-02-20

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associated coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.

  6. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  7. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Xiang, Yongyuan, E-mail: ruishengzheng@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  8. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-01-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  9. Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection

    Science.gov (United States)

    Kumar, Pankaj; Cho, Kyung-Suk

    2013-09-01

    We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org

  10. Heating and reconnection of the emerging magnetic flux-tubes and the role of the interchange instability

    International Nuclear Information System (INIS)

    Uchida, Y.; Sakurai, T.

    1977-01-01

    In this paper it is proposed that the basic behaviors of newly-emerged magnetic regions (NEMR) as seen in EUV and soft X-rays from space are interpreted by the interchange instability of the magnetic field of NEMR in the global situation surrounding it. It is shown that the situation with the NEMR is unstable against the interchange instability, and a continual relaxation to the lower energy state, or a continual invasion of the magnetic flux of the NEMR to the ambient region in the form of fine bundles or thin sheets, will take place in a short time scale of tau 1 approximately L/Vsub(A) following the change in the boundary condition at the photosphere. The second and the final relaxation is shown to be the enhanced Joule dissipation in a time scale of hours to several days occurring in the thin current sheets on the interface of this intermingled structure which is distributed in a large volume. This hypothesis may provide an explanation for the heating of NEMR to an X-ray emitting temperature, which is otherwise rather difficult to explain. The observed fast reconnection without appreciable flares (except for some smaller brightenings) is another aspect which can be explained in the present hypothesis. Namely, since the situation with the NEMR is unstable for the interchange from the beginning, the stressed configuration is relaxed before storing appreciable energy in the form of magnetic stress and therefore without a drastic release of a large amount of stored stress energy in the form of a flare. (Auth.)

  11. EIT and SXT Observations of a Quiet Region Filament Ejection: First Eruption, Then Reconnection

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We observe a slow-onset quiet-region filament eruption with the EUV Imaging Telescope (EIT) on SOHO, and the Soft X-ray Telescope (SXT) on Yohkoh. This event occurred on 1999 April 18, and was likely the origin of a coronal mass ejection (CME) detected by SOHO at 08:30 UT on that day. In EIT, one-half of the filament shows two stages of evolution: Stage I is a slow, roughly constant upward movement at approx. 1 km per second lasting approximately 6.5 hours, and Stage 2 is a rapid upward eruption at approximately 16 kilometers per second occurring just before the filament disappears into interplanetary space. The other half of the filament shows little motion along the line-of-sight during the time of Stage 1, but erupts along with the rest of the filament during Stage 2. There is no obvious emission from the filament in SXT until Stage 2; at that time an arcade of EUV and soft X-ray loops forms first at the central location of the filament, and then expands outward along the length of the filament channel. A plot of EUV intensity versus time of the central portion of the filament (where the postflare loops initially form) shows a flat profile during Stage 1, and a rapid upturn after the start of Stage 2. This lightcurve is delayed from what would be expected if "tether-cutting" reconnection in the core of the erupting region were responsible for the initiation of the eruption. Rather, these observations suggest that a loss of stability of the magnetic field holding the filament initiates the eruption, with reconnection in the core region occurring only as a byproduct.

  12. EIT And SXT Observations of a Quiet-Region Filament Ejection: First Eruption, Then Reconnection

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J.

    2001-01-01

    We observe a slow-onset quiet-region filament eruption with the Extreme Ultraviolet Imaging Telescope (EIT) on the Solar Heliospheric Observatory (SOHO) and the Soft X-ray Telescope (SXT) on Yohkoh. This event occurred on 1999 April 18 and was likely the origin of a coronal mass ejection detected by SOHO at 08:30 UT on that day. In the EIT observation, one-half of the filament shows two stages of evolution: stage 1 is a slow, roughly constant upward movement at approximately 1 km/s lasting approximately 0.5 hr, and stage 2 is a rapid upward eruption at approximately 16 km/s occurring just before the filament disappears into interplanetary space. The other half of the filament shows little motion along the line of sight during the time of stage 1 but erupts along with the rest of the filament during stage 2. There is no obvious emission from the filament in the SXT observation until stage 2; at that time, an arcade of EUV and soft X-ray loops forms first at the central location of the filament and then expands outward along the length of the filament channel. A plot of EUV intensity versus time of the central portion of the filament (where the postflare loops initially form) shows a flat profile during stage 1 and a rapid upturn after the start of stage 2. This light curve is delayed from what would be expected if 'tether-cutting' reconnection in the core of the erupting region were responsible for the initiation of the eruption. Rather, these observations suggest that a loss of stability of the magnetic field holding the filament initiates the eruption, with reconnection in the core region occurring only as a by-product.

  13. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Science.gov (United States)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  14. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  15. THREE-DIMENSIONAL GEOMETRY OF A CURRENT SHEET IN THE HIGH SOLAR CORONA: EVIDENCE FOR RECONNECTION IN THE LATE STAGE OF THE CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Webb, David, E-mail: rkwon@gmu.edu [ISR, Boston College, Chestnut Hill, MA (United States)

    2016-07-20

    Motivated by the standard flare model, ray-like structures in the wake of coronal mass ejections (CMEs) have been often interpreted as proxies of the reconnecting current sheet connecting the CME with the postflare arcade. We present the three-dimensional properties of a post-CME ray derived from white light images taken from three different viewing perspectives on 2013 September 21. By using a forward modeling method, the direction, cross section, and electron density are determined within the heliocentric distance range of 5–9 R {sub ⊙}. The width and depth of the ray are 0.42 ± 0.08 R {sub ⊙} and 1.24 ± 0.35 R {sub ⊙}, respectively, and the electron density is (2.0 ± 0.5) × 10{sup 4} cm{sup 3}, which seems to be constant with height. Successive blobs moving outward along the ray are observed around 13 hr after the parent CME onset. We model the three-dimensional geometry of the parent CME with the Gradual Cylindrical Shell model and find that the CME and ray are coaxial. We suggest that coaxial post-CME rays, seen in coronagraph images, with successive formation of blobs could be associated with current sheets undergoing magnetic reconnection in the late stage of CMEs.

  16. Intermittent magnetic reconnection in TS-3 merging experiment

    International Nuclear Information System (INIS)

    Ono, Y.; Hayashi, Y.; Ii, T.; Tanabe, H.; Ito, S.; Kuwahata, A.; Ito, T.; Kamino, Y.; Yamada, T.; Inomoto, M.

    2011-01-01

    Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittent reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.

  17. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  18. Magnetic Reconnection

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Kulsrud, Russell; Ji, Hantao

    2009-01-01

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.

  19. Reconnection on the Sun

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  20. Random Interchange of Magnetic Connectivity

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  1. Transient and intermittent magnetic reconnections in TS-3/UTST merging startup experiments

    International Nuclear Information System (INIS)

    Ono, Y.; Imazawa, R.; Imanaka, H.; Hayamizu, T.; Inomoto, M.; Sato, M.; Kawamori, E.; Ejiri, A.; Takase, Y.; Asai, T.; Takahashi, T.

    2007-01-01

    The high-power reconnection heating has been developed in the TS-3 merging experiments, leading us to a new pulsed high-beta spherical tokamak (ST) formation. Two ST plasmas were produced inductively by two or four PF coils without using any central solenoid (CS) coil and were merged together for MW-GW reconnection heating. The magnetic reconnection transformed the magnetic energy of reconnecting magnetic field through the outflow kinetic energy finally to the ion thermal energy, increasing the plasma beta of ST up to 0.5. A new finding is that ejection of current sheet (or plasmoid) causes high-speed merging/ reconnection as well as high-power heating. In the high-q ST merging, the sheet resistivity was almost classical due to the sheet thickness much longer than ion gyroradius. Large inflow flux and low current-sheet dissipation resulted in flux pileup followed by rapid growth of the current sheet. When the flux pileup exceeded a critical limit, the sheet was ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed was slow during the flux pileup and was fast during the ejection, indicating that intermittent reconnection similar to the solar flare increased the averaged reconnection speed. These transient effects enable us to have the fast reconnection as well as the high-power reconnection heating, even if the merging high-q tokamaks have low current-sheet resistivity. (author)

  2. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  3. EMP protection technology interchange

    International Nuclear Information System (INIS)

    Martin, L.C.

    1977-01-01

    Investigation and assessment of the potential degrading and destructive effects associated with the nuclear electromagnetic (EMP) phenomena has created a large technological base. This base is indeed quite broad owing to the unique and system-pervasive character of the EMP. One of the aims of an emerging discipline, such as that associated with EMP, is to provide for adequate transfer and integration of the developing technology into the overall engineering community. The needs of the community and how EMP hardening and protection information can be transferred or exchanged are reviewed. Many of the current and generally available sources of information are listed, examples of interchange methods are provided, and problems of developing specifications, standards, and suitable guidelines for design and incorporation of protection are also discussed

  4. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    Science.gov (United States)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  5. Extrap interchange stability

    International Nuclear Information System (INIS)

    Scheffel, J.

    1989-05-01

    This is a non-linear MHD study of Extrap interchange stability. The closed-line stability criterion d(pgγ)/dψ ≥ 0 is used for fully 2-D numerical calculations of marginally stable equilibria. It is found that Extrap has a stabilzing effect on these modes. The reason for this is that q = Ιdl/B diverges towards the separatrix, which forms a boundary for the pinch. Consequently, in comparison with the 1-D Z-pinch, the Extrap octupole field allows steeper pressure profile in the boundary region. This stabilizing effect is shown to diminish in equilibria with an externally imposed axial magnetic field. It is also shown how the shape of the plasma cross-section depends on the relative direction of plasma current and external rod currents, when the current density j is finite on the boundary. Unfavourable curvature and higher values of j at the boundary are obtained in the case of parallel currents. Only when j vanishes at the separatrix, the cross-section can be truly square-shaped. The type of singularity of q at the separatrix is derived, as well as criteria for j to become singular

  6. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  7. Forced magnetic reconnection

    Science.gov (United States)

    Vekstein, G.

    2017-10-01

    This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.

  8. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  9. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  10. Effect of magnetic reconnection in stellar plasma

    Science.gov (United States)

    Hammoud, M.; El Eid, M.; Darwish, M.

    2017-06-01

    An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.

  11. Resistive instabilities and field line reconnection

    International Nuclear Information System (INIS)

    White, R.B.

    1980-05-01

    A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed

  12. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  13. Information interchange system and apparatus

    NARCIS (Netherlands)

    2013-01-01

    To overcome the drawback of difficulties when interchanging a patient's health record among different health information management systems and yet keep the patient's privacy, this invention proposes a method comprising the steps of: extracting, from a certificate, a signature of a first service

  14. Forced magnetic reconnection

    International Nuclear Information System (INIS)

    Hahm, T.S.; Kulsrud, R.M.

    1984-11-01

    By studying a simple model problem, we examine the time evolution of magnetic field islands which are induced by perturbing the boundary surrounding an incompressible plasma with a resonant surface inside. We find that for sufficiently small boundary perturbations, the reconnection and island formation process occurs on the tearing mode time scale defined by Furth, Killeen, and Rosenbluth. For larger perturbations the time scale is that defined by Rutherford. The resulting asymptotic equilibrium is such that surface currents in the resonant region vanish. A detailed analytical picture of this reconnection process is presented

  15. Reconnection in space plasma

    International Nuclear Information System (INIS)

    Terasawa, T.

    1984-01-01

    One of the outstanding problems in space physics is to understand the physical mechanism which governs energy conversion process from magnetic to particle energies, a typical one being the reconnection mechanism. As a possible candidate process of the magnetic reconnection in space, tearing mode instability has been considered. In this paper are discussed selected topics related to the understanding of the tearing mode instability; the effect of the boundary condition, the resonant particle and current filamentation effects, vorticity excitation, and the Hall current effect. 31 refs, 12 figs

  16. Ejection Tower Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Ejection Tower Facility's mission is to test and evaluate new ejection seat technology being researched and developed for future defense forces. The captive and...

  17. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  18. Internal and External Reconnection Series Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  19. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-01-15

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  20. Interchange Recognition Method Based on CNN

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2018-03-01

    Full Text Available The identification and classification of interchange structures in OSM data can provide important information for the construction of multi-scale model, navigation and location services, congestion analysis, etc. The traditional method of interchange identification relies on the low-level characteristics of artificial design, and cannot distinguish the complex interchange structure with interference section effectively. In this paper, a new method based on convolutional neural network for identification of the interchange is proposed. The method combines vector data with raster image, and uses neural network to learn the fuzzy characteristics of the interchange, and classifies the complex interchange structure in OSM. Experiments show that this method has strong anti-interference, and has achieved good results in the classification of complex interchange shape, and there is room for further improvement with the expansion of the case base and the optimization of neural network model.

  1. Magnetic reconnection in nontoroidal plasmas

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2005-01-01

    Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length

  2. Multi-scale observations of magnetic reconnection: Cluster and MMS measurements of the reconnecting magnetopause at the subsolar region and dusk sector

    Science.gov (United States)

    Toledo Redondo, S.; Escoubet, C. P.; Lavraud, B.; Andre, M.; Coxon, J.; Fear, R. C.; Aunai, N.; Hwang, K. J.; Li, W.; Fuselier, S. A.; Giles, B. L.; Russell, C. T.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is a fundamental plasma process that couples the shocked solar wind to the Earth's magnetosphere, allowing the interchange of energy and mass. The X line of magnetic reconnection lies along the magnetopause but its extent and orientation are only partially understood, despite its importance for understanding global solar wind - magnetosphere coupling. We have identified a series of conjunctions between the MMS and Cluster missions where they crossed simultaneously the magnetopause at locations separated by several Earth radii: MMS spacecraft were in the subsolar region while Cluster were in the dusk flank. We identify signatures of reconnection at both spacecraft, allowing us to draw new conclusions about the extent, orientation and time variations of the X line along the magnetopause.

  3. Simulation of small-scale coronal explosives due to magnetic reconnections

    International Nuclear Information System (INIS)

    Fan Quanlin; Feng Xueshang; Xiang Changqing; Zhong Dingkun

    2003-01-01

    The dynamics of small-scale explosive phenomena in the lower corona have been simulated by solving the compressible magnetohydrodynamic equations. Numerical results show that the magnetic reconnections in a long coronal current sheet consist of a series of discrete small reconnection events, coalescence of magnetic islands, and plasmoid ejections, corresponding to the explosive events occurring intermittently and as bursts in a mentioned observational case. The generation of magnetic islands via multiple-X-point reconnection and their coalescence processes, to some extent, are qualitatively similar to the sequence of brightenings in the active region NOAA 8668. The strong ejections are possibly related to the recorded extreme ultraviolet (EUV) emitting structures. Morphological comparison and quantitative check of the plasma parameters support this candidate mechanism, and the idea that explosive events that appear to last long may not be single events, but a succession of explosive events either resolved or unresolved. The temporal energy conversion process is also examined

  4. Magnetic reconnection during eruptive magnetic flux ropes

    Science.gov (United States)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2017-08-01

    Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org

  5. A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2001-01-01

    Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed

  6. Kinetic features of interchange turbulence

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Depret, G

    2005-01-01

    Non-linear gyrokinetic simulations of the interchange instability are discussed. The semi-Lagrangian numerical scheme allows one to address two critical points achieved with simulations lasting several confinement times: an accurate statistical analysis of the fluctuations and the back reaction of the turbulence on equilibrium profiles. Zonal flows are found to quench a 2D + 1D interchange turbulence when one of the species has a vanishing response to zonal modes. Conversely, when streamers dominate, the equilibrium profiles are found to be stiff. In the non-linear regime and steady-state turbulence, the distribution function exhibits a significant departure from a Maxwellian distribution. This property is characterized by an expansion on generalized Laguerre functions with a slow decay of the series of moments. This justifies the use of gyrokinetic simulations since a standard fluid approach, based on a limited number of moments, would certainly require a complex closure so as to take into account the impact of these non-vanishing high order moments

  7. Reconnections of Wave Vortex Lines

    Science.gov (United States)

    Berry, M. V.; Dennis, M. R.

    2012-01-01

    When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…

  8. Reconnecting to the biosphere.

    Science.gov (United States)

    Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances

    2011-11-01

    Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.

  9. The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Bhattacharjee

    2007-04-20

    Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.

  10. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  11. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  12. Colour reconnection in WW events

    CERN Document Server

    D'Hondt, J

    2003-01-01

    Preliminary results are presented for a measurement of the kappa parameter used in the JETSET SK-I model of colour reconnection in W /sup +/W/sup -/ to qq'qq' events at LEP2. An update on the investigation of colour reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different m/sub W/ estimators have different sensitivity to the parametrised colour reconnection effect. Hence the difference between them is an observable with information content about kappa. (6 refs).

  13. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  14. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  15. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  16. Bibliographic information interchange with data independence

    International Nuclear Information System (INIS)

    Macedo, L.F.P. de

    1980-01-01

    A technique for bibliographic information processing, at the standardized interchange format ISO 2709 or ANSI Z39.2, which allows to obtain programs with data independence is developed. A format definition language and manipulation commands which enable data storage and retrieval at the logical level are specified. With this technique it is possible to implement programs which can accept data from any information system, reducing, therefore, the requirements of a common bibliographic information interchange format. (Author) [pt

  17. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    Science.gov (United States)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  18. Spatial characteristics of magnetotail reconnection

    Science.gov (United States)

    Genestreti, Kevin J.

    We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion

  19. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  20. Dipolarization Fronts from Reconnection Onset

    Science.gov (United States)

    Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.

    2012-12-01

    Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.

  1. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  2. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  3. Feasibility of automated foundational ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2014-11-01

    Full Text Available the Source Domain Ontology (sOd), with the domain knowledge com- ponent of the source ontology, the Source Foundational Ontology (sOf ) that is the foundational ontology component of the source ontology that is to be interchanged, and any equivalence... or subsumption mappings between enti- ties in sOd and sOf . – The Target Ontology (tO) which has been interchanged, which comprises the Target Domain Ontology (tOd), with the domain knowledge component of the target ontology, and the Target Foundational Ontology...

  4. A numerical study of two interacting coronal mass ejections

    Directory of Open Access Journals (Sweden)

    J. M. Schmidt

    2004-06-01

    Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  5. Colour reconnection at LEP2

    CERN Document Server

    Abreu, P

    2002-01-01

    The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).

  6. Vortex line topology during vortex tube reconnection

    Science.gov (United States)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  7. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  8. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  9. A search for the origins of a possible coronal mass ejection in the low corona

    Science.gov (United States)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  10. Focus on Nutrition. MCH Program Interchange.

    Science.gov (United States)

    National Center for Education in Maternal and Child Health, Washington, DC.

    This issue of the "MCH Program Interchange" describes selected materials and publications in maternal and child health (MCH) nutrition services and programs. The materials were developed by or are available from federal agencies, state and local public health agencies, and voluntary and professional organizations. The information is intended to…

  11. Bioboxes: standardised containers for interchangeable bioinformatics software.

    Science.gov (United States)

    Belmann, Peter; Dröge, Johannes; Bremges, Andreas; McHardy, Alice C; Sczyrba, Alexander; Barton, Michael D

    2015-01-01

    Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. We propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.

  12. Hierarchical states in the compositional interchange format

    NARCIS (Netherlands)

    Beohar, H.; Nadales Agut, D.E.; Beek, van D.A.; Cuijpers, P.J.L.; Aceto, L.; Sobocinski, P.

    2010-01-01

    CIF is a language designed for two purposes, namely as a specification language for hybrid systems and as an interchange format for allowing model transformations between other languages for hybrid systems. To facilitate the top-down development of a hybrid system and also to be able to express

  13. Process mining for electronic data interchange

    NARCIS (Netherlands)

    Engel, R.; Krathu, W.; Zapletal, M.; Pichler, C.; Aalst, van der W.M.P.; Werthner, H.; Huemer, C.; Setzer, T.

    2011-01-01

    Choreography modeling and service integration received a lot of attention in the last decade. However, most real-world implementations of inter-organizational systems are still realized by traditional Electronic Data Interchange (EDI) standards. In traditional EDI standards, the notion of process or

  14. Design management of electronic data interchange systems

    NARCIS (Netherlands)

    Heck, van H.W.G.M.

    1993-01-01

    This study deals with the management of the design process of Electronic Data Interchange (EDI) systems. Its objectives are (1) to investigate the design process of EDI systems from a practical and theoretical perspective; (2) to develop a model to describe factors relevant to EDI

  15. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  16. Proton ejection project for Saturne

    International Nuclear Information System (INIS)

    Bronca, G.; Gendreau, G.

    1959-01-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [fr

  17. Diverging diamond interchange performance evaluation (I-44 and Route 13)

    Science.gov (United States)

    2011-02-01

    Performance evaluation was conducted on the first diverging diamond interchange (DDI) or double : crossover interchange (DCD) constructed in the United States. This evaluation assessed traffic operations, safety and : public perceptions t...

  18. Financing mechanisms for capital improvements : interchanges, final report, March 2010.

    Science.gov (United States)

    2010-03-01

    This report examines the use of alternative local financing mechanisms for interchange and interchange area infrastructure improvements. The financing mechanisms covered include transportation impact fees, tax increment financing, value capture finan...

  19. Financing mechanisms for capital improvements : interchanges : final report.

    Science.gov (United States)

    2010-03-01

    This report examines the use of alternative local financing mechanisms for interchange and interchange area infrastructure improvements. The financing mechanisms covered include transportation impact fees, tax increment financing, value capture finan...

  20. Colour Reconnection at LEP2

    CERN Document Server

    Nandakumar, Raja

    2001-01-01

    Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.

  1. Rapid reconnection of flux lines

    International Nuclear Information System (INIS)

    Samain, A.

    1982-01-01

    The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)

  2. Whistler dominated quasi-collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Biskamp, D.; Drake, J.F.

    1995-05-01

    A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)

  3. Rapid reconnection in compressible plasma

    International Nuclear Information System (INIS)

    Heyn, M.F.; Semenov, V.S.

    1996-01-01

    A study of set-up, propagation, and interaction of non-linear and linear magnetohydrodynamic waves driven by magnetic reconnection is presented. The source term of the waves generated by magnetic reconnection is obtained explicitly in terms of the initial background conditions and the local reconnection electric field. The non-linear solution of the problem found earlier, serves as a basis for formulation and extensive investigation of the corresponding linear initial-boundary value problem of compressible magnetohydrodynamics. In plane geometry, the Green close-quote s function of the problem is obtained and its properties are discussed. For the numerical evaluation it turns out that a specific choice of the integration contour in the complex plane of phase velocities is much more effective than the convolution with the real Green close-quote s function. Many complex effects like intrinsic wave coupling, anisotropic propagation characteristics, generation of surface and side wave modes in a finite beta plasma are retained in this analysis. copyright 1996 American Institute of Physics

  4. Multiscale Processes in Magnetic Reconnection

    Science.gov (United States)

    Surjalal Sharma, A.; Jain, Neeraj

    The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.

  5. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  6. Impulsive nature in collisional driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, Hideyuki; Hayashi, Takaya; Sato, Tetsuya.

    1995-11-01

    Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)

  7. Breakout Reconnection Observed by the TESIS EUV Telescope

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  8. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)

    2016-01-10

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  9. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    International Nuclear Information System (INIS)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R ⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R ⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s −1 . At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario

  10. Understanding SOL plasma turbulence by interchange motions

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jan; Pitts, R. A.; Nielsen, A.H.; Garcia, O.E.

    2007-01-01

    Roč. 52, č. 16 (2007), s. 192-193 ISSN 0003-0503. [Annual meeting of the division of plasma physics/49th./. Orlando , 12.11.2007-16.11.2007] Grant - others:-(XE) European Training fellowships and Grants (Euratom), EDGETURB Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * scrape-off layer * turbulence * interchange instability Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Event/70125

  11. Study of two-dimensional interchange turbulence

    International Nuclear Information System (INIS)

    Sugama, Hideo; Wakatani, Masahiro.

    1990-04-01

    An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)

  12. Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments

    Science.gov (United States)

    Hare, Jack

    2017-10-01

    Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.

  13. Toward laboratory torsional spine magnetic reconnection

    Science.gov (United States)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  14. Relation of astrophysical turbulence and magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-15

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.

  15. Collisionless magnetic reconnection in large-scale electron-positron plasmas

    International Nuclear Information System (INIS)

    Daughton, William; Karimabadi, Homa

    2007-01-01

    One of the most fundamental questions in reconnection physics is how the dynamical evolution will scale to macroscopic systems of physical relevance. This issue is examined for electron-positron plasmas using two-dimensional fully kinetic simulations with both open and periodic boundary conditions. The resulting evolution is complex and highly dynamic throughout the entire duration. The initial phase is distinguished by the coalescence of tearing islands to larger scale while the later phase is marked by the expansion of diffusion regions into elongated current layers that are intrinsically unstable to plasmoid generation. It appears that the repeated formation and ejection of plasmoids plays a key role in controlling the average structure of a diffusion region and preventing the further elongation of the layer. The reconnection rate is modulated in time as the current layers expand and new plasmoids are formed. Although the specific details of this evolution are affected by the boundary and initial conditions, the time averaged reconnection rate remains fast and is remarkably insensitive to the system size for sufficiently large systems. This dynamic scenario offers an alternative explanation for fast reconnection in large-scale systems

  16. Three-dimensional Oscillatory Magnetic Reconnection

    International Nuclear Information System (INIS)

    Thurgood, Jonathan O.; McLaughlin, James A.; Pontin, David I.

    2017-01-01

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  17. On the cessation of magnetic reconnection

    Directory of Open Access Journals (Sweden)

    M. Hesse

    2004-01-01

    Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary. Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies

  18. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  19. From vortex reconnections to quantum turbulence

    International Nuclear Information System (INIS)

    Lipniacki, T.

    2001-01-01

    An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)

  20. Lessons on collisionless reconnection from quantum fluids

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-12-01

    Full Text Available Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluidity, known as the quantum vortex reconnection. We give a plasma physicists' view of superfluidity to obtain insights on essential processes in collisionless reconnection, including discussion of the kinetic and fluid pictures, wave dynamics, and time reversal asymmetry. The most important lesson from the quantum fluid is the scenario that reconnection is controlled by the physics of topological defects on the microscopic scale, and by the physics of turbulence on the macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.

  1. Relativistic reconnection in near critical Schwinger field

    Science.gov (United States)

    Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri

    2017-10-01

    Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.

  2. Plasmoids everywhere: ideal tearing, the transition to fast reconnection, and solar activity.

    Science.gov (United States)

    Velli, M. C. M.; Pucci, F.; Tenerani, A.; Shi, C.; Del Sarto, D.; Rappazzo, A. F.

    2017-12-01

    We discuss the role of generalized ``ideal" tearing (IT) as a possible trigger mechanism for magnetic reconnection to understand energetic phenomena in the solar atmosphere. We begin with a pedagogical introduction to the IT concept, how it stems from the classical analysis of the tearing instability, what is meant by plasmoids, and the connections of IT to the plasmoid instability and Sweet Parker current sheets. We then proceed to analyze how the IT concept extends to equilibria with flows, small scale kinetic effects, different current structures and different magnetic field topology configurations. Finally we discuss the relationship of reconnection triggering to nonlinear cascades and turbulent evolution, and how different situations may arise depending on scale, boundary conditions, and time-history, from coronal heating via nanoflares, to solar flares and coronal mass ejections. Issues of local topology, dimensionality, anisotropy will also be discussed.

  3. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  4. Interchange stability of noncircular reversed field pinches

    International Nuclear Information System (INIS)

    Skinner, D.A.; Prager, S.C.; Todd, A.M.M.

    1987-08-01

    Interchange (Mercier) stability of toroidal reversed-field-pinch plasmas with noncircular cross-section is evaluated numerically. Marginally stable pressure profiles and beta values are produced. Most shapes, such as indented or vertically elongated, reduce stability by making the net magnetic curvature of the poloidal-field-dominated plasmas yet worse than that of the circle. Horizontally elongated plasmas slightly enhance stability beyond that of the circle as a result of increased shear produced by toroidicity. Such shear enhancement by the toroidal shift of magnetic surfaces might be exploited for future, more comprehensive studies

  5. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, J.; Del Zanna, G.; Mason, H. E. [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Janvier, M. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Aulanier, G.; Schmieder, B. [LESIA, Observatoire de Paris, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); Karlický, M., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: mjanvier@maths.dundee.ac.uk [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.

  6. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  7. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    Science.gov (United States)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  8. Magnetic Reconnection in the Solar Chromosphere

    Science.gov (United States)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  9. Comprehensive Evaluation and Classification of Interchange Diagrammatic Guide Signs’ Complexity

    OpenAIRE

    Li, Yang; Zhao, Xiaohua; He, Qing; Huang, Lihua; Rong, Jian

    2018-01-01

    The effectiveness of interchange diagrammatic guide signs has significant meaning in traffic safety and driver’s understanding. This paper presented a comprehensive evaluation and classification of interchange diagrammatic guide signs’ complexity. The effectiveness of interchange diagrammatic guide signs relies on how well road users can understand those diagrams. This study tested 37 types of diagrams on the visual recognition complexity degree in three levels, general level, partial level, ...

  10. Magnetic reconnection in the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  11. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  12. Achieving robust interchangeability of test assets in ATE systems

    CERN Document Server

    Oblad, R P

    1999-01-01

    This paper identities the key issues that have made if so difficult to achieve asset interchangeability. Several of the historical attempts to solve the problem of asset interchangeability are described, along with an analysis of the reasons that they did not achieve the expected results. Specific topics that are covered are SCPI, VXIplug&play, IVI, ATLAS, and Measurement Subsystems. Principles associated with the ownership of interfaces will be outlined. Finally, a set of rules and principles will be discussed that must be applied to achieve robust asset interchangeability. Robust is defined as interchangeability that can be "guaranteed" without testing all TPSs against the modified test system. (9 refs).

  13. Internet-based data interchange with XML

    Science.gov (United States)

    Fuerst, Karl; Schmidt, Thomas

    2000-12-01

    In this paper, a complete concept for Internet Electronic Data Interchange (EDI) - a well-known buzzword in the area of logistics and supply chain management to enable the automation of the interactions between companies and their partners - using XML (eXtensible Markup Language) will be proposed. This approach is based on Internet and XML, because the implementation of traditional EDI (e.g. EDIFACT, ANSI X.12) is mostly too costly for small and medium sized enterprises, which want to integrate their suppliers and customers in a supply chain. The paper will also present the results of the implementation of a prototype for such a system, which has been developed for an industrial partner to improve the current situation of parts delivery. The main functions of this system are an early warning system to detect problems during the parts delivery process as early as possible, and a transport following system to pursue the transportation.

  14. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  15. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  16. The Diffusion Region in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji

    2011-01-01

    A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.

  17. Electron Surfing Acceleration in Magnetic Reconnection

    OpenAIRE

    Hoshino, Masahiro

    2005-01-01

    We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection syst...

  18. Collisionless magnetic reconnection in a plasmoid chain

    Directory of Open Access Journals (Sweden)

    S. Markidis

    2012-02-01

    Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.

  19. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  20. On the Collisionless Asymmetric Magnetic Reconnection Rate

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.

    2018-04-01

    A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.

  1. Electron acceleration by turbulent plasmoid reconnection

    Science.gov (United States)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  2. Stochastic sawtooth reconnection in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Igochine, V.; Dumbrajs, O.; Zohm, H.; Flaws, A.

    2007-01-01

    In this paper we investigate non-complete sawtooth reconnection in the ASDEX Upgrade tokamak. Such reconnection phenomena are associated with internal m/n = 1/1 kink mode which does not vanish after the crash phase (as would be the case for complete reconnection). It is shown that this sawtooth cannot be fully described by pure m/n = 1/1 mode and that higher harmonics play an important role during the sawtooth crash phase. We employ the Hamiltonian formalism and reconstructed perturbations to model incomplete sawtooth reconnection. It is demonstrated that stochastization appears due to the excitation of low-order resonances which are present in the corresponding q-profiles inside the q = 1 surface which reflects the key role of the q 0 value. Depending on this value two completely different situations are possible for one and the same mode perturbations: (i) the resonant surfaces are present in the q-profile leading to stochasticity and sawtooth crash (q 0 ∼ 0.7 ± 0.1); (ii) the resonant surfaces are not present, which means no stochasticity in the system and no crash event (q 0 ∼ 0.9 ± 0.05). Accordingly the central safety factor value is always less than unity in the case of a non-complete sawtooth reconnection. Our investigations show that the stochastic model agrees well with the experimental observations and can be proposed as a promising candidate for an explanation of the sawtooth reconnection

  3. Achieving fast reconnection in resistive MHD models via turbulent means

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2012-04-01

    Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  4. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sterling, Alphonse C.; Moore, Ronald L., E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-10

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.

  5. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  6. Estimation of tail reconnection lines by AKR onsets and plasmoid entries observed with GEOTAIL spacecraft

    International Nuclear Information System (INIS)

    Murata, Takeshi; Matsumoto, Hiroshi; Kojima, Hirotsugu

    1995-01-01

    We estimate the location of the reconnection line and plasmoid size in the geomagnetic tail using data from the Plasma Wave Instrument onboard the GEOTAIL spacecraft. We first compare AKR onset events with high energy particle observations at geosynchronous orbit. We determine the plasmoid ejection (re-connection) time by the AKR enhancement only when it corrresponds to energetic particle enhancement within five minutes. The traveling time of the plasmoid from the X-line to the spacecraft is calculated by the difference in time of the AKR onset and that of the plasmoid encounter with GEOTAIL. Assuming the plasmoid propagates with the Alfven velocity in the tail lobe as MHD simulations predict, we estimate the location of the reconnection line in 11 events. The results show that the most probable location of the plasmoid edge is distributed around Χ = -60 R E in the GSE coordinates. The estimated size of the plasmoids ranges from 10 to 50 R E in the χ direction. If we apply this result to the alternative plasmoid model in which the evolution of the tearing instability causes the generation of plasmoids, the X-line should be approximately at χ = -35 R E . 15 refs., 3 figs., 1 tab

  7. 3-D magnetic reconnection in colliding laser-produced plasmas

    Science.gov (United States)

    Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava

    2017-10-01

    Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  8. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  9. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  10. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    International Nuclear Information System (INIS)

    Hirabayashi, K.; Hoshino, M.

    2013-01-01

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere

  11. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  12. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations

  13. Magnetic Reconnection in Different Environments: Similarities and Differences

    Science.gov (United States)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2014-01-01

    Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.

  14. Brand and generic medications: Are they interchangeable

    International Nuclear Information System (INIS)

    Al-Jazairi, Abdulrazak S.; Blhareth, S.; Eqtefan, Iyad S.; Al-Suwayeh, Saleh A.

    2008-01-01

    Generic substitution has become a common practice since the late 1970s in the United States. At that time, many of these generics caused bioavailability problems, which fueled suspicions about their efficacy and safety and the Food and Drug Administration (FDA) standards for bioequivalence. In Saudi Arabia, the increasing number of local products raised several concerns with regard to switching from brands to generics. Our objective was to review and examine the basis of the controversy surrounding brand and generic interchangeability and to explore a practical approach in pursuing a switch. Articles indexed initially under terms such as generic medications, generic substitution, bioequivalence and bioinequivalence were identified. These terms were used to search the indexing service, MEDLINE (1966-2006). References from the extracted articles and additional data sources, including the Code of Federal Regulations and Regulatory Guidelines from the FDA Center for Drug Evaluation and research were also reviewed. Foe most drugs, bioequivalence testing generally should enable clinicians to routinely substitute generic for innovator products. However, for narrow therapeutic, critical dose drugs, or for highly variable drugs, safe switching between products can not be assured. These drugs need special precautions and blood level monitoring upon switching. FDA firmly believes that approved generic and brand drugs can be dispensed with the full expectation that the consumer will receive the same clinical benefit. Performing the switch process is an advisable practice to reduce health care costs in countries with strong post-marketing surveillance program, but caution is to be exercised when narrow therapeutic index drugs or highly variable drugs are prescribed. (author)

  15. Magnetic Reconnection in Extreme Astrophysical Environments

    Science.gov (United States)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tionreconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron

  16. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  17. Particle Demagnetization in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  18. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  19. Collecting and Analyzing Stakeholder Feedback for Signing at Complex Interchanges

    Science.gov (United States)

    2014-10-01

    The purpose of this project was to identify design constraints related to signing, markings, and geometry for complex interchanges, and then to identify useful topics for future research that will yield findings that can address those design issues. ...

  20. Good Security Practices for Electronic Commerce, Including Electronic Data Interchange

    National Research Council Canada - National Science Library

    Saltman, Roy

    1993-01-01

    Electronic commerce (EC) is the use of documents in electronic form, rather than paper, for carrying out functions of business or government that require interchange of information, obligations, or monetary value between organizations...

  1. Magnetic field reconnection at the dayside magnetopause

    International Nuclear Information System (INIS)

    Rijnbeek, R.P.

    1992-01-01

    Magnetic field reconnection is a fundamental energy conversion process, and the energy liberated during this process gives rise to phenomena which can be observed in space and laboratory plasmas. At the dayside magnetopause reconnection results in a coupling between the solar wind and the magnetosphere. Manifestations of this include large disturbances in the magnetic field known as flux transfer events, and accelerated plasma flows along the magnetopause. Progress has been made in the development of a physical model incorporating such phenomena, aided by experimental data from various spacecraft missions

  2. Paying for payments: free payments and optimal interchange fees

    OpenAIRE

    Korsgaard, Søren

    2014-01-01

    Do consumers and merchants use the most efficient payment instruments? I examine how inter- change fees, which are fees paid from merchants' banks to consumers' banks when card transactions take place, influence the choice between cash and payment cards. I show that when consumers do not pay transaction fees to banks - a common feature in bank contracts - card use is declining in interchange fees, and surcharging does not neutralize interchange fees. According to my model, banks set interchan...

  3. Towards harmonized data interchange in food consumption data

    DEFF Research Database (Denmark)

    Pakkala, H.; Christensen, Tue; Presser, K.

    2014-01-01

    Food consumption data are collected and used in several fields of science. The data are often combined from various sources and interchanged between different systems. There is, however, no harmonized and widely used data interchange format. In addition, food consumption data are often combined w...... interchange format for food consumption based on work and experiences related to food composition.The aim is that the data interchange format will provide a basis for wider harmonization in the future.......Food consumption data are collected and used in several fields of science. The data are often combined from various sources and interchanged between different systems. There is, however, no harmonized and widely used data interchange format. In addition, food consumption data are often combined...... with other data such as food composition data. In the field of food composition, successful harmonization has recently been achieved by the European Food Information Resource Network, which is now the basis of a standard draft by the European Committee for Standardization. We present an XML-based data...

  4. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  5. Superdiffusion revisited in view of collisionless reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2014-06-01

    Full Text Available The concept of diffusion in collisionless space plasmas like those near the magnetopause and in the geomagnetic tail during reconnection is reexamined making use of the division of particle orbits into waiting orbits and break-outs into ballistic motion lying at the bottom, for instance, of Lévy flights. The rms average displacement in this case increases with time, describing superdiffusion, though faster than classical, is still a weak process, being however strong enough to support fast reconnection. Referring to two kinds of numerical particle-in-cell simulations we determine the anomalous diffusion coefficient, the anomalous collision frequency on which the diffusion process is based, and construct a relation between the diffusion coefficients and the resistive scale. The anomalous collision frequency from electron pseudo-viscosity in reconnection turns out to be of the order of the lower-hybrid frequency with the latter providing a lower limit, thus making similar assumptions physically meaningful. Tentative though not completely justified use of the κ distribution yields κ ≈ 6 in the reconnection diffusion region and, for the anomalous diffusion coefficient, the order of several times Bohm diffusivity.

  6. Reconnecting Youth. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    "Reconnecting Youth" is an elective, credit-bearing course for students at risk of dropping out of school due to frequent absenteeism, low grades, or a history of dropping out. The curriculum focuses on building self-esteem, decision making, personal control, and interpersonal communication skills. The What Works Clearninghouse (WWC)…

  7. Colour reconnection in DELPHI at LEP

    International Nuclear Information System (INIS)

    Abreu, P.

    2003-01-01

    The preliminary results of two different methods for the search of colour reconnection effects (CR), used in the DELPHI experiment at LEP are presented. The methods were found to be largely uncorrelated, and a combined likelihood for values of the κ strength parameter in the SK-I model is given

  8. About 'reconnection' in a collisionless plasma

    International Nuclear Information System (INIS)

    Pellat, R.

    1979-01-01

    Two kinds of mechanisms have been advertised for magnetic field line reconnection in plasmas: a slow diffusive process, proposed by Parker and Sweet (1958), related to the Tearing mode and field line stochasticity; an Alfenic flow, with a fast merging rate, the so-called Petschek theory. The present author considers both mechanisms successively and emphasizes the yet unsolved theoretical difficulties. (Auth.)

  9. Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence

    Science.gov (United States)

    Loureiro, Nuno F.; Boldyrev, Stanislav

    2017-12-01

    It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .

  10. The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection

    International Nuclear Information System (INIS)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L.; Aunai, N.; Karimabadi, H.; Daughton, W.

    2013-01-01

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line

  11. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  12. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  13. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  14. Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind

    Science.gov (United States)

    Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu

    2018-04-01

    The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

  15. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  16. Coronal Mass Ejections: Models and Their Observational Basis

    Directory of Open Access Journals (Sweden)

    P. F. Chen

    2011-04-01

    Full Text Available Coronal mass ejections (CMEs are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼10^11 – 10^13 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s^-1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

  17. Experimental study of ion heating and acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  18. Experimental study of ion heating and acceleration during magnetic reconnection

    International Nuclear Information System (INIS)

    Hsu, S.C.

    2000-01-01

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  19. ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION

    International Nuclear Information System (INIS)

    Birn, J.; Fletcher, L.; Hesse, M.; Neukirch, T.

    2009-01-01

    Using three-dimensional magnetohydrodynamic simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario, reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta), where beta represents the ratio between gas (plasma) and magnetic pressure. The energy conversion process from reconnection consists of incoming Poynting flux turned into up- and downgoing Poynting flux, enthalpy flux, and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson, whereas the enthalpy flux may act as an alternative transport mechanism. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release timescales and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares. Significant enthalpy flux and heating are found even in the initially force-free case with very small background beta, resulting mostly from adiabatic compression rather than Ohmic dissipation. The energy conversion mechanism is most easily understood as a two-step process (although the two steps may occur essentially simultaneously): the first step is the acceleration of the plasma by Lorentz forces in layers akin to the slow shocks in the Petschek reconnection model, involving the conversion of magnetic energy to bulk kinetic

  20. Nuclear medicine image and data interchange through e-mail

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, M; Skouroliakou, K; Perris, A; Georgossopoulos, C; Pappas, D [Radiology Department, Athens University, Athens (Greece); Stefanides, C [Pediatric Hospital, Aglaia Kyriakou, Athens (Greece)

    1999-12-31

    Prosperity of easy interchange in every day practice of Nuclear Medicine found its application through the INTERNET media. We use a simple and safe way to interchange images and diagnostic information between the scintigraphic acquisition and processing location and the clinical department in order to improve patient`s health care and young doctor`s education. images and patient reports are transferred and saved through dedicated software to a workstation that transforms y-camera scintigraphic images in a PC readable format. Diagnosis reports and scintigraphic images are incorporated to a database directory in hypertext form. Usual WWW connection gives the possibility of patients` examinations transfer by email attachments as well as interchange of relative comments towards both directions. Cost effective solution has been achieved using standard hard- and soft-ware. Furthermore, both educational files can be downloaded from our department ftp location, by a unique password. (authors) 7 refs., 3 figs.

  1. Nuclear medicine image and data interchange through e-mail

    International Nuclear Information System (INIS)

    Lyra, M.; Skouroliakou, K.; Perris, A.; Georgossopoulos, C.; Pappas, D.; Stefanides, C.

    1998-01-01

    Prosperity of easy interchange in every day practice of Nuclear Medicine found its application through the INTERNET media. We use a simple and safe way to interchange images and diagnostic information between the scintigraphic acquisition and processing location and the clinical department in order to improve patient's health care and young doctor's education. images and patient reports are transferred and saved through dedicated software to a workstation that transforms y-camera scintigraphic images in a PC readable format. Diagnosis reports and scintigraphic images are incorporated to a database directory in hypertext form. Usual WWW connection gives the possibility of patients' examinations transfer by email attachments as well as interchange of relative comments towards both directions. Cost effective solution has been achieved using standard hard- and soft-ware. Furthermore, both educational files can be downloaded from our department ftp location, by a unique password. (authors)

  2. Arctic warming will promote Atlantic-Pacific fish interchange

    DEFF Research Database (Denmark)

    Wisz, Mary; Broennimann, O.; Grønkjær, Peter

    2015-01-01

    the interchange of marine biota between the two seas. Here, we forecast the potential northward progression of 515 fish species following climate change, and report the rate of potential species interchange between the Atlantic and the Pacific via the Northwest Passage and the Northeast Passage. For this, we...... projected niche-based models under climate change scenarios and simulated the spread of species through the passages when climatic conditions became suitable. Results reveal a complex range of responses during this century, and accelerated interchange after 2050. By 2100 up to 41 species could enter......Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating...

  3. Induced interchange heterozygosity in Sesbania aegyptiaca (poir. ) pers

    Energy Technology Data Exchange (ETDEWEB)

    Zadoo, S.N.

    1987-03-01

    Three plants with reciprocal translocation of chromosomes were isolated from M/sub 1/ progeny of Sesbania aegyptiaca (Poir.) Pers., after treating the dry seeds with 10, 20, 30, 40 and 45 K rad doses of gamma rays. The cytological observation of these plants revealed that in each case a reciprocal interchange involving two non-homologous chromosomes has taken place. The plants have been studied for their meiotic behaviour, with particular reference to type and frequency of multiple associations, mode of orientation of interchange multiple at metaphase-I, disjunction at anaphase-I, and chiasma frequency. The consequences of these factors vis-a-vis the fertility has been discussed.

  4. Interchange Instability and Transport in Matter-Antimatter Plasmas

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  5. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  6. DIRECT OBSERVATIONS OF TETHER-CUTTING RECONNECTION DURING A MAJOR SOLAR EVENT FROM 2014 FEBRUARY 24 TO 25

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Ting [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Cheng, Xin [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2014-12-20

    Using multi-wavelength data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection, in NOAA active region 11990 from 2014 February 24 to 25. Before the confined flare onset, EUV brightening beneath the filament was detected. As the flare began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures in the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures were gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR, together with the filament, erupted outward. Our observations coincide well with a tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between pre-existing loops in an active region. In the ejective flare case, the erupting filament exhibited an Ω-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating that the kink instability might be also responsible for the eruption initiation.

  7. Nonlinear magnetic reconnection in low collisionality plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy)

    1994-07-01

    The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.

  8. Magnetic Reconnection Driven by Thermonuclear Burning

    Science.gov (United States)

    Gatto, R.; Coppi, B.

    2017-10-01

    Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.

  9. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  10. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  11. General connected and reconnected fields in plasmas

    Science.gov (United States)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  12. Multi-megajoule magnetic reconnection experiment

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Holmes, J.L.; Price, D.W.; Cowan, M.; Graham, J.D.; Lopez, E.A.; Ralph, D.; Roderick, N.F.

    1990-01-01

    An experiment to combine many medium energy, current co-axial gun discharges into two high energy, current discharges is discussed. Multiple sub-megampere DPF-like guns are directed radially inward. Their discharges combine via magnetic reconnection to form two several megampere co-axial discharges. Experimental results and relevant 2D simulations are discussed. Diagnostics include current, voltage, fast photography, neutron and x-ray detectors

  13. Aspects of collisionless magnetic reconnection in asymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)

    2013-06-15

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  14. Aspects of collisionless magnetic reconnection in asymmetric systems

    International Nuclear Information System (INIS)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide

  15. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    Science.gov (United States)

    Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  16. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)

    2017-09-10

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  17. Influence of pinches on magnetic reconnection in turbulent space plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  18. Plasmoid statistics in relativistic magnetic reconnection

    Science.gov (United States)

    Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.

    2018-04-01

    Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.

  19. Magnetic Reconnection in MHD and Kinetic Turbulence

    Science.gov (United States)

    Loureiro, Nuno; Boldyrev, Stanislav

    2017-10-01

    Recent works have revisited the current understanding of Alfvénic turbulence to account for the role of magnetic reconnection. Theoretical arguments suggest that reconnection inevitably becomes important in the inertial range, at the scale where it becomes faster than the eddy turnover time. This leads to a transition to a new sub-inertial interval, suggesting a route to energy dissipation that is fundamentally different from that envisioned in the usual Kolmogorov-like phenomenology. These concepts can be extended to collisionless plasmas, where reconnection is enabled by electron inertia rather than resistivity. Although several different cases must then be considered, a common result is that the energy spectrum exhibits a scaling with the perpendicular wave number that scales between k⊥- 8 / 3 and k⊥- 3 , in favourable agreement with many numerical results and observations. Work supported by NSF-DOE Partnership in Basic Plasma Science and Engineering, Award No. DE-SC0016215, and by NSF CAREER Award No. 1654168 (NFL); and by NSF Grant NSF AGS- 1261659 and by the Vilas Associates Award of UWM (SB).

  20. Radio Emissions from Magnetopause Reconnection Events

    Science.gov (United States)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  1. Why fast magnetic reconnection is so prevalent

    Science.gov (United States)

    Boozer, Allen H.

    2018-02-01

    Evolving magnetic fields are shown to generically reach a state of fast magnetic reconnection in which magnetic field line connections change and magnetic energy is released at an Alfvénic rate. This occurs even in plasmas with zero resistivity; only the finiteness of the mass of the lightest charged particle, an electron, is required. The speed and prevalence of Alfvénic or fast magnetic reconnection imply that its cause must be contained within the ideal evolution equation for magnetic fields, , where is the velocity of the magnetic field lines. For a generic , neighbouring magnetic field lines develop a separation that increases exponentially, as \\unicode[STIX]{x1D70E(\\ell ,t)}$ with the distance along a line. This exponentially enhances the sensitivity of the evolution to non-ideal effects. An analogous effect, the importance of stirring to produce a large-scale flow and enhance mixing, has been recognized by cooks through many millennia, but the importance of the large-scale flow to reconnection is customarily ignored. In part this is due to the sixty-year focus of recognition theory on two-coordinate models, which eliminate the exponential enhancement that is generic with three coordinates. A simple three-coordinate model is developed, which could be used to address many unanswered questions.

  2. An electromagnetic drift instability in the magnetic reconnection experiment and its importance for magnetic reconnection

    International Nuclear Information System (INIS)

    Kulsrud, Russell; Ji Hantao; Fox, William; Yamada, Masaaki

    2005-01-01

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (magnetic reconnection experiment) [M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bertz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997)] that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating lower hybrid drift instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasilinear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX, the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process

  3. An Electromagnetic Drift Instability in the Magnetic Reconnection Experiment (MRX) and its Importance for Magnetic Reconnection

    International Nuclear Information System (INIS)

    Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada

    2005-01-01

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process

  4. OBSERVATION OF MAGNETIC RECONNECTION AT A 3D NULL POINT ASSOCIATED WITH A SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Sun, J. Q.; Yang, K.; Cheng, X.; Ding, M. D.; Zhang, J.

    2016-01-01

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The Geostationary Operational Environmental Satellites X-ray profile of the flare exhibited two peaks at ∼02:23 UT and ∼02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X-ray peak was originated from MR in the current sheet (CS) underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null point located above the pre-eruption MFR. The interaction of the null point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null point, resulting in a significant displacement of the magnetic field surrounding the null. During the second step, the displaced magnetic field started to move back, resulting in a converging inflow and subsequently the MR around the null. The null-point reconnection is a different process from the current sheet reconnection in this flare; the latter is the cause of the main peak of the flare, while the former is the cause of the secondary peak of the flare and the conspicuous high-lying cusp structure.

  5. Ultrasound - Aided ejection in micro injection molding

    Science.gov (United States)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  6. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi [National Astronomical Observatory of Japan, Tokyo, 181-8588 (Japan); Hudson, Hugh S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); White, Stephen M. [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776 (United States); Bastian, Timothy S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Iwai, Kazumasa, E-mail: masumi.shimojo@nao.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 (Japan)

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  7. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng [Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216 (China); Elmhamdi, Abouazza; Kordi, Ayman S. [Department of Physics and Astronomy, King Saud University, P.O. Box 2455, 11451 (Saudi Arabia); Su, Jiangtao [University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Ying D., E-mail: ydshen@ynao.ac.cn [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-08-20

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory . The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s{sup −1}. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  8. Electronic Data Interchange (EDI) for Libraries and Publishers.

    Science.gov (United States)

    Santosuosso, Joe

    1992-01-01

    Defines electronic data interchange (EDI) as the exchange of data between computer systems without human intervention or interpretation. Standards are discussed; and the implementation of EDI in libraries and the serials publishing community in the areas of orders and acquisitions, claims, and invoice processing is described. (LRW)

  9. CEN MetaLex: Facilitating Interchange in e-Government

    NARCIS (Netherlands)

    Boer, A.; Winkels, R.

    2011-01-01

    MetaLex is a generic and extensible interchange framework for the XML encoding of the structure of, and metadata about, documents that function as a source of law. It aims to be jurisdiction and language-neutral, and is based on modern XML publishing concepts like a strict separation between text,

  10. RECONNECTION OUTFLOWS AND CURRENT SHEET OBSERVED WITH HINODE/XRT IN THE 2008 APRIL 9 'CARTWHEEL CME' FLARE

    International Nuclear Information System (INIS)

    Savage, Sabrina L.; McKenzie, David E.; Longcope, Dana W.; Reeves, Katharine K.; Forbes, Terry G.

    2010-01-01

    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories, which slow as they reach the top of the arcade, are consistent with post-reconnection magnetic flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We present X-ray Telescope (XRT) observations of supra-arcade downflowing loops (SADLs) following a coronal mass ejection (CME) on 2008 April 9 and show that their speeds and decelerations are consistent with those determined for SADs. We also present evidence for a possible current sheet observed during this flare that extends between the flare arcade and the CME. Additionally, we show a correlation between reconnection outflows observed with XRT and outgoing flows observed with LASCO.

  11. Comparison of reconnection in magnetosphere and solar corona

    Science.gov (United States)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  12. Accessing the Asymmetric Collisionless Reconnection Regime in the Terrestrial Reconnection Experiment (TREX)

    Science.gov (United States)

    Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.

    2017-12-01

    Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.

  13. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  14. Apparatus, System and Method for Fast Detection of Genetic Information by PCR in an Interchangeable Chip

    KAUST Repository

    Wen, Weijia; Wu, Jinbo; Kodzius, Rimantas

    2011-01-01

    A polymerase chain reaction (PCR) device for fast amplification and detection of DNA includes an interchangeable PCR chamber, a temperature control component, and an optical detection system. The DNA amplification is performed on an interchangeable

  15. Magnetic Reconnection at a Three-dimensional Solar Null Point

    DEFF Research Database (Denmark)

    Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus

    2012-01-01

    Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or sol...

  16. Tail reconnection in the global magnetospheric context: Vlasiator first results

    Science.gov (United States)

    Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael

    2017-11-01

    The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.

  17. Reconnection in Solar Flares: Outstanding Questions Hiroaki Isobe ...

    Indian Academy of Sciences (India)

    Although the idea of magnetic reconnection for explaining the energy release in solar flares had been proposed many decades ago (Parker 1957; Sweet. 1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag- netic reconnection occurring during solar flares was established. Examples of evi-.

  18. Progress in the theory of magnetic reconnection phenomena

    International Nuclear Information System (INIS)

    Ottaviani, M.; Arcis, N.; Maget, P.; Zwingmann, W.; Grasso, D.; Militello, F.; Porcelli, F.

    2004-01-01

    Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)

  19. Reconnection conditions for a coaxial plasma gun

    International Nuclear Information System (INIS)

    Berk, H.L.; Hammer, J.H.; Shearer, J.W.

    1982-01-01

    A fluid model for the flow conditions necessary to form a compact torus from the plasma ejected by a coaxial plasma gun is developed. This is done by finding the conditions for which the steady-flow equations break down. Results are found for two cases; variable external flux and variable outer-wall radius

  20. Radio Evidence of Break-out Reconnection?

    Czech Academy of Sciences Publication Activity Database

    Aurass, H.; Mann, G.; Zlobec, P.; Karlický, Marian

    2011-01-01

    Roč. 730, č. 1 (2011), 57/1-57/9 ISSN 0004-637X Institutional research plan: CEZ:AV0Z10030501 Keywords : solarcorona * coronal mass ejections * solar flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  1. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  2. The Time-Dependent Structure of the Electron Reconnection Layer

    Science.gov (United States)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2009-01-01

    Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.

  3. Magnetic Reconnection Results on the Swarthmore Spheromak Experiment

    Science.gov (United States)

    Kornack, T. W.; Sollins, P. K.; Brown, M. R.

    1997-11-01

    Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.

  4. 32 CFR 644.409 - Procedures for Interchange of National Forest Lands.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Procedures for Interchange of National Forest... Interests § 644.409 Procedures for Interchange of National Forest Lands. (a) General. The interchange of national forest lands is accomplished in three steps: first, agreement must be reached between the two...

  5. Reload pattern optimization by application of multiple cyclic interchange algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Quist, A.J.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands)

    1996-09-01

    Reload pattern optimization procedures are proposed which are based on the multiple cyclic interchange approach, according to which the search for the reload pattern associated with the highest objective function value can be thought of as divided in multiple stages. The transition from the initial to the final stage is characterized by an increase in the degree of locality of the search procedure. The general idea is that, during the first stages, the `elite` cluster containing the group of best patterns must be located, after which the solution space is sampled in a more and more local sense to find the local optimum in this cluster. The transition(s) from global search behaviour to local search behaviour can be either prompt, by defining strictly separate search regimes, or gradual by introducing stochastic tests for the number of fuel bundles involved in a cyclic interchange. Equilibrium cycle optimization results are reported for a test PWR reactor core of modest size. (author)

  6. Reload pattern optimization by application of multiple cyclic interchange algorithms

    International Nuclear Information System (INIS)

    Geemert, R. van; Quist, A.J.; Hoogenboom, J.E.

    1996-01-01

    Reload pattern optimization procedures are proposed which are based on the multiple cyclic interchange approach, according to which the search for the reload pattern associated with the highest objective function value can be thought of as divided in multiple stages. The transition from the initial to the final stage is characterized by an increase in the degree of locality of the search procedure. The general idea is that, during the first stages, the 'elite' cluster containing the group of best patterns must be located, after which the solution space is sampled in a more and more local sense to find the local optimum in this cluster. The transition(s) from global search behaviour to local search behaviour can be either prompt, by defining strictly separate search regimes, or gradual by introducing stochastic tests for the number of fuel bundles involved in a cyclic interchange. Equilibrium cycle optimization results are reported for a test PWR reactor core of modest size. (author)

  7. XAFS Data Interchange: A single spectrum XAFS data file format

    International Nuclear Information System (INIS)

    Ravel, B.; Newville, M.

    2016-01-01

    We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages. (paper)

  8. MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere

    Science.gov (United States)

    DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya

    2015-04-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which

  9. Nonlinear growth of the quasi-interchange instability

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1988-07-01

    In this paper nonlinear effects on the growth of a pressure-driven, interchange-like mode are investigated. This mode is thought to be responsible for the sawtooth crashes observed in JET and successfully accounts for most of their features. The analysis presented here differs from previous bifurcation calculations by the inclusion of toroidal coupling effects. Toroidal curvature, which is important for pressure-driven modes, destroys the helical symmetry which is typical of kink-like instabilities. 14 refs., 3 figs

  10. Towards Building a Uniform Cloud Database Representation for Data Interchange

    Directory of Open Access Journals (Sweden)

    Andreica Alina

    2016-12-01

    Full Text Available The paper proposes design principles for data representation and simplification in order to design cloud services for data exchange between various information systems. We use equivalence algorithms and canonical representation in the cloud database. The solution we describe brings important advantages in organizational / entity communication and cooperation, with important societal benefits and can be provided within cloud architectures. The generic design principles we apply bring important advantages in the design of the interchange services.

  11. Market structure and credit card pricing: what drives the interchange?

    OpenAIRE

    Zhu Wang

    2008-01-01

    This paper presents a model for the credit card industry, where oligopolistic card networks price their products in a complex marketplace with competing payment instruments, rational consumers/merchants, and competitive card issuers/acquirers. The analysis suggests that card networks demand higher interchange fees to maximize card issuers' profits as card payments become more efficient. At equilibrium, consumer rewards and card transaction volume also increase, while consumer surplus and merc...

  12. XML-Based SHINE Knowledge Base Interchange Language

    Science.gov (United States)

    James, Mark; Mackey, Ryan; Tikidjian, Raffi

    2008-01-01

    The SHINE Knowledge Base Interchange Language software has been designed to more efficiently send new knowledge bases to spacecraft that have been embedded with the Spacecraft Health Inference Engine (SHINE) tool. The intention of the behavioral model is to capture most of the information generally associated with a spacecraft functional model, while specifically addressing the needs of execution within SHINE and Livingstone. As such, it has some constructs that are based on one or the other.

  13. NN interaction from bag-model quark interchange

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.

    1982-03-01

    A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV.

  14. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime

  15. Electronic data interchange in the Canadian natural gas industry

    International Nuclear Information System (INIS)

    Sheinfield, J.

    1995-01-01

    The concept of electronic data interchange (EDI) in the gas industry was discussed. EDI as a champion of costumer service and as a powerful management tool was defined, and the process of electronic information transfer was explained. EDI was then placed in the context of the business process, and its benefits in providing efficient service and product improvement were enumerated. North American Gas EDI standards, and industry initiatives were explored in detail

  16. NN interaction from bag-model quark interchange

    International Nuclear Information System (INIS)

    Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.

    1982-01-01

    A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV

  17. Development of a current sheet in the wake of a fast coronal mass ejection

    International Nuclear Information System (INIS)

    Ling, A. G.; Webb, D. F.; Burkepile, J. T.; Cliver, E. W.

    2014-01-01

    A bright ray that developed in the wake of a fast coronal mass ejection (CME) on 2005 September 7 presents a unique opportunity to study the early development and physical characteristics of a reconnecting current sheet (CS). Polarization brightness images from the Mk4 K-Coronameter at the Mauna Loa Solar Observatory are used to determine the structure of the ray along its axis low in the corona as it progressed outward. Coverage of the early development of the ray out to ∼1.3 R ☉ for a period of ∼27 hr after the start of the event enables for the first time in white light a measurement of a CME CS from the top of the arcade to the base of the flux rope. Measured widths of the ray are combined to obtain the kinematics of the upper and lower Y- points described in reconnection flux-rope models such as that of Lin and Forbes. The time dependence of these points are used to derive values for the speed and acceleration of the growth of the CS. We note the appearance of a large structure which increases in size as it expands outward in the early development of the ray and an apparent oscillation with a period of ∼0.5 hr in the position angle of the ray.

  18. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    Science.gov (United States)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  19. Particle Acceleration and Heating by Turbulent Reconnection

    Science.gov (United States)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  20. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  1. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2016-08-10

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  2. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  3. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  4. Hall MHD reconnection in cometary magnetotail

    International Nuclear Information System (INIS)

    Jovanovic, Dusan; Shukla, Padma Kant; Morfill, Gregor

    2005-01-01

    The fine structure of cometary tails (swirls, loops and blobs) is studied in the framework of resistive magnetic reconnection without a guide field in a dusty plasma. For a high-beta plasma (β ∼ 1) consisting of electrons, ions, and immobile dust grains, a two-fluid description is used to study electromagnetic perturbations with the frequency below Ωi, propagating at an arbitrary angle, and including the effects of Hall current. A zero-order current associated with the anti-parallel magnetic configuration may exist even in the limit of zero plasma temperature in a dusty plasma due to a symmetry breaking between electrons and ions by dust grains that yields an E-vector x B-vector current. In the perturbed state, a new linear electromagnetic mode is found in dusty plasma which is evanescent below the Rao cut-off frequency and has the characteristic wavelength comparable to the ion skin depth, which enables the reconnection at short spatial scales. The role of the dust is found to be twofold, yielding a new mode outside of the current sheet and altering the continuity conditions at its edge by an inhomogeneous Doppler shift associated with the E-vector x B-vector current

  5. Magnetic reconnection physics in the solar wind with Voyager 2

    Science.gov (United States)

    Stevens, Michael L.

    2009-08-01

    Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found

  6. A self-organized plasma with induction, reconnection, and injection techniques: the SPIRIT concept for field reversed configuration research

    International Nuclear Information System (INIS)

    Yamada, Masaaki; JI, Hantao; Gerhardt, Stefan P.; Belova, Elena V.; Davidson, Ronald C.; Mikkelsen, David R.

    2007-01-01

    A comprehensive research concept, known as SPIRIT, is described for the investigation of the formation, stability, and sustainment of oblate field reversed configurations (FRCs). This concept, whose name stands for Self-organized Plasma with Induction, Reconnection, and Injection Techniques (SPIRIT), allows for the study of FRC stability properties on time scales much longer than the energy confinement time. Counter-helicity merging of inductively formed spheromaks is utilized to form large-flux FRCs. These FRCs are sustained by neutral beam injection with the initial aid of compact ohmic solenoids. Stability to n=1 tilt/shift modes is provided by plasma shaping and conducting shells. Stability to n ≥ 2 co-interchange modes is achieved by a distribution of high-energy non-thermal ions provided by the neutral beam. The combination of plasma shaping, conducting shells, current sustainment, and the non-thermal beam component are expected to lead to a configuration with stability to all global MHD modes, a regime recently discovered through hybrid-MHD simulation using the HYM code. An experimental test of the concept, utilizing the existing Magnetic Reconnection Experiment (MRX) facility, is described. Initial experiments in MRX have confirmed the viability of the SPIRIT concept, and calculations indicate that the confinement of high-energy ions in MRX should be sufficient to test the SPIRIT concept. (author)

  7. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    International Nuclear Information System (INIS)

    Pontin, D. I.; Wyper, P. F.

    2015-01-01

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic flux (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed

  8. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  9. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  10. Study of driven magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Bretz, N.; Jobes, F.; Ono, Yasushi; Perkins, F.

    1998-01-01

    The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S much-gt 1, ρ i much-lt L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration

  11. Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.

    1999-01-01

    During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

  12. Total magnetic reconnection during a tokamak major disruption

    International Nuclear Information System (INIS)

    Goetz, J.A.

    1990-09-01

    Magnetic reconnection has long been considered to be the cause of sawtooth oscillations and major disruptions in tokamak experiments. Experimental confirmation of reconnection models has been hampered by the difficulty of direct measurement of reconnection, which would involve tracing field lines for many transits around the tokamak. Perhaps the most stringent test of reconnection in a tokamak involves measurement of the safety factor q. Reconnection arising from a single helical disturbance with mode numbers m and n should raise q to m/n everywhere inside of the original resonant surface. Total reconnection should also flatten the temperature and current density profiles inside of this surface. Disruptive instabilities have been studied in the Tokapole 2, a poloidal divertor tokamak. When Tokapole 2 is operated in the material limiter configuration, a major disruption results in current termination as in most tokamaks. However, when operated in the magnetic limiter configuration current termination is suppressed and major disruptions appear as giant sawtooth oscillations. The objective of this thesis is to determine if total reconnection is occurring during major disruptions. To accomplish this goal, the poloidal magnetic field has been directly measured in Tokapole 2 with internal magnetic coils. A full two-dimensional measurement over the central current channel has been done. From these measurements, the poloidal magnetic flux function is obtained and the magnetic surfaces are plotted. The flux-surface-averaged safety factor is obtained by integrating the local magnetic field line pitch over the experimentally obtained magnetic surface

  13. How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?

    Science.gov (United States)

    Hesse, Michael

    2009-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  14. Dependence of the dayside magnetopause reconnection rate on local conditions

    Science.gov (United States)

    Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.

    2015-08-01

    We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.

  15. A new fast reconnection model in a collisionless regime

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2008-01-01

    Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M c ' less =(c/ω pe ) 2 /(r L,e L)] than Sweet-Parker's classical one (M sp =S -1/2 ). The width of the diffusion region (current sheet) in the collisionless regime is found to be δ c ' less =(c/ω pe ) 2 /r L,e , which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/ω pe , and electron Larmor radius, r L,e ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.

  16. Proton ejection project for Saturne; Projet d'ejection des protons de saturne

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G; Gendreau, G

    1959-07-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [French] On donne d'abord les raisons du choix du systeme d'ejection, puis le principe. Apres les caracteristiques requises pour le faisceau ejecte, on decrit le processus d'ejection selon l'ordre chronologique vu par les protons: mouvement des particules compte tenu des divers elements composant le systeme (aimant interne, aimant externe, quadrupoles, enroulements correcteurs ejection, cibles mince et epaisse,. ..) et cahier de charge de ces elements. On estime, ensuite les delais de realisation et le cout du projet. Enfin, un resume des caracteristiques des aimants et quadrupoles est donne en appendice. (auteur)

  17. MMS Encounters with Reconnection Diffusion Regions in the Earth's Magnetotail

    Science.gov (United States)

    Torbert, R. B.; Burch, J. L.; Argall, M. R.; Farrugia, C. J.; Alm, L.; Dors, I.; Payne, D.; Rogers, A. J.; Strangeway, R. J.; Phan, T.; Ergun, R.; Goodrich, K.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Giles, B. L.; Rager, A. C.; Gershman, D. J.; Kletzing, C.

    2017-12-01

    The Magnetospheric Multiscale (MMS) fleet of four spacecraft traversed the Earth's magnetotail in May through August of 2017 with an apogee of 25 Re, and encountered diffusion regions characteristic of symmetric reconnection. This presentation will describe in-situ measurements of large electric fields, strong electron cross-tail and Hall currents, and electron velocity distributions (frequently crescent-shaped) that are commonly observed in these regions. Positive electromagnetic energy conversion is also typical. The characteristics of symmetric reconnection observations will be contrasted with those of asymmetric reconnection that MMS observed previously at the dayside magnetopause.

  18. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    International Nuclear Information System (INIS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2011-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  19. New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha

    2012-01-01

    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

  20. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  1. Process of magnetic reconnection as a source of longitudinal currents

    International Nuclear Information System (INIS)

    Sidneva, M.V.; Semenov, V.S.

    1987-01-01

    Variations in magnetic field and current system as applied to conditions in the Earth magnetospheric tail are calculated so as to show that three-dimensional reconnection leads inevitably to the appearance of a system of longitudinal currents. With reference to current layer of the magnetospheric tail the longitudinal currents appearing in the process of reconnection are directed to the Earth on the morning side and from Earth - on the evening side. The results presented suggest that magnetic reconnection can serve as a sourse of the Birkeland current loop of a substorm

  2. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  3. On the mass ejected by supernova explosions

    International Nuclear Information System (INIS)

    Bohigas, J.

    1984-01-01

    A simple model is developed in order to calculate the mass ejected by superonovae. We find that the 185, 1006, 1572 and 1604 AD events, all of them classified as either probable or possible type I supernovae, ejected between 0.1 and 0.4 solar masses with an expansion velocity of roughly 10,000 km s -1 . This range of masses suggests that a collapsed object is at the center of the remnants produced by these supernovae if the precursor was a white dwarf whose mass was closed to the Chandrasekhar limit. For the Crab we obtain an ejected mass of 0.45 Msub(sun) and point out that this value is not in contradiction with a proposal in which the moderate helium stars are good candidates for producing this kind of supernovae. Finally we obtain an ejected mass of 3.1 Msub(sun) for Cas A, indicating that a type II event produced this remnant. This ejected mass is closed to what would be expected for a progenitor like an OBN star. (author)

  4. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  5. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  6. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  7. Statistical analysis of anomalous transport in resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sugama, Hideo; Wakatani, Masahiro.

    1992-01-01

    A new anomalous transport model for resistive interchange turbulence is derived from statistical analysis applying two-scale direct-interaction approximation to resistive magnetohydrodynamic equations with a gravity term. Our model is similar to the K-ε model for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are expressed in terms of by the turbulent kinetic energy K and its dissipation rate ε while K and ε are determined by transport equations. This anomalous transport model can describe some nonlocal effects such as those from boundary conditions which cannot be treated by conventional models based on the transport coefficients represented by locally determined plasma parameters. (author)

  8. Directory interchange format manual, version 3.0

    Science.gov (United States)

    1990-01-01

    The Directory Interchange Format (DIF) is a data structure used to exchange directory level information about data sets among information systems. The format consists of a number of fields that describe the attributes of a directory entry and text blocks that contain a descriptive summary of and references for the directory entry. All fields and the summary are preceded by labels identifying their contents. All values are ASCII character strings. The structure is intended to be flexible, allowing for future changes in the contents of directory entries.

  9. Ultrasonographic ejection fraction of normal gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hun; Kim, Seung Yup; Park, Yaung Hee; Kang, Ik Won; Yoon, Jong Sup [Hangang Sacred Heart Hospital, Halym College, Chuncheon (Korea, Republic of)

    1984-06-15

    Real-time ultrasonography is a simple, accurate, noninvasive and potentially valuable means of studying gallbladder size and emptying. The authors calculated ultrasonographically the ejection fraction of 80 cases of normally functioning gallbladder on oral cholecystography, from June 1983 to April 1984, at the department of radiology, Hangang Sacred Heart Hospital. The results were obtained as follows; 1. Ultrasonographic Ejection Fraction at 30 minutes after the fatty meal was 73.1{+-}16.85. 2. There was no significant difference in age and sex, statistically.

  10. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    Science.gov (United States)

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  11. Magnetic reconnection and self-organized plasma systems

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, Hantao

    2000-01-01

    In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)

  12. Electron-Scale Measurements of Magnetic Reconnection in Space

    Science.gov (United States)

    Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; hide

    2016-01-01

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  13. Electron and ion distribution functions in magnetopause reconnection

    Science.gov (United States)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.

    2015-12-01

    We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.

  14. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  15. Experimental investigation of the trigger problem in magnetic reconnection

    International Nuclear Information System (INIS)

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Vrublevskis, Arturs; Bonde, Jeff

    2011-01-01

    Magnetic reconnection releases magnetic energy not only in steady state, but also in time-dependent and often explosive events. Here, we investigate the trigger mechanism for this explosive release by using a toroidal experiment in the strong guide-field regime. We observe spontaneous reconnection events with exponentially growing reconnection rates, and we characterize the full 3D dynamics of these events using multiple internal probes. The reconnection is asymmetric: it begins at one toroidal location and propagates around in both directions. The spontaneous onset is facilitated by an interaction between the x-line current channel and a global mode, which appears in the electrostatic potential. It is this mode which breaks axisymmetry and enables a localized decrease in x-line current. We apply a simple model - which relies on ion polarization currents for current continuity - to reproduce the exponential growth and compute the growth rate. The result agrees well with the experimental growth rate.

  16. Total magnetic reconnection during a tokamak major disruption

    International Nuclear Information System (INIS)

    Goetz, J.A.; Dexter, R.N.; Prager, S.C.

    1990-07-01

    The safety factor within a tokamak plasma has been measured during a major disruption. During the disruption, the central safety factor jumps from below one to above one, while the total current is unchanged. This implies that total reconnection has occurred. This observation is in contract to the absence of total reconnection observed during a sawtooth oscillation in the same device. 11 refs., 6 figs

  17. Origins of effective resistivity in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2014-07-15

    The mechanisms that provide effective resistivity for supporting collisonless magnetic reconnection have remained unsettled despite numerous studies. Some of these studies demonstrated that the electron pressure nongyrotropy generates the resistivity (η{sub npg}) in the electron diffusion region (EDR). We derive an analytical relation for the effective resistivity (η{sub kin}) by momentum balance in a control volume in the EDR. Both η{sub npg} and η{sub kin} mutually compare well and they also compare well with the resistivity required to support reconnection electric field E{sub rec} in multi-dimensional particle-in-cell simulations as well as in satellite observations when reconnection occurs in an EDR. But they are about an order of magnitude or so smaller than that required when the reconnection occurred in a much wider reconnecting current sheet (RCS) of half width (w) of the order of the ion skin depth (d{sub i}), observed in the Earth magnetosphere. The chaos-induced resistivity reported in the literature is found to be even more deficient. We find that for reconnection in RCS with w ∼ d{sub i}, anomalous diffusion, such as the universal Bhom diffusion and/or that arising from kinetic Alfven waves, could fairly well account for the required resistivity.

  18. MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath

    Science.gov (United States)

    Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K. J.; Khotyaintsev, Yu. V.; Li, W.; Graham, D. B.; Norgren, C.; Nakamura, R.; Narita, Y.; Plaschke, F.; Magnes, W.; Baumjohann, W.; Fischer, D.; Vaivads, A.; Eriksson, E.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Leitner, M.; Leubner, M. P.; Strangeway, R. J.; Le Contel, O.; Pollock, C.; Giles, B. J.; Torbert, R. B.; Burch, J. L.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Lavraud, B.; Saito, Y.

    2017-11-01

    In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.

  19. Current disruption and its spreading in collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Jain, Neeraj; Büchner, Jörg; Dorfman, Seth; Ji, Hantao; Surjalal Sharma, A.

    2013-01-01

    Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed

  20. CRITICAL DIFFERENCES OF ASYMMETRIC MAGNETIC RECONNECTION FROM STANDARD MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, S. [Hinode Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Wada, T. [Tsukuba University of Technology, 4-3-15 Amakubo, Tsukuba, 305-8520 (Japan); Fuchida, T. [Graduate School of Science and Engineering, Ehime Univesity, 2-5 Bunkyo-cho, Matuyama, Ehime, 790-8577 (Japan); Kondoh, K., E-mail: nittasn@yahoo.co.jp, E-mail: tomohide.wada@gmail.com, E-mail: fuchida@sp.cosmos.ehime-u.ac.jp, E-mail: kondo@cosmos.ehime-u.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577 (Japan)

    2016-09-01

    We have clarified the structure of asymmetric magnetic reconnection in detail as the result of the spontaneous evolutionary process. The asymmetry is imposed as ratio k of the magnetic field strength in both sides of the initial current sheet (CS) in the isothermal equilibrium. The MHD simulation is carried out by the HLLD code for the long-term temporal evolution with very high spatial resolution. The resultant structure is drastically different from the symmetric case (e.g., the Petschek model) even for slight asymmetry k = 2. (1) The velocity distribution in the reconnection jet clearly shows a two-layered structure, i.e., the high-speed sub-layer in which the flow is almost field aligned and the acceleration sub-layer. (2) Higher beta side (HBS) plasma is caught in a lower beta side plasmoid. This suggests a new plasma mixing process in the reconnection events. (3) A new large strong fast shock in front of the plasmoid forms in the HBS. This can be a new particle acceleration site in the reconnection system. These critical properties that have not been reported in previous works suggest that we contribute to a better and more detailed knowledge of the reconnection of the standard model for the symmetric magnetic reconnection system.

  1. Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    Science.gov (United States)

    Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie

    2018-02-01

    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.

  2. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  3. MAVEN observations of magnetic reconnection in the Martian magnetotail

    Science.gov (United States)

    Harada, Y.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Espley, J. R.; Larson, D. E.; Brain, D. A.; Andersson, L.; DiBraccio, G. A.; Collinson, G.; Livi, R.; Hara, T.; Ruhunusiri, S.; Jakosky, B. M.

    2015-12-01

    Magnetic reconnection is a fundamental process that changes magnetic field topology and converts magnetic energy into particle energy. Although reconnection may play a key role in controlling ion escape processes at Mars, the fundamental properties of local physics and global dynamics of magnetic reconnection in the Martian environment remain unclear owing to the lack of simultaneous measurements of ions, electrons, and magnetic fields by modern instrumentation. Here we present comprehensive MAVEN observations of reconnection signatures in the near-Mars magnetotail. The observed reconnection signatures include (i) Marsward bulk flows of H+, O+, and O2+ ions, (ii) counterstreaming ion beams along the current sheet normal direction, (iii) Hall magnetic fields, and (iv) trapped electrons with two-sided loss cones. The measured velocity distribution functions of different ion species exhibit mass-dependent characteristics which are qualitatively consistent with previous multi-species kinetic simulations and terrestrial tail observations. The MAVEN observations demonstrate that the near-Mars magnetotail provides a unique environment for studying multi-ion reconnection.

  4. Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Lu Quanming; Lu San; Huang Can; Wu Mingyu; Wang Shui

    2013-01-01

    The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region. (paper)

  5. Do centrioles generate a polar ejection force?

    Science.gov (United States)

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  6. Supernova mass ejection and core hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1978-01-01

    Simplifications that have emerged in the descriptions of stellar unstable collapse to a neutron star are discussed. The neutral current weak interaction leads to almost complete neutrino trapping in the collapse and to an electron fraction Y/sub e/ congruent to 0.35 in equilibrium with trapped electron neutrinos and ''iron'' nuclei. A soft equation of state (γ congruent to 1.30) leads to collapse, and bounce occurs on a hard core, γ = 2.5, at nuclear densities. Neutrino emission is predicted from a photosphere at r congruent to 2 x 10 7 cm and E/sub ν/ congruent to 10 MeV. The ejection of matter by an elastic core bounce and a subsequent escaping shock is marginal and may not be predicted for accurate values of the equation of state. A new concept of Rayleigh-Taylor driven core instabilities is invoked to predict an increased mass ejection either due to an increased flux and energy of neutrinos at second bounce time and, or, the rapid 0.1 to 0.4 second formation of a more energetically bound neutron star. The instability is caused by highly neutronized external matter from which neutrinos have escaped being supported by lighter matter of the lepton trapped core. An initial anisotropy of 10 -2 to 10 -3 should lead to adequately rapid (several milliseconds) overturn following several (2 to 4) bounces. Subsequent to the overturnwith or without a strong ejection shock, a weak ejection shock will allow an accretion shock to form on the ''cold'' neutron star core due to the reimplosion or rarefaction wave in the weakly ejected matter. The accretion shock forms at low enough mass accumulation rate, 1 / 2 M/sub solar/ sec -1 , such that a black body neutrino flux can escape from the shock front (kT congruent to 10 MeV, [E/sub ν/] congruent to 30 MeV). This strongly augments the weaker bounce ejection shock by heating the external matter in the mantle by electron neutrino scattering (congruent to 10 52 ergs) causing adequate mass ejection

  7. Comparative Examination of Reconnection-Driven Magnetotail Dynamics at Mercury and Earth

    Science.gov (United States)

    Slavin, J. A.

    2014-12-01

    MESSENGER plasma and magnetic field observations of Mercury's magnetotail are reviewed and compared to that of Earth. Mercury's magnetosphere is created by the solar wind interaction with its highly dipolar, spin-axis aligned magnetic field. However, its equatorial magnetic field is ~ 150 times weaker than at Earth. As a result the altitude of its subsolar magnetopause is typically only ~ 1000 km and there is no possibility for trapped radiation belts. Magnetopause reconnection at Mercury does not exhibit the "half-wave rectifier" response to interplanetary magnetic field (IMF) direction observed at Earth. Rather magnetopause reconnection occurs for all non-zero shear angles with plasma β as the primary parameter controlling its rate. The cross-magnetosphere electric potential drop derived from magnetopause and plasma mantle structure is ~ 30 kV in contrast to ~ 100 kV at Earth. This large potential drop at Mercury relative to its small size appears due to the lack of an electrically conducting ionosphere and the strong IMF found in the inner heliosphere. Structurally these magnetotails are very similar in most respects, but the magnetic field intensities and plasma densities and temperatures are all higher at Mercury. Plasma sheet composition indicates solar wind origin, but with 10% Na+ derived from it tenuous exosphere. Given Mercury's very slow rotation rate, once every 59 Earth days, most sunward plasma sheet convection will impact the nightside of the planet. Magnetic flux loading/unloading in Mercury's tail is similar to that seen at Earth during substorms. However, the duration and amplitude of these cycles are ~ 2 - 3 min and ~ 30 to 50 %, respectively, as compared to ~ 1 - 2 hr and 10 - 25 % at Earth. These episodic, substorm-like events are accompanied by plasmoid ejection and near-tail dipolarization similar what is seen at Earth. Mercury can also exhibit Earth-like steady magnetospheric convection during which plasmoid ejection and dipolarization

  8. Global dynamics of magnetic reconnection in VINETA II

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Hannes

    2014-12-12

    Magnetic reconnection is a fundamental plasma process where a change in field line connectivity occurs in a current sheet at the boundary between regions of opposing magnetic fields. In this process, energy stored in the magnetic field is converted into kinetic and thermal energy, which provides a source of plasma heating and energetic particles. Magnetic reconnection plays a key role in many space and laboratory plasma phenomena, e.g. solar flares, Earth's magnetopause dynamics and instabilities in tokamaks. A new linear device (VINETAII) has been designed for the study of the fundamental physical processes involved in magnetic reconnection. The plasma parameters are such that magnetic reconnection occurs in a collision-dominated regime. A plasma gun creates a localized current sheet, and magnetic reconnection is driven by modulating the plasma current and the magnetic field structure. The plasma current is shown to flow in response to a combination of an externally induced electric field and electrostatic fields in the plasma, and is highly affected by axial sheath boundary conditions. Further, the current is changed by an additional axial magnetic field (guide field), and the current sheet geometry was demonstrated to be set by a combination of magnetic mapping and cross-field plasma diffusion. With increasing distance from the plasma gun, magnetic mapping results in an increase of the current sheet length and a decrease of the width. The control parameter is the ratio of the guide field to the reconnection magnetic field strength. Cross-field plasma diffusion leads to a radial expansion of the current sheet at low guide fields. Plasma currents are also observed in the azimuthal plane and were found to originate from a combination of the field-aligned current component and the diamagnetic current generated by steep in-plane pressure gradients in combination with the guide field. The reconnection rate, defined via the inductive electric field, is shown to be

  9. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  10. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  11. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    Science.gov (United States)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  12. Guidelines for Provision and Interchange of Geothermal Data Assets

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-03

    The US Department of Energy Office of Geothermal Technologies (OGT) is funding and overseeing the development of the National Geothermal Data System (NGDS), a distributed information system providing access to integrated data in support of, and generated in, all phases of geothermal development. NGDS is being built in an open paradigm and will employ state-of-the-art informatics approaches and capabilities to advance the state of geothermal knowledge in the US. This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System. It identifies general specifications for NGDS catalog metadata and data content, and provides specific instructions for preparation and submission of data assets by OGT-funded projects.

  13. Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; An, Z.G.; Diamond, P.H.; Lee, G.S.; Hahm, T.S.

    1985-11-01

    The saturation mechanism for density and potential fluctuation spectra which evolve from linearly unstable electrostatic resistive interchange modes, are investigated using particle simulations. Detailed comparisons of the nonlinear evolution, saturation levels and resultant spectra between two- and three-dimensional sheared magnetic field configurations are made. Significant differences appear. The single rational surface, quasilinear-dominated evolution, fluctuation spectrum is adequately described using a density convection model. For the multiple rational surface case, the potential fluctuations are adequately represented by a balance between the nonlinearly modified source (curvature drive) and linear sink (parallel resistive field line diffusion). An accurate description of the density spectrum requires a mode coupling theory based on the two-point density correlation evolution equation. 24 refs., 15 figs

  14. The Harang reversal and the interchange stability of the magnetotail

    Science.gov (United States)

    Ohtani, Shinichi; Gkioulidou, Matina; Wang, Chih-Ping; Wolf, Richard A.

    2016-04-01

    The present study addresses steady convection in the plasma sheet in terms of the interchange stability with special attention to the Harang reversal. The closure of the tail current with a field-aligned current (FAC) results from the divergence/convergence of the pressure gradient current. If the magnetotail is in a steady state, the associated change of local plasma pressure p has to balance with its advective change. Accordingly, for adiabatic transport, the flux tube entropy parameter pVγ increases and decreases along the convection path in regions corresponding to downward and upward FACs, respectively. This requirement, along with the condition for the interchange stability imposes an important constraint on the direction of convection especially in the regions of downward FACs. It is deduced that for the dusk cell, the convection in the downward R2 current has to be directed azimuthally duskward, which follows the sunward, possibly dawnward deflected, convection in the region of the premidnight upward R1 current. This duskward turn of convection takes place in the vicinity of the R1-R2 demarcation, and it presumably corresponds to the Harang reversal. For the dawn cell the convection in the postmidnight downward R1 current has to deflect dawnward, and then it proceeds sunward in the upward R2 current. The continuity of the associated ionospheric currents consistently reproduces the assumed FAC distribution. The proposed interrelationships between the convection and FACs are also verified with a quasi-steady plasma sheet configuration and convection reproduced by a modified Rice Convection Model with force balance.

  15. Simulation of the interchange instability in a magnetospheric substorm site

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2006-07-01

    Full Text Available We perform modeling of the interchange instability driven by longitudinal pressure asymmetry in the region of the pressure buildup that forms in the inner magnetosphere at the substorm growth phase. The simulation refers to the dawnward side of the Harang discontinuity and times after Bz IMF turning northward. The solution for the equilibrium state indicates tailward flows associated with vortices, which is in agreement with a previous finding of Ashour-Abdalla et al. (1999, 2002. We show that in the regions of equilibrium field-aligned currents (FACs, small initial perturbations in pVγ (p is the isotropic plasma pressure, V is the unit magnetic flux tube volume, γ=5/3 the adiabatic exponent, set up as ripples inclined to azimuth, grow in time. For the background FAC of ~10-6 A/m2, the linear growth rate of the instability is ~6 min. Starting from the 12th min of evolution, the perturbations exhibit nonlinear deformations, develop undulations and front steepening. An interesting peculiarity in the distribution of the associated small-scale FACs is that they become asymmetric with time. Specifically, the downward currents are more localised, reaching densities up to 15×10-6 A/m2 at the nonlinear stage. The upward FACs are more dispersed. When large enough, these currents are likely to produce the aurora. We also run our simulation for the initial perturbations of large transverse scales in order to demonstrate that the interchange instability can be responsible for pressure and cross-tail current spatial variations of great extent.

  16. Transport intermodal interchanges: Socio-economic impacts at Lille European metropolis

    Energy Technology Data Exchange (ETDEWEB)

    Heddebaut, O.; Ciommo, F. di

    2016-07-01

    Within the framework of the “City-HUB” FP7 European research project 27 interchanges were studied in nine European countries. It investigated how transport interchanges work from the point of view of governance and the organization of facilities. On this basis a typology of interchanges has been defined for classifying the interchanges and selecting the key elements for improving the interchanges location, construction, and organization of an interchange. The paper focus on the implementation of the City-HUB interchange typology to the case study of Lille European Metropolis (MEL) where two contingent railways stations Lille Flandres and Lille Europe were analysed as a potential unique interchange. Indeed, the article is related to the creation of a joint interchanges able to attract more public transport users than private users such as it is now the case. These two main railways interchanges have different territorial and transport functions (i.e. one is oriented to regional traffic and the other one to national and international traffic). Urban planners and transport authorities would like to connect both stations creating a unique interchange. A key point of the Lille’s City-HUB analysis is related to the involvement of the stakeholders. Their involvement is at the origin of the interactions between City-HUB and its socio-economic and urban context. We demonstrate that combining transport and land use planning policies could boost commercial development, new business offices or housing. The urban City-Hub overcomes its role of transport infrastructure for being a “place”. (Author)

  17. Aircrew ejection experience: questionnaire responses from 20 survivors.

    Science.gov (United States)

    Taneja, Narinder; Pinto, Leslie J; Dogra, Manmohan

    2005-07-01

    Published studies on ejection have focused predominantly on the injuries sustained by aircrew and discussed their preventive measures from an aeromedical perspective. However, studies have not discussed aircrew experiences related to ejection or how they would like to advise other aircrew to successfully handle ejection as an event. Such information can assist in designing realistic indoctrination and training programs. This study was conducted to fill gaps in our understanding of aircrew perspectives of successful ejections. Aircrew reporting to the Institute of Aerospace Medicine (IAM), Indian Air Force, for post-ejection evaluation during the period of May 2003 to January 2005 completed a questionnaire that was designed for the study. A total of 20 aircrew completed this questionnaire. The mean age of the aircrew was 30.25 +/- 4.45 yr. Most of them had logged more than 500 flying hours. Some aircrew described their initial moments of ejection as "blacked out," "dazed, yet conscious," or as "a shock that gradually decreased." Practicing ejection drills on the ground, being prepared at all times, making a timely decision to eject, and assuming correct posture were identified as the most important factors for success. Descriptions of ejection as an event suggest intense emotional arousal could occur following ejection. This study provides first hand inputs into the psychological processes accompanying ejections. Such information could be very useful in understanding the critical factors that influence successful ejection.

  18. Pilot ejection, parachute, and helicopter crash injuries.

    Science.gov (United States)

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. 2014.

  19. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  20. Influence of a guide field on collisionless driven reconnection

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki

    2014-01-01

    The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)

  1. Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate

    International Nuclear Information System (INIS)

    C.Z. Cheng; Y. Ren; G.S. Choe; Y.-J. Moon

    2003-01-01

    A physical mechanism of flares, in particular for the flare rise phase, has emerged from our 2-1/2-dimensional resistive MHD simulations. The dynamical evolution of current-sheet formation and magnetic reconnection and flux-rope acceleration subject to continuous, slow increase of magnetic shear in the arcade are studied by employing a non-uniform anomalous resistivity in the reconnecting current sheet under gravity. The simulation results directly relate the flux rope's accelerated rising motion with an enhanced magnetic reconnection rate and thus an enhanced reconnection electric field in the current sheet during the flare rise phase. The simulation results provide good quantitative agreements with observations of the acceleration of flux rope, which manifests in the form of SXR ejecta or erupting filament or CMEs, in the low corona. Moreover, for the X-class flare events studied in this paper the peak reconnection electric field is about O(10 2 V/m) or larger, enough to accelerate p articles to over 100 keV in a field-aligned distance of 10 km. Nonthermal electrons thus generated can produce hard X-rays, consistent with impulsive HXR emission observed during the flare rise phase

  2. Onset of Fast Magnetic Reconnection via Subcritical Bifurcation

    Directory of Open Access Journals (Sweden)

    ZHIBIN eGUO

    2015-04-01

    Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.

  3. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  4. Observations of significant flux closure by dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2007-07-01

    Full Text Available We present an interval of dual lobe reconnection during which interplanetary magnetic field lines are captured by the magnetosphere by reconnecting at high latitudes in both the Northern and the Southern Hemispheres. This event was identified using measurements of the ionospheric convection flow and observations of the aurora using the SuperDARN radars and the IMAGE spacecraft. A cusp spot, characteristic of northward IMF, is clearly visible for a 30 min period enabling the ionospheric footprint of the Northern Hemisphere merging gap to be accurately determined. During the interval a strong burst of sunward flow across the dayside open/closed field line boundary (OCB is observed, which we interpret as the reconfiguration of the magnetosphere following a burst of reconnection. Noon-midnight and dawn-dusk keograms of the aurora show that the polar cap shrinks during the interval indicating that a large amount of flux was closed by the reconnection. Using the SuperDARN potential maps it is possible to calculate that the amount of flux closed during the interval is 0.13 GWb which represents approximately 10% of the pre-existing polar cap. The number of ions captured by the burst of dual lobe reconnection was calculated to be ~2.2×1031, more than sufficient to populate a cold, dense plasma sheet. That a dense plasma sheet was not subsequently observed is discussed in terms of subsequent changes in the IMF.

  5. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  6. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  7. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    Science.gov (United States)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  8. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  9. An experimental platform for pulsed-power driven magnetic reconnection

    Science.gov (United States)

    Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.

    2018-05-01

    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.

  10. Test-electron analysis of the magnetic reconnection topology

    Science.gov (United States)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  11. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  12. Magnetic Reconnection as Revealed by the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, J. L.; Torbert, R. B.; Moore, T. E.; Giles, B. L.; Phan, T.; Le Contel, O.; Webster, J.; Genestreti, K.; Ergun, R.; Chen, L. J.; Wang, S.; Dorelli, J.; Rager, A. C.; Graham, D.; Gershman, D. J.

    2017-12-01

    The NASA Magnetospheric Multiscale (MMS) mission has completed its prime mission observations and has now entered an extended mission phase. During the two-year prime mission MMS made fundamental advances in our understanding of magnetic reconnection as enabled by its unprecedentedly high-resolution plasma and field measurements, which were made from 4 identical spacecraft in tetrahedral formations ranging down to 7 km. The primary objective of MMS is to understand reconnection at the electron scale, and this objective was accomplished by detailed analysis of 32 electron diffusion regions at the dayside magnetopause and a significant number in the magnetotail, which are still being captured and analyzed. Significant interplay between theory and experiment has occurred throughout the mission leading to the discovery of agyrotropic "crescent-shaped" electron velocity-space distributions, which carry the out-of-plane current; the electron pressure tensor divergence, which produces the reconnection electric field; standing oblique whistler waves, which produce intense dissipation in sub-gyroscale regions near the X-line and electron stagnation point; beam-plasma interactions leading to whistler-mode and Langmuir waves; electromagnetic drift waves leading to corrugated magnetopause current sheets, and numerous other new reconnection-related phenomena. In this talk the many new aspects of reconnection discovered by MMS will be placed into context and used to evaluate our current level of understanding of this universally important space plasma phenomenon.

  13. Reconnection and merging of positive streamers in air

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2009-02-21

    Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p{center_dot}d = 50 {mu}m bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

  14. Reconnection and merging of positive streamers in air

    International Nuclear Information System (INIS)

    Nijdam, S; Geurts, C G C; Van Veldhuizen, E M; Ebert, U

    2009-01-01

    Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the two-dimensional projection in the pictures. Here we use stereo photography to investigate the full three-dimensional structure of such events. We analyse reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e. for a reduced tip distance of p·d = 50 μm bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.

  15. Ellerman bombs and UV bursts: reconnection at different atmospheric layers?

    Science.gov (United States)

    Hansteen, V. H.; Ortiz-Carbonell, A. N.; Rouppe van der Voort, L.

    2017-12-01

    The emergence of magnetic flux through the photosphere and into the outer solar atmosphere produces, amongst many other phenomena, the appearance of Ellerman bombs (EBs) in the photosphere. EBs are observed in the wings of H(alpha) and are highly likely to be due to reconnection in the photosphere, below the chromospheric canopy. However, signs of the reconnection process are also observed in several other spectral lines, typical of the chromosphere or transition region. An example are the UV bursts observed in the transition region lines of Si IV. In this work we analyze high cadence coordinated observations between the 1-m Swedish Solar Telescope and the IRIS spacecraft in order to study the possible relationship between reconnection events at different layers in the atmosphere, and in particular, the timing history between them. High cadence, high resolution H-alpha images from the SST provide us with the positions, timings and trajectories of Ellerman bombs in an emerging flux region. Simultaneous co-aligned IRIS slit-jaw images at 1400 and 1330 A and detailed Si IV spectra from the fast spectrograph raster allow us to study the transition region counterparts of those photospheric Ellerman bombs. Our main goal is to study whether there is a temporal relationship between the appearance of an EB and the appearance of a UV burst. Eventually we would like to investigate whether reconnection happens at discrete heights, or as a reconnection sheet spanning several layers at the same time.

  16. Hall current effects in dynamic magnetic reconnection solutions

    International Nuclear Information System (INIS)

    Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.

    2003-01-01

    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

  17. What Kind of International Interchange Is Beneficial? Experiences of Taiwanese Indigenes

    Science.gov (United States)

    Chen, Shan-Hua

    2014-01-01

    Because of globalization, international interchanges among indigenes in every country have become more frequent. Influenced by international multicultural trends, Taiwan's government not only supports indigenous populations to revive their traditional cultures, but also encourages the promotion of the international interchange activities among…

  18. The Place of Community-Based Learning in Higher Education: A Case Study of Interchange

    Science.gov (United States)

    Hardwick, Louise

    2013-01-01

    This article focuses on one strand of community engagement: community-based learning for students. It considers in particular Interchange as a case study. Interchange is a registered charity based in, but independent of, a department in a Higher Education Institution. It brokers between undergraduate research/work projects and Voluntary Community…

  19. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-05-10

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  20. The formation and launch of a coronal mass ejection flux rope: a narrative based on observations

    International Nuclear Information System (INIS)

    Howard, T. A.; DeForest, C. E.

    2014-01-01

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which time the segment that first disconnected was around 40 R ☉ away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.

  1. The interaction of two coronal mass ejections: Influence of relative orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lugaz, N.; Farrugia, C. J.; Schwadron, N. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Manchester IV, W. B. [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI (United States)

    2013-11-20

    We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90° from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180°. Due to reconnection, the second CME only appears as an extended 'tail', and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

  2. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  3. Magnetic reconnection in magnetotail and solar plasmas

    International Nuclear Information System (INIS)

    Wang Xiaogang.

    1991-01-01

    The formation of current sheets which dominates the heating of the solar corona and the onset of substorms due to collisionless tearing instability in the magnetotail are investigated in the context of magnetic field line reconnection in space plasmas. In Chapters 2 and 3 of this thesis, the collisionless tearing instability and current disruption of the magnetotail are considered. The linear collisionless tearing instability, with wavelengths of the order of 10 R E , and with a growth rate γ ∼ 10 -2 /sec, is identified as a possible mechanism for the growth phase of a substorm. The linear analysis is carried out in the presence of an equilibrium B y -field, neglected in other theories. The nonlinear theory of collisionless tearing mode is dominated by mode coupling effects. From the evolution equations for electro-magnetic field perturbations, the author derived a nonlinear growth rate by generalizing the boundary layer techniques of linear theory. He finds that the nonlinear growth is of the order of 1 sec, much faster than the linear growth. It is proposed that collisionless tearing modes provide a mechanism for current disruption observed by spacecrafts. The electrical field generated during the nonlinear evolution can cause particle acceleration in the earth-tail direction. His estimates indicate ion energies up to 0.7 MeV and electron energies up to 8.1 MeV, which is not inconsistent with the observations. In the Chapter 4 it is shown that current sheets can be formed in Parker's model of the solar corona in the presence of smooth photospheric flows, despite van Ballegooijen and Field's proof that in an ideal plasma current sheets doe not occur unless the boundary velocity field is discontinuous

  4. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  5. Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares

    Science.gov (United States)

    Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.

    2017-12-01

    The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.

  6. Fire Hose Instability in the Multiple Magnetic Reconnection

    Science.gov (United States)

    Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.

    2017-12-01

    We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.

  7. Effects of electron inertia in collisionless magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)

    2014-07-15

    We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.

  8. Collisionless magnetic reconnection associated with coalescence of flux bundles

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1994-11-01

    The basic process of collisionless reconnection is studied in terms of coalescence of magnetized flux bundles using an implicit particle simulation of two-dimensions. The toroidal electric field that directly relates to magnetic reconnection is generated solenoidally in a region much broader than the current sheet whose width is a few electron skin depths. The reconnected flux increases linearly in time, but it is insensitive to finite Larmor radii of the ions in this Sweet-Parker regime. The toroidal electric field is controlled by a balance of transit acceleration of finite-mass electrons and their removal by sub-Alfvenic E x B drift outflow. The simulation results supports the collisionless Ohm's law E t ≅η eq J t with η eq the inertia resistivity. (author)

  9. Evidence for magnetic field reconnection at the earth's magnetopause

    Science.gov (United States)

    Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.

    1981-01-01

    Eleven Northern Hemisphere crossings of the dayside magnetopause by the ISEE spacecraft are examined to test the hypothesis that the large plasma flow speeds observed in the magnetopause and boundary layer are the result of the plasma acceleration intrinsic to the magnetic field reconnection process. In several cases energetic magnetospheric particles with the proper flow anisotropy, and in one case, reflected magnetosheath particles, were observed outside the magnetopause but adjacent to it. All results support the reconnection hypothesis. The energetic particles were also used to identify the outer separatrix surface, in one case of which is was possible to conclude from its location relative to the magnetopause that the reconnection site was in the vicinity of the equatorial plane rather than in the cusp. The electric field tangential to the magnetopause is inferred to be in the 0.4-2.8 mV/m range.

  10. Limiting velocity of reconnection in a current layer

    International Nuclear Information System (INIS)

    Podgornyj, A.N.; Syrovatskij, S.I.

    1981-01-01

    Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed

  11. Crab Flares and Magnetic Reconnection in Pulsar Winds

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.

  12. Effect of therapeutic interchange on medication reconciliation during hospitalization and upon discharge in a geriatric population.

    Directory of Open Access Journals (Sweden)

    Jessica S Wang

    Full Text Available Therapeutic interchange of a same class medication for an outpatient medication is a widespread practice during hospitalization in response to limited hospital formularies. However, therapeutic interchange may increase risk of medication errors. The objective was to characterize the prevalence and safety of therapeutic interchange.Secondary analysis of a transitions of care study. We included patients over age 64 admitted to a tertiary care hospital between 2009-2010 with heart failure, pneumonia, or acute coronary syndrome who were taking a medication in any of six commonly-interchanged classes on admission: proton pump inhibitors (PPIs, histamine H2-receptor antagonists (H2 blockers, hydroxymethylglutaryl CoA reductase inhibitors (statins, angiotensin-converting enzyme (ACE inhibitors, angiotensin receptor blockers (ARBs, and inhaled corticosteroids (ICS. There was limited electronic medication reconciliation support available. Main measures were presence and accuracy of therapeutic interchange during hospitalization, and rate of medication reconciliation errors on discharge. We examined charts of 303 patients taking 555 medications at time of admission in the six medication classes of interest. A total of 244 (44.0% of medications were therapeutically interchanged to an approved formulary drug at admission, affecting 64% of the study patients. Among the therapeutically interchanged drugs, we identified 78 (32.0% suspected medication conversion errors. The discharge medication reconciliation error rate was 11.5% among the 244 therapeutically interchanged medications, compared with 4.2% among the 311 unchanged medications (relative risk [RR] 2.75, 95% confidence interval [CI] 1.45-5.19.Therapeutic interchange was prevalent among hospitalized patients in this study and elevates the risk for potential medication errors during and after hospitalization. Improved electronic systems for managing therapeutic interchange and medication reconciliation

  13. Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma

    International Nuclear Information System (INIS)

    Yang Ren; Masaaki Yamada; Stefan Gerhardt; Hantao Ji; Russell Kulsrud; Aleksey Kuritsyn

    2005-01-01

    In this letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the Magnetic Reconnection Experiment (MRX). Measurements show that the Hall effect is large in collisionless regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collisionless reconnection

  14. Physical conditions in the reconnection layer in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  15. Observational Test of the Dayside Magnetopause Reconnection Rate

    Science.gov (United States)

    Wang, S.; Kistler, L. M.; Mouikis, C.

    2014-12-01

    In asymmetric reconnection, the reconnection rate (R) is expected to follow the Cassak-Shay formula with an aspect ratio of around 0.1. At the magnetopause, reconnection is asymmetric, with the dense shocked solar wind population on the magnetosheath side, and a normally hot and tenuous population on the magnetospheric side. However, the hot magnetospheric population can contain a significant O+ component that increases the mass density, and the magnetospheric population may also include a cold dense population of plasmaspheric origin. We perform a statistical study of 13 magnetopause reconnection events observed by Cluster to determine how the reconnection rate depends on these different populations. The events are mainly at high latitudes, due to the Cluster orbit. Our results show that the measured R generally follows the Cassak-Shay prediction when all populations are included. However, the predicted rate only considering the magnetosheath contribution also correlates well with the measured R. For individual events, cold ions can make a comparable contribution to the magnetosheath H+ when there are plasmaspheric drainage plumes; the contribution of the magnetospheric hot O+ can be up to ~30%. However, the variation of solar wind conditions has a larger effect on the variation in the reconnection rate. The aspect ratio does not vary systematically with the O+ content, and 0.1 is a reasonable estimation. The outflow velocity is around the hybrid Alfven speed, but there is not a strong correlation. This may be due to motion of the x-line, or effects of the magnetosheath shear flow.

  16. Dynamics of Auroras Conjugate to the Dayside Reconnection Region.

    Science.gov (United States)

    Mende, S. B.; Frey, H. U.; Doolittle, J. H.

    2006-12-01

    During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.

  17. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-01-01

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  18. H(alpha) Proxies for EIT Crinkles: Further Evidence for Preflare "Breakout"-Type Activity in an Ejective Solar Eruption

    Science.gov (United States)

    Sterling, Alphonse C.; Qiu, Jiong; Wang, Haimin; Moore, Ronald L.

    2001-01-01

    We present H(alpha) observations from Big Bear Solar Observatory of an eruptive flare in NOAA Active Region 8210, occurring near 22:30 UT on 1998 May 1. Previously, using the Extreme Ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft, we found that a pattern of transient, localized brightenings, which we call 'EIT crinkles,' appears in the neighborhood of the eruption near the time of flare onset. These EIT crinkles occur at a location in the active region well separated from the sheared core magnetic fields, which is where the most intense features of the eruption are concentrated. We also previously found that high-cadence images from the Soft X-ray Telescope (SXT) on Yohkoh indicate that soft X-ray intensity enhancements in the core begin after the start of the EIT crinkles. With the H(alpha) data, we find remote flare brightening counterparts to the EIT crinkles. Light curves as functions of time of various areas of the active region show that several of the remote flare brightenings undergo intensity increases prior to the onset of principal brightenings in the core region, consistent with our earlier findings from EIT and SXT data. These timing relationships are consistent with the eruption onset mechanism known as the breakout model, introduced by Antiochos and colleagues, which proposes that eruptions begin with reconnection at a magnetic null high above the core region. Our observations are also consistent with other proposed mechanisms that do not involve early reconnection in the core region. As a corollary, our observations are not consistent with the so-called tether-cutting models, which say that the eruption begins with reconnection in the core. The H(alpha) data further show that a filament in the core region becomes activated near the time of EIT crinkle onset, but little if any of the filament actually erupts, despite the presence of a halo coronal mass ejection (CME) associated with this event.

  19. Fast reconnection of magnetic fields in a plasma

    International Nuclear Information System (INIS)

    Hu, P.N.

    1983-01-01

    Reconnection process of magnetic fields in a plasma is analytically studied by perturbing the boundary conditions on a slab of incompressible plasma with a resonant surface inside. It is found, for small resistivity, that the reconnection takes place on Alfven time scale and continues into a slow time scale t 1 = eta/sup 1/3/t. Both time scales are faster than the usual tearing time scale. Furthermore, the plasma evolves globally from its initial equilibrium on the slow time scale and settles down to a different final equilibrium

  20. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  1. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  2. Development of Turbulent Magnetic Reconnection in a Magnetic Island

    International Nuclear Information System (INIS)

    Huang, Can; Lu, Quanming; Wang, Rongsheng; Wu, Mingyu; Lu, San; Wang, Shui; Guo, Fan

    2017-01-01

    In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.

  3. Scaling of Sweet-Parker reconnection with secondary islands

    International Nuclear Information System (INIS)

    Cassak, P. A.; Shay, M. A.; Drake, J. F.

    2009-01-01

    Sweet-Parker (collisional) magnetic reconnection at high Lundquist number is modified by secondary islands. Daughton et al. [Phys. Rev. Lett. 103, 065004 (2009)] suggested the Sweet-Parker model governs the fragmented current sheet segments. If true, the reconnection rate would increase by the square root of the number of secondary islands. High Lundquist number resistive magnetohydrodynamic simulations are presented which agree, in a time-averaged sense, with the predicted scaling. This result may have important implications for energy storage before a solar eruption and its subsequent release.

  4. The physical foundation of the reconnection electric field

    Science.gov (United States)

    Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.

    2018-03-01

    Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation

  5. Fast Magnetic Reconnection in the Plasmoid-Dominated Regime

    International Nuclear Information System (INIS)

    Uzdensky, D. A.; Loureiro, N. F.; Schekochihin, A. A.

    2010-01-01

    A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.

  6. Simulation experiment on magnetic field reconnection processes in tokamak

    International Nuclear Information System (INIS)

    Kiwamoto, Y.

    1982-01-01

    Two experimental studies on magnetic field line reconnection processes relevant to tokamak physics are going on in Japan. In Yokohama National University, reconnection of poloidal magnetic field lines is studied by the author when reversing the toroidal current of a small toroidal plasma in a short period (typically less than 4 μsec). Interaction of two current carrying plasma (linear) columns is being studied by Kawashima and his coleagues in Institute of Space and Aeronautical Sciences. Mutual attraction and merging of the plasma columns and resulting plasma heating are reported. (author)

  7. Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma

    International Nuclear Information System (INIS)

    Hantao Ji; Stephen Terry; Masaaki Yamada; Russell Kulsrud; Aleksey Kuritsyn; Yang Ren

    2003-01-01

    Clear evidence for a positive correlation is established between the magnitude of magnetic fluctuations in the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature in three dimensions

  8. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  9. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  10. Planetary interchange of bioactive material: probability factors and implications.

    Science.gov (United States)

    Clark, B C

    2001-01-01

    It is now well-accepted that both lunar and martian materials are represented in the meteorite collections. Early suggestions that viable organisms might survive natural transport between planets have not yet been thoroughly examined. The concept of Planetary Interchange of Bioactive Material (PIBM) is potentially relevant to the conditions under which life originated. PIBM has been also invoked to infer that the potential danger to Earth from martian materials is non-existent, an inference with, however, many pitfalls. Numerous impediments to efficient transfer of viable organisms exist. In this work, the lethality of space radiation during long transients and the biasing of launched objects toward materials unlikely to host abundant organisms are examined and shown to reduce the likelihood of successful transfer by orders of magnitude. It is also shown that martian meteorites studied to date assuredly have been subjected to sterilizing levels of ionizing radiation in space. PIBM considerations apply to both the solar system locale(s) of the origin of life and to the applicability of planetary protection protocols to preserve the biospheres of planetary bodies, including our own.

  11. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    Science.gov (United States)

    Sovinec, C. R.

    2016-08-01

    Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical dissipation.

  12. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  13. Space Solar Power Technical Interchange Meeting 2: SSP TIM 2

    Science.gov (United States)

    Sanders, Jim; Hawk, Clark W.

    1998-01-01

    The 2nd Space Solar Power Technical Interchange Meeting (SSP TIM 2) was conducted September 21st through 24th with the first part consisting of a Plenary session. The summary results of this Plenary session are contained in part one of this report. The attendees were then organized into Working Breakout Sessions and Integrated Product Team (IPT) Sessions for the purpose of conducting in-depth discussions in specific topic areas and developing a consensus as to appropriate study plans and actions to be taken. The Second part covers the Plenary Summary Session, which contains the summary results of the Working Breakout Sessions and IPT Sessions. The appendix contains the list of attendees. The ob'jective was to provide an update for the study teams and develop plans for subsequent study activities. This SSP TIM 2 was initiated and the results reported electronically over the Internet. The International Space Station (ISS) could provide the following opportunities for conducting research and technology (R&T) which are applicable to SSP: (1) Automation and Robotics, (2) Advanced Power Generation, (3) Advanced Power Management & Distribution (PMAD), (4) Communications Systems and Networks, (5) Energy Storage, (6) In Space Propulsion (ISP), (7) Structural Dynamics and Control, and Assembly and (8) Wireless Power Transmission.

  14. Solar wind energy and electric field transfer to the Earth's magnetosphere VIA magnetopause reconnection

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.

    1981-01-01

    Some general expressions for the convection and parallel electric fields as well as for the energy transfer, due to magnetopause reconnection, are derived using a nose-reconnection model that takes into account the presence of the clefts. For the case of equal geomagnetic and magnetosheath field amplitudes, the expression for the power dissipated by the convection electric field reduces to the substorm parameter e widely discussed in the recent literature. This result suggests that magnetopause reconnection is defined at the nose with a tilted reconnection line, but that the convection electric field is related only to the dawn-dusk component of the reconnection electric field, as defined at high latitudes

  15. Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection

    International Nuclear Information System (INIS)

    Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma

    2016-01-01

    Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)

  16. Turbulent interchange in simulated rod bundle geometries for Genetron-12 flows

    International Nuclear Information System (INIS)

    Petrunik, K.

    1973-01-01

    Turbulent interchange data between subchannel arrays simulating an infinite triangular array in a rod bundle fuel cluster were obtained for two-phase Genetron-12 (dichlorodifluoromethane), single phase subcooled Genetron-12 and single phase water flows at gap spacings of 0.025, 0.052 and 0.100 inches. Single phase turbulent interchange rates were relatively independent of the pitch to diameter ratio for the larger two gaps studied but increased for the smallest gap spacing. Two-phase Genetron-12 interchange data were obtained under conditions of unequal qualities and mass fluxes and essentially zero radial pressure gradient along the interconnection region between subchannels. Vapour transport occurred primarily by a diffusional type mechanism and was qualitatively similar to single phase behaviour. For annular flow conditions liquid interchange occurred through a dual mechanism via the film flow and entrained droplets. Vapour interchange was significantly suppressed at the smallest gap spacing due to the presence of the liquid film. Liquid interchange under two-phase conditions increased with gap spacing from 0.025 to 0.052 inches and levelled off slightly at 0.100 inches. Data obtained with heat addition in one test channel indicated negligible effects on the vapour transfer rates but a slight reduction in the magnitude of liquid interchange. (O.T.)

  17. 75 FR 62919 - Notice of Final Federal Agency Actions on the Route 250 Bypass Interchange at McIntire Road...

    Science.gov (United States)

    2010-10-13

    ... on the Route 250 Bypass Interchange at McIntire Road Project in Virginia AGENCY: Federal Highway.... 139(l)(1). The actions relate to the Route 250 Bypass Interchange at McIntire Road project in the City... Virginia: Route 250 Bypass Interchange at McIntire Road. The project would involve construction of a grade...

  18. Analytical and numerical study of MHD instabilities development in magnetized accretion-ejection structures

    International Nuclear Information System (INIS)

    Kersale, Evy

    2000-01-01

    The first part of this work proposes a new version of the mathematical formalism used to describe pressure-driven instabilities in magnetized accretion-ejection structures. Such processes, occurring in magnetically confined plasmas, pose very stringent limits to thermonuclear fusion devices but their influence in astrophysical objects has rarely been considered. In a framework which eliminates fast magnetosonic waves one develops a system of equations allowing us to follow both ballooning and interchange modes. An application of this result to a cylindrical jet being subject to solid rotation shows that the inner parts of such structures are destabilized by magnetic shear. Furthermore, while clarifying somewhat previous studies, one finds that jets confined by a dominant toroidal magnetic field are generically unstable with respect to interchange modes. Moreover, one has written a numerical code to solve the MHD partial differential equations. Starting with a basic algorithm, one has assessed the effects of the geometry, boundary conditions and artificial dissipation on numerical computation. The code has been tested by solving classical hydrodynamic and MHD Riemann problems. A new mechanism of ultra high energy cosmic ray production in gamma-ray bursts composes the last part of this work. In these objects, particles are accelerated up to energies of the order of 10 21 eV, by means of relativistic Alfven perturbations crossings. A stream instability involving a highly relativistic shell of plasma, the fireball, and baryons going through it produces such Alfven fronts. Then, Brillouin-like backscattering processes redistribute the available energy between the forward and backward Alfven waves and the magnetosonic ones. (author) [fr

  19. Global and local disturbances in the magnetotail during reconnection

    Directory of Open Access Journals (Sweden)

    T. V. Laitinen

    2007-05-01

    Full Text Available We examine Cluster observations of a reconnection event at xGSM=−15.7 RE in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in Bz, which are shown to be the Hall signature tilted in the yz plane with the current sheet.

  20. Electron Heating and Acceleration in a Reconnecting Magnetotail

    Science.gov (United States)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  1. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  2. Study of Local Reconnection Physics in a Laboratory Plasma

    International Nuclear Information System (INIS)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-01-01

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory

  3. The Onset of Magnetic Reconnection in Tail-Like Equilibria

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Kuznetsova, Masha

    1999-01-01

    Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.

  4. The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie

    2012-01-01

    One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.

  5. Reconnection of magnetic lines in an ideal fluid

    International Nuclear Information System (INIS)

    Grad, H.

    1978-04-01

    The rate of reconnection of magnetic lines at an X-point, also growth of a ''tearing'' configuration have always been related to the presence of resistivity or other dissipative mechanisms. These phenomena, exhibiting nonconservation of magnetic line topology, are shown to occur in an ideal, nondissipative fluid, thereby violating beliefs, theorems, and calculations of over a century

  6. Magnetic reconnection and precursor effect in coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.

    1988-01-01

    A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities

  7. Reconnection Mediated by Magnetic Fractures and the Solar Flare

    Science.gov (United States)

    Haerendel, Gerhard

    2018-03-01

    Reconnection of sheared magnetic fields is commonly treated by regarding the component perpendicular to the antiparallel components as a largely inert guide field. In this paper an alternative is proposed in which the free energy residing in the shear field is being converted prior to reconnection. This happens in high-density, dissipative current sheets bordering the reconnection site. A global scenario is presented in which low-intensity currents out of the photosphere are converging into the narrow, high-intensity currents at high altitude. This is enabled by the obliqueness of the latter. The very short timescale of the energy conversion causes a lateral propagation of the current sheets. In a quasi-stationary situation, it balances the reconnection rate, which turns out to be much lower than in guide-field approaches. Another important consequence of the obliqueness is the field-parallel emission of runaway electrons. Accelerated up to tens of keV, they are possibly important contributors to the production of hard X-rays during the impulsive phase of a flare, but only in areas of upward-directed currents. Quantitative evaluation of the model predicts various potentially observable properties, such as width and propagation speed of the generated flare ribbons, spatial dependences of the electron spectrum, size of the area of energy deposition, and successive decrease of the shear angle between conjugate footpoints. The presented theoretical model can account for the observed brightness asymmetry of flare ribbons with respect to the direction of the vertical currents.

  8. MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA

    International Nuclear Information System (INIS)

    Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.

    2011-01-01

    We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

  9. Conditions for substorm onset by the fast reconnection mechanism

    Directory of Open Access Journals (Sweden)

    M. Ugai

    2008-12-01

    Full Text Available The fast reconnection mechanism, involving slow shocks and Alfvénic fast plasma jets, is most responsible for the explosive conversion of magnetic energy associated with geomagnetic substorms and solar flares. In this paper, the spontaneous fast reconnection model is applied to well-known phenomena of substorms. When the east-west width of the tail current sheet becomes 3–4 times larger than its north-south thickness, the fast reconnection mechanism can fully be established, which may lead to substorm onset. The resulting Alfvénic jet can exactly explain, both qualitatively and quantitatively, the in-situ satellite observations of the traveling compression regions (TCRs associated with large-scale plasmoids propagating down the tail. Also, the earthward fast reconnection jet causes drastic magnetic field dipolarization, so that the sheet current ahead of the magnetic loop of closed field lines suddenly turns its direction toward the loop footpoint and a large-scale current wedge is formed according to the growth of field-aligned currents. It is demonstrated that an MHD generator arises ahead of the magnetic loop and drives the current wedge to distinctly enhance the current density in a pair of thin layers of the loop footpoint, giving rise to drastic heating in the form of two ribbons.

  10. Wave driven magnetic reconnection in the Taylor problem

    International Nuclear Information System (INIS)

    Fitzpatrick, Richard; Bhattacharjee, Amitava; Ma Zhiwei; Linde, Timur

    2003-01-01

    An improved Laplace transform theory is developed in order to investigate the initial response of a stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation in the so-called Taylor problem. The novel feature of this theory is that it does not employ asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfven time then the plasma response eventually asymptotes to that predicted by conventional asymptotic matching theory. However, at early times there is a compressible Alfven wave driven contribution to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly compared to the Alfven time then strongly localized compressible Alfven wave-pulses are generated which bounce backward and forward between the walls many times. Each instance these wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The maximum pulse driven reconnection rate can be much larger than that predicted by conventional asymptotic matching theory

  11. Bursting reconnection of the two co-rotating current loops

    Science.gov (United States)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  12. Color-reconnection in Z → 3 jets

    International Nuclear Information System (INIS)

    Rudolph, G.

    2004-01-01

    The electric charge distribution of gluon jets with a rapidity gap is sensitive to possible effects of color reordering in the final quark-gluon cascade. High statistics data from the ALEPH experiment at LEP-1 are used to test the predictions of different color reconnection models. (author)

  13. Proxy and in-situ studies of dayside magnetopause reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Scurry, L.; Russell, C.T. [California Univ., Los Angeles, CA (United States). Inst. of Geophysics and Planetary Physics; Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1992-12-01

    The functional dependence of magnetic reconnection on solar wind parameters is examined utilizing the am geomagnetic index and satellite observations at the magnetopause. Several parameters in the solar wind are found to control geomagnetic activity. Reconnection is found to be most efficient when the interplanetary magnetic field is southward, although some activity remains when the IMF is horizontal and slightly northward. The reconnection efficiency increases with the solar wind dynamic pressure but decreases when the Mach number is greater than 7.5. These results are compared with the functional dependencies found by correlating solar wind and magnetosheath measurements with observations of accelerated tows at the magnetopause. Accelerated tows are found to occur most often when the interplanetary magnetic field is directed southward. However, accelerated flows do occur when the IMF is horizontal and northward. Accelerated flows are also affected by the magnetosheath beta such that higher beta inhibits their occurrence. The location of accelerated tows indicates that reconnection occurs mainly at the subsolar point.

  14. Energy transfer by magnetopause reconnection and the substorm parameter epsilon

    International Nuclear Information System (INIS)

    Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de.

    1983-01-01

    An expression for the magnetopause reconnection power based on the dawn-dusk component of the reconnection electric field, that reduces to the substorm parameter epsilon for the limit that involves equal geomagnetic (B sub(G)) and magnetosheath (B sub(M)) magnetic field amplitudes at the magnetopause, is contrasted with the expression based on the whole reconnection electric field vector obtained by Gonzalez. The correlation examples of this report show that this (more general) expression for the reconnection power seems to correlate with the empirical dissipation parameter U sub(T) from Akasofu, with slightly better correlation coefficients than those obtained from similar correlations between the parameter epsilon and U sub(T). Thus, these (better) correlations show up for the more familiar values of the ratio B sub(G) / B sub(M) > 1. Nevertheless, the (expected) relatively small difference that seems to exist between these correlation coefficients suggests that, for practical purposes, the parameter epsilon could be used as well (instead of the more general expression) in similar correlation studies due to its impler format. On the other hand, studies that refer mainly to the difference in the magnitudes of epsilon and of the more general expression are expected to give results with less negligible differences. (Author) [pt

  15. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    Science.gov (United States)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  16. Simulations of Hall reconnection in partially ionized plasmas

    Science.gov (United States)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  17. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    Science.gov (United States)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  18. Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence

    International Nuclear Information System (INIS)

    Yagi, M.; Itoh, S.I.; Fukuyama, A.

    1998-01-01

    The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)

  19. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.; Yang, K.; Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2015-12-10

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  20. Is Flux Rope a Necessary Condition for the Progenitor of Coronal Mass Ejections?

    Science.gov (United States)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-12-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  1. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    International Nuclear Information System (INIS)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure

  2. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  3. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

  4. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  5. Interchanges in popcorn (Zea mays L. involving the nucleolus organizer chromosome

    Directory of Open Access Journals (Sweden)

    Maria Suely Pagliarini

    2006-01-01

    Full Text Available The analysis of microsporogenesis in endogamous plants of popcorn (S5 to S7 showed several and distinctinterchanges which involve the nucleolus organizer (chromosome 6. The detection of cells with interchanges was facilitatedby the presence of two nucleoli of different sizes in contrast to normal ones with a single big nucleolus. Interchange points donot always seem to be at the same place. Whereas in several situations the interchange point clearly involved more than twochromosome pairs, a simple terminal translocation seemed to occur in others. During diplotene, a cross-shaped configurationconnected with the nucleoli was observed in some meiocytes. Some heteromorphic bivalents were found during diakinesis,after which meiosis progressed normally to the end and gave rise to apparently normal tetrads with one normal nucleolus ineach microspore. Tests of pollen viability in fixed pollen grains showed 100% stainability in normal and in affected plants.This is the first report on chromosome interchanges in popcorn.

  6. Interchange instability with line-typing and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Riordan, J.C.; Hartman, C.W.

    1977-01-01

    Finite Larmor radius and end effects are included in a treatment of the low-β interchange instability. Higher order modes are shown to be destabilized by incomplete line-tying through an external plasma

  7. Developing A Priority-Based Decision Making Mod To Evaluate Geometric Configuration Of Urban Interchanges

    NARCIS (Netherlands)

    Naeimi, M.; Alimoradi, Z.; Razi, M.; Monajjem, S.

    2014-01-01

    The present article involves in evaluation and engineering judgment of various geometric configurations for highway interchanges by considering substantial parameters over the discretion process. The geometric, economical and architectural criteria as the fundamental indicators are divided into

  8. Lane assignment traffic control devices on frontage roads and conventional roads at interchanges : technical report.

    Science.gov (United States)

    2011-11-01

    The intersection and mandatory movement lane control signs placed on intersection approaches are critical to : safe and efficient intersection operations. Ramp, frontage road, and cross-street approaches to interchanges : often widen at intersections...

  9. Controls for the Electronic Data Interchange at the Defense Finance and Accounting Service Columbus

    National Research Council Canada - National Science Library

    2001-01-01

    .... The Electronic Data Interchange sends and receives contract payment information from computer to computer in a standard format, thus allowing documents to be received, validated, accepted, and immediately processed...

  10. Geothermal Energy and the Eastern US: Fifth technical information interchange meeting, Minutes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The technical interchange meeting documented here is the fifth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.

  11. Geothermal Energy and the Eastern US: Technical Information Interchange Meeting, Minutes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The technical interchange meeting documented here is the fourth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.

  12. Statistical Analysis of Interchange Injection Events from Over a Decade of Cassini Data

    Science.gov (United States)

    Azari, A.; Jia, X.; Liemohn, M. W.; Sergis, N.; Thomsen, M. F.; Mitchell, D. G.; Rymer, A. M.; Paranicas, C.; Provan, G.; Ye, S.; Cowley, S. W. H.; Hospodarsky, G. B.; Vandegriff, J. D.; Kurth, W. S.

    2017-12-01

    The Cassini spacecraft has routinely observed interchange injection events with multiple instruments since arriving at Saturn in 2004. Interchange injection events are thought to initiate from a Rayleigh-Taylor like plasma instability sourced from Saturn's rapid rotation (period 10.8 hours) and dense plasma population outgassing primarily from Enceladus, and are the primary source of mass transport in the inner/middle magnetosphere. This dense plasma must be transported outward, and to conserve magnetic flux, inward moving flux tubes of low density, energetic (> keV) plasma from the outer reaches of the Saturnian system also occur. These inward-bound flux tubes are referred to as interchange injections. We will present a statistical evaluation of the occurrence rates of interchange injections at Saturn demonstrating seasonal dependence of interchange over the entirety of the Cassini mission's equatorial orbits between 2005 and 2016. We identify interchange events from CHarge Energy Mass Spectrometer (CHEMS) H+ data using a trained and tested automated algorithm. Our event identification compares well with manual identification and previous surveys of injections by L-shell and local time (Chen and Hill, 2008, Lai et al., 2016, Kennelly et al., 2013). We find that peak rates of interchange events occur between 7 - 9 Saturn radii, in agreement with previous surveys. We also evaluate interchange by preferred local time sector and season, splitting our events into pre-equinox, equinox, and post - equinox time periods. We determine that over all seasons, nightside occurrence dominated as compared to dayside, but the preferred dayside sector shifts from pre-noon during equinox, to post-noon during post-equinox. We will further investigate seasonal dependence by presenting occurrence organized by the phase systems derived based on Saturn kilometric radiation (SKR) and magnetic field perturbations (PPO).

  13. Chromosome orientation and sterility in gamma-ray induced interchanges in chili pepper (Capsicum annuum L.)

    International Nuclear Information System (INIS)

    Kumar, O.A.; Panda, R.C.; Rao, K.G.R.

    1986-01-01

    After gamma irradiation (30 Kr) of seeds of Capsicum annuum cultivar cerasiformis (2 n = 24) two plants were recorded each carrying two interchanges. The nucleolus organiser chromosome appeared not to be involved. The interchange heterozygotes were weak and meiosis was irregular. At least one multivalent association per PMC was recorded. At metaphase I the predominant orientation was adjacent. The probable reasons for anaphase I and other meiotic irregularities and the incidence of high pollen sterility are discussed. (author)

  14. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  15. Shear flow generation and turbulence suppression by resistive ballooning and resistive interchange modes

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Drake, J.F.

    1993-01-01

    The generation of shear flow by resistive ballooning modes and resistive interchange modes is compared and contrasted using a 3-D fluid code. The resistive ballooning modes give rise to poloidally asymmetric transport and hence drive poloidal rotation due to the Reynold's Stress as well as the anomalous Stringer/Winsor mechanism. On the other hand the resistive interchange mode can drive shear flow only through the Reynold's Stress. The studies show that if the self-consistent sheared flow is suppressed, the resistive ballooning modes give rise to a larger anomalous transport than produced by the resistive interchange modes. Furthermore the shear flow generated by the resistive ballooning modes is larger than that driven by the resistive interchange modes due to the combined effect of the dual mechanisms stated earlier. As a consequence strong suppression of the fluctuations as well as reduction of the transport occurs for resistive ballooning modes. On the other hand, for the resistive interchange modes the level of fluctuation as well as the anomalous transport is not reduced by the self consistent shear flow generated by the Reynold's Stress. This latter result is in agreement with some earlier 3-D simulation of resistive interchange modes

  16. Determination of the interchangeable heavy-metal fraction in soils by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Gaebler, H.E.; Bahr, A.; Mieke, B.

    1999-01-01

    An isotope dilution technique using enriched stable isotopes is applied to determine the interchangeable heavy-metal fraction in soils. Metals in two soil samples are extracted at constant pH, with water, NH 4 NO 3 , and EDTA. A spike of enriched stable isotopes is added to the suspension of sample and eluant at the beginning of the extraction. The heavy-metal fraction which exchanges with the added spike during the extraction is called the interchangeable fraction. The extractable heavy-metal fractions are obtained from the heavy-metal concentrations in the eluates. Isotope ratios and concentrations are determined by HR-ICP-MS. The isotope dilution technique described enables both the extractable and the interchangeable heavy-metal fractions to be determined in the same experiment. The combination of both results gives additional information on elemental availability under different conditions that cannot be obtained by analyzing the extractable heavy-metal fractions alone. It is demonstrated that in some cases different eluants just shift the distribution of the interchangeable fraction of an element between the solid and liquid phases (e.g., Pb and Cd in a topsoil sample) while the amount of the interchangeable fraction itself remains constant. For other elements, as Ni, Zn, and Cr, the use of different eluants (different pH, complexing agents) sometimes enlarges the interchangeable fraction. (orig.)

  17. Observations of Reconnection Flows in a Flare on the Solar Disk

    International Nuclear Information System (INIS)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.

    2017-01-01

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.

  18. Observations of Reconnection Flows in a Flare on the Solar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-09-20

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.

  19. Control rod ejection analysis during a depressurization accident and the development of a rod-ejection-preventing device

    International Nuclear Information System (INIS)

    Mitake, S.; Itoh, K.; Fukushima, H.; Inoue, T.

    1982-01-01

    The control rods used for the experimental VHTR are suspended in the core by means of flexible steel cables and it is conceivable that an accidental rod ejection could occur due to a depressurization accident. The computer code AFLADE was developed in order to analyze the possibility of accidental rod ejection, and several studies were performed. The parametric study results showed that the adopted design condition for the VHTR core will not cause a rod ejection accident. In parallel with these accident analyses, a rod-ejection-preventing device was developed in preparation for a hypothetical accident, and its function was verified by the component tests

  20. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    Science.gov (United States)

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142

  1. Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew Thomas

    Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of

  2. Reconnecting with the past on social network sites

    DEFF Research Database (Denmark)

    Shklovski, Irina

    we do not know why people seek out such ties and whether they benefit from them. This paper presents findings from a qualitative study of how people in Russia and Kazakhstan used SNSs for communication and relational maintenance. For many of the participants SNSs had offered an opportunity...... for reconnection with lapsed ties that brought about deeply emotional experiences of nostalgic remembrances and intimate exchanges of current status. In this process of reconnecting, they established connections not only with each other but also with a kind of past that was long gone. These ties were not expected...... to function as social resources or as active providers of support. In many ways, these ties explicitly lacked a purpose beyond emotional remembrance, as they were rarely re-integrated into daily life. Nevertheless, these ties remained connections to a past even as they at times became digital connections...

  3. Particle acceleration and reconnection in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama, Huntsville, AL 35805 (United States); Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States); Khabarova, O. [Heliophysical Laboratory, IZMIRAN, Troitsk, Moscow 142190 (Russian Federation); Cummings, A. C.; Stone, E. C. [California Institute of Technology, Mail Code 290-17, Pasadena, CA 91125 (United States); Decker, R. B. [Johns Hopkins University/Applied Physics Lab., Laurel, MD 20723-6099 (United States)

    2016-03-25

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.

  4. The generalized Ohm's law in collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Cai, H.J.; Lee, L.C.

    1997-01-01

    The generalized Ohm close-quote s law and the force balance near neutral lines in collisionless magnetic reconnection is studied based on two-dimensional full particle simulations in which the ion endash electron mass ratio is set to be 1836. The off-diagonal elements of a plasma pressure tensor are found to be responsible for the breakdown of the frozen-in condition in collisionless reconnection. While the off-diagonal elements of the electron pressure tensor are dominant terms in the generalized Ohm close-quote s law near neutral lines, the ion off-diagonal pressure terms are of significant importance when ions are main current carriers. The spatial scale of electron off-diagonal pressure term P xy (e) is also found to be proportional to the Dungey length scale, (m e E y /eβ 2 ) 1/3 , where β=∂B z /∂x. copyright 1997 American Institute of Physics

  5. Ion distributions in a two-dimensional reconnection field geometry

    International Nuclear Information System (INIS)

    Curran, D.B.; Goertz, C.K.; Whelan, T.A.

    1987-01-01

    ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987

  6. Scales of guide field reconnection at the hydrogen mass ratio

    International Nuclear Information System (INIS)

    Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.

    2010-01-01

    We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.

  7. How Does the Electron Dynamics Affect the Global Reconnection Rate

    Science.gov (United States)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  8. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.

  9. Left ventricular ejection fraction determined by gated Tl-201 perfusion SPECT and quantitative software

    International Nuclear Information System (INIS)

    Hyun, In Young; Kim, Sung Eun; Seo, Jeong Kee; Hong, Eui Soo; Kwan, Jun; Park, Keum Soo; Lee, Woo Hyung

    2000-01-01

    We compared estimates of ejection fraction (EF) determined by gated Tl-201 perfusion SPECT (g-Tl-SPECT) with those by gated blood pool (GBP) scan. Eighteen subjects underwent g-Tl-SPECT and GBP scan. After reconstruction of g-Tl-SPECT, we measured EF with Cedars software. The comparison of the EF with g-Tl-SPECT and GBP scan was assessed by correlation analysis and Bland Altman plot. The estimates of EF were significantly different (p<0.05) with g-Tl-SPECT (40%±14%) and GBP scan (43%±14%). There was an excellent correlation of EF between g-Tl-SPECT and GBP scan (r=3D0.94, p<0.001). The mean difference of EF between GBP scan and g-Tl-SPECT was +3.2%. Ninety-five percent limits of agreement were ±9.8%. EF between g-Tl-SPECT and GBP scan were in poor agreement. The estimates of EF by g-Tl-SPECT was well correlated with those by GBP scan. However, EF of g-Tl-SPECT doesn't agree with EF of GBP scan. EF of g-Tl-SPECT can't be used interchangeably with EF of GBP scan.=20

  10. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  11. ISEE observations of the magnetopause: Reconnection and the energy balance

    International Nuclear Information System (INIS)

    Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Sonnerup, B.U.O.; Bame, S.J.; Russell, C.T.

    1985-01-01

    According to the usual magnetopause reconnection model, plasma flows across the magnetopause current sheet, which is a rotational discontinuity with a nonzero normal magnetic field component B/sub n/, from the magnetosheath into the magnetospheric boundary layer. As the plasma crosses the sheet, which has net current I, it is accelerated by the I x B/sub n/ force and flows toward the poles with speeds up to twice the Alfven speed

  12. Near-Earth Reconnection Ejecta at Lunar Distances

    Science.gov (United States)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.

    2018-04-01

    Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.

  13. Colour annealing - a toy model of colour reconnections

    International Nuclear Information System (INIS)

    Sandhoff, Marisa; Wuppertal U.; Skands, Peter; Fermilab

    2005-01-01

    We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t(bar t) events at the Tevatron

  14. The dependence of cusp ion signatures on the reconnection rate

    Directory of Open Access Journals (Sweden)

    S. K. Morley

    2003-04-01

    Full Text Available The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. "Stepped" and "sawtooth" signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating, magnetopause, cusp and boundary layers

  15. Colour annealing - a toy model of colour reconnections

    Energy Technology Data Exchange (ETDEWEB)

    Sandhoff, Marisa; /Wuppertal U.; Skands, Peter; /Fermilab

    2005-12-01

    We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t{bar t} events at the Tevatron.

  16. Application of PDSLin to the magnetic reconnection problem

    KAUST Repository

    Yuan, Xuefei

    2013-01-01

    Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth\\'s magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.

  17. Application of PDSLin to the magnetic reconnection problem

    KAUST Repository

    Yuan, Xuefei; Li, Xiaoyesherry; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.

    2013-01-01

    Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.

  18. Fully kinetic simulations of magnetic reconnection in partially ionised gases

    Science.gov (United States)

    Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.

    2016-12-01

    Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.

  19. MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere

    Science.gov (United States)

    Slavin. James A.

    2009-01-01

    During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.

  20. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    International Nuclear Information System (INIS)

    Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory

    2015-01-01

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability

  1. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

  2. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    Science.gov (United States)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  3. Air pollution and heart failure: Relationship with the ejection fraction

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Afonso, Javier; Rodríguez, Sergio; Juarez-Prera, Ruben A; Arroyo-Ucar, Eduardo; Gonzalez, Yenny; Abreu-Gonzalez, Pedro; Avanzas, Pablo

    2013-01-01

    AIM: To study whether the concentrations of particulate matter in ambient air are associated with hospital admission due to heart failure in patients with heart failure with preserved ejection fraction and reduced ejection fraction. METHODS: We studied 353 consecutive patients admitted into a tertiary care hospital with a diagnosis of heart failure. Patients with ejection fraction of ≥ 45% were classified as having heart failure with preserved ejection fraction and those with an ejection fraction of < 45% were classified as having heart failure with reduced ejection fraction. We determined the average concentrations of different sizes of particulate matter (< 10, < 2.5, and < 1 μm) and the concentrations of gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone) from 1 d up to 7 d prior to admission. RESULTS: The heart failure with preserved ejection fraction population was exposed to higher nitrogen dioxide concentrations compared to the heart failure with reduced ejection fraction population (12.95 ± 8.22 μg/m3 vs 4.50 ± 2.34 μg/m3, P < 0.0001). Multivariate analysis showed that nitrogen dioxide was a significant predictor of heart failure with preserved ejection fraction (odds ratio ranging from (1.403, 95%CI: 1.003-2.007, P = 0.04) to (1.669, 95%CI: 1.043-2.671, P = 0.03). CONCLUSION: This study demonstrates that short-term nitrogen dioxide exposure is independently associated with admission in the heart failure with preserved ejection fraction population. PMID:23538391

  4. Ejection experience in Serbian air force, 1990-2010

    Directory of Open Access Journals (Sweden)

    Pavlović Miroslav

    2014-01-01

    Full Text Available Background/Aim. Ejection injuries are the problem for air forces. The present risk for injuries is still too high, approximately 30-50%. This study was an effort to determine factors responsible for and contributing to injuries in the Serbian Air Force (SAF in the last two decades. Methods. All ejection cases in the SAF between 1990 and 2010 were analyzed. The collected data were: aircraft type, ejection seat generation, pilots ´ age and experience, causes of ejection, aeronautical parameters, the condition of aircraft control and types of injuries. For ease of comparison the U.S. Air Force Safety Regulation was used to define of major injuries: hospitalization for 5 days or more, loss of consciousness for over 5 min, bone fracture, joint dislocation, injury to any internal organ, any third-degree burn, or second-degree burn over 5% of the body surface area. Results. There were 52 ejections (51 pilots and 1 mechanic on 44 airplanes. The ejected persons were from 22 to 46 years, average 32 years. Major injuries were present in 25.49% cases. Of all the ejected pilots 9.61% had fractures of thoracic spine, 11.53% fractures of legs, 3.48% fractures of arms. Of all major injuries, fractures of thoracic spine were 38.46%. None of the pilots had experienced ejection previously. Conclusion. Our results suggest to obligatory take preventive measures: magnetic resonance imaging (MRI scan must be included in the standard pilot selection procedure and procedure after ejection. Physical conditioning of pilots has to be improved. Training on ejection trainer has to be accomplished, too.

  5. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  6. Model of magnetic reconnection in space and astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2013-03-15

    Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.

  7. Magnetic reconnection processes induced by a CME expansion

    Directory of Open Access Journals (Sweden)

    A. Bemporad

    2008-10-01

    Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer. These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R⊙ over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.

  8. Small-Scale Dayside Magnetic Reconnection Analysis via MMS

    Science.gov (United States)

    Pritchard, K. R.; Burch, J. L.; Fuselier, S. A.; Webster, J.; Genestreti, K.; Torbert, R. B.; Rager, A. C.; Phan, T.; Argall, M. R.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Giles, B. L.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission has the primary objective of understanding the physics of the reconnection electron diffusion region (EDR), where magnetic energy is transformed into particle energy. In this poster, we present data from an EDR encounter that occurred in late December 2016 at approximately 11:00 MLT with a moderate guide field. The spacecraft were in a tetrahedral formation with an average inter-spacecraft distance of approximately 7 kilometers. During this event electron crescent-shaped distributions were observed in the electron stagnation region as is typical for asymmetric reconnection. Based on the observed ion velocity jets, the spacecraft traveled just south of the EDR. Because of the close spacecraft separation, fairly accurate computation of the Hall, electron pressure divergence, and electron inertia components of the reconnection electric field could be made. In the region of the crescent distributions good agreement was observed, with the strongest component being the normal electric field and the most significant sources being electron pressure divergence and the Hall electric field. While the strongest currents were in the out-of-plane direction, the dissipation was strongest in the normal direction because of the larger magnitude of the normal electric field component. These results are discussed in light of recent 3D PIC simulations performed by other groups.

  9. Intermittent bursts induced by double tearing mode reconnection

    Science.gov (United States)

    Wei, Lai; Wang, Zheng-Xiong

    2014-06-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  10. Intermittent bursts induced by double tearing mode reconnection

    International Nuclear Information System (INIS)

    Wei, Lai; Wang, Zheng-Xiong

    2014-01-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines

  11. Intermittent bursts induced by double tearing mode reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  12. Model of magnetic reconnection in space and astrophysical plasmas

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2013-01-01

    Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.

  13. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    Science.gov (United States)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  14. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  15. Final Scientific Report: Experimental Investigation of Reconnection in a Line-tied Plasma

    International Nuclear Information System (INIS)

    Forest, Cary

    2016-01-01

    This grant used funding from the NSF/DoE Partnership on Plasma Science to investigate magnetic reconnection phenomena in a line-tied pinch experiment. The experiment was upgraded from a previous device intended to study fusion plasma-related instabilities to a new configuration capable of studying a number of new, previously unstudied configurations. A high spatial and time resolution array of magnetic probes was constructed to measure time evolving structures present as instability and turbulence developed. The most important new equilibrium made possible by this grant was a Zero-Net-Current equilibrium that models the footpoint twisting of solar flux tubes that occurs prior to solar eruptions (flares and coronal mass ejections). This new equilibrium was successfully created in the lab, and it exhibited a host of instabilities. In particular, at low current when the equilibrium was not overly stressed, a saturated internal kink mode oscillation was observed. At high current, 2 D magnetic turbulence developed which we attribute to the lack of a equilibrium brought about by a subcritical transition to turbulence. A second set of experiments involved the turbulent interactions of a collection of flux tubes all being twisted independently, a problem known as the Parker Problem. Current profiles consisting of 2, 3 and 4 guns were used to impose a fine scale drive, and resulted in a new experimental platform in which the injection scale of the magnetic turbulence could be controlled. First experiments in this configuration support the conclusion that an inverse cascade of magnetic energy occurred which self-organized the plasma into a nearly axisymmetric current distribution.

  16. Magnetic Source Regions of Coronal Mass Ejections Brigitte ...

    Indian Academy of Sciences (India)

    2003) or two rows of opposite polarity field extending to ... sional Alfvén waves which bring up helicity from the sub-photospheric part of the flux tube ... Figure 1. Loss of equilibrium model: sketches of coronal field lines showing ... lines of the quadrupolar reconnection before the flare, (bottom left): TRACE observations of the.

  17. Reconnect on Facebook: The Role of Information Seeking Behavior and Individual- and Relationship-Level Factors.

    Science.gov (United States)

    Ramirez, Artemio; Sumner, Erin M; Hayes, Jameson

    2016-08-01

    Social network sites (SNSs) such as Facebook function as both venues for reconnecting with associates from a user's past and sources of social information about them. Yet, little is known about what factors influence the initial decision to reconnect with a past associate. This oversight is significant given that SNSs and other platforms provide an abundance of social information that may be utilized for reaching such decisions. The present study investigated the links among relational reconnection, information seeking (IS) behavior, and individual- and relationship-level factors in user decisions to reconnect on Facebook. A national survey of 244 Facebook users reported on their most recent experience of receiving a friend request from someone with whom they had been out of contact for an extended period. Results indicated that uncertainty about the potential reconnection partner and forecast about the reconnection's potential reward level significantly predicted IS behavior (passive on both target and mutual friends' SNS pages as well as active). However, the emergence of their two-way interaction revealed that the forecasts moderated the IS-uncertainty link on three of the strategies (extractive, both passive approaches). Moreover, social anxiety, sociability, uncertainty about the partner, the forecast about the reconnection's reward level, and extractive and passive (target SNS pages) strategies significantly predicted user decisions to reconnect. Future directions for research on relational reconnection on SNSs are offered.

  18. Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations

    Science.gov (United States)

    Wang, S.; Kistler, L. M.; Mouikis, C. G.; Liu, Y.; Genestreti, K. J.

    2014-12-01

    In reconnection, the presence of heavy ions like O+ increases the ion mass density reducing the fluid's Alfvén speed. In addition, it may modify the reconnection structure, which can also change the reconnection rate. However, because O+ ions have a larger Larmor radii than H+ ions at the same velocity, they may not be fully entrained in the reconnection flow and may have kinetic effects other than just increasing the mass density. In this study, for the first time, the ion velocity distribution functions of H+ and O+ from one magnetopause reconnection event with a strong guide field are analyzed to determine in detail the behavior of the different ion populations. We show that the hot magnetospheric O+ ions, along with the hot magnetospheric H+ ions almost fully participate in the reconnection exhaust flows. Finite Larmor radius effects are also apparent and control how far the ions extend on the magnetosheath side. Ion signatures consistent with heating after being picked up in the reconnection exhaust flow are observed in the H+ and O+ distribution functions. The dynamics of the cold magnetospheric ions depends on where they enter the reconnection region. If they enter the reconnection region at the downstream separatrix, they will be taken away by the magnetic field in an adiabatic way as analyzed by Drake et al. (2009a); if they enter close to the diffusion region, they behave as pick-up ions.

  19. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.

    Science.gov (United States)

    Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander

    2015-07-10

    In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

  20. Active Longitude and Coronal Mass Ejection Occurrences

    International Nuclear Information System (INIS)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R.; Singh, T.; Srivastava, A. K.

    2017-01-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  1. Active Longitude and Coronal Mass Ejection Occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R. [Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Singh, T.; Srivastava, A. K., E-mail: n.g.gyenge@sheffield.ac.uk [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India)

    2017-03-20

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  2. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  3. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  4. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  5. Influence of radio frequency waves on the interchange stability in HANBIT mirror plasmas

    International Nuclear Information System (INIS)

    Hogun Jhang; Kim, S.S.; Lee, S.G.; Park, B.H.; Bak, J.G.

    2005-01-01

    Experimental and theoretical studies are made of the influence of high frequency radio frequency (rf) waves upon interchange stability in HANBIT mirror plasmas. An emphasis is put on the interchange stability near the resonance region, ω 0 ∼Ω i , where ω 0 is the angular frequency of the applied rf wave and Ω i is the ion cyclotron frequency. Recent HANBIT experiments have shown the existence of the interchange-stable operation window in favor of ω 0 /Ω i ≤1 with its sensitivity on the applied rf power. A strong nonlinear interaction between the rf wave and the interchange mode has been observed with the generation of sideband waves. A theoretical analysis including both the ponderomotive force and the nonlinear sideband wave coupling has been developed and applied to the interpretation of the experiments, resulting in a good agreement. From the study, it is concluded that the nonlinear wave-wave coupling process is responsible for the rf stabilization of the interchange modes in HANBIT mirror plasmas operating near the resonance condition. (author)

  6. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  7. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  8. Recurrent mass ejections observed in H-alpha and CIV

    International Nuclear Information System (INIS)

    Schmieder, B.; Simon, G.

    1984-01-01

    Time sequences of recurrent mass ejections have been observed during a coordinated SMY program (Sept. 1, 1980 - Sept. 23, 1980 - Oct. 2, 1980). Comparison of the temporal evolution of H-alpha and CIV brightnesses shows a weak phase lag between H-alpha and CIV maxima, in the case of homologous flares, with CIV brightness maxima preceding H-alpha maxima. The analysis of the variation of the ejection velocities is expected to lead to the determination of an energy balance. Such recurrent ejections could be due to periodic energy storage and periodic reorganization of magnetic field as envisaged to occur for flares, but at lower energy levels

  9. Magazine Influence on Cartridge Case Ejection Patterns with Glock Pistols.

    Science.gov (United States)

    Kerkhoff, Wim; Alberink, Ivo; Mattijssen, Erwin J A T

    2018-01-01

    In this study, the cartridge case ejection patterns of six different Glock model pistols (one specimen per model) were compared under three conditions: firing with a loaded magazine, an empty magazine, and without magazine. The distances, covered by the ejected cartridge cases given these three conditions, were compared for each of the six models. A significant difference was found between the groups of data for each of the tested specimens. This indicates that it is important that, to reconstruct a shooting scene incident based on the ejection patterns of a pistol, test shots are fired with the same pistol type and under the correct magazine condition. © 2017 American Academy of Forensic Sciences.

  10. The determination of parameters for thermal unit pricing and economic interchange

    International Nuclear Information System (INIS)

    Briggs, D.W.; Pickles, R.; McPhail, E.M.

    1988-01-01

    When an interchange of energy occurs between adjoining utilities which is not the subject of a predetermined fixed price agreement but is related to the immediate cost of generating and transmitting the power, the purchaser and seller need to know the cost of the power before agreeing to the interchange. A working party from three Maritime utilities was set up to reveiw areas of interchange energy pricing between them and in particular standardize the following aspects: test procedure for a unit heat rate over its load range; maintenance and operating costs; provision for contingency costs; start up costs of units; and a pricing formula considering the above items. The three utilities are Nova Scotia Power Corporation, Maritime Electric, and New Brunswick Power Commission. Details are presented of the three utility's methods of determining heat rate, operating factor, total fuel cost, transmission loss, operations and maintenance costs, gas turbine parameters, pricing formulae, and start up costs. 2 figs., 7 tabs

  11. Theory of energetic trapped particle-induced resistive interchange-ballooning modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-02-01

    A theory describing the influence of energetic trapped particles on resistive interchange-ballooning modes in tokamaks is presented. It is shown that a population of hot particles trapped in the region of adverse curvature can resonantly interact with and destabilize the resistive interchange mode, which is stable in their absence because of favorable average curvature. The mode is different from the usual resistive interchange mode not only in its destabilization mechanism, but also in that it has a real component to its frequency comparable to the precessional drift frequency of the rapidly circulating energetic species. Corresponding growth rate and threshold conditions for this trapped-particle-driven instability are derived and finite banana width effects are shown to have a stabilizing effect on the mode. Finally, the ballooning/tearing dispersion relation is generalized to include hot particles, so that both the ideal and the resistive modes are derivable in the appropriate limits. 23 refs., 7 figs

  12. A Cross-Classified CFA-MTMM Model for Structurally Different and Nonindependent Interchangeable Methods.

    Science.gov (United States)

    Koch, Tobias; Schultze, Martin; Jeon, Minjeong; Nussbeck, Fridtjof W; Praetorius, Anna-Katharina; Eid, Michael

    2016-01-01

    Multirater (multimethod, multisource) studies are increasingly applied in psychology. Eid and colleagues (2008) proposed a multilevel confirmatory factor model for multitrait-multimethod (MTMM) data combining structurally different and multiple independent interchangeable methods (raters). In many studies, however, different interchangeable raters (e.g., peers, subordinates) are asked to rate different targets (students, supervisors), leading to violations of the independence assumption and to cross-classified data structures. In the present work, we extend the ML-CFA-MTMM model by Eid and colleagues (2008) to cross-classified multirater designs. The new C4 model (Cross-Classified CTC[M-1] Combination of Methods) accounts for nonindependent interchangeable raters and enables researchers to explicitly model the interaction between targets and raters as a latent variable. Using a real data application, it is shown how credibility intervals of model parameters and different variance components can be obtained using Bayesian estimation techniques.

  13. The Effect of Ion Multi-scales on Magnetic Reconnection in Earth's Magnetotail - Cluster Observations"

    Science.gov (United States)

    Shojaei Ardakani, A.; Mouikis, C.; Kistler, L. M.; Torbert, R. B.; Roytershteyn, V.; Omelchenko, Y.

    2017-12-01

    A recent statistical study, using Cluster observations, showed that during substorms, a higher O+ content in the plasma sheet during the substorm growth phase, makes it more difficult to trigger reconnection [Liu et al, 2013]. In addition, they showed that, in contrast to predictions that the reconnection rate during the substorm expansion phase slows down in the presence of O+, the magnetotail unloading rate is actually faster when the O+ content is higher. This could be due to a faster local reconnection rate or due to reconnection occurring over a greater width in the tail when the O+ content of the plasma sheet is high. To address this question, we use reconnection events observed by Cluster that have different densities of O+ and we determine the local reconnection rate. For the calculation of the reconnection rate we use CODIF observations from the boundary layer/lobes around flow reversals where the distribution functions show signatures of the presence of cold plasma convecting towards the current sheet. In addition, we use timing analysis to deduce the movement of the x-line. This methodology will be compared with the estimation of the reconnection rate using results from fully kinetic and hybrid particle-in-cell simulations that model reconnection in the presence of O+ in both local geometry and in a model magnetotail equilibrium. Finally, we use the deduced local reconnection rate together with the total magnetotail pressure rate of change (from Liu et al., [2013]) to estimate the cross-tail extent of the reconnecting plasma sheet.

  14. ePrescribing: Reducing Costs through In-Class Therapeutic Interchange.

    Science.gov (United States)

    Stenner, Shane P; Chakravarthy, Rohini; Johnson, Kevin B; Miller, William L; Olson, Julie; Wickizer, Marleen; Johnson, Nate N; Ohmer, Rick; Uskavitch, David R; Bernard, Gordon R; Neal, Erin B; Lehmann, Christoph U

    2016-12-14

    Spending on pharmaceuticals in the US reached $373.9 billion in 2014. Therapeutic interchange offers potential medication cost savings by replacing a prescribed drug for an equally efficacious therapeutic alternative. Hard-stop therapeutic interchange recommendation alerts were developed for four medication classes (HMG-CoA reductase inhibitors, serotonin receptor agonists, intranasal steroid sprays, and proton-pump inhibitors) in an electronic prescription-writing tool for outpatient prescriptions. Using prescription data from January 2012 to June 2015, the Compliance Ratio (CR) was calculated by dividing the number of prescriptions with recommended therapeutic interchange medications by the number of prescriptions with non-recommended medications to measure effectiveness. To explore potential cost savings, prescription data and medication costs were analyzed for the 45,000 Vanderbilt Employee Health Plan members. For all medication classes, significant improvements were demonstrated - the CR improved (proton-pump inhibitors 2.8 to 5.32, nasal steroids 2.44 to 8.16, statins 2.06 to 5.51, and serotonin receptor agonists 0.8 to 1.52). Quarterly savings through the four therapeutic interchange interventions combined exceeded $200,000 with an estimated annual savings for the health plan of $800,000, or more than $17 per member. A therapeutic interchange clinical decision support tool at the point of prescribing resulted in increased compliance with recommendations for outpatient prescriptions while producing substantial cost savings to the Vanderbilt Employee Health Plan - $17.77 per member per year. Therapeutic interchange rules require rational targeting, appropriate governance, and vigilant content updates.

  15. Positional interchanges influence the physical and technical match performance variables of elite soccer players.

    Science.gov (United States)

    Schuth, G; Carr, G; Barnes, C; Carling, C; Bradley, P S

    2016-01-01

    Positional variation in match performance is well established in elite soccer but no information exists on players switching positions. This study investigated the influence of elite players interchanging from one position to another on physical and technical match performance. Data were collected from multiple English Premier League (EPL) seasons using a computerised tracking system. After adhering to stringent inclusion criteria, players were examined across several interchanges: central-defender to fullback (CD-FB, n = 11, 312 observations), central-midfielder to wide-midfielder (CM-WM, n = 7, 171 observations), wide-midfielder to central-midfielder (WM-CM, n = 7, 197 observations) and attacker to wide-midfielder (AT-WM, n = 4, 81 observations). Players interchanging from CD-FB covered markedly more high-intensity running and sprinting distance (effect size [ES]: -1.56 and -1.26), lost more possessions but made more final third entries (ES: -1.23 and -1.55). Interchanging from CM-WM and WM-CM resulted in trivial to moderate differences in both physical (ES: -0.14-0.59 and -0.21-0.39) and technical performances (ES: -0.48-0.64 and -0.36-0.54). Players interchanging from AT-WM demonstrated a moderate difference in high-intensity running without possession (ES: -0.98) and moderate-to-large differences in the number of clearances, tackles and possessions won (ES: -0.77, -1.16 and -1.41). The data demonstrate that the physical and technical demands vary greatly from one interchange to another but utility players seem able to adapt to these positional switches.

  16. Pro EDI in BizTalk Server 2006 R2 electronic document interchange solutions

    CERN Document Server

    Beckner, Mark

    2008-01-01

    As business becomes more dependent on working with partners, suppliers, and other organizations in a streamlined way, Electronic Data Interchange (EDI) is one of the next big waves in connected systems. Microsoft BizTalk Server 2006 R2 offers an efficient, integrated way to deploy EDI solutions, and with the help of this book, readers will see how EDI can be used in their business and how best to get it set up with BizTalk. This book offers insights into the brand-new Biztalk 2006 R2--based EDI functionality, including the far greater flexibility in handling interchange. It gives advice coveri

  17. Linear theory of drift-tearing and interchange modes in a screw pinch

    International Nuclear Information System (INIS)

    Copenhaver, C.

    1978-04-01

    A drift dispersion relation, as applied to a resistive incompressible plasma in a screw pinch, is derived. This dispersion relation incorporates both drift-tearing and drift-interchange modes and is valid throughout the collisional regime by including kinetic theory factors. The dispersion relation reduces to the drift-tearing dispersion relation in the zero pressure gradient limit, and to the classical resistive dispersion relation in the zero drift limit. The electron temperature gradient instability is still present. Now, however, the introduction of the interchange-drift instability increases the growth rate further above the tearing-drift case. (orig.) [de

  18. Anti-ejection system for control rod drives

    International Nuclear Information System (INIS)

    Matthews, J.C.

    1977-01-01

    A linearly movable latch mechanism is provided to move into engagement with a deformable collet whenever an undesired ejection of a leadscrew is initiated from a nuclear reactor mounted control rod drive. Such an undesired ejection would occur in the event of a rupture in a housing of the control rod drive. The collet is deformed by the linear movement of the latch mechanism to wedge itself against the leadscrew and prevent the ejection of the leadscrew from the housing. The latch mechanism is made to be controllably engageable with the leadscrew and when thus engaged to allow the leadscrew to move in a control direction while moving with the leadscrew to engage and deform the collet when the leadscrew moves in an ejection direction. 13 claims, 2 figures

  19. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  20. Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence

    Science.gov (United States)

    Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie

    2018-02-01

    On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.

  1. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  2. Merger and reconnection of Weibel separated relativistic electron beam

    Science.gov (United States)

    Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.

    2018-02-01

    The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].

  3. Electron-inertia effects on driven magnetic field reconnection

    International Nuclear Information System (INIS)

    Al-Salti, N.; Shivamoggi, B.K.

    2003-01-01

    Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place

  4. Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere

    Science.gov (United States)

    Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun

    2018-01-01

    Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.

  5. Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.

  6. SAR Observation and Numerical Simulation of Internal Solitary Wave Refraction and Reconnection Behind the Dongsha Atoll

    Science.gov (United States)

    Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.

    2018-01-01

    The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.

  7. H-alpha Proxies for EIT Crinkles: Further Evidence for Pre-Flare "Breakout"-Type Activity in an Ejective Solar Eruption

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, R. L.; Qiu, J.; Wang, H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present Halpha observations from Big Bear Solar Observatory of an eruptive flare in NOAA AR 8210, occurring near 22:30 UT on 1998 May 1. Previously, using the EUV Imaging Telescope (EIT) on the SOHO spacecraft, we found that a pattern of transient, localized brightenings, which we call "EIT crinkles," appears in the neighborhood of the eruption near the time of flare onset. These EIT crinkles occur at a location in the active region well separated from the sheared core magnetic fields, which is where the most intense features of the eruption are concentrated. We also previously found that high-cadence images from the Soft X-ray Telescope (SXT) on Yohkoh indicate that soft X-ray intensity enhancements in the core begin after the start of the EIT crinkles. With the Halpha data, we find remote flare brightening counterparts to the EIT crinkles. Lightcurves as functions of time of various areas of the active region show that several of the remote flare brightenings undergo intensity increases prior to onset of principle brightenings in the core region, consistent with our earlier findings from EIT and SXT data. These timing relationships are consistent with the eruption onset mechanism known as the breakout model, introduced by Antiochos and colleagues, which proposes that eruptions begin with reconnection at a magnetic null high above the core region. Our observations are also consistent with other proposed mechanisms which do not involve early reconnection in the core region. As a corollary, our observations are not consistent with the so-called tether cutting models, which say that the eruption begins with reconnection in the core. The Halpha data further show that a filament in the core region becomes activated near the time of EIT crinkle onset, but little if any of the filament actually erupts, despite the presence of a halo Coronal Mass Ejection (CME) associated with this event.

  8. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    Science.gov (United States)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  9. Mass ejection in failed supernovae: variation with stellar progenitor

    Science.gov (United States)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  10. 2D numerical simulation of the resistive reconnection layer

    International Nuclear Information System (INIS)

    Uzdensky, D. A.; Kulsrud, R. M.

    2000-01-01

    In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like

  11. Numerical simulation of internal reconnection event in spherical tokamak

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya

    1999-07-01

    Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)

  12. Building on partnerships: reconnecting kids with nature for health benefits.

    Science.gov (United States)

    Kruger, Judy; Nelson, Kristen; Klein, Patti; McCurdy, Leyla Erk; Pride, Patti; Carrier Ady, Janet

    2010-05-01

    In April 2008, several federal and nonprofit agencies organized an informational Web-based meeting titled "Reconnecting Kids With Nature for Health Benefits." This online meeting was convened by the Society for Public Health Education and delivered to public health educators, health professionals, environmental educators, and land conservationists to raise awareness of national efforts to promote children's involvement in outdoor recreation. This article describes eight programs discussed at this meeting. For public health professionals, partnership with land-management agencies conducting such programs may be an effective way to increase physical activity levels among children.

  13. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  14. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin–Helmholtz Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Zhang, Qing-Min [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Murphy, Nicholas A., E-mail: leini@ynao.ac.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-05-20

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s{sup −1}. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin–Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin–Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  15. On the Collision Nature of Two Coronal Mass Ejections: A Review

    Science.gov (United States)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  16. Self-organized Te Redistribution during Driven Reconnection Processes in High Temperature Plasmas

    International Nuclear Information System (INIS)

    Park, H.K.; Mazzucato, E.; Luhmann, N.C. Jr.; Domier, C.W.; Xia, Z.; Munsat, T.; Donne, A.J.H.; Classen, I.G.J.; van de Pol, M.J.

    2005-01-01

    Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: (1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure driven mode and a kink instability leads to an 'X-point' reconnection process. (3) Reconnection can take place anywhere along the q∼1 rational magnetic surface (both high and low field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas

  17. Observations of magnetic flux ropes during magnetic reconnection in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    A. L. Borg

    2012-05-01

    Full Text Available We present an investigation of magnetic flux ropes observed by the four Cluster spacecraft during periods of magnetic reconnection in the Earth's magnetotail. Using a list of 21 Cluster encounters with the reconnection process in the period 2001–2006 identified in Borg et al. (2012, we present the distribution and characteristics of the flux ropes. We find 27 flux ropes embedded in the reconnection outflows of only 11 of the 21 reconnection encounters. Reconnection processes associated with no flux rope observations were not distinguishable from those where flux ropes were observed. Only 7 of the 27 flux ropes show evidence of enhanced energetic electron flux above 50 keV, and there was no clear signature of the flux rope in the thermal particle measurements. We found no clear correlation between the flux rope core field and the prevailing IMF By direction.

  18. Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations

    Science.gov (United States)

    Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.; hide

    2016-01-01

    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.

  19. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, F.; Olshevsky, V.; Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department Wiskunde, KU Leuven, 200B Celestijnenlaan, Leuven, B-3001 (Belgium); Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Sorriso-Valvo, L. [Nanotec-CNR, U.O.S. di Cosenza, Via P. Bucci, Cubo 31C, Arcavacata di Rende, I-87036 (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Goldman, M. V.; Newman, D. L., E-mail: francesco.pucci@kuleuven.be [University of Colorado, Boulder, CO 80309 (United States)

    2017-05-20

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  20. Role of magnetic reconnection phenomena in the reversed-field pinch

    International Nuclear Information System (INIS)

    Baker, D.A.

    1983-01-01

    The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics

  1. MMS observations of guide field reconnection at the interface between colliding reconnection jets inside flux rope-like structures at the magnetopause

    Science.gov (United States)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2017-12-01

    The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.

  2. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    2003-07-01

    Full Text Available Using ionospheric data from the SuperDARN radar network and a DMSP satellite we obtain a comprehensive description of the spatial and temporal pattern of day-side reconnection. During a period of southward interplanetary magnetic field (IMF, the data are used to determine the location of the ionospheric projection of the dayside magnetopause reconnection X-line. From the flow of plasma across the projected X-line, we derive the reconnection rate across 7 h of longitude and estimate it for the total length of the X-line footprint, which was found to be 10 h of longitude. Using the Tsyganenko 96 magnetic field model, the ionospheric data are mapped to the magnetopause, in order to provide an estimate of the extent of the reconnection X-line. This is found to be ~ 38 RE in extent, spanning the whole dayside magnetopause from dawn to dusk flank. Our results are compared with previously reported encounters by the Equator-S and Geotail spacecraft with a reconnecting magnetopause, near the dawn flank, for the same period. The SuperDARN observations allow the satellite data to be set in the context of the whole magnetopause reconnection X-line. The total potential associated with dayside reconnection was ~ 150 kV. The reconnection signatures detected by the Equator-S satellite mapped to a region in the ionosphere showing continuous flow across the polar cap boundary, but the reconnection rate was variable and showed a clear spatial variation, with a distinct minimum at 14:00 magnetic local time which was present throughout the 30-min study period.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionoshere interactions – Space plasma physics (magnetic reconnection

  3. 78 FR 6845 - Notice of Final Federal Agency Actions on Proposed Interchange Project in Massachusetts

    Science.gov (United States)

    2013-01-31

    ..., Cambridge, MA 02142, Monday through Friday 8:00 a.m.-4:30 p.m., 617-494-2419, [email protected]dot.gov . For the Massachusetts Department of Transportation Highway Division (MassDOT): Ms. Mary Hynes, Project Manager... on Proposed Interchange Project in Massachusetts AGENCY: Federal Highway Administration (FHWA), DOT...

  4. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  5. 75 FR 61497 - Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request...

    Science.gov (United States)

    2010-10-05

    ... Price Competition and Innovation Act of 2009 (BPCI Act) that amends the Public Health Service Act (PHS... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0477] Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request for...

  6. Fluency Effects in Recognition Memory: Are Perceptual Fluency and Conceptual Fluency Interchangeable?

    Science.gov (United States)

    Lanska, Meredith; Olds, Justin M.; Westerman, Deanne L.

    2014-01-01

    On a recognition memory test, both perceptual and conceptual fluency can engender a sense of familiarity and elicit recognition memory illusions. To date, perceptual and conceptual fluency have been studied separately but are they interchangeable in terms of their influence on recognition judgments? Five experiments compared the effect of…

  7. Interchange stability criteria for anisotropic central-cell plasmas in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Inutake, Masaaki; Ichimura, Makoto; Katsumata, Ryota; Watanabe, Tsuguhiro.

    1993-05-01

    Flute interchange stability of anisotropic central-cell plasmas in the tandem mirror GAMMA 10 is studied numerically. The stability criteria on the beta value is obtained as a function of axial localization length of the pressure in both central and anchor cells. The temperature anisotropy of the plasma is also discussed. (author)

  8. Factors That Influence Running Intensity in Interchange Players in Professional Rugby League.

    Science.gov (United States)

    Delaney, Jace A; Thornton, Heidi R; Duthie, Grant M; Dascombe, Ben J

    2016-11-01

    Rugby league coaches adopt replacement strategies for their interchange players to maximize running intensity; however, it is important to understand the factors that may influence match performance. To assess the independent factors affecting running intensity sustained by interchange players during professional rugby league. Global positioning system (GPS) data were collected from all interchanged players (starters and nonstarters) in a professional rugby league squad across 24 matches of a National Rugby League season. A multilevel mixed-model approach was employed to establish the effect of various technical (attacking and defensive involvements), temporal (bout duration, time in possession, etc), and situational (season phase, recovery cycle, etc) factors on the relative distance covered and average metabolic power (P met ) during competition. Significant effects were standardized using correlation coefficients, and the likelihood of the effect was described using magnitude-based inferences. Superior intermittent running ability resulted in very likely large increases in both relative distance and P met . As the length of a bout increased, both measures of running intensity exhibited a small decrease. There were at least likely small increases in running intensity for matches played after short recovery cycles and against strong opposition. During a bout, the number of collision-based involvements increased running intensity, whereas time in possession and ball time out of play decreased demands. These data demonstrate a complex interaction of individual- and match-based factors that require consideration when developing interchange strategies, and the manipulation of training loads during shorter recovery periods and against stronger opponents may be beneficial.

  9. A transformation framework for the compositional interchange format for hybrid systems

    NARCIS (Netherlands)

    Hendriks, D.; Schiffelers, R.R.H.; Hüfner, Martin; Sonntag, Christian

    2012-01-01

    The purpose of the Compositional Interchange Format for hybrid systems (CIF) is to establish inter-operability of a wide range of tools by means of model transformations - using the CIF as intermediate, the implementation of many bi-lateral translators between specific formalisms can be avoided.

  10. A semantic-preserving transformation from the compositional interchange format to UPPAAL

    NARCIS (Netherlands)

    Nadales Agut, D.E.; Reniers, M.A.; Schiffelers, R.R.H.; Jorgensen, K.E.; Beek, van D.A.; Bittanti, S.; Cenedese, A.; Zampieri, S.

    2011-01-01

    The Compositional Interchange Format (CIF), is a modeling formalism for hybrid systems, that aims to establishing interoperability of a wide range of tools by means of model transformations to and from CIF. UPPAAL is currently a very successful tool for the specification and analysis of timed

  11. New concepts in the abstract format of the Compositional Interchange Format

    NARCIS (Netherlands)

    D.A. van Beek; P.J. Collins (Pieter); D.E. Nadales Agut; J.E. Rooda (Jacobus); R.R.H. Schiffelers; A. Giua; M. Silva (Manuel); J. Zaytoon

    2009-01-01

    textabstractThe compositional interchange format for hybrid systems (CIF) supports inter-operability of a wide range of tools by means of model transformations to and from the CIF. Work on the CIF takes place in the FP7 Multiform project, and in several other European projects. The CIF consists of

  12. The influence of steepness of dominance hierarchies on reciprocity and interchange in captive groups of bonobos (Pan paniscus)

    NARCIS (Netherlands)

    Stevens, J.M.G.; Vervaecke, H.; Vries, Han de; Elsacker, L. van

    2005-01-01

    Biological market models explain variability in reciprocity and interchange between groups. In groups with a shallow dominance gradient, grooming will be mostly exchanged for itself (i.e. exchange will occur). In groups with steep dominance hierarchies, interchange is expected: individuals will

  13. Reconnecting fragmented sturgeon populations in North American rivers

    Science.gov (United States)

    Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.

    2016-01-01

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.

  14. Magnetic reconnection mediated by hyper-resistive plasmoid instability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Min; Bhattacharjee, A. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Max Planck-Princeton Center for Plasma Physics and Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Forbes, Terry G. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States)

    2013-08-15

    Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S{sub H}{sup 1/6} with respect to the hyper-resistive Lundquist number S{sub H}≡L{sup 3}V{sub A}/η{sub H}, where L is the system size, V{sub A} is the Alfvén velocity, and η{sub H} is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S{sub H}, the number of plasmoids scales as S{sub H}{sup 1/2}, and the secondary current sheet length and width both scale as S{sub H}{sup −1/2}. These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux ψ is found to obey a ψ{sup −1} power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies.

  15. Utility reconnection services : a new threat to vulnerable consumers?

    International Nuclear Information System (INIS)

    Lott, S.

    2002-10-01

    The current status of deregulation or restructuring of the energy and telecommunications sector in Canada and the United States was examined along with its impact on low-income consumers. In particular, this report examined the electricity, natural gas and telephone utilities and the extent to which reconnection services have emerged in Canada. With deregulation and utility restructuring, investment and pricing decisions are made according to market forces and competition. The core functions of the utility are unbundled into generation, transmission and distribution functions. The main impact on residential consumers is that their source of supply may change. This report also examined the regulatory responses to utility reconnection services and the impact of market segmentation in the energy sector. It focused on Canada's legislative framework that protects vulnerable consumers. It also examined the federal regulatory role in energy and telecommunications, siting Ontario as an example. It was noted that the experience in the United States with market segmentation and its negative impact on vulnerable consumers should provide some warnings for Canada. 75 refs

  16. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  17. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    Science.gov (United States)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

  18. Green's function of compressible Petschek-type magnetic reconnection

    International Nuclear Information System (INIS)

    Penz, Thomas; Semenov, V.S.; Ivanova, V.V.; Heyn, M.F.; Ivanov, I.B.; Biernat, H.K.

    2006-01-01

    We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection. Based on a time-dependent analytical approach developed by Heyn and Semenov [Phys. Plasmas 3, 2725 (1996)] and Semenov et al. [Phys. Plasmas 11, 62 (2004)], we calculate the perturbations caused by a delta function-shaped reconnection electric field, which allows us to achieve a representation of the plasma variables in the form of Green's functions. Different configurations for the initial conditions are considered. In the case of symmetric, antiparallel magnetic fields and symmetric plasma density, the well-known structure of an Alfven discontinuity, a fast body wave, a slow shock, a slow wave, and a tube wave occurs. In the case of asymmetric, antiparallel magnetic fields, additionally surface waves are found. We also discuss the case of symmetric, antiparallel magnetic fields and asymmetric densities, which leads to a faster propagation in the lower half plane, causing side waves forming a Mach cone in the upper half plane. Complex effects like anisotropic propagation characteristics, intrinsic wave coupling, and the generation of different nonlinear and linear wave modes in a finite β plasma are retained. The temporal evolution of these wave and shock structures is shown

  19. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  20. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    International Nuclear Information System (INIS)

    Zeng Zhicheng; Cao Wenda; Ji Haisheng

    2013-01-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ∼ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (∼2 km s –1 ) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  1. Characterizing the original ejection velocity field of the Koronis family

    Science.gov (United States)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  2. Analysis of satisfaction factors at urban transport interchanges: Measuring travelers’ attitudes to information, security and waiting

    Energy Technology Data Exchange (ETDEWEB)

    Lois Garcia, D.; Monzon de Caceres, A.; Hernandez del Olmo, S.

    2016-07-01

    Transport interchanges can be considered as a node, where people transfer from one mode to another, and as a place to stay, using facilities and services as well as waiting areas. Reducing disruption of transfer in multimodal trips is a key element for assuring seamless mobility in big cities. Based on previous research (Hernández & Monzón, 2016) this paper aims to explore the predictive capacity of attitudes towards several service factors on general satisfaction with transport interchange. Complementary, it was analyzing how personal and trip characteristics are related to evaluation of some variables, and examining the influence of waiting time on the perceived quality. To that end, a two steps methodology was conducted (personal and on-line interview) in a representative sample of 740 users (54% female, 55% work purpose trip). We performed path analysis to test the model showing a satisfactory statistical fit. The model developed show good performance for predicting general satisfaction at Moncloa Transport Interchange (Madrid, Spain). The outputs of the model indicate that Information and Safety and Security factors predicted 49% of general satisfaction. Furthermore, the results showed also a strong association between evaluation of Design and Environmental quality, factors that not affect directly general satisfaction but do so through Information and Safety & Security perception, acting the last as mediator variables. Nevertheless, spending time queuing inside the interchange show a negative influence on Information and Safety & Security, while age of participants affect negatively to Information, which mean that elder have some cognitive accessibility problems. Moreover, our data shows gender differences in safety perception, since women feel less safe (particularity the youngest) inside the interchange. The results indicate a number of priority measures to enhance. (Author)

  3. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  4. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  5. NUMERICAL SIMULATION OF THREE-DIMENSIONAL ASYMMETRIC RECONNECTION AND APPLICATION TO A PHYSICAL MECHANISM OF PENUMBRAL MICROJETS

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Shibata, Kazunari; Isobe, Hiroaki

    2012-01-01

    Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.

  6. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Science.gov (United States)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  7. POWER LEVEL EFFECT IN A PWR ROD EJECTION ACCIDENT

    International Nuclear Information System (INIS)

    Diamond, D.J.; Bromley, B.P.; Aronson, A.L.

    2002-01-01

    The purpose of this study is to determine the effect of the initial power level during a rod ejection accident (REA) on the ejected rod worth and the resulting energy deposition in the fuel. The model used is for the hot zero power (HZP) conditions at the end of a typical fuel cycle for the Three Mile Island Unit 1 pressurized water reactor. PARCS , a transient, three-dimensional, two-group neutron nodal diffusion code, coupled with its own thermal-hydraulics model, is used to perform both steady-state and transient simulations. The worth of an ejected control rod is affected by both power level, and the positions of control banks. As the power level is increased, the worth of a single central control rod tends to drop due to thermal-hydraulic feedback and control bank removal, both of which flatten the radial neutron flux and power distributions. Although the peak fuel pellet enthalpy rise during an REA will be greater for a given ejected rod worth at elevated initial power levels, it is more likely the HZP condition will cause a greater net energy deposition because an ejected rod will have the highest worth at HZP. Thus, the HZP condition can be considered the most conservative in a safety evaluation

  8. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  9. Magnetohydrodynamic study for three-dimensional instability of the Petschek type magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.

    2013-01-01

    The 3D instability of the spontaneous fast magnetic reconnection process is studied with magnetohydrodynamics (MHD) simulations, where the 2D model of the spontaneous fast magnetic reconnection is destabilized in three dimension. As well known in many 2D numerical MHD studies, when a 1D current sheet is destabilized with the current-driven anomalous resistivity, the 2D Petschek type fast magnetic reconnection is established. This paper shows that the 2D Petschek type fast magnetic reconnection can be destabilized in three dimension by an initial resistive disturbance which includes a weak fluctuation in the sheet current direction, i.e., along the magnetic neutral line. The resulting 3D fast magnetic reconnection finally becomes intermittent and random through a 3D instability. In addition, it is also shown that the 3D instability is suppressed by the uniform resistivity. It suggests that the 3D instability is caused in the Petschek-type reconnection process which is characterized by a strongly localized magnetic diffusion region and the slow shock acceleration of the plasma jets and is suppressed in the Sweet-Parker type reconnection process

  10. The role of fluid compression in energy conversion and particle energization during magnetic reconnection

    Science.gov (United States)

    Li, X.; Guo, F.; Li, G.; Li, H.

    2016-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle acceleration and plasma energization. However, the role of compression in particle acceleration during magnetic reconnection is unclear. We use two approaches to study this issue. First, using fully kinetic simulations, we quantitatively calculate the effect of compression in energy conversion and particle energization during magnetic reconnection for a range of plasma beta and guide field. We show that compression has an important contribution for the energy conversion between the bulk kinetic energy and the internal energy when the guide field is smaller than the reconnecting component. Based on this result, we then study the large-scale reconnection acceleration by solving the Parker's transport equation in a background reconnecting flow provided by MHD simulations. Due to the compression effect, the simulations suggest fast particle acceleration to high energies in the reconnection layer. This study clarifies the nature of particle acceleration in reconnection layer, and may be important to understand particle acceleration and plasma energization during solar flares.

  11. EVIDENCE FOR NEWLY INITIATED RECONNECTION IN THE SOLAR WIND AT 1 AU

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Ma, Yonghui; Wong, Hon-Cheng; Wang, Yi; Zuo, Pingbing; Wei, Fengsi; Feng, Xueshang; Zhou, Meng; Deng, Xiaohua

    2015-01-01

    We report the first evidence for a large-scale reconnection exhaust newly initiated in the solar wind using observations from three spacecraft: ACE, Wind, and ARTEMIS P2. We identified a well-structured X-line exhaust using measurements from ARTEMIS P2 in the downstream solar wind. However, in the upstream solar wind, ACE detected the same current sheet that corresponds to the exhaust identified by ARTEMIS P2 data without showing any reconnection signals. We cannot find any reconnection signals from Wind located between ACE and ARTEMIS P2. Within the exhaust, a magnetic island is identified, which is not consistent with the quasi-steady feature as previously reported and provides further evidence that the reconnection is newly initiated. Our observations show that the entering of energetic particles, probably from Earth's bow shock, makes the crucial difference between the non-reconnecting current sheet and the exhaust. Since no obvious driving factors are responsible for the reconnection initiation, we infer that these energetic particles probably play an important role in the reconnection initiation. Theoretical analysis also shows support for this potential mechanism

  12. Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Zhao, Li, E-mail: zkxue@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming Yunnan 650216 (China)

    2017-05-10

    Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades, brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.

  13. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  14. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations

    Science.gov (United States)

    Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy

    2016-09-01

    This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection

  15. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  16. Magnetic reconnection in the presence of externally driven and self-generated turbulence

    International Nuclear Information System (INIS)

    Karimabadi, H.; Lazarian, A.

    2013-01-01

    Magnetic reconnection is an important process that violates flux freezing and induces change of magnetic field topology in conducting fluids and, as a consequence, converts magnetic field energy into particle energy. It is thought to be operative in laboratory, heliophysical, and astrophysical plasmas. These environments exhibit wide variations in collisionality, ranging from collisionless in the Earth's magnetosphere to highly collisional in molecular clouds. A common feature among these plasmas is, however, the presence of turbulence. We review the present understanding of the effects of turbulence on the reconnection rate, discussing both how strong pre-existing turbulence modifies Sweet-Parker reconnection and how turbulence may develop as a result of reconnection itself. In steady state, reconnection rate is proportional to the aspect ratio of the diffusion region. Thus, two general MHD classes of models for fast reconnection have been proposed, differing on whether they keep the aspect ratio finite by increasing the width due to turbulent broadening or shortening the length of the diffusion layer due to plasmoid instability. One of the consequences of the plasmoid instability model is the possibility that the current sheet thins down to collisionless scales where kinetic effects become dominant. As a result, kinetic effects may be of importance for many astrophysical applications which were considered to be in the realm of MHD. Whether pre-existing turbulence can significantly modify the transition to the kinetic regime is not currently known. Although most studies of turbulent reconnection have been based on MHD, recent advances in kinetic simulations are enabling 3D studies of turbulence and reconnection in the collisionless regime. A summary of these recent works, highlighting similarities and differences with the MHD models of turbulent reconnection, as well as comparison with in situ observations in the magnetosphere and in the solar wind, are presented

  17. Turbulent transport in 2D collisionless guide field reconnection

    Science.gov (United States)

    Muñoz, P. A.; Büchner, J.; Kilian, P.

    2017-02-01

    Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic

  18. 3-D rod ejection analysis using a conservative methodology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Ho; Park, Jin Woo; Park, Guen Tae; Um, Kil Sup; Ryu, Seok Hee; Lee, Jae Il; Choi, Tong Soo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    The point kinetics model which simplifies the core phenomena and physical specifications is used for the conventional rod ejection accident analysis. The point kinetics model is convenient to assume conservative core parameters but this simplification loses large amount of safety margin. The CHASER system couples the three-dimensional core neutron kinetics code ASTRA, the sub-channel analysis code THALES and the fuel performance analysis code FROST. The validation study for the CHASER system is addressed using the NEACRP three-dimensional PWR core transient benchmark problem. A series of conservative rod ejection analyses for the APR1400 type plant is performed for both hot full power (HFP) and hot zero power (HZP) conditions to determine the most limiting cases. The conservative rod ejection analysis methodology is designed to properly consider important phenomena and physical parameters.

  19. Round Robin computer simulation of ejection probability in sputtering

    International Nuclear Information System (INIS)

    Sigmund, P.; Hautala, M.; Yamamura, Y.; Hosaka, S.; Ishitani, T.; Shulga, V.I.; Harrison, D.E. Jr.; Chakarov, I.R.; Karpuzov, D.S.; Kawatoh, E.; Shimizu, R.; Valkealahti, S.; Nieminen, R.M.; Betz, G.; Husinsky, W.; Shapiro, M.H.; Vicanek, M.; Urbassek, H.M.

    1989-01-01

    We have studied the ejection of a copper atom through a planar copper surface as a function of recoil velocity and depth of origin. Results were obtained from six molecular dynamics codes, four binary collision lattice simulation codes, and eight Monte Carlo codes. Most results were found with a Born-Mayer interaction potential between the atoms with Gibson 2 parameters and a planar surface barrier, but variations on this standard were allowed for, as well as differences in the adopted cutoff radius for the interaction potential, electronic stopping, and target temperature. Large differences were found between the predictions of the various codes, but the cause of these differences could be determined in most cases. A fairly clear picture emerges from all three types of codes for the depth range and the angular range for ejection at energies relevant to sputter ejection, although a quantitative discussion would have to include an analysis of replacement collision events which has been left out here. (orig.)

  20. Ejection of a rear facing, golf cart passenger.

    Science.gov (United States)

    Schau, Kyle; Masory, Oren

    2013-10-01

    The following report details the findings of a series of experiments and simulations performed on a commercially available, shuttle style golf cart during several maneuvers involving rapid accelerations of the vehicle. It is determined that the current set of passive restraints on these types of golf carts are not adequate in preventing ejection of a rear facing passenger during rapid accelerations in the forward and lateral directions. Experimental data and simulations show that a hip restraint must be a minimum of 13 in. above the seat in order to secure a rear facing passenger during sharp turns, compared to the current restraint height of 5 in. Furthermore, it is determined that a restraint directly in front of the rear facing passenger is necessary to prevent ejection. In addressing these issues, golf cart manufacturers could greatly reduce the likelihood of injury due to ejection of a rear facing, golf cart passenger. Copyright © 2013 Elsevier Ltd. All rights reserved.